Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Charles University, Prague

Jardafest
Prague
June 24, 2010
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

1 Maltsev digraphs

2 The R^+ and R^- relations

3 How to obtain a majority

4 Conclusions
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure $G = (V, E)$ with $E \subseteq V^2$.
- Given a graph, we can define the algebra of its idempotent polymorphisms $\text{Pol} \ G$.
- A polymorphism $m : V^3 \to V$ is Maltsev if for all $x, y \in V$ we have

 $$m(x, y, y) = x \quad m(x, x, y) = y.$$

- A polymorphism $M : V^3 \to V$ is a majority if for all $x, y \in V$ we have

 $$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$
Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure $G = (V, E)$ with $E \subseteq V^2$.

- Given a graph, we can define the algebra of its idempotent polymorphisms $\text{Pol} G$.

- A polymorphism $m : V^3 \to V$ is Maltsev if for all $x, y \in V$ we have
 $$m(x, y, y) = x \quad m(x, x, y) = y.$$

- A polymorphism $M : V^3 \to V$ is a majority if for all $x, y \in V$ we have
 $$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$
Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure $G = (V, E)$ with $E \subseteq V^2$.
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol_G.
- A polymorphism $m : V^3 \rightarrow V$ is Maltsev if for all $x, y \in V$ we have
 \[m(x, y, y) = x \quad m(x, x, y) = y. \]
- A polymorphism $M : V^3 \rightarrow V$ is a majority if for all $x, y \in V$ we have
 \[M(y, x, x) = M(x, y, x) = M(y, x, x) = x. \]
Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure $G = (V, E)$ with $E \subseteq V^2$.
- Given a graph, we can define the algebra of its idempotent polymorphisms $\text{Pol} G$.
- A polymorphism $m : V^3 \to V$ is Maltsev if for all $x, y \in V$ we have
 $$m(x, y, y) = x \quad m(x, x, y) = y.$$
- A polymorphism $M : V^3 \to V$ is a majority if for all $x, y \in V$ we have
 $$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$
Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure \(G = (V, E) \) with \(E \subset V^2 \).
- Given a graph, we can define the algebra of its idempotent polymorphisms \(\text{Pol} G \).
- A polymorphism \(m : V^3 \to V \) is Maltsev if for all \(x, y \in V \) we have
 \[
 m(x, y, y) = x \quad m(x, x, y) = y.
 \]
- A polymorphism \(M : V^3 \to V \) is a majority if for all \(x, y \in V \) we have
 \[
 M(y, x, x) = M(x, y, x) = M(y, x, x) = x.
 \]
Maltsev digraphs have a majority polymorphism

Maltsev ⇒ majority

- We will call a digraph G Maltsev resp. having a majority if $\text{Pol} \ G$ contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.
Maltsev \Rightarrow \text{majority}

- We will call a digraph G Maltsev resp. having a majority if $\text{Pol } G$ contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Maltsev \Rightarrow majority

- We will call a digraph G Maltsev resp. having a majority if $\text{Pol } G$ contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Maltsev \Rightarrow majority

- We will call a digraph G Maltsev resp. having a majority if $\text{Pol } G$ contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.
Maltsev \Rightarrow \text{majority}

- We will call a digraph G Maltsev resp. having a majority if $\text{Pol} \, G$ contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group $\mathbb{Z}_2 \times \mathbb{Z}_2$).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs
The R^+ and R^- relations
How to obtain a majority
Conclusions

Rectangularity

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism m and we get . . .
- . . . that $(x, y') \in E$ as well.

- We say that E is rectangular.
Rectangularity

Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.

Now apply the Maltsev polymorphism m and we get . . .

. . . that $(x, y') \in E$ as well.

We say that E is rectangular.
Rectangularity

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism m and we get . . .
- . . . that $(x, y') \in E$ as well.

We say that E is rectangular.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Rectangularity

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism m and we get . . .
- . . . that $(x, y') \in E$ as well.

![Diagram](image)

- We say that E is rectangular.
Rectangularity

- Let \(x, y, x', y' \) be vertices of \(G \) and let \((x, y), (x', y'), (x', y) \in E\).
- Now apply the Maltsev polymorphism \(m \) and we get . . .
- . . . that \((x, y') \in E\) as well.
- We say that \(E \) is rectangular.
R$^+$ and R$^-$

- For ν in V, we will denote by ν^+ the vertex set $
\{ u \in V(G) : (\nu, u) \in E(G) \}$ by ν^- the vertex set
$\{ u \in V(G) : (u, \nu) \in E(G) \}$.
- For u, ν vertices of G, we write $uR^+ \nu$ if $u^+ = \nu^+$ and $uR^- \nu$ if $u^- = \nu^-$.

• In the picture, we have $x^+ = y^+$, therefore $xR^+ y$.

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions
R+ and R−

- For ν in V, we will denote by ν+ the vertex set \(\{ u \in V(G) : (ν, u) \in E(G) \} \) by ν− the vertex set \(\{ u \in V(G) : (u, ν) \in E(G) \} \).

- For u, ν vertices of G, we write \(uR^+ν \) if \(u^+ = ν^+ \) and \(uR^-ν \) if \(u^- = ν^- \).

- In the picture, we have \(x^+ = y^+ \), therefore \(xR^+y \).
For v in V, we will denote by v^+ the vertex set
\[\{ u \in V(G) : (v, u) \in E(G) \} \]
by v^- the vertex set
\[\{ u \in V(G) : (u, v) \in E(G) \} \].

For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.

In the picture, we have $x^+ = y^+$, therefore xR^+y.

R^+ and R^-
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

The R^+ and R^- relations

How to obtain a majority

Conclusions

R^+ and R^-

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}$.

- For u, v vertices of G, we write $uR^+ v$ if $u^+ = v^+$ and $uR^- v$ if $u^- = v^-$.

- In the picture, we have $x^+ = y^+$, therefore $xR^+ y$.

\[
\begin{array}{c}
\begin{tikzpicture}
\node (x) at (0,0) [circle, fill=black] {x};
\node (y) at (0,-1) [circle, fill=black] {y};
\draw[->] (x) to (y);
\end{tikzpicture}
\end{array}
\]

\[
\begin{array}{c}
x^+ = y^+
\end{array}
\]
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

\[R^+ \text{ and } R^- \]

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}$.
- For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.

\[
\begin{cases}
 x^+ = y^+ \\
 x
\end{cases}
\]

- In the picture, we have $x^+ = y^+$, therefore xR^+y.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

R^+ and R^- are nice

- As E is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping $\phi : E \mapsto E^+$ is a bijection from the set of equivalence classes of R^+ to the set of equivalence classes of R^-.
\(R^+ \) and \(R^- \) are nice

- As \(E \) is rectangular, we obtain the following:
 - The relations \(R^+ \) and \(R^- \) are equivalences on \(V \).
 - The mapping \(\phi : E \mapsto E^+ \) is a bijection from the set of equivalence classes of \(R^+ \) to the set of equivalence classes of \(R^- \).
R^+ and R^- are nice

- As E is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping $\phi : E \mapsto E^+$ is a bijection from the set of equivalence classes of R^+ to the set of equivalence classes of R^-.
R^+ and R^- are nice

- As E is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping $\phi : E \mapsto E^+$ is a bijection from the set of equivalence classes of R^+ to the set of equivalence classes of R^-.
Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

\[R^+ \text{ and } R^- \text{ in a picture} \]

Graph G

$E \subseteq V^2$

R^+-classes \quad R^--classes
The graphs G^+ and G^-

- Given G, we define the graph G^+ whose vertices are the equivalence classes of R^+ and $(U, V) \in E(G^+)$ iff there exist vertices $u \in U, v \in V$ with $(u, v) \in E(G)$.
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+.
The graphs G^+ and G^-

- Given G, we define the graph G^+ whose vertices are the equivalence classes of R^+ and $(U, V) \in E(G^+)$ iff there exist vertices $u \in U, v \in V$ with $(u, v) \in E(G)$.
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+.

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions
The graphs G^+ and G^-

- Given G, we define the graph G^+ whose vertices are the equivalence classes of R^+ and $(U, V) \in E(G^+)$ iff there exist vertices $u \in U, v \in V$ with $(u, v) \in E(G)$.
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+.
The graphs G^+ and G^-

- Given G, we define the graph G^+ whose vertices are the equivalence classes of R^+ and $(U, V) \in E(G^+)$ iff there exist vertices $u \in U$, $v \in V$ with $(u, v) \in E(G)$.
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+.
The graphs G^+ and G^-

- Given G, we define the graph G^+ whose vertices are the equivalence classes of R^+ and $(U, V) \in E(G^+)$ iff there exist vertices $u \in U$, $v \in V$ with $(u, v) \in E(G)$.
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+.
Proof by induction

We are now ready for a proof by induction.

Assume that G is the smallest Maltsev graph without a majority operation.

If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.

Else...
Proof by induction

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
- Else...
Proof by induction

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
 - If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
 - Else...
Proof by induction

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
- Else...
Proof by induction

• We are now ready for a proof by induction.
• Assume that G is the smallest Maltsev graph without a majority operation.
• If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
• Else...
Extending the majority

- Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$[M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+})$$
$$[M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-})$$

- Examining R^+ and R^-, we discover that such an M always exists and is a majority polymorphism of G.
Extending the majority

• Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$[M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+})$$
$$[M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-})$$

• Examining R^+ and R^-, we discover that such an M always exists and is a majority polymorphism of G.
Extending the majority

• Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$ [M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+}) $$

$$ [M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-}) $$

• Examining R^+ and R^-, we discover that such an M always exists and is a majority polymorphism of G.
CSP complexity

- If G is a graph, add constants (names of vertices) to the language of G and consider the problem $\text{CSP}(G_c)$.
- If G is Maltsev then we already know that $\text{CSP}(G_c)$ is in P...
- ...however, if G has both Maltsev and majority then $\text{CSP}(G_c)$ is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev $\implies \text{CSP}(G_c)$ is solvable in logspace.
CSP complexity

- If G is a graph, add constants (names of vertices) to the language of G and consider the problem $\text{CSP}(G_c)$.
- If G is Maltsev then we already know that $\text{CSP}(G_c)$ is in P.
- ... however, if G has both Maltsev and majority then $\text{CSP}(G_c)$ is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow $\text{CSP}(G_c)$ is solvable in logspace.
CSP complexity

- If G is a graph, add constants (names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that CSP(G_c) is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.
CSP complexity

- If G is a graph, add constants (names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that CSP(G_c) is in P...
- ...however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.
CSP complexity

- If G is a graph, add constants (names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that CSP(G_c) is in P...
- ...however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.
Open problems

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type “G has t then G has s” hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on n vertices.
Open problems

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type “G has t then G has s” hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on n vertices.
Open problems

• Is it possible to generalize the result to the case when G has several edge relations?
• What other implications of the type “G has t then G has s” hold in graphs but not for general algebras?
• Maybe some such implications hold for all finitely presented algebras?
• It would also be interesting to estimate the number of Maltsev graphs on n vertices.
Open problems

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type “G has t then G has s” hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on n vertices.
Open problems

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type “G has t then G has s” hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on n vertices.
Thanks for your attention.