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[Bialgebras A(F,G)]
The category A(X) of all universal algebras of the type (X, ar)

[ar being "the arity function" ¥ —Card] is just AlgFy, for the
polynomial functor Fy, : Set — Set.

FoX = H xoaro
oEY
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M. A. Arbib and E. G. Manes: Machines in a category: an
expository introduction, STAM Review 16 (1974), 163-192.
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Knaster-Tarski construction of the least fix-point of a monotone
map F : K — K, K complete lattice:

0 < FO < FF0O < ... supF'0 < F(...) <

| | | | |
Wo Wi Wo W, Wt

The constructions stops if FW, = W,
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FI Fuoy Fuse i COUME W o
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The construction stops (converges) if

Wa,at1 @ Wa — Wa+1 = I 4+ FW, is an isomorphism

Then (Wa, (Wa,at1) "t 0 pat1) and n: I — W, with n = w4 is
a free F-algebra over I.
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Koubek: push-out construction

a Fugq Fug g
D——FWy—= FW; —= FW,
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fa:D— FWO is mono, then (Wy, 5) is a partial F-algebra and
if the push-out construction stops, we get its free completion.

When the construction stops?
It depends on K and F', there are many criteria and many
examples.

If the construction does not stop, does the initial (or free or ... )
exist?

i.e. are all initial (or free or ...) algebras constructive (in the
sense that they are results of the above constructions?)

YES in Set
NO generally



J. Adamek, V. Trnkova:

Automata and Algebras in
Categories
Kluwer Academic Publishers 1990
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G. Birkhoff 1946: Every group is isomorphic to the
automorphism group of a distributive lattice.

J. de Groot 1959: Every group is isomorphic to the
autohomeomorphism group of a topological space.

It was an idea of J. R. Isbell to generalize it to the investigation
of full embeddings of categories.

A functor F: K — H is a full embedding if it is isofunctor onto
full subcategory (i.e. F' maps K(a,b) onto H(Fa, F'b).

A category K is called algebraically universal if every category
A(X) of universal algebras of an arbitrary signature X can be
fully embedded in it.

Many categories were proved to be alg-universal (Hedrlin, Pultr,
Vopénka, Kucera, Sichler, ...).
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In 1980, the monograph by A. Pultr and V. T. was published

» Combinatorial, algebraic and topological representations of

groups, semigroups and categories.

Theorem(V. Koubek 1983): For a varietor F' : Set — Set,
Alg F is alg-universal iff F' satisfies at least one of the following
three conditions:

1. Ident+Ident is subfunctor of F

2. F is faithful and has an unattainable cardinal

3. F is not connected and has an unattainable cardinal.

[A set PX is called an increase of a functor F' : Set — Set on a
set X if
PX=FX\ |J (FNIFY]

fiY—=X
Y]<|X|

| X | is unattainable iff PX # 0]



Example:
Alg (2) is alg-universal; its variety given by

is not alg-universal; but Alg(2,0) with

15 alg-universal.
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J. M. Rutten: Universal coalgebra: a system theory
Theoret. Comp. Sci. 249 (2000), 3-80

H. P. Gumm and T. Schréder: Types and coalgebraic structure
Alg. Universalis 53 (2005), 229-252

» J. Adamek and V. T.: Initial algebras and terminal
coalgebras in many-sorted sets, sent for publication

» J. Adamek and V. T.: Relatively terminal coalgebras, in
preparation
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YES for I = Set, many sorted sets, vector spaces
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For initial algebras the result is analogous
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» What is the smallest number of iterations to get initial
algebra?

In many sorted sets: it can be arbitrary ordinal number.
In Set: 0 or 1 or 2 or 3 or an infinite regular cardinal number

[For terminal coalgebras in Set between A\ and 2\ for
A-accessible functors, by J. Worrell, 2005]

Open problem: Which functors Set — Set admit terminal
coalgebras?
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Statements:

» if F' preserves intersections, then C'oalgF' is universal iff I
is not linear (i.e. F'is not of the form FX =X x A+ B
where A and B are constants).

» if F' preserves non-void preimages then CoalgF is universal
iff F' does not preserve finite unions of non-empty set.
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Fi1(X) =X x X: both AlgF; and CoalgF are universal.
Fy(X) = X x X/a: CoalgF» is universal, AlgFs not.
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Eramples:

Fi1(X) =X x X: both AlgF; and CoalgF are universal.
Fy(X) = X x X/a: CoalgF» is universal, AlgFs not.
F3(X) =X + X: AlgF;s is universal CoalgF3 is not.

Let B : Set — Set be an ultrafilter functor. Then

» Coalg( contains rigid proper class of coalgebras.

» But it is not universal, a monoid on 13 elements cannot be
represented in it.



