Proper Classes associated to Grothendieck Categories

Fernando Cornejo Montaño and Francisco Raggi

Instituto de Matemáticas.
Universidad Nacional Autónoma de México
Prague, June 2010
Contents

- Proper classes
- Torsion Theories (Hereditary)
Contents

- Proper classes
- Torsion Theories (Hereditary)
Contents

- Proper classes
- Torsion Theories (Hereditary)
Notation

- R is an associative ring with unit.
- R-Mod is the category of left R-modules.
- R-simp is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.
Notation

- R is an associative ring with unit.
- $R\text{-Mod}$ is the category of left R-modules.
- $R\text{-simp}$ is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.
Notation

- R is an associative ring with unit.
- R-Mod is the category of left R-modules.
- R-simp is a complete irredundant set of representatives of the isomorphism classes of simple left R-modules.
Definition

A **Proper Class** in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by E_m the monics of sequences of \mathcal{E} and by E_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}.
- **P2** If $\alpha, \beta \in E_m$ then $\alpha \beta \in E_m$ when the composition makes sense.
- **P2'** If $\alpha, \beta \in E_e$ then $\alpha \beta \in E_e$ when the composition makes sense.
- **P3** If $\alpha \beta \in E_m$, then $\beta \in E_m$.
- **P3'** If $\alpha \beta \in E_e$, then $\alpha \in E_e$.

Fernando Cornejo Montaño and Francisco Raggi
ProPER CLASSES associated to Grothendieck Categories

Fernando Cornejo Montaño and Francisco Raggi

Definition

A Proper Class in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

P0 \mathcal{E} is closed under isomorphisms.

P1 All the splitting short exact sequences are in \mathcal{E}

P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.

P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.

P3 If $\alpha \beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.

P3' If $\alpha \beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.
Definition

A **Proper Class** in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

P0 \mathcal{E} is closed under isomorphisms.

P1 All the splitting short exact sequences are in $\mathcal{E}.$

P2 If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.

P2' If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.

P3 If $\alpha \beta \in \mathcal{E}_m,$ then $\beta \in \mathcal{E}_m.$

P3' If $\alpha \beta \in \mathcal{E}_e,$ then $\alpha \in \mathcal{E}_e.$
Definition

A **Proper Class** in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}.
- **P2** If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.
- **P2'** If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.
- **P3** If $\alpha \beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- **P3'** If $\alpha \beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.

Fernando Cornejo Montaño and Francisco Raggi
Definition

A Proper Class in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}
- **P2** If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.
- **P2’** If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.
- **P3** If $\alpha \beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- **P3’** If $\alpha \beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.

Fernando Cornejo Montaño and Francisco Raggi
Definition

A **Proper Class** in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}
- **P2** If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.
- **P2’** If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.
- **P3** If $\alpha \beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- **P3’** If $\alpha \beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.
Definition

A **Proper Class** in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}
- **P2** If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha\beta \in \mathcal{E}_m$ when the composition makes sense.
- **P2’** If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha\beta \in \mathcal{E}_e$ when the composition makes sense.
- **P3** If $\alpha\beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- **P3’** If $\alpha\beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.
Definition

A Proper Class in R-mod is a family \mathcal{E}, of short exact sequences of left R-modules such that, if we denote by \mathcal{E}_m the monics of sequences of \mathcal{E} and by \mathcal{E}_e the epics of sequences of \mathcal{E}, then the following conditions hold:

- **P0** \mathcal{E} is closed under isomorphisms.
- **P1** All the splitting short exact sequences are in \mathcal{E}.
- **P2** If $\alpha, \beta \in \mathcal{E}_m$ then $\alpha \beta \in \mathcal{E}_m$ when the composition makes sense.
- **P2'** If $\alpha, \beta \in \mathcal{E}_e$ then $\alpha \beta \in \mathcal{E}_e$ when the composition makes sense.
- **P3** If $\alpha \beta \in \mathcal{E}_m$, then $\beta \in \mathcal{E}_m$.
- **P3'** If $\alpha \beta \in \mathcal{E}_e$, then $\alpha \in \mathcal{E}_e$.
Definition

- A Proper Class **Injectively Generated** by a family of modules \mathcal{O} is the greatest proper class $\iota^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\iota^{-1}(\mathcal{O})$.

- A Proper Class **Coinjectively Generated** by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O}, are in $\mathcal{K}_i(\mathcal{O})$.
A Proper Class **Injectively Generated** by a family of modules \mathcal{O} is the greatest proper class $\mathcal{I}^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\mathcal{I}^{-1}(\mathcal{O})$.

A Proper Class **Coinjectively Generated** by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O}, are in $\mathcal{K}_i(\mathcal{O})$.
Definition

- A Proper Class **Injectively Generated** by a family of modules \mathcal{O} is the greatest proper class $\iota^{-1}(\mathcal{O})$ such that each module in \mathcal{O} is injective for all short exact sequence in $\iota^{-1}(\mathcal{O})$.

- A Proper Class **Coinjectively Generated** by a family of modules \mathcal{O} is the least proper class $\mathcal{K}_i(\mathcal{O})$ such that all the short exact sequences $A \rightarrowtail B \twoheadrightarrow C$, where C is in \mathcal{O}, are in $\mathcal{K}_i(\mathcal{O})$.
Definition

- **Injective Relative** If \mathcal{E} is a class of short exact sequences. We say that a \mathbb{R}-module M is injective relative to \mathcal{E} if it is injective for all the short exact sequences in \mathcal{E}.

- **Coinjective Relative** A module M is coinjective relative to \mathcal{E} if all the short exact sequences that end in M are in \mathcal{E}.
Definition

- **Injective Relative** If \mathcal{E} is a class of short exact sequences. We say that a R-module M is injective relative to \mathcal{E} if it is injective for all the short exact sequences in \mathcal{E}.

- **Coinjective Relative** A module M is coinjective relative to \mathcal{E} if all the short exact sequences that end in M are in \mathcal{E}.
Notation: We use SEC for denote the family of all the short exact sequences in R-mod.
Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R – \text{Mod}$ and $\mathcal{D} \subseteq \mathcal{E} \subseteq \text{SEC}$

- $K^{-1}_i(\mathcal{U}) \subseteq K^{-1}_i(\mathcal{V})$
- $K_i(\mathcal{D}) \subseteq K_i(\mathcal{E})$

If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.

If \mathcal{E} is a proper class, then a R-module M is \mathcal{E} – coinjective if and only if A is a proper subgroup of I, for I some injective module.
Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R - \text{Mod}$ and $\mathcal{D} \subseteq \mathcal{E} \subseteq \text{SEC}$

- $K_i^{-1}(\mathcal{U}) \subseteq K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subseteq K_i(\mathcal{E})$

If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.

If \mathcal{E} is a proper class, then a R-module M is \mathcal{E} – coinjective if and only if A is a proper subgroup of I, for I some injective module.
Lemma

Let $\mathcal{U} \subseteq \mathcal{V} \subseteq R$ – Mod and $\mathcal{D} \subseteq \mathcal{E} \subseteq SEC$

- $K_i^{-1}(\mathcal{U}) \subseteq K_i^{-1}(\mathcal{V})$
- $K_i(\mathcal{D}) \subseteq K_i(\mathcal{E})$

If \mathcal{E} is a proper class, then $K_i(\mathcal{E})$ is a class closed under extensions, proper submodules, finite direct sums.

If \mathcal{E} is a proper class, then a R-module M is \mathcal{E} – coinjective if and only if A is a proper subgroup of I, for I some injective module.
Lemma

Let \(\mathcal{U} \subseteq \mathcal{V} \subseteq R - \text{Mod} \) and \(\mathcal{D} \subseteq \mathcal{E} \subseteq \text{SEC} \)

- \(K_i^{-1}(\mathcal{U}) \subseteq K_i^{-1}(\mathcal{V}) \)
- \(K_i(\mathcal{D}) \subseteq K_i(\mathcal{E}) \)

If \(\mathcal{E} \) is a proper class, then \(K_i(\mathcal{E}) \) is a class closed under extensions, proper submodules, finite direct sums.

If \(\mathcal{E} \) is a proper class, then a \(R \)-module \(M \) is \(\mathcal{E} \) – coinjective if and only if \(A \) is a proper subgroup of \(I \), for \(I \) some injective module.
Example 1: Consider the category of Abelian Groups. Then
\[H = \{ A \rightarrow B \rightarrow C \mid A \text{ is pure in } B \} \] is a proper class and
and
- \(K_p(H) \)
- \(K_i(H) = \text{Pure subgroups of divisibles = divisibles} \)
- \(H = \iota^{-1}(\text{Cocyclics}) \)
 where Cocyclics are the groups \(\mathbb{Z}_{p^n} \) p is prime
- \(H = \pi^{-1}(\text{cyclics}) \)
- \(H \) has enough projectives and injectives
Example 1: Consider the category of Abelian Groups. Then
\[H = \{ A \rightarrow B \rightarrow C \mid A \text{ is pure in } B \} \]
is a proper class and

\[K_p(H) \]
\[K_i(H) = \text{Pure subgroups of divisibles} = \text{divisibles} \]
\[H = \iota^{-1}(\text{Cocyclics}) \]
where Cocyclics are the groups \(\mathbb{Z}_p^n \) p is prime
\[H = \pi^{-1}(\text{cyclics}) \]
\[H \text{ has enough projectives and injectives} \]
Example 1: Consider the category of Abelian Groups. Then \(H = \{ A \oplus B \rightarrow C \mid A \text{ is pure in } B \} \) is a proper class and

- \(K_p(H) \)
- \(K_i(H) = \text{Pure subgroups of divisibles} = \text{divisibles} \)
- \(H = \iota^{-1}(\text{Cocyclics}) \)

 where Cocyclics are the groups \(\mathbb{Z}_{p^n} \) \(p \) is prime
- \(H = \pi^{-1}(\text{cyclics}) \)
- \(H \) has enough projectives and injectives
Example 1: Consider the category of Abelian Groups. Then $H = \{ A \hookrightarrow B \twoheadrightarrow C \mid A \text{ is pure in } B \}$ is a proper class and

- $K_p(H)$
- $K_i(H) = \text{Pure subgroups of divisibles} = \text{divisibles}$
- $H = \iota^{-1}(\text{Cocyclics})$
 where Cocyclics are the groups \mathbb{Z}_{p^n} p is prime
- $H = \pi^{-1}(\text{cyclics})$
- H has enough projectives and injectives
Example 1: Consider the category of Abelian Groups. Then
\[H = \{A \to B \to C \mid A \text{ is pure in } B \} \] is a proper class and
and

- \(K_p(H) \)
- \(K_i(H) = \) Pure subgroups of divisibles = divisibles
- \(H = \iota^{-1}(\text{Cocyclics}) \)
 where Cocyclics are the groups \(\mathbb{Z}_{p^n} \) p is prime
- \(H = \pi^{-1}(\text{cyclics}) \)
- \(H \) has enough projectives and injectives
Definition

A Torsion Theory is a couple $\tau = (\mathcal{I}_\tau, \mathcal{F}_\tau)$ of classes of modules such that:

- $\mathcal{I}_\tau \cap \mathcal{F}_\tau = 0$
- \mathcal{I}_τ is closed under quotients
- \mathcal{F}_τ is closed under submodules
- For each module D, there exist $A \in \mathcal{I}_\tau$ and $C \in \mathcal{F}_\tau$ such that $A \rightarrow D \rightarrow C$ is exact.
Definition

An hereditary torsion theory is a torsion theory such that \mathcal{I}_T is closed under submodules.

In the following we consider torsion theory instead of hereditary torsion theory unless otherwise stated. We denote as R-tors the family of the hereditary torsion theories.
Definition

An hereditary torsion theory is a torsion theory such that \mathcal{T}_T is closed under submodules.

In the following we consider torsion theory instead of hereditary torsion theory unless otherwise stated. We denote as R-tors the family of the hereditary torsion theories.
Definition

If $\tau \in R - tors$ we say that an R-module M is τ-injective if it is injective for all the short exact sequences

$$\{A \hookrightarrow B \twoheadrightarrow C \mid C \in \mathcal{I}_\tau\}$$

Definition

If $\tau \in R - tors$ we say that an R-module M is τ-projective if it is projective for all the short exact sequences

$$\{A \hookrightarrow B \twoheadrightarrow C \mid A \in \mathcal{I}_\tau\}$$
Definition
If $\tau \in R - tors$ we say that an R-module M is τ-injective if it is injective for all the short exact sequences

$$\{ A \hookrightarrow B \twoheadrightarrow C \mid C \in T_\tau \}$$

Definition
If $\tau \in R - tors$ we say that an R-module M is τ-projective if it is projective for all the short exact sequences

$$\{ A \hookrightarrow B \twoheadrightarrow C \mid A \in T_\tau \}$$
Definition

If \(\tau \in R - tors \) we say that an \(R \)-module \(M \) is \(\tau \)-injective if it is injective for all the short exact sequences

\[
\{ A \hookrightarrow B \twoheadrightarrow C \mid C \in T_\tau \}
\]

Definition

If \(\tau \in R - tors \) we say that an \(R \)-module \(M \) is \(\tau \)-projective if it is projective for all the short exact sequences

\[
\{ A \hookrightarrow B \twoheadrightarrow C \mid A \in T_\tau \}
\]
Definition

If $\tau \in R - \text{tors}$ we say that a R-module M is τ-divisible if it is injective for all the short exact sequences

$$\{ A \hookrightarrow B \twoheadrightarrow C \mid C \in \mathcal{F}_\tau \}$$

Definition

If $\tau \in R - \text{tors}$ we say that a R-module M is τ-codivisible if it is projective for all the short exact sequences

$$\{ A \hookrightarrow B \twoheadrightarrow C \mid A \in \mathcal{F}_\tau \}$$
Definition

If $\tau \in R - tors$ we say that a R-module M is τ-divisible if it is injective for all the short exact sequences

$$\{ A \hookrightarrow B \rightarrow C \mid C \in \mathcal{F}_\tau \}$$

Definition

If $\tau \in R - tors$ we say that a R-module M is τ-codivisible if it is projective for all the short exact sequences

$$\{ A \hookrightarrow B \rightarrow C \mid A \in \mathcal{F}_\tau \}$$
Definition

If $\tau \in R - \text{tors}$ we say that a R-module M is τ-divisible if it is injective for all the short exact sequences

$\{ A \rightarrowtail B \twoheadrightarrow C \mid C \in \mathcal{F}_\tau \}$

Definition

If $\tau \in R - \text{tors}$ we say that a R-module M is τ-codivisible if it is projective for all the short exact sequences

$\{ A \rightarrowtail B \twoheadrightarrow C \mid A \in \mathcal{F}_\tau \}$
Theorem

(Walker) Let τ be a torsion theory and D the family of short exact sequences $A \rightarrowtail B \twoheadrightarrow C$ such that the induced sequence $A/T(A) \rightarrowtail B/T(B) \twoheadrightarrow C/T(C)$ is exact and splits, then $D = \iota^{-1}(F_\tau)$
Theorem

(Walker) Let τ be a torsion theory and D the family of short exact sequences $A \rightarrowtail B \twoheadrightarrow C$ such that the induced sequence $A/T(A) \rightarrowtail B/T(B) \twoheadrightarrow C/T(C)$ is exact and splits, then $D = \iota^{-1}(\mathcal{F}_\tau)$
Theorem

The left R-module M is projective relative to the proper class $\iota^{-1}(\mathcal{F}_\tau)$ if and only if $\Ext^1(M, L) = 0$ for all L in \mathcal{I}_τ.
Theorem

Let τ an hereditary torsion theory, then

$$\iota K_p^{-1}(\mathcal{I}_\tau) = \tau - \text{injectives}$$
Theorem

Let τ an hereditary torsion theory, then

$$K_i\pi^{-1}(I_\tau) = \tau - \text{injectives}$$
Theorem

Let τ an hereditary torsion theory, then

$$\pi K_i^{-1}(\mathcal{F}_\tau) = \tau - \text{codivisibles}$$
Theorem

Let τ an hereditary torsion theory, then

$$K_{p\tau}^{-1}(F_{\tau}) = \tau - \text{codivisbles}$$
Theorem

Let τ an hereditary torsion theory, then

$$K_{p\iota^{-1}}(\mathcal{T}\text{-injectives}) \supseteq \mathcal{T}_\tau$$
Theorem

Let τ an hereditary torsion theory, then

$$K_i \pi^{-1}(\mathcal{T}\text{-codivisibles}) \supseteq \mathcal{F}_\tau$$
Example 2
Consider the category of abelian groups and let D the class of the divisible groups R the class of the reduced groups. the Pair $(\mathcal{D}, \mathcal{R})$ is an hereditary torsion theory and we have the following:
Example 3

Definition

Let \(E : A \to B \to C \) a short exact sequence and \(h_n : C \to C \) such that \(h_n(x) = nx \) \(n \in \mathbb{Z} \). We say that \(E \) is quasi-pure if \(Eh_n \) is pure for some \(n \in \mathbb{Z} \).

All the short exact sequences quasi-pure form a proper class.
Now, if we consider the proper classes

\[K^{-1}_i \subseteq \pi^{-1}(\tau - \text{codivisibles}) \]

we observe that

\[\pi K^{-1}_i = \pi \pi^{-1}(\tau - \text{codivisibles}) = \tau - \text{codivisibles} \]

We also consider the concept of cover τ-projective
Some Examples
Theorem

- M is $\iota^{-1}(\mathcal{F}_\tau)$-projective if and only if M is a direct summand of a direct sum of projective and torsion modules.
- M is $\iota^{-1}(\mathcal{F}_\tau)$-coprojective if and only if M is τ-codivisible.
Sklyarenko, E.G. *Relative homological algebra in categories of modules*. Russian Mathematical Surveys, 33 No. 3, 97-137
(1978).

