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I B in V (A)
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I Modularity (Gumm terms)
I n-Permutability (Hagemann-Mitschke terms)
I Maltsev term
I Majority term
I Pixley term
I near unamimity term
I Siggers Taylor term
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Theorem (Freese & Valeriote)
The following problems are EXPTIME complete: Given a finite
algebra A,

I Is V(A) congruence modular?
I Is V(A) congruence distributive?
I Is V(A) congruence semidistributive?
I Is V(A) congruence meet semidistributive?
I Does A have a Taylor term?
I Does A have a Hobby-McKenzie term?
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B ∈ V (A)

Problem
(McNulty) How hard is this.

With A fixed (the membership problem).
With neither fixed (the universal membership problem).

I Both are in 2EXPTIME.
I If A is finitely based, the membership problem is

polynomial time.
I (Jackson & McNulty) The membership problem for

Lyndon’s algebra, is polynomial time.
I (Székely) There is an A where it is NP-complete.
I (Kozik & Kun) There is a groupoid where it’s NP-complete.
I (Jackson & McKenzie) There is a semigroup where it’s

NP-complete.
I (Kozik) There is an A where it is PSPACE-complete.
I (Kozik) There is an A where it is 2EXPTIME-complete.
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Directoids: Ježek and Quackenbush
A directoid is a groupoid defined on a p. o. set such that

x ≤ xy y ≤ xy x ≤ y =⇒ xy = yx = y

It is an equational class:

x2 ≈ x (xy)x ≈ xy y(xy) ≈ xy x((xy)z) ≈ (xy)z

I Is every finite directoid finitely based?
I Hajilarov gave a 6 element directoid, H, which he asserted

is INFB:
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Directoids: Ježek and Quackenbush
The directoid D:
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0
· 1 2 3 4 5 0
1 1 3 3 4 5 0
2 3 2 3 4 5 0
3 3 3 3 0 5 0
4 4 4 0 4 5 0
5 5 5 5 5 5 0
0 0 0 0 0 0 0

The argument that H is INFB implies D ∈ V (H).
But it’s not. The calculator gives the equation

x3((x0x1)(x0(x1x2))) ≈ (x0x1)(x3(x0(x1x2)))

and claims it holds in H and fails in D under the substitution

x0 7→ 1 x1 7→ 2 x2 7→ 4 x3 7→ 5
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(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.

I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping
I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.

I A partial homomorphism from ϕ : FV (A)(k)→ B.
I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If
f (a0, . . . ,ar−1) = a

is new, then

ta = f (ta0 , . . . , tar−1) and
ϕ(a) = f (ϕ(a0), . . . , ϕ(ar−1))

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



(Straightforward) Testing B ∈ V (A)

I Find a minimal sized generating set {g0, . . . ,gk−1} of B.
I Start calculating FV (A)(k) = FV (A)(x0, . . . , xk−1), keeping

I A map from the elements to the term that gave them.
I A partial homomorphism from ϕ : FV (A)(k)→ B.

I If a = f (a0, . . . ,ar−1) is not new, and

ϕ(a) 6= f (ϕ(a0), . . . , ϕ(ar−1))

then the equation (of the Birkhoff basis):

ta ≈ f (ta0 , . . . , tar−1)

fails in B under the substitution xi 7→ gi .



D /∈ V (H)

I x3((x0x1)(x0(x1x2))) ≈ (x0x1)(x3(x0(x1x2)))

witnesses this (under 1 second).

I |FV (H)(4)| = 26,467 (60 minutes)

I So the Birkhoff basis has over 700 million equations.

I Testing H ∈ V (H) takes about 80 minutes.
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CgA(a,b) in Linear Time

Theorem
There is a linear time algorithm to compute CgA(a,b) for
algebras A of a fixed similarity type having at least one, at least
binary operation (and nearly linear even if it doesn’t).



Consequences
There are polynomial time algorithms for:

I calculating the principal congruences of A
I calculating the join irreducible congruences of A

I finding the TCT type set of A
I calculating the atoms of Con (A)

I deciding if A is simple; is subdirectly irreducible
I (J. Demel) finding a subdirect decomposition of A into

subdirectly irreducibles
But not for:

I finding all of Con (A)

I finding all meet irreducibles of Con (A)

I finding all subdirect decompositions of A
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Computing the TCT Type Set of A

Theorem (Berman, Kiss, Prőhle, Szendrei)
The TCT type of a cover α ≺ β in Con (A) can be computed in
time O(||A||4).

Outline:

I We may assume β � 0.
I Find a β subtrace (a two element subset, {a,b}, of a

trace), and deterimine if there is an involution (an
f ∈ Pol1(A) interchanging a and b) in time O(||A||2).

I Find the type of the subtrace.
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Finding the type

Assume {a,b} is a subtrace of β � 0. Let

Ta,b = {(h(a,a),h(a,b),h(b,a),h(b,b)) : h ∈ Pol2 A}
= SgA4({(a,a,b,b), (a,b,a,b)} ∪∆4)

We may think of the elements of Ta,b as 2× 2 tables, like

a b
a x y
b u v

a b
a a b
b b b

a b
a a a
b a b

are called a join and a meet.
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Finding the type

While generating the universe of Ta,b,

I If a join or meet is found, record this. If {a,b} has an
involution, stop: the type is 3.

I If both a join and a meet are found, stop: the type is 4.
In the other cases we must generate all of Ta,b.

I If a join or a meet was found, the type is 5.
I If a one-snag was found, the type is 2.
I Otherwise the type is 1.
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Computing the TCT Type Set of A

Theorem
The type of α ≺ β can be found in time O(||A||3).

Theorem
Let A be a finite algebra with n elements. Let β � 0 be an atom
of Con (A) and let {a,b} be two elements of a 0-β trace. The
maximum size of Ta,b depending on the type of β over 0 is

1 or 2 n3

5 n3/3 + n2/2 + n/6
4 n4/12 + n3/3 + 5n2/12 + n/6
3 n4

These bounds all obtain infinitely often.
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Free Algebras: Birkhoff Construction of FV (A)(X )

Theorem (Birkhoff)
FV(A)(X ) is the subalgebra of AAX

generated by {x̄ : x ∈ X},
where x̄ ∈ AAX

is given by x̄v = v(x) for v ∈ AX .

I For v ∈ AX let A(v) be the subalgebra of A generated by
v(X ).

I Let ηv be the kernel of FV (A)(X )→ A(v).
I ηv ≤ ηu iff v(x) 7→ u(x), x ∈ X extends to a

homomorphism of A(v) onto A(u).
I (Thinning) In this case the u coordinate can be eliminated.
I We can also eliminate u if (v1(x), v2(x)) 7→ u(x), x ∈ X

extends to a homomorphism of the subdirect product of
A(v1) and A(v2) to A(u).

I But this takes too much time.
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Free Algebras: Using Subdirect Decompositions
I Idea: find a subdirect decomposition of A(v) and replace

A(v) with these si algebras. And then thin.

I While adding more coordinates, this allows for better
thinning.

I Example: FV (A)(4), for A = N5.
I Without thinning 625 coordinates.
I With thinning 132 coordinates: 24 copies of 4, 24 copies of

2× 2, and 84 copies of N5.
I With decomposing and thinning only the 84 copies of N5.

In fact, every FV (N5)(k), k ≥ 3, is a subdirect product of copies
of N5.
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Maltsev’s Conditions
Jónsson’s Terms

I A variety V is congruence distributive if and only if there
are 3-ary terms d0, . . . ,dk (called Jónsson terms) such that

d0(x , y , z) ≈ x
di(x , y , x) ≈ x for 0 ≤ i ≤ k
di(x , x , y) ≈ di+1(x , x , y) for all even i < k (1)
di(x , y , y) ≈ di+1(x , y , y) for all odd i < k
dk (x , y , z) ≈ z.

The Jónsson level of V is the least k .
I How hard is it to test if V (A) is congruence distributive for a

finite A?
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A Better Way

Theorem
Let V be a variety and let S be the subalgebra of F3

V(x , y)
generated by (x , x , y), (x , y , x) and (y , x , x).

I V is congruence distributive iff there is a ρ-path in S from
(x , x , y) to (y , x , x), where the first link is ρ01.

I If V is congruence distributive then the Jónsson level of V
is the length of the shortest such path.

I Moreover, if V is congruence distributive then the Jónsson
level is at most 2m − 2, where m = |FV(x , y)| and this is
the best possible bound in terms of m.

Proof.
More or less obvious, (except the last part).
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Maltsev Conditions
Taylor Terms

Theorem (Siggers)
For a locally finite variety, having a Taylor term is a strong
Maltsev condition.

I Variants of Siggers term have been given by several
people.

I Matt Valeriote’s talk will give some variants of Siggers
original term that are best for our computational purposes,
along with short proofs.
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Maltsev Conditions
Congruence SD∧

A weak near unanimity term is an idempotent term satisfying

t(y , x , . . . , x) ≈ t(x , y , . . . , x) ≈ · · · ≈ t(x , x , . . . , y)

Theorem (Kozik)
A finitely generated variety is congruence SD∧ iff it has wnu
terms w(x , y , z,u) and s(x , y , z) satisfying

w(x , x , x , y) ≈ s(x , x , y)

Corollary (M.Maroti and A. Janko)
A finitely generated variety is congruence SD∧ iff it has a wnu
term s(x , y , z) and terms r(x , y , z) and t(x , y , z) satisfying

r(x , x , y) ≈ r(x , y , x) ≈ t(y , x , x) ≈ t(x , y , x) ≈ s(x , x , y)

r(y , x , x) ≈ t(y , y , x)
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Maltsev Conditions
Testing Congruence SD∧

Form the subalgebra of F(x , y)4 generated by

(x , x , y , x) (x , y , x , x) (y , x , x , x)

And look for elements of the form

(a,a,a, x) (a,a,b, x) (b′,a,a, x)

where b′ = τ(b), where τ is the automorphism of F(x , y)
interchanging x and y .
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Directoids Again
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1 · 2 = 3

3 · 4 = 5

2

4 = 2 · 1

6 = 4 · 3
0

The calculator found SD∧ terms:

r(x , y , z) = yz · (zy · yx)

s(x , y , z) = (xy · yz)(zx · xy)

t(x , y , z) = (zx · xy) · yx

And also single wnu term s(x , y , z) with s(x , x , y) = s(y , y , x):

(xy · yx)[(yz · zx)(zy · xz)]
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Directoids Again

Theorem
The variety of directoids satisfies the Maltsev condition of the
Corollary with

r(x , y , z) = yz · (zy · yx)

s(x , y , z) = (xy · yz)(zx · xy)

t(x , y , z) = (zx · xy) · yx

The variety of directoids is congruence SD∧ (using results of
Kearnes, Kiss, and Szendrei).
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Theorem
The variety of directoids satisfies the Maltsev condition of the
Corollary with

r(x , y , z) = yz · (zy · yx)

s(x , y , z) = (xy · yz)(zx · xy)

t(x , y , z) = (zx · xy) · yx

The variety of directoids is congruence SD∧ (using results of
Kearnes, Kiss, and Szendrei).

Proof.

r(x , x , y) = r(x , y , x) = t(y , x , x) = t(x , y , x) = s(x , x , y) = xy · yx
r(y , x , x) = xy
t(x , x , y) = yx



Directoids Again

Theorem
If V is a locally finite variety of directoids, it has a wnu term
s(x , y , z) satisfying

s(x , x , y) ≈ s(y , y , x)

Proof.
I A finite directoid has a greatest element.
I If s(x , y , z) is the top of F(x , y , z), then all maps of {x , y , z}

onto {x , y} map s to the top of F(x , y).
I So s(x , y , z) is a wnu term and s(x , x , y) = s(y , y , x).

Theorem
The variety of all directoids does not have such a term.

Proof.
Ježek and Quackenbush show directoids do not have a term
satisfying u(x , y) ≈ u(y , x).
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Testing Primality

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie)
Let A be an algebra on {0,1, . . . ,n − 1}. A is primal iff

I the subalgebra of A4 generated by (0,0,1,1) and
(0,1,0,1) contains (0,0,0,1) (the meet), and

I FV(A)(1) ≤ An contains

χ0 = (1,0, . . . ,0),

...
χn−1 = (0, . . . ,0,1),

and
I the subalgebra of FV(A)(1) generated by the χi ’s includes

(0,1, . . . ,n − 1).
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Day Quadruples
Let a, b, c and d ∈ A and let

α = CgA(c,d) β = CgA((a,b)(c,d)) γ = CgA((a, c)(b,d))
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(a,b, c,d) is a Day quadruple if in the subalgebra B generated
by {a,b, c,d}

(a,b) /∈ CgB(c,d) ∨ [CgB((a,b)(c,d)) ∧ CgB((a, c)(b,d))]
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Polynomial Algorithms for Idempotent Algebras

Theorem (Freese, Valeriote)
Let A be a finite idempotent algebra and V be the variety it
generates. Then V fails to be congruence modular if and only if
there is a Day quadruple, (a,b, c,d) in A2.

Moreover, this Day quadruple can be chosen so that
I there exist x0, x1, y0, y1 in A such that a = (x0, x1),

b = (x0, y1), c = (y0, x1), and d = (y0, y1);
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Polynomial Algorithms for Idempotent Algebras

n = |A|

m = ||A|| =
r∑

i=0

kini

r = the largest arity of the operations of A

(ki = the number of basic operations of arity i)



Polynomial Algorithms for Idempotent Algebras

Theorem (Freese, Valeriote)
Let A be a finite idempotent algebra with parameters as above.
Then each of the following can be determined in the time
indicated:

V(A) is congruence modular: crn4m2.

V(A) is congruence distributive: crn4m2.
V(A) is congruence semidistributive: crn2m2.
V(A) is congruence meet semidistributive: crn2m2.
V(A) is congruence permutable: crn4m2.
V(A) is congruence k-permutable for some k: crn3m.
A has a Taylor term: crn3m.
A has a Hobby-McKenzie term: crn3m.
A has a majority term: crn6m2.
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-> V(A) is congruence meet semidistributive: crn2m2.

V(A) is congruence permutable: crn4m2.
-> V(A) is congruence k-permutable for some k: crn3m.
-> A has a Taylor term: crn3m.
-> A has a Hobby-McKenzie term: crn3m.

A has a majority term: crn6m2.
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Theorem (Szendrei, Valeriote)
I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



Polynomial Algorithms for Idempotent Algebras
TCT Types

r
r

r
r
r

�
�
�

@
@

@
@@

@
@
@

�
�
�
��

r 1 Unary

Vector Space 2
5 Semilattice

4 Lattice

3 Boolean

Theorem (Szendrei, Valeriote)
I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



Polynomial Algorithms for Idempotent Algebras
TCT Types

Theorem (Szendrei, Valeriote)

I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



Polynomial Algorithms for Idempotent Algebras
TCT Types

Theorem (Szendrei, Valeriote)

I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



Polynomial Algorithms for Idempotent Algebras
TCT Types

Theorem (Szendrei, Valeriote)

I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



Polynomial Algorithms for Idempotent Algebras
TCT Types

Theorem (Szendrei, Valeriote)

I Let T be a proper order ideal of the lattice of types, and
I let A be a finite idempotent algebra that fails to omit T .

Then a witness of this failure can be found in a strictly simple
algebra S in HS(A).

If S is a strictly simple idempotent algebra of TCT type 1, 4, or
5, then |S| = 2.

Theorem
Let A be finite indempotent, and let S ∈ HS(A) be strictly
simple. Then

I there are a, b ∈ A such that, if B = SgA(a,b), then
I CgB(a,b) = 1B and is join irreducible with lower cover ρ

such that B/ρ = S.



The End

UACalc Web Site:

http://uacalc.org/



The End

UACalc Web Site:

http://uacalc.org/


