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a = OL({(f(x),f(¥)) | (x,¥) € a})

» Given lattices K C L, we say that Lis a
congruence-preserving extension of K if each congruence
of K extends to a unique congruence of L.

» Equivalently Con, f is an isomorphism, where f: K — Lis
the inclusion map.
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Cong FV(NQ) =~ Conc L.

(RGzicka, Tama, and Wehrung, 2007)

Let K be a countable locally finite lattice, then K has a
relatively complemented congruence-preserving extension
(Gratzer, Lakser, and Wehrung, 2000).

The result cannot be extended to R;.

Let V be a non-distributive variety of lattices. The lattice
Fy(R¢) has no congruence-permutable
congruence-preserving extension (G., Wehrung, 2009).
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everything.

» A lattice L has compact top congruence if 1, is finitely
generated.

» That is Con¢ L has a largest element.

» Equivalently, there is x < y in L such that ©,(x,y) =1,.

» Given a variety of lattices V', we denote V® the category of
lattices in V with a compact top congruence.

» Morphisms in V° are morphisms of lattices f: K — L such
that (COI’]C f)(1K) =1;.
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Bounded lattices

» Given a variety of lattices V, denote V%' the category of
bounded lattices in V.
» Morphisms in V%! are morphisms of lattices f: K — L
such that f(0) =0 and f(1) = 1.
» V01 is a subcategory of V", itself a subcategory of V.
» In general V%' is not a full subcategory of V°.
1

T—x
0—0
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Bounded lattices

» Denote f: 2 — Mz, the morphism constructed before.

> L={(X,¥n)n<w €2x M§ | {n < w | yn# f(x)} is finite}.

» Con, L is isomorphic to the (V, 0)-semilattice of finite
subset of w with an additional top element.

» Hence Lis in M§ but not in /\/lg’1.

» Here L is condensate of the arrow f.
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The problems

Questions

Let V be a variety of lattices. Are any of the following statement
true ?

1. For all K € V" there is L € V%' such that Con. K =2 Con L.
2. All K € V" has a congruence-preserving extension in V0.

» Moreover if any of those assertion is true, can the
construction be made functorial ?
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The finitely generated varieties case

LetV be a finitely generated variety of lattices. The following
Statement are equivalent.

(1) Each countable lattice L in V® has a
congruence-preserving extension in Vo1

(2) Let K be a subdirectly irreducible lattice in V, let x < y in K
such that©k(x,y) =1k, thenx =0andy = 1.

(3) Vo =101,

» (3) = (1) is obvious.
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» Notice that N5 satisfies (2), but M3 fails (2).
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» Let o € M(ConL). So L/« is subdirectly irreducible and
eL/a(X/av y/a) = 1L/a-

» So x/a is smaller than every element of L/a.

» So x is smaller than every element of L. So L has a
smallest element x.

» Similarly y is the largest element of L.
» Hence L is bounded.
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» Proof by example, V = M.

A diagram of M3, <D bwe cannot add
with no CP-extension in M. anything

— >

1 C

a and other elements.
0
1—c 0
X—a
1
X < and other elements.
0
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Proof of (1) = (2)

» There is a diagram in /\/lg that has no
congruence-preserving extension into Mg’1.

» Using a condensate construction we obtain a countable
lattice L € M3 that has no congruence-preserving

extension into /\/lg’1.

12/15



A functor

There is a functor W: M5 — M3,

13/15



A functor

There is a functor W: MY — M3, such that Cong oW = Con.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.
» First we define W on lattices L € MST.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.
» First we define W on lattices L € MST.

» We denote o the smallest congruence of L such that L/«
is distributive.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.

> First we define W on lattices L € M.

» We denote o the smallest congruence of L such that L/«
is distributive.

» Let W(L) be the product of L/a; and all quotient of L
isomorphic to Ms.

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

Denote MgT the full subcategory of finite lattices in Mg.

v

v

First we define W on lattices L € M.

We denote «; the smallest congruence of L such that L/«
is distributive.

Let W(L) be the product of L/«; and all quotient of L
isomorphic to Ms.

¥ can be extended on morphisms in M3

v

v

v

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.

» First we define W on lattices L € MST.

» We denote o the smallest congruence of L such that L/«
is distributive.

» Let W(L) be the product of L/a; and all quotient of L
isomorphic to Ms.

> W can be extended on morphisms in M3

» Basically only the morphisms f: 2 — M3 can cause
problems,

13/15



A functor

Theorem

There is a functor W: M3 — Mg, such that Cong oW 2 Con.

In particular for all K € M3 there is L € M3" such that
Conc K = Conc L.

» Denote MgT the full subcategory of finite lattices in Mg.

» First we define W on lattices L € MgT.

» We denote o the smallest congruence of L such that L/«
is distributive.

» Let W(L) be the product of L/a; and all quotient of L
isomorphic to Ms.

> W can be extended on morphisms in M3

» Basically only the morphisms f: 2 — M3 can cause
problems, change them to the only possible morphism that
preserves bounds.
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A functor

> We have a functor W: M5 — M3', such that
Con¢ oV = Con.

> Every L € M} is a directed colimit in MY,

» Hence we can extend V to a functor M5 — M3 that
preserves directed colimits.

» Moreover, as Con, preserves directed colimits,
Con¢ oV = Con.
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That is all !

Thank you for your attention

Have you any questions ?
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