Elementary problems in number theory

Csaba Szabó

Eötvös Loránd University, Budapest

June, 2010
Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?
Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?
Problem 1.

How many numbers do you have to choose from 1 to $2n$ such that at least two of them are relatively prime?

- $2n$ is enough (contains 1 and 2)
Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

- 2n is enough (contains 1 and 2)
- n is not enough: 2, 4, 6, \ldots, 2n
Problem 1.

How many numbers do you have to choose from 1 to 2n such that at least two of them are relatively prime?

- $2n$ is enough (contains 1 and 2)
- n is not enough: 2, 4, 6, \ldots, 2n

$n+1$ is enough:
There are two consecutive numbers among them.
Proof: Pigeon-holes: \{1, 2\}, \{3, 4\}, \ldots, \{2n – 1, 2n\},
Problem 2.

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?
How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?
Problem 2.

How many numbers do you have to choose from 1 to $2n$ such that there are two among them s.t. one divides the other?

- $2n$ is enough (contains 1 and 2)
Problem 2.

How many numbers do you have to choose from 1 to $2n$ such that there are two among them s.t. one divides the other?

- $2n$ is enough (contains 1 and 2)
- n is not enough: $n + 1, n + 2, \ldots, 2n$
Problem 2.

How many numbers do you have to choose from 1 to 2n such that there are two among them s.t. one divides the other?

- $2n$ is enough (contains 1 and 2)
- n is not enough: $n + 1, n + 2, \ldots, 2n$

$n+1$ is enough:

Proof: Pigeon-holes: $\{1 \cdot 2^t\}, \{3 \cdot 2^t\}, \ldots, \{(2n - 1) \cdot 2^t\}$, labelled by odd numbers.
Problem 3.

How many numbers do you have to choose such that the sum of a few of them is divisible by \(n \)?

\[
\sum_{1}^{n} a_i - k \sum_{1}^{n} a_i = \sum_{1}^{k} a_i
\]
Problem 3.

How many numbers do you have to choose such that the sum of a few of them is divisible by n?

Proof: Pigeon-holes: residue classes

Pigeons: $a_1, a_1 + a_2, \ldots, a_1 + a_2 + \ldots + a_n$

Two in the same pigeon-hole:

\[l \sum a_i - k \sum a_i = l \sum a_i \]

Csaba Szabó
Elementary problems in number theory
Problem 3.

How many numbers do you have to choose such that the sum of a few of them is divisible by \(n \)?

- \(n - 1 \) is not enough: 1, 1, \ldots, 1
Problem 3.

How many numbers do you have to choose such that the sum of a few of them is divisible by n?

- $n - 1$ is not enough: $1, 1, \ldots, 1$

n is enough:

Proof: Pigeon-holes: residue classes

Pigeons: $a_1, a_1 + a_2, \ldots, a_1 + a_2 + \cdots + a_n$

Two in the same pigeon-hole:

$$
\sum_{1}^{l} a_i - \sum_{1}^{k} a_i = \sum_{k}^{l} a_i
$$
Problem 4.

How many numbers do you have to choose such that the sum of n of them is divisible by n?
Problem 4.

How many numbers do you have to choose such that the sum of n of them is divisible by n?
Problem 4.

How many numbers do you have to choose such that the sum of n of them is divisible by n?

- $2n - 2$ is not enough: $0, 0, \ldots, 0, 1, 1, \ldots, 1$
Problem 4.

How many numbers do you have to choose such that the sum of n of them is divisible by n?

- $2n - 2$ is not enough: $0, 0, \ldots, 0, 1, 1, \ldots, 1$

$n^2 - n + 1$ is enough:

Proof: Pigeon-holes: residue classes
At least n in a single pigeon-hole
Problem 4.

How many numbers do you have to choose such that the sum of \(n \) of them is divisible by \(n \)?

- \(2n - 2 \) is not enough: 0, 0, \ldots, 0, 1, 1, \ldots, 1

\(n^2 - n + 1 \) is enough:

Proof: Pigeon-holes: residue classes
At least \(n \) in a single pigeon-hole

\((n - 1)^2 + 1 \) is enough:

Is there a better bound?

Csaba Szabó
Elementary problems in number theory
Chevalley’s Theorem

Lemma

Let A_1, \ldots, A_n be subsets of F_p, the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$
\sum_{i=1}^{n} (|A_i| - 1) > (p - 1) \deg f.
$$

If the set

$$
\{ a \in A_1 \times \cdots \times A_n | f(a) = 0 \}
$$

is not empty, then it has at least two different elements.
Lemma

Let A_1, \ldots, A_n be subsets of F_p, the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n}(|A_i| - 1) > (p - 1) \text{deg } f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.
Elementary problems in number theory

\[x_1^2 x_2 x_3 + x_2 x_3^2 + x_1 x_2^2 + x_3 \]

Erdős–Ginzburg–Ziv

\[\sum a_i x_i^{p^m} = 0 \]
\[\sum x_i^{p^m} = 0 \]

Chernoff

\[\exists g_i : < \# \text{nilf.} \]
\[f_i(0) = 0 \]

A = \{a_1, \ldots, a_n\}
B = \{b_1, \ldots, b_m\}

A \times B \text{ ellini pol.}

\[\exists \epsilon \left(T_1(x-a), T_1(y-b) \right) \]
Why am I talking about these problems?
Definition

Let A be an algebra and t_1 and t_2 be two terms over A. We say that t_1 and t_2 are equivalent over A if $t_1(\bar{a}) = t_2(\bar{a})$ for every substitution $\bar{a} \in A$.

Input:
- t_1 and t_2 two terms over A

Question: Are t_1 and t_2 equivalent over A?

Always decidable: check every substitution
Definition

Let \(A \) be an algebra and \(t_1 \) and \(t_2 \) be two terms over \(A \).
- We say that \(t_1 \) and \(t_2 \) are equivalent over \(A \) if \(t_1(\bar{a}) = t_2(\bar{a}) \) for every substitution \(\bar{a} \in A \).
Definition

Let \(A \) be an algebra and \(t_1 \) and \(t_2 \) be two terms over \(A \).

- We say that \(t_1 \) and \(t_2 \) are equivalent over \(A \) if \(t_1(\bar{a}) = t_2(\bar{a}) \) for every substitution \(\bar{a} \in A \).

Definition

ID-CHECK \(A \)
Definition

Let \(A \) be an algebra and \(t_1 \) and \(t_2 \) be two terms over \(A \).

- We say that \(t_1 \) and \(t_2 \) are equivalent over \(A \) if \(t_1(\bar{a}) = t_2(\bar{a}) \) for every substitution \(\bar{a} \in A \).

Definition

ID-CHECK \(A \)

- Let \(A \) be an algebra
Definition

Let A be an algebra and t_1 and t_2 be two terms over A.

- We say that t_1 and t_2 are equivalent over A if $t_1(\bar{a}) = t_2(\bar{a})$ for every substitution $\bar{a} \in A$.

Definition

ID-CHECK A

- Let A be an algebra
- Input: t_1 and t_2 two terms over A
Definition

Let A be an algebra and t_1 and t_2 be two terms over A.

- We say that t_1 and t_2 are equivalent over A if $t_1(\bar{a}) = t_2(\bar{a})$ for every substitution $\bar{a} \in A$.

Definition

ID-CHECK A

- Let A be an algebra
- Input: t_1 and t_2 two terms over A
- Question: Are t_1 and t_2 equivalent over A?
Definition

Let A be an algebra and t_1 and t_2 be two terms over A.
- We say that t_1 and t_2 are equivalent over A if $t_1(\bar{a}) = t_2(\bar{a})$ for every substitution $\bar{a} \in A$.

Definition

ID-CHECK A
- Let A be an algebra
- Input: t_1 and t_2 two terms over A
- Question: Are t_1 and t_2 equivalent over A?

Always decidable: check every substitution
Another question
Another question

- t_1 and t_2 two polynomials over A
Another question

- t_1 and t_2 two polynomials over A
- POL-SAT: Does $t_1 = t_2$ have a solution?
Another question

- t_1 and t_2 two polynomials over A
- *POL-SAT*: Does $t_1 = t_2$ have a solution?

Rings
Another question

- t_1 and t_2 two polynomials over A
- POL-SAT: Does $t_1 = t_2$ have a solution?

Rings

- ID-CHECK R: Is $t = t_1 - t_2$ identically 0?
Another question

- t_1 and t_2 two polynomials over A
- **POL-SAT**: Does $t_1 = t_2$ have a solution?

Rings

- **ID-CHECK R**: Is $t = t_1 - t_2$ identically 0?
- **POL-SAT R**: Does $t = t_1 - t_2$ have a root?
A Abelian group

\[t(x_1, \ldots, x_n) = x_{k_1}^{k_1} \cdots x_{k_n}^{k_n} \]

\[t(x_1, \ldots, x_n) \equiv 1 \text{ over } A \]

\[\forall i \neq m \quad x_i = 1 \Rightarrow x_{k_m}^{k_m} \equiv 1 \]

\[\exp_A | k_m \quad \text{for every } m \]

\[x_{k_1}^{k_1} \cdots x_{k_n}^{k_n} \equiv 1 \iff \forall m : \exp_A | k_m \]
A Abelian group

- \(t(x_1, \ldots, x_n) = x_1^{k_1} \cdots x_n^{k_n} \)
Abelian groups

A Abelian group

- \(t(x_1, \ldots, x_n) = x_1^{k_1} \ldots x_n^{k_n} \)
- \(t(x_1, \ldots, x_n) \equiv 1 \) over \(A \)
Abelian groups

A Abelian group

- \(t(x_1, \ldots, x_n) = x_1^{k_1} \ldots x_n^{k_n} \)
- \(t(x_1, \ldots, x_n) \equiv 1 \) over \(A \)
- \(x_1^{k_1} \ldots x_n^{k_n} \equiv 1 \)
Abelian groups

A Abelian group

- $t(x_1, \ldots, x_n) = x_1^{k_1} \cdots x_n^{k_n}$
- $t(x_1, \ldots, x_n) \equiv 1$ over A
- $x_1^{k_1} \cdots x_n^{k_n} \equiv 1$
- $\forall i \neq m \; x_i = 1 \implies x_m^{k_m} \equiv 1$
Abelian groups

A Abelian group

- \(t(x_1, \ldots, x_n) = x_1^{k_1} \ldots x_n^{k_n} \)
- \(t(x_1, \ldots, x_n) \equiv 1 \) over \(A \)
- \(x_1^{k_1} \ldots x_n^{k_n} \equiv 1 \)
- \(\forall i \neq m \ x_i = 1 \implies x_m^{k_m} \equiv 1 \)
- \(\exp A \mid k_m \) for every \(m \)
Abelian groups

A Abelian group

- $t(x_1, \ldots, x_n) = x_1^{k_1} \ldots x_n^{k_n}$
- $t(x_1, \ldots, x_n) \equiv 1$ over A
- $x_1^{k_1} \ldots x_n^{k_n} \equiv 1$
- $\forall i \neq m \ x_i = 1 \implies x_m^{k_m} \equiv 1$
- $\exp A \mid k_m$ for every m
- $x_1^{k_1} \ldots x_n^{k_n} \equiv 1 \iff \forall m : \exp A \mid k_m$
Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \ldots, x_n]$ be a polynomial over A. Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that $f(\bar{a}) = f(\bar{b})$.
Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \ldots, x_n]$ be a polynomial over A. Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that

1. $b_i = 0$ or $b_i = a_i$
Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \ldots, x_n]$ be a polynomial over A. Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $r^{r\cdots r^k}$ many i-s (there are k-many r-s in the tower)
Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \ldots, x_n]$ be a polynomial over A. Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $r^r \cdots r^k$ many i-s (there are k-many r-s in the tower)
- $f(\bar{a}) = f(\bar{b})$
Idziak- Szabó

Let A be a nilpotent algebra of size r and of nilpotency class k, and $f(\bar{x}) \in R[x_1, x_2, \ldots, x_n]$ be a polynomial over A. Then for every $\bar{a} \in R^n$ there is a $\bar{b} \in R^n$ such that

- $b_i = 0$ or $b_i = a_i$
- $b_i = a_i$ for at most $r^r \cdots r^k$ many i-s (there are k-many r-s in the tower)
- $f(\bar{a}) = f(\bar{b})$

G. Horváth

same bound, simpler proof for groups and rings
Let $F(\bar{a}) = F(a_1, \ldots, a_n) = b$.

For $H \subseteq \{1, 2, \ldots, n\}$ let $a_H = \begin{cases} a_i & \text{if } i \in H \\ 0 & \text{if } i \notin H \end{cases}$

$\varphi(H) = \text{see board}$

$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X)$

$f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$

Clearly, $\overline{\varphi}(H) = F(\bar{a}_H)$
recall

$$\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X) \quad \text{and} \quad f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i$$
recall

\(\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X) \) and \(f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i \)

\[f(1) = \sum \varphi(X) = \overline{\varphi}([1, \ldots, n]) = F(\overline{a}) \]

\[f(\chi(H)) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(H) = F(\overline{a_H}) \]
recall

\[\overline{\varphi}(H) = \sum_{X \subseteq H} \varphi(X) \quad \text{and} \quad f(x) = \sum_{H} \varphi(H) \prod_{i \in H} x_i \]

\[f(\overline{1}) = \sum \varphi(X) = \overline{\varphi}(\{1, \ldots, n\}) = F(\overline{a}) \]

\[f(\chi(H)) = \sum_{X \subseteq H} \varphi(X) = \overline{\varphi}(H) = F(\overline{a}_H) \]

\[g(\overline{x}) = f(\overline{x}) - f(\overline{1}) \]

\[g(\overline{1}) = 0 \]

\[g(\chi(H)) = 0 \iff F(\overline{a}_H) = b \]
Recall

Let A_1, \ldots, A_n be subsets of F_p, the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n} (|A_i| - 1) > (p - 1) \deg f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.
Chevalley’s Theorem, again

Recall

Let A_1, \ldots, A_n be subsets of F_p, the p-element field, and $f \in F_p[x_1, \ldots, x_n]$ such that

$$\sum_{i=1}^{n}(|A_i| - 1) > (p - 1) \deg f.$$

If the set $\{a \in A_1 \times \cdots \times A_n | f(a) = 0\}$ is not empty, then it has at least two different elements.

Apply Lemma for $g(\bar{x})$ and $A_i = \{0, 1\}$. $g(\bar{1}) = 0$. If $n > k(p - 1)$, there is an other root.