On lattices with a compact top congruence

Gillibert

Here
Given a lattice L, denote by $\text{Con } L$ the set of all congruences of L, ordered by inclusion.
Given a lattice \(L \), denote by \(\text{Con} L \) the set of all congruences of \(L \), ordered by inclusion. It is an algebraic lattice.

\[\text{Con} c L \] denotes the set of all compact (i.e., finitely generated) congruences of \(L \). It is a \((\lor, 0)\)-semilattice.

\(\text{Con} c \) can be extended to a functor.

Let \(f : K \rightarrow L \) be a morphism of lattices. \(\text{Con} c f : \text{Con} c K \rightarrow \text{Con} c L \) is defined by \(\Theta L (\{(f(x), f(y)) \mid (x, y) \in \alpha\}) \).

Given lattices \(K \subseteq L \), we say that \(L \) is a congruence-preserving extension of \(K \) if each congruence of \(K \) extends to a unique congruence of \(L \).

Equivalently \(\text{Con} c f \) is an isomorphism, where \(f : K \hookrightarrow L \) is the inclusion map.
Given a lattice L, denote by $\text{Con} L$ the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

Denote by $\text{Con}_c L$ the set of all compact (=finitely generated) congruences of L. Con_c can be extended to a functor.

Given lattices $K \subseteq L$, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L.

Equivalently $\text{Con}_c f$ is an isomorphism, where $f : K \hookrightarrow L$ is the inclusion map.
Congruences

- Given a lattice L, denote by $\text{Con} L$ the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.
- Denote by $\text{Con}_c L$ the set of all compact (=finitely generated) congruences of L. It is a $(\lor, 0)$-semilattice.

- Con_c can be extended to a functor. Let $f: K \to L$ be a morphism of lattices. Put $\Theta_L(\{ (f(x), f(y)) \mid (x, y) \in \alpha \})$.

- Given lattices $K \subseteq L$, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L. Equivalently $\text{Con}_c f$ is an isomorphism, where $f: K \hookrightarrow L$ is the inclusion map.
Given a lattice L, denote by $\text{Con } L$ the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

Denote by $\text{Con}_c L$ the set of all compact (=finitely generated) congruences of L. It is a $(\lor, 0)$-semilattice.

Con_c can be extended to a functor.
Given a lattice L, denote by $\text{Con} L$ the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

Denote by $\text{Con}_c L$ the set of all compact (=finitely generated) congruences of L. It is a $(\lor, 0)$-semilattice.

Con_c can be extended to a functor. Let $f : K \to L$ be a morphism of lattices. Put:

$$\text{Con}_c f : \text{Con}_c K \to \text{Con}_c L$$

$$\alpha \mapsto \Theta_L(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$
Given a lattice L, denote by $\text{Con} L$ the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

Denote by $\text{Con}_c L$ the set of all compact (=finitely generated) congruences of L. It is a $(\lor, 0)$-semilattice.

Con_c can be extended to a functor. Let $f: K \to L$ be a morphism of lattices. Put:

$$\text{Con}_c f: \text{Con}_c K \to \text{Con}_c L$$

$$\alpha \mapsto \Theta_L(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

Given lattices $K \subseteq L$, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L.
Congruences

- Given a lattice L, denote by Con_L the set of all congruences of L, ordered by inclusion. It is an algebraic lattice.

- Denote by $\text{Con}_c L$ the set of all compact (finitely generated) congruences of L. It is a $(\lor, 0)$-semilattice.

- Con_c can be extended to a functor. Let $f: K \to L$ be a morphism of lattices. Put:

 $$\text{Con}_c f: \text{Con}_c K \to \text{Con}_c L$$

 $$\alpha \mapsto \Theta_L(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$$

- Given lattices $K \subseteq L$, we say that L is a congruence-preserving extension of K if each congruence of K extends to a unique congruence of L.

- Equivalently $\text{Con}_c f$ is an isomorphism, where $f: K \hookrightarrow L$ is the inclusion map.
Example

- Let K be a lattice of cardinality $\leq \aleph_1$,

- This cannot be extended to lattices of cardinality \aleph_2.

- Let V be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Conc}_K \cong \text{Conc}_L$ (G., Wehrung, 2009).

- The result cannot be extended to \aleph_1.

- Let V be a non-distributive variety of lattices. The lattice $F_V(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).

- Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).

- The result cannot be extended to \aleph_1.

- Let V be a non-distributive variety of lattices. The lattice $F_V(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).
Example

Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).

In particular L is congruence-permutable.

This cannot be extended to lattices of cardinality \aleph_2.

Let V be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_V(\aleph_2) \cong \text{Con}_c L$. (Růžička, Tůma, and Wehrung, 2007)

Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).

The result cannot be extended to \aleph_1.

Let V be a non-distributive variety of lattices. The lattice $F_V(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.

- Let V be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_V(\aleph_2) \cong \text{Con}_c L$ (Růžička, Tůma, and Wehrung, 2007).
- Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to \aleph_1.
- Let V be a non-distributive variety of lattices. The lattice $F_V(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices.
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_{\mathcal{V}}(\aleph_2) \cong \text{Con}_c L$.
 (Růžička, Tůma, and Wehrung, 2007)
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_{\mathcal{V}}(\aleph_2) \cong \text{Con}_c L$. (Růžička, Tůma, and Wehrung, 2007)
- Let K be a countable locally finite lattice,
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_{\mathcal{V}}(\aleph_2) \cong \text{Con}_c L$. (Růžička, Tůma, and Wehrung, 2007)
- Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_\mathcal{V}(\aleph_2) \cong \text{Con}_c L$.
 (Růžička, Tůma, and Wehrung, 2007)
- Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to \aleph_1.
Example

- Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).
- In particular L is congruence-permutable.
- This cannot be extended to lattices of cardinality \aleph_2.
- Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_\mathcal{V}(\aleph_2) \cong \text{Con}_c L$.
 (Růžička, Tůma, and Wehrung, 2007)
- Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).
- The result cannot be extended to \aleph_1.
- Let \mathcal{V} be a non-distributive variety of lattices.
Example

Let K be a lattice of cardinality $\leq \aleph_1$, there exists a relatively complemented lattice L such that $\text{Con}_c K \cong \text{Con}_c L$ (Grätzer, Lakser, and Wehrung, 2000).

In particular L is congruence-permutable.

This cannot be extended to lattices of cardinality \aleph_2.

Let \mathcal{V} be a non-distributive variety of lattices. There is no congruence-permutable lattice L such that $\text{Con}_c F_{\mathcal{V}}(\aleph_2) \cong \text{Con}_c L$.

(Růžička, Tůma, and Wehrung, 2007)

Let K be a countable locally finite lattice, then K has a relatively complemented congruence-preserving extension (Grätzer, Lakser, and Wehrung, 2000).

The result cannot be extended to \aleph_1.

Let \mathcal{V} be a non-distributive variety of lattices. The lattice $F_{\mathcal{V}}(\aleph_1)$ has no congruence-permutable congruence-preserving extension (G., Wehrung, 2009).
Given a lattice L, denote 1_L the congruence that identify everything.
Given a lattice L, denote 1_L the congruence that identify everything.

A lattice L has \textit{compact top congruence} if 1_L is finitely generated.
Compact top congruence

- Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has *compact top congruence* if 1_L is finitely generated.
- That is $\text{Con}_c L$ has a largest element.
Compact top congruence

- Given a lattice \(L \), denote \(1_L \) the congruence that identify everything.
- A lattice \(L \) has *compact top congruence* if \(1_L \) is finitely generated.
- That is \(\text{Con}_c L \) has a largest element.
- Equivalently, there is \(x < y \) in \(L \) such that \(\Theta_L(x, y) = 1_L \).
Compact top congruence

- Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has compact top congruence if 1_L is finitely generated.
- That is $\text{Con}_c L$ has a largest element.
- Equivalently, there is $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Given a variety of lattices \mathcal{V}, we denote \mathcal{V}^b the category of lattices in \mathcal{V} with a compact top congruence.
Compact top congruence

- Given a lattice L, denote 1_L the congruence that identify everything.
- A lattice L has *compact top congruence* if 1_L is finitely generated.
- That is $\text{Con}_c L$ has a largest element.
- Equivalently, there is $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Given a variety of lattices \mathcal{V}, we denote \mathcal{V}^b the category of lattices in \mathcal{V} with a compact top congruence.
- Morphisms in \mathcal{V}^b are morphisms of lattices $f: K \to L$ such that $(\text{Con}_c f)(1_K) = 1_L$.
Given a variety of lattices \mathcal{V}, denote $\mathcal{V}^{0,1}$ the category of bounded lattices in \mathcal{V}.
Bounded lattices

- Given a variety of lattices \mathcal{V}, denote $\mathcal{V}^{0,1}$ the category of bounded lattices in \mathcal{V}.
- Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that $f(0) = 0$ and $f(1) = 1$.
Bounded lattices

- Given a variety of lattices \mathcal{V}, denote $\mathcal{V}^{0,1}$ the category of bounded lattices in \mathcal{V}.
- Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \rightarrow L$ such that $f(0) = 0$ and $f(1) = 1$.
- $\mathcal{V}^{0,1}$ is a subcategory of \mathcal{V}^b, itself a subcategory of \mathcal{V}.
Bounded lattices

- Given a variety of lattices \(\mathcal{V} \), denote \(\mathcal{V}^{0,1} \) the category of bounded lattices in \(\mathcal{V} \).
- Morphisms in \(\mathcal{V}^{0,1} \) are morphisms of lattices \(f: K \rightarrow L \) such that \(f(0) = 0 \) and \(f(1) = 1 \).
- \(\mathcal{V}^{0,1} \) is a subcategory of \(\mathcal{V}^b \), itself a subcategory of \(\mathcal{V} \).
- In general \(\mathcal{V}^{0,1} \) is not a full subcategory of \(\mathcal{V}^b \).
Bounded lattices

- Given a variety of lattices \mathcal{V}, denote $\mathcal{V}^{0,1}$ the category of bounded lattices in \mathcal{V}.
- Morphisms in $\mathcal{V}^{0,1}$ are morphisms of lattices $f: K \to L$ such that $f(0) = 0$ and $f(1) = 1$.
- $\mathcal{V}^{0,1}$ is a subcategory of \mathcal{V}^b, itself a subcategory of \mathcal{V}.
- In general $\mathcal{V}^{0,1}$ is not a full subcategory of \mathcal{V}^b.

![Diagram of bounded lattices]
Bounded lattices

Denote $f : 2 \rightarrow M_3$, the morphism constructed before.
Bounded lattices

- Denote $f : 2 \rightarrow M_3$, the morphism constructed before.
- $L = \{(x, y_n)_{n<\omega} \in 2 \times M^\omega_3 \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}$.
Bounded lattices

- Denote $f : 2 \rightarrow M_3$, the morphism constructed before.
- $L = \{(x, y_n)_{n<\omega} \in 2 \times M_3^\omega \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}$.
- $\text{Con}_c L$ is isomorphic to the $(\lor, 0)$-semilattice of finite subset of ω with an additional top element.

Here L is condensate of the arrow f.
Bounded lattices

- Denote $f : 2 \to M_3$, the morphism constructed before.
- $L = \{(x, y_n)_{n<\omega} \in 2 \times M_3^\omega \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}$.
- $\text{Con}_c L$ is isomorphic to the $(\lor, 0)$-semilattice of finite subset of ω with an additional top element.
- Hence L is in \mathcal{M}_3^b but not in $\mathcal{M}_3^{0,1}$.
Bounded lattices

- Denote $f : 2 \to M_3$, the morphism constructed before.
- $L = \{(x, y_n)_{n<\omega} \in 2 \times M_3^\omega \mid \{n < \omega \mid y_n \neq f(x)\} \text{ is finite}\}$.
- $\text{Con}_c L$ is isomorphic to the $(\lor, 0)$-semilattice of finite subset of ω with an additional top element.
- Hence L is in M_3^b but not in $M_3^{0,1}$.
- Here L is condensate of the arrow f.

\text{6 / 15}
Questions

Let \mathcal{V} be a variety of lattices. Are any of the following statements true?

1. For all $K \in \mathcal{V}$, there is $L \in \mathcal{V}_0$ such that $\text{Con}_c K \cong \text{Con}_c L$.
2. All $K \in \mathcal{V}_b$ has a congruence-preserving extension in \mathcal{V}_0.

Moreover, if any of those assertions is true, can the construction be made functorial?
The problems

Questions

Let \mathcal{V} be a variety of lattices. Are any of the following statements true?

1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.
The problems

Questions

Let \mathcal{V} be a variety of lattices. Are any of the following statement true?

1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.
2. All $K \in \mathcal{V}^b$ has a congruence-preserving extension in $\mathcal{V}^{0,1}$.
Let \mathcal{V} be a variety of lattices. Are any of the following statement true?

1. For all $K \in \mathcal{V}^b$ there is $L \in \mathcal{V}^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.
2. All $K \in \mathcal{V}^b$ has a congruence-preserving extension in $\mathcal{V}^{0,1}$.

Moreover if any of those assertion is true, can the construction be made functorial?
The finitely generated varieties case

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. The following statements are equivalent.

1. Each countable lattice L in \mathcal{V} has a congruence-preserving extension in \mathcal{V}.
2. Let K be a subdirectly irreducible lattice in \mathcal{V}, let $x < y$ in K such that $\Theta_K(x, y) = 1_K$, then $x = 0$ and $y = 1$.
3. $\mathcal{V}_b = \mathcal{V}_0, 1$.

$\implies (3) \implies (1)$ is obvious.
The finitely generated varieties case

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. The following statements are equivalent.

1. Each countable lattice L in \mathcal{V}^b has a congruence-preserving extension in $\mathcal{V}^{0,1}$.

2. Let K be a subdirectly irreducible lattice in \mathcal{V}, let $x < y$ in K such that $\Theta_K(x, y) = 1$, then $x = 0$ and $y = 1$.

3. $\mathcal{V}^b = \mathcal{V}^{0,1}$.

$\Rightarrow (3) \Rightarrow (1)$ is obvious.
The finitely generated varieties case

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. The following statement are equivalent.

1. Each countable lattice L in \mathcal{V}^b has a congruence-preserving extension in $\mathcal{V}^{0,1}$.

2. Let K be a subdirectly irreducible lattice in \mathcal{V}, such that $\Theta_K(x, y) = 1$, then $x = 0$ and $y = 1$.

3. $\mathcal{V}^b = \mathcal{V}^{0,1}$.

\Rightarrow (3) = (1) is obvious.
The finitely generated varieties case

Theorem

Let \(\mathcal{V} \) be a finitely generated variety of lattices. The following statement are equivalent.

(1) Each countable lattice \(L \) in \(\mathcal{V}^b \) has a congruence-preserving extension in \(\mathcal{V}^{0,1} \).

(2) Let \(K \) be a subdirectly irreducible lattice in \(\mathcal{V} \), let \(x < y \) in \(K \) such that \(\Theta_K(x, y) = 1_K \).
The finitely generated varieties case

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. The following statements are equivalent.

1. Each countable lattice L in \mathcal{V}^b has a congruence-preserving extension in $\mathcal{V}^{0,1}$.

2. Let K be a subdirectly irreducible lattice in \mathcal{V}, let $x < y$ in K such that $\Theta_K(x, y) = 1_K$, then $x = 0$ and $y = 1$.

$(3) \implies (1)$ is obvious.
The finitely generated varieties case

Theorem

Let \mathcal{V} be a finitely generated variety of lattices. The following statement are equivalent.

1. Each countable lattice L in \mathcal{V}^b has a congruence-preserving extension in $\mathcal{V}^{0,1}$.
2. Let K be a subdirectly irreducible lattice in \mathcal{V}, let $x < y$ in K such that $\Theta_K(x, y) = 1_K$, then $x = 0$ and $y = 1$.
3. $\mathcal{V}^b = \mathcal{V}^{0,1}$.

\(\Rightarrow\) (3) = obvious.
The finitely generated varieties case

Theorem

Let \(\mathcal{V} \) be a finitely generated variety of lattices. The following statement are equivalent.

(1) Each countable lattice \(L \) in \(\mathcal{V}^b \) has a congruence-preserving extension in \(\mathcal{V}^{0,1} \).

(2) Let \(K \) be a subdirectly irreducible lattice in \(\mathcal{V} \), let \(x < y \) in \(K \) such that \(\Theta_K(x, y) = 1_K \), then \(x = 0 \) and \(y = 1 \).

(3) \(\mathcal{V}^b = \mathcal{V}^{0,1} \).

\(\triangleright \) (3) \(\implies \) (1) is obvious.
Example

Fig. The lattices M_3 and N_5.

```
1 1
x c
0 0
```

Notice that N_5 satisfies (2^2), but M_3 fails (2^2).

```
b a
```
Example

Fig.: The lattices M_3 and N_5.

Notice that N_5 satisfies (2), but M_3 fails (2).
Proof of $(2) \iff (3)$

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

▶ Assume (2).
Proof of (2) \iff (3)

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$.
Proof of $(2) \iff (3)$

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.

- Similarly y is the largest element of L.

- Hence L is bounded.
Proof of (2) \iff (3)

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$.
Proof of (2) \iff (3)

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.

Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
Proof of $(2) \iff (3)$

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
- So x/α is smaller than every element of L/α.

Proof of (2) \iff (3)

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
- So x/α is smaller than every element of L/α.
- So x is smaller than every element of L.

\blacksquare
(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
- So x/α is smaller than every element of L/α.
- So x is smaller than every element of L. So L has a smallest element x.

Proof of (2) \iff (3)
Proof of $(2) \iff (3)$

(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
- So x/α is smaller than every element of L/α.
- So x is smaller than every element of L. So L has a smallest element x.
- Similarly y is the largest element of L.

Hence L is bounded.
(2) For all subdirectly irreducible lattice $K \in \mathcal{V}$, for all $x < y$ in K, if $\Theta_K(x, y) = 1_K$ then $x = 0$ and $y = 1$.

- Assume (2). Let $L \in \mathcal{V}^b$. Let $x < y$ in L such that $\Theta_L(x, y) = 1_L$.
- Let $\alpha \in M(\text{Con } L)$. So L/α is subdirectly irreducible and $\Theta_{L/\alpha}(x/\alpha, y/\alpha) = 1_{L/\alpha}$.
- So x/α is smaller than every element of L/α.
- So x is smaller than every element of L. So L has a smallest element x.
- Similarly y is the largest element of L.
- Hence L is bounded.
Proof by example, $\mathcal{V} = \mathcal{M}_3$.
Proof by example, $\mathcal{V} = \mathcal{M}_3$.

A diagram of \mathcal{M}_3^b, with no CP-extension in $\mathcal{M}_3^{0,1}$.
Proof by example, $\mathcal{V} = M_3$.

A diagram of M_3^b, with no CP-extension in $M_3^{0,1}$.

and other elements.
Proof by example, $\mathcal{V} = \mathcal{M}_3$.

A diagram of \mathcal{M}^b_3, with no CP-extension in $\mathcal{M}^{0,1}_3$.

and other elements.

and other elements.
Proof by example, $\mathcal{V} = \mathcal{M}_3$.

A diagram of \mathcal{M}_3^b, with no CP-extension in $\mathcal{M}_3^{0,1}$.

We cannot add anything and other elements.
Proof of $(1) \iff (2)$

- There is a diagram in \mathcal{M}_3^b that has no congruence-preserving extension into $\mathcal{M}_3^{0,1}$.

Proof of $(1) \iff (2)$

- There is a diagram in \mathcal{M}_3^b that has no congruence-preserving extension into $\mathcal{M}_{3,1}^{0,1}$.
- Using a *condensate* construction we obtain a countable lattice $L \in \mathcal{M}_3^b$ that has no congruence-preserving extension into $\mathcal{M}_{3,1}^{0,1}$.
A functor

Theorem

There is a functor \(\Psi : \mathcal{M}_3^b \rightarrow \mathcal{M}_3^{0,1} \),
A functor

Theorem

There is a functor $\Psi: \mathcal{M}_3^b \rightarrow \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

Denote \mathcal{M}_3^{\dagger} the full subcategory of finite lattices in \mathcal{M}_3^b.

First we define Ψ on lattices $L \in \mathcal{M}_3^{\dagger}$.

We denote α_L the smallest congruence of L such that L/α_L is distributive.

Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3. Ψ can be extended on morphisms in \mathcal{M}_3^{\dagger}.

Basically only the morphisms $f: 2 \rightarrow M_3$ can cause problems, change them to the only possible morphism that preserves bounds.
A functor

Theorem

There is a functor $\Psi : M^b_3 \to M^{0,1}_3$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$. In particular for all $K \in M^b_3$ there is $L \in M^{0,1}_3$ such that $\text{Con}_c K \cong \text{Con}_c L$.

Denote $M^b_3\dagger$ the full subcategory of finite lattices in M^b_3.

First we define Ψ on lattices $L \in M^b_3\dagger$.

We denote αL the smallest congruence of L such that $L/\alpha L$ is distributive.

Let $\Psi(L)$ be the product of $L/\alpha L$ and all quotient of L isomorphic to M_3.

Ψ can be extended on morphisms in $M^b_3\dagger$.

Basically only the morphisms $f : 2 \to M_3$ can cause problems, change them to the only possible morphism that preserves bounds.
A functor

Theorem

There is a functor \(\Psi: \mathcal{M}_3^b \rightarrow \mathcal{M}_3^{0,1} \), such that \(\text{Con}_c \circ \Psi \cong \text{Con}_c \).

In particular for all \(K \in \mathcal{M}_3^b \) there is \(L \in \mathcal{M}_3^{0,1} \) such that \(\text{Con}_c K \cong \text{Con}_c L \).

- Denote \(\mathcal{M}_3^{b\uparrow} \) the full subcategory of finite lattices in \(\mathcal{M}_3^b \).
There is a functor $\Psi : M_3^b \rightarrow M_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$. In particular for all $K \in M_3^b$ there is $L \in M_3^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.

- Denote $M_3^{b\dagger}$ the full subcategory of finite lattices in M_3^b.
- First we define Ψ on lattices $L \in M_3^{b\dagger}$.
Theorem

There is a functor $\Psi: \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$. In particular for all $K \in \mathcal{M}_3^b$ there is $L \in \mathcal{M}_3^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.

- Denote $\mathcal{M}_3^{b\dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b.
- First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- We denote α_L the smallest congruence of L such that L/α_L is distributive.
There is a functor $\Psi : \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

In particular for all $K \in \mathcal{M}_3^b$ there is $L \in \mathcal{M}_3^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.

- Denote $\mathcal{M}_3^{b \dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b.
- First we define Ψ on lattices $L \in \mathcal{M}_3^{b \dagger}$.
- We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to \mathcal{M}_3.
A functor

Theorem

There is a functor $\Psi : \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$. In particular for all $K \in \mathcal{M}_3^b$ there is $L \in \mathcal{M}_3^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.

- Denote $\mathcal{M}_3^{b\dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b.
- First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3.
- Ψ can be extended on morphisms in $\mathcal{M}_3^{b\dagger}$.
There is a functor $\Psi: \mathcal{M}_3^b \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$. In particular for all $K \in \mathcal{M}_3^b$ there is $L \in \mathcal{M}_3^{0,1}$ such that $\text{Con}_c K \cong \text{Con}_c L$.

- Denote $\mathcal{M}_3^{b\dagger}$ the full subcategory of finite lattices in \mathcal{M}_3^b.
- First we define Ψ on lattices $L \in \mathcal{M}_3^{b\dagger}$.
- We denote α_L the smallest congruence of L such that L/α_L is distributive.
- Let $\Psi(L)$ be the product of L/α_L and all quotient of L isomorphic to M_3.
- Ψ can be extended on morphisms in $\mathcal{M}_3^{b\dagger}$.
- Basically only the morphisms $f: 2 \to M_3$ can cause problems,
A functor

Theorem

There is a functor \(\Psi : \mathcal{M}_3^b \to \mathcal{M}_3^{0,1} \), *such that* \(\text{Con}_c \circ \Psi \cong \text{Con}_c \).

In particular for all \(K \in \mathcal{M}_3^b \) *there is* \(L \in \mathcal{M}_3^{0,1} \) *such that* \(\text{Con}_c K \cong \text{Con}_c L \).

- Denote \(\mathcal{M}_3^{b+} \) *the full subcategory of finite lattices in* \(\mathcal{M}_3^b \).
- First we define \(\Psi \) *on lattices* \(L \in \mathcal{M}_3^{b+} \).
- We denote \(\alpha_L \) *the smallest congruence of* \(L \) *such that* \(L/\alpha_L \) *is distributive.*
- Let \(\Psi(L) \) *be the product of* \(L/\alpha_L \) *and all quotient of* \(L \) *isomorphic to* \(\mathcal{M}_3 \).
- \(\Psi \) *can be extended on morphisms in* \(\mathcal{M}_3^{b+} \).
- Basically only the morphisms \(f : 2 \to \mathcal{M}_3 \) *can cause problems, change them to the only possible morphism that preserves bounds.*
A functor

- We have a functor $\Psi : \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

- Every $\mathcal{L} \in \mathcal{M}_3^{b\dagger}$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.

- Hence we can extend Ψ to a functor $\mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$ that preserves directed colimits.

- Moreover, as Con_c preserves directed colimits, $\text{Con}_c \circ \Psi \cong \text{Con}_c$.
A functor

- We have a functor $\Psi : \mathcal{M}_3^{b\dagger} \to \mathcal{M}_3^{0,1}$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.
- Every $L \in \mathcal{M}_3^b$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.
We have a functor $\Psi : \mathcal{M}^b_3 \to \mathcal{M}^{0,1}_3$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

Every $L \in \mathcal{M}^b_3$ is a directed colimit in \mathcal{M}^b_3.

Hence we can extend Ψ to a functor $\mathcal{M}^b_3 \to \mathcal{M}^{0,1}_3$ that preserves directed colimits.
We have a functor $\Psi : \mathcal{M}_3^{b\dagger} \to \mathcal{M}_{3,1}^0$, such that $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

Every $L \in \mathcal{M}_3^b$ is a directed colimit in $\mathcal{M}_3^{b\dagger}$.

Hence we can extend Ψ to a functor $\mathcal{M}_3^b \to \mathcal{M}_{3,1}^0$ that preserves directed colimits.

Moreover, as Con_c preserves directed colimits, $\text{Con}_c \circ \Psi \cong \text{Con}_c$.

A functor
That is all!

Thank you for your attention

Have you any questions?