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Congruences

I Given a lattice L, denote by Con L the set of all
congruences of L, ordered by inclusion.

It is an algebraic
lattice.

I Denote by Conc L the set of all compact (=finitely
generated) congruences of L. It is a (∨,0)-semilattice.

I Conc can be extended to a functor. Let f : K → L be a
morphism of lattices. Put :

Conc f : Conc K → Conc L
α 7→ ΘL({(f (x), f (y)) | (x , y) ∈ α})

I Given lattices K ⊆ L, we say that L is a
congruence-preserving extension of K if each congruence
of K extends to a unique congruence of L.

I Equivalently Conc f is an isomorphism, where f : K ↪→ L is
the inclusion map.
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Example

I Let K be a lattice of cardinality ≤ ℵ1,

there exists a
relatively complemented lattice L such that
Conc K ∼= Conc L (Grätzer, Lakser, and Wehrung, 2000).

I In particular L is congruence-permutable.
I This cannot be extended to lattices of cardinality ℵ2.
I Let V be a non-distributive variety of lattices.

There is no congruence-permutable lattice L such that
Conc FV(ℵ2) ∼= Conc L.
(Růžička, Tůma, and Wehrung, 2007)

I Let K be a countable locally finite lattice, then K has a
relatively complemented congruence-preserving extension
(Grätzer, Lakser, and Wehrung, 2000).

I The result cannot be extended to ℵ1.
I Let V be a non-distributive variety of lattices. The lattice

FV(ℵ1) has no congruence-permutable
congruence-preserving extension (G., Wehrung, 2009).
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Compact top congruence

I Given a lattice L, denote 1L the congruence that identify
everything.

I A lattice L has compact top congruence if 1L is finitely
generated.

I That is Conc L has a largest element.
I Equivalently, there is x < y in L such that ΘL(x , y) = 1L.
I Given a variety of lattices V, we denote Vb the category of

lattices in V with a compact top congruence.
I Morphisms in Vb are morphisms of lattices f : K → L such

that (Conc f )(1K ) = 1L.
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Bounded lattices

I Given a variety of lattices V, denote V0,1 the category of
bounded lattices in V.

I Morphisms in V0,1 are morphisms of lattices f : K → L
such that f (0) = 0 and f (1) = 1.

I V0,1 is a subcategory of Vb, itself a subcategory of V.
I In general V0,1 is not a full subcategory of Vb.
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Bounded lattices

I Denote f : 2→ M3, the morphism constructed before.

I L = {(x , yn)n<ω ∈ 2×Mω
3 | {n < ω | yn 6= f (x)} is finite}.

I Conc L is isomorphic to the (∨,0)-semilattice of finite
subset of ω with an additional top element.

I Hence L is inMb
3 but not inM0,1

3 .
I Here L is condensate of the arrow f .
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The problems

Questions
Let V be a variety of lattices. Are any of the following statement
true ?

1. For all K ∈ Vb there is L ∈ V0,1 such that Conc K ∼= Conc L.
2. All K ∈ Vb has a congruence-preserving extension in V0,1.

I Moreover if any of those assertion is true, can the
construction be made functorial ?
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The finitely generated varieties case

Theorem
Let V be a finitely generated variety of lattices. The following
statement are equivalent.

(1) Each countable lattice L in Vb has a
congruence-preserving extension in V0,1.

(2) Let K be a subdirectly irreducible lattice in V, let x < y in K
such that ΘK (x , y) = 1K , then x = 0 and y = 1.

(3) Vb = V0,1.

I (3) =⇒ (1) is obvious.
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8 / 15



The finitely generated varieties case

Theorem
Let V be a finitely generated variety of lattices. The following
statement are equivalent.
(1) Each countable lattice L in Vb has a

congruence-preserving extension in V0,1.
(2) Let K be a subdirectly irreducible lattice in V, let x < y in K

such that ΘK (x , y) = 1K ,

then x = 0 and y = 1.
(3) Vb = V0,1.

I (3) =⇒ (1) is obvious.

8 / 15



The finitely generated varieties case

Theorem
Let V be a finitely generated variety of lattices. The following
statement are equivalent.
(1) Each countable lattice L in Vb has a

congruence-preserving extension in V0,1.
(2) Let K be a subdirectly irreducible lattice in V, let x < y in K

such that ΘK (x , y) = 1K , then x = 0 and y = 1.

(3) Vb = V0,1.

I (3) =⇒ (1) is obvious.

8 / 15



The finitely generated varieties case

Theorem
Let V be a finitely generated variety of lattices. The following
statement are equivalent.
(1) Each countable lattice L in Vb has a

congruence-preserving extension in V0,1.
(2) Let K be a subdirectly irreducible lattice in V, let x < y in K

such that ΘK (x , y) = 1K , then x = 0 and y = 1.
(3) Vb = V0,1.

I (3) =⇒ (1) is obvious.

8 / 15



The finitely generated varieties case

Theorem
Let V be a finitely generated variety of lattices. The following
statement are equivalent.
(1) Each countable lattice L in Vb has a

congruence-preserving extension in V0,1.
(2) Let K be a subdirectly irreducible lattice in V, let x < y in K

such that ΘK (x , y) = 1K , then x = 0 and y = 1.
(3) Vb = V0,1.

I (3) =⇒ (1) is obvious.

8 / 15



Example

FIG.: The lattices M3 and N5.
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I Notice that N5 satisfies (2), but M3 fails (2).
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Proof of (2) =⇒ (3)

(2) For all subdirectly irreducible lattice K ∈ V, for all x < y in
K , if ΘK (x , y) = 1K then x = 0 and y = 1.

I Assume (2).

Let L ∈ Vb. Let x < y in L such that
ΘL(x , y) = 1L.

I Let α ∈ M(Con L). So L/α is subdirectly irreducible and
ΘL/α(x/α, y/α) = 1L/α.

I So x/α is smaller than every element of L/α.
I So x is smaller than every element of L. So L has a

smallest element x .
I Similarly y is the largest element of L.
I Hence L is bounded.
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I Proof by example, V =M3.

A diagram ofMb
3,

with no CP-extension inM0,1
3 . �

�
@
@
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qq q qq
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q 0
and other elements.

OO
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q@@ 0

and other elements.

OO

x 7→a
17→c

>>}}}}}}}}
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Proof of (1) =⇒ (2)

I There is a diagram inMb
3 that has no

congruence-preserving extension intoM0,1
3 .

I Using a condensate construction we obtain a countable
lattice L ∈Mb

3 that has no congruence-preserving
extension intoM0,1

3 .
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A functor

Theorem
There is a functor Ψ: Mb

3 →M
0,1
3 ,

such that Conc ◦Ψ ∼= Conc.
In particular for all K ∈Mb

3 there is L ∈M0,1
3 such that

Conc K ∼= Conc L.

I DenoteMb†
3 the full subcategory of finite lattices inMb

3.
I First we define Ψ on lattices L ∈Mb†

3 .
I We denote αL the smallest congruence of L such that L/αL

is distributive.
I Let Ψ(L) be the product of L/αL and all quotient of L

isomorphic to M3.
I Ψ can be extended on morphisms inMb†

3 .
I Basically only the morphisms f : 2→ M3 can cause

problems, change them to the only possible morphism that
preserves bounds.
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A functor

I We have a functor Ψ: Mb†
3 →M

0,1
3 , such that

Conc ◦Ψ ∼= Conc.

I Every L ∈Mb
3 is a directed colimit inMb†

3 .

I Hence we can extend Ψ to a functorMb
3 →M

0,1
3 that

preserves directed colimits.
I Moreover, as Conc preserves directed colimits,

Conc ◦Ψ ∼= Conc.
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That is all !

Thank you for your attention

Have you any questions ?
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