Algorithms in Universal Algebra and the UACalculator

Ralph Freese

University of Hawaii

June 2010

UACalc Web Site: http://uacalc.org/

File Edit HSP Tasks Maltsev Drawing Help

Algebras										
Internal	Name	Type	Description	File						
A0	z3 2.alg	BASIC		z3 2.xml						
A1	QuotOfz3_2.alg	QUOTIENT	The quotient of z3_2.alg by 0,1,2 3 4 5 6 7 8							

Tasks Menu:

- Free Algebra
- ► **B** in **V**(**A**)
- Sub Power
- Primality

Tasks Menu:

- Free Algebra
- ► **B** in **V**(**A**)
- Sub Power
- Primality

Maltsev Menu:

- Distributivity (Jónsson terms)
- Modularity (Gumm terms)
- n-Permutability (Hagemann-Mitschke terms)
- Maltsev term
- Majority term
- Pixley term
- near unamimity term
- Siggers Taylor term

Theorem (Freese & Valeriote)

Theorem (Freese & Valeriote)

The following problems are EXPTIME complete: Given a finite algebra \mathbf{A} ,

Is V(A) congruence modular?

Theorem (Freese & Valeriote)

- Is V(A) congruence modular?
- ► Is V(A) congruence distributive?

Theorem (Freese & Valeriote)

- ► Is **V**(**A**) congruence modular?
- ► Is V(A) congruence distributive?
- ► Is V(A) congruence semidistributive?

Theorem (Freese & Valeriote)

- ► Is **V**(**A**) congruence modular?
- ► Is V(A) congruence distributive?
- ► Is V(A) congruence semidistributive?
- ► Is V(A) congruence meet semidistributive?

Theorem (Freese & Valeriote)

- ► Is **V**(**A**) congruence modular?
- ► Is V(A) congruence distributive?
- ► Is V(A) congruence semidistributive?
- ► Is V(A) congruence meet semidistributive?
- Does A have a Taylor term?

Theorem (Freese & Valeriote)

- ► Is **V**(**A**) congruence modular?
- ► Is V(A) congruence distributive?
- ► Is V(A) congruence semidistributive?
- ► Is V(A) congruence meet semidistributive?
- Does A have a Taylor term?
- Does A have a Hobby-McKenzie term?

Results

Desc: Finding Jonsson terms for A4 (Baker2)						
Index	Term					
0	x					
1	bak(x,y,z)					
2	bak(x,z,z)					
3	bak(z,x,y)					
4	2					

Tasks

Γ		Description	Pass	Pass Size	Size	Time Left Pass	Time Next Pass	Status
		F(5) over A0 (lyndon)	4	326	326		0	DONE
		Test if A2 in V(A3)	3	476	528			DONE
l	->	Finding Jonsson terms for A4 (B	2	10	10			DONE
l		F(4) over A6 (n5)	4	321556	662106	208:52:22	676:37:50	CANCE
L		F(4) over A5 (m3)	4	15072	19982	2:57	5:28	RUNNI

~

finding Jonsson terms Looking for a Day quadruple in A^2 There are no Day quadruples in the subalgebras of A^2. So this algebra lies in a CM variety. (0 ms) constructing free algebra on 2 generators over Baker2 using subdirect decompositions to eliminate some projections. number of projections: 2, sizes: 2(2), (0 ms) subpower closing ... pass: 0, size: 2

$\textbf{B}\in \textbf{\textit{V}}(\textbf{A})$

Problem (McNulty) How hard is this.

Problem (McNulty) How hard is this. With **A** fixed (the membership problem).

Problem (McNulty) How hard is this. With **A** fixed (the membership problem). With neither fixed (the universal membership problem).

Both are in 2EXPTIME.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.
- ► (Székely) There is an **A** where it is NP-complete.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.
- (Székely) There is an A where it is NP-complete.
- (Kozik & Kun) There is a groupoid where it's NP-complete.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.
- (Székely) There is an A where it is NP-complete.
- (Kozik & Kun) There is a groupoid where it's NP-complete.
- (Jackson & McKenzie) There is a semigroup where it's NP-complete.

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.
- (Székely) There is an A where it is NP-complete.
- (Kozik & Kun) There is a groupoid where it's NP-complete.
- (Jackson & McKenzie) There is a semigroup where it's NP-complete.
- ► (Kozik) There is an **A** where it is PSPACE-complete.

${\bm \mathsf{B}}\in {\bm {\mathsf{V}}}({\bm \mathsf{A}})$

- Both are in 2EXPTIME.
- If A is finitely based, the membership problem is polynomial time.
- (Jackson & McNulty) The membership problem for Lyndon's algebra, is polynomial time.
- (Székely) There is an A where it is NP-complete.
- (Kozik & Kun) There is a groupoid where it's NP-complete.
- (Jackson & McKenzie) There is a semigroup where it's NP-complete.
- ► (Kozik) There is an **A** where it is PSPACE-complete.
- ► (Kozik) There is an **A** where it is 2EXPTIME-complete.

A directoid is a groupoid defined on a p. o. set such that

 $x \le xy$ $y \le xy$ $x \le y \implies xy = yx = y$

A directoid is a groupoid defined on a p. o. set such that

 $x \le xy$ $y \le xy$ $x \le y \implies xy = yx = y$

It is an equational class:

 $x^2 \approx x$ $(xy)x \approx xy$ $y(xy) \approx xy$ $x((xy)z) \approx (xy)z$

A directoid is a groupoid defined on a p. o. set such that

 $x \le xy$ $y \le xy$ $x \le y \implies xy = yx = y$

It is an equational class:

 $x^2 \approx x$ $(xy)x \approx xy$ $y(xy) \approx xy$ $x((xy)z) \approx (xy)z$

Is every finite directoid finitely based?

A directoid is a groupoid defined on a p. o. set such that

 $x \le xy$ $y \le xy$ $x \le y \implies xy = yx = y$

It is an equational class:

 $x^2 \approx x$ $(xy)x \approx xy$ $y(xy) \approx xy$ $x((xy)z) \approx (xy)z$

- Is every finite directoid finitely based?
- Hajilarov gave a 6 element directoid, H, which he asserted is INFB:

A directoid is a groupoid defined on a p. o. set such that

 $x \le xy$ $y \le xy$ $x \le y \implies xy = yx = y$

It is an equational class:

 $x^2 \approx x$ $(xy)x \approx xy$ $y(xy) \approx xy$ $x((xy)z) \approx (xy)z$

Is every finite directoid finitely based?

Hajilarov gave a 6 element directoid, H, which he asserted is INFB:

The directoid **D**:

The directoid **D**:

The argument that **H** is INFB implies $\mathbf{D} \in \mathbf{V}(\mathbf{H})$.

The directoid **D**:

The argument that **H** is INFB implies $\mathbf{D} \in \mathbf{V}(\mathbf{H})$. But it's not.

The directoid **D**:

The argument that **H** is INFB implies $\mathbf{D} \in \mathbf{V}(\mathbf{H})$. But it's not. The calculator gives the equation

 $x_3((x_0x_1)(x_0(x_1x_2))) \approx (x_0x_1)(x_3(x_0(x_1x_2)))$

The directoid **D**:

The argument that **H** is INFB implies $\mathbf{D} \in \mathbf{V}(\mathbf{H})$. But it's not. The calculator gives the equation

 $x_3((x_0x_1)(x_0(x_1x_2))) \approx (x_0x_1)(x_3(x_0(x_1x_2)))$

and claims it holds in H and fails in D under the substitution

$$x_0 \mapsto 1$$
 $x_1 \mapsto 2$ $x_2 \mapsto 4$ $x_3 \mapsto 5$

(Straightforward) Testing $\mathbf{B} \in \mathbf{V}(\mathbf{A})$

(Straightforward) Testing $\mathbf{B} \in \mathbf{V}(\mathbf{A})$

Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.

(Straightforward) Testing $\mathbf{B} \in \mathbf{V}(\mathbf{A})$

- Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.
- ► Start calculating $\mathbf{F}_{V(\mathbf{A})}(k) = \mathbf{F}_{V(\mathbf{A})}(x_0, \dots, x_{k-1})$, keeping
- Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.
- ► Start calculating $\mathbf{F}_{V(\mathbf{A})}(k) = \mathbf{F}_{V(\mathbf{A})}(x_0, \dots, x_{k-1})$, keeping
 - A map from the elements to the term that gave them.

- Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.
- ► Start calculating $\mathbf{F}_{V(\mathbf{A})}(k) = \mathbf{F}_{V(\mathbf{A})}(x_0, \dots, x_{k-1})$, keeping
 - A map from the elements to the term that gave them.
 - A partial homomorphism from $\varphi : \mathbf{F}_{V(\mathbf{A})}(k) \to \mathbf{B}$.

- Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.
- Start calculating $\mathbf{F}_{V(\mathbf{A})}(k) = \mathbf{F}_{V(\mathbf{A})}(x_0, \dots, x_{k-1})$, keeping
 - A map from the elements to the term that gave them.
 - A partial homomorphism from $\varphi : \mathbf{F}_{\mathbf{V}(\mathbf{A})}(k) \to \mathbf{B}$.

► If

$$f(a_0,\ldots,a_{r-1})=a$$

is new, then

$$t_a = f(t_{a_0}, \dots, t_{a_{r-1}}) \text{ and }$$

$$\varphi(a) = f(\varphi(a_0), \dots, \varphi(a_{r-1}))$$

- Find a minimal sized generating set $\{g_0, \ldots, g_{k-1}\}$ of **B**.
- Start calculating $\mathbf{F}_{V(\mathbf{A})}(k) = \mathbf{F}_{V(\mathbf{A})}(x_0, \dots, x_{k-1})$, keeping
 - A map from the elements to the term that gave them.
 - A partial homomorphism from $\varphi : \mathbf{F}_{V(\mathbf{A})}(k) \to \mathbf{B}$.
- If $a = f(a_0, ..., a_{r-1})$ is **not** new, and

$$\varphi(a) \neq f(\varphi(a_0), \ldots, \varphi(a_{r-1}))$$

then the equation (of the Birkhoff basis):

$$t_a \approx f(t_{a_0}, \ldots, t_{a_{r-1}})$$

fails in **B** under the substitution $x_i \mapsto g_i$.

$\textbf{D}\notin \textit{\textbf{V}}(\textbf{H})$

x₃((x₀x₁)(x₀(x₁x₂))) ≈ (x₀x₁)(x₃(x₀(x₁x₂)))
witnesses this (under 1 second).

$\textbf{D}\notin \textit{\textbf{V}}(\textbf{H})$

x₃((x₀x₁)(x₀(x₁x₂))) ≈ (x₀x₁)(x₃(x₀(x₁x₂))) witnesses this (under 1 second).

$\mathbf{D} \notin \mathbf{V}(\mathbf{H})$

• $x_3((x_0x_1)(x_0(x_1x_2))) \approx (x_0x_1)(x_3(x_0(x_1x_2)))$ witnesses this (under 1 second).

So the Birkhoff basis has over 700 million equations.

D ∉ *V*(**H**)

- $x_3((x_0x_1)(x_0(x_1x_2))) \approx (x_0x_1)(x_3(x_0(x_1x_2)))$ witnesses this (under 1 second).
- ► $|F_{V(H)}(4)| = 26,467$ (60 minutes)
- So the Birkhoff basis has over 700 million equations.
- Testing $\mathbf{H} \in \mathbf{V}(\mathbf{H})$ takes about 80 minutes.

$Cg^{A}(a, b)$ in Linear Time

Theorem

There is a linear time algorithm to compute $Cg^{A}(a, b)$ for algebras **A** of a fixed similarity type having at least one, at least binary operation (and nearly linear even if it doesn't).

There are polynomial time algorithms for:

calculating the principal congruences of A

- calculating the principal congruences of A
- calculating the join irreducible congruences of A

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible
- (J. Demel) finding a subdirect decomposition of A into subdirectly irreducibles

There are polynomial time algorithms for:

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible
- (J. Demel) finding a subdirect decomposition of A into subdirectly irreducibles

But not for:

There are polynomial time algorithms for:

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible
- (J. Demel) finding a subdirect decomposition of A into subdirectly irreducibles

But not for:

finding all of Con (A)

There are polynomial time algorithms for:

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible
- (J. Demel) finding a subdirect decomposition of A into subdirectly irreducibles

But not for:

- finding all of Con (A)
- finding all meet irreducibles of Con (A)

There are polynomial time algorithms for:

- calculating the principal congruences of A
- calculating the join irreducible congruences of A
 - finding the TCT type set of A
- calculating the atoms of Con (A)
- deciding if A is simple; is subdirectly irreducible
- (J. Demel) finding a subdirect decomposition of A into subdirectly irreducibles

But not for:

- finding all of Con (A)
- finding all meet irreducibles of Con (A)
- finding all subdirect decompositions of A

Theorem (Berman, Kiss, Prőhle, Szendrei)

The TCT type of a cover $\alpha \prec \beta$ in **Con** (**A**) can be computed in time $O(||\mathbf{A}||^4)$.

Theorem (Berman, Kiss, Prőhle, Szendrei)

The TCT type of a cover $\alpha \prec \beta$ in **Con** (**A**) can be computed in time $O(||\mathbf{A}||^4)$.

Outline:

• We may assume $\beta \succ 0$.

Theorem (Berman, Kiss, Prőhle, Szendrei)

The TCT type of a cover $\alpha \prec \beta$ in **Con** (**A**) can be computed in time $O(||\mathbf{A}||^4)$.

Outline:

- We may assume $\beta \succ 0$.
- Find a β subtrace (a two element subset, {a, b}, of a trace),

Theorem (Berman, Kiss, Prőhle, Szendrei)

The TCT type of a cover $\alpha \prec \beta$ in **Con** (**A**) can be computed in time $O(||\mathbf{A}||^4)$.

Outline:

- We may assume $\beta \succ 0$.
- Find a β subtrace (a two element subset, {a, b}, of a trace), and deterimine if there is an involution (an f ∈ Pol₁(A) interchanging a and b) in time O(||A||²).

Theorem (Berman, Kiss, Prőhle, Szendrei)

The TCT type of a cover $\alpha \prec \beta$ in **Con** (**A**) can be computed in time $O(||\mathbf{A}||^4)$.

Outline:

- We may assume $\beta \succ 0$.
- Find a β subtrace (a two element subset, {a, b}, of a trace), and deterimine if there is an involution (an f ∈ Pol₁(A) interchanging a and b) in time O(||A||²).
- Find the type of the subtrace.

Assume $\{a, b\}$ is a subtrace of $\beta \succ 0$. Let

$$\begin{aligned} \mathbf{T}_{a,b} &= \{ (h(a,a), h(a,b), h(b,a), h(b,b)) : h \in \mathsf{Pol}_2 \, \mathbf{A} \} \\ &= \mathsf{Sg}_{\mathbf{A}^4}(\{ (a,a,b,b), (a,b,a,b) \} \cup \Delta_4) \end{aligned}$$

Assume $\{a, b\}$ is a subtrace of $\beta \succ 0$. Let

$$\begin{aligned} \mathbf{T}_{a,b} &= \{ (h(a,a), h(a,b), h(b,a), h(b,b)) : h \in \mathsf{Pol}_2 \, \mathbf{A} \} \\ &= \mathsf{Sg}_{\mathbf{A}^4}(\{ (a,a,b,b), (a,b,a,b) \} \cup \Delta_4) \end{aligned}$$

We may think of the elements of $\mathbf{T}_{a,b}$ as 2×2 tables, like

Assume $\{a, b\}$ is a subtrace of $\beta \succ 0$. Let

$$\begin{aligned} \mathbf{T}_{a,b} &= \{ (h(a,a), h(a,b), h(b,a), h(b,b)) : h \in \mathsf{Pol}_2 \, \mathbf{A} \} \\ &= \mathsf{Sg}_{\mathbf{A}^4}(\{ (a,a,b,b), (a,b,a,b) \} \cup \Delta_4) \end{aligned}$$

We may think of the elements of $\mathbf{T}_{a,b}$ as 2 × 2 tables, like

			а	b		
		а	X	У		
		b	и	V		
	а	b			а	b
а	а	b		а	а	а
b	b	b		b	а	b

are called a join and a meet.

While generating the universe of $\mathbf{T}_{a,b}$,

While generating the universe of $T_{a,b}$,

If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.

While generating the universe of $T_{a,b}$,

- If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.
- If both a join and a meet are found, stop: the type is 4.

While generating the universe of $T_{a,b}$,

- If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.
- If both a join and a meet are found, stop: the type is 4.

In the other cases we must generate all of $T_{a,b}$.

While generating the universe of $T_{a,b}$,

- If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.
- If both a join and a meet are found, stop: the type is 4.

In the other cases we must generate all of $T_{a,b}$.

If a join or a meet was found, the type is 5.

While generating the universe of $T_{a,b}$,

- If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.
- If both a join and a meet are found, stop: the type is 4.

In the other cases we must generate all of $T_{a,b}$.

- If a join or a meet was found, the type is 5.
- If a one-snag was found, the type is 2.

While generating the universe of $T_{a,b}$,

- If a join or meet is found, record this. If {a, b} has an involution, stop: the type is 3.
- If both a join and a meet are found, stop: the type is 4.

In the other cases we must generate all of $T_{a,b}$.

- If a join or a meet was found, the type is 5.
- If a one-snag was found, the type is 2.
- Otherwise the type is **1**.

Theorem The type of $\alpha \prec \beta$ can be found in time $O(||A||^3)$.
Computing the TCT Type Set of A

Theorem The type of $\alpha \prec \beta$ can be found in time $O(||A||^3)$.

Theorem

Let **A** be a finite algebra with n elements. Let $\beta \succ 0$ be an atom of **Con** (**A**) and let $\{a, b\}$ be two elements of a 0- β trace. The maximum size of **T**_{*a*,*b*} depending on the type of β over 0 is

1 or 2	n ³
5	$n^3/3 + n^2/2 + n/6$
4	$n^4/12 + n^3/3 + 5n^2/12 + n/6$
3	n ⁴

These bounds all obtain infinitely often.

Theorem (Birkhoff)

Theorem (Birkhoff)

 $\mathbf{F}_{V(\mathbf{A})}(X)$ is the subalgebra of \mathbf{A}^{A^X} generated by $\{\bar{x} : x \in X\}$, where $\bar{x} \in \mathbf{A}^{A^X}$ is given by $\bar{x}_v = v(x)$ for $v \in A^X$.

For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).

Theorem (Birkhoff)

- For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).
- Let η_{ν} be the kernel of $\mathbf{F}_{\mathbf{V}(\mathbf{A})}(X) \rightarrow \mathbf{A}(\nu)$.

Theorem (Birkhoff)

- For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).
- Let η_{ν} be the kernel of $\mathbf{F}_{\boldsymbol{V}(\mathbf{A})}(X) \rightarrow \mathbf{A}(\nu)$.
- ¬η_v ≤ η_u iff v(x) → u(x), x ∈ X extends to a homomorphism of A(v) onto A(u).

Theorem (Birkhoff)

- For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).
- Let η_{ν} be the kernel of $\mathbf{F}_{\boldsymbol{V}(\mathbf{A})}(X) \rightarrow \mathbf{A}(\nu)$.
- ▶ (Thinning) In this case the *u* coordinate can be eliminated.

Theorem (Birkhoff)

- For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).
- Let η_{ν} be the kernel of $\mathbf{F}_{\boldsymbol{V}(\mathbf{A})}(X) \rightarrow \mathbf{A}(\nu)$.
- ► (Thinning) In this case the *u* coordinate can be eliminated.
- We can also eliminate *u* if (v₁(x), v₂(x)) → u(x), x ∈ X extends to a homomorphism of the subdirect product of A(v₁) and A(v₂) to A(u).

Theorem (Birkhoff)

- For $v \in A^X$ let $\mathbf{A}(v)$ be the subalgebra of \mathbf{A} generated by v(X).
- Let η_{ν} be the kernel of $\mathbf{F}_{\boldsymbol{V}(\mathbf{A})}(X) \rightarrow \mathbf{A}(\nu)$.
- ► (Thinning) In this case the *u* coordinate can be eliminated.
- We can also eliminate *u* if (v₁(x), v₂(x)) → u(x), x ∈ X extends to a homomorphism of the subdirect product of A(v₁) and A(v₂) to A(u).
- But this takes too much time.

Idea: find a subdirect decomposition of A(v) and replace A(v) with these si algebras. And then thin.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.
- Example: $\mathbf{F}_{V(\mathbf{A})}(4)$, for $\mathbf{A} = \mathbf{N}_5$.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.
- Example: $\mathbf{F}_{V(\mathbf{A})}(4)$, for $\mathbf{A} = \mathbf{N}_5$.
- Without thinning 625 coordinates.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.
- Example: $\mathbf{F}_{V(\mathbf{A})}(4)$, for $\mathbf{A} = \mathbf{N}_5$.
- Without thinning 625 coordinates.
- With thinning 132 coordinates: 24 copies of 4, 24 copies of 2 × 2, and 84 copies of N₅.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.
- Example: $\mathbf{F}_{V(\mathbf{A})}(4)$, for $\mathbf{A} = \mathbf{N}_5$.
- Without thinning 625 coordinates.
- With thinning 132 coordinates: 24 copies of 4, 24 copies of 2 × 2, and 84 copies of N₅.
- ▶ With decomposing and thinning only the 84 copies of **N**₅.

- Idea: find a subdirect decomposition of A(v) and replace
 A(v) with these si algebras. And then thin.
- While adding more coordinates, this allows for better thinning.
- Example: $\mathbf{F}_{V(\mathbf{A})}(4)$, for $\mathbf{A} = \mathbf{N}_5$.
- Without thinning 625 coordinates.
- With thinning 132 coordinates: 24 copies of 4, 24 copies of 2 × 2, and 84 copies of N₅.
- With decomposing and thinning only the 84 copies of N₅.

In fact, every $F_{V(N_5)}(k)$, $k \ge 3$, is a subdirect product of copies of N_5 .

Jónsson's Terms

A variety V is congruence distributive if and only if there are 3-ary terms d₀,..., d_k (called Jónsson terms) such that

$$egin{aligned} & d_0(x,y,z) pprox x \ & d_i(x,y,x) pprox x \ & for \ 0 \leq i \leq k \ & d_i(x,x,y) pprox d_{i+1}(x,x,y) & for all even \ i < k \ & (1) \ & d_i(x,y,y) pprox d_{i+1}(x,y,y) & for all odd \ i < k \ & d_k(x,y,z) pprox z. \end{aligned}$$

Jónsson's Terms

A variety V is congruence distributive if and only if there are 3-ary terms d₀,..., d_k (called Jónsson terms) such that

$$\begin{array}{ll} d_0(x,y,z) \approx x \\ d_i(x,y,x) \approx x & \text{for } 0 \leq i \leq k \\ d_i(x,x,y) \approx d_{i+1}(x,x,y) & \text{for all even } i < k \\ d_i(x,y,y) \approx d_{i+1}(x,y,y) & \text{for all odd } i < k \\ d_k(x,y,z) \approx z. \end{array}$$
(1)

The *Jónsson level* of \mathcal{V} is the least *k*.

Jónsson's Terms

► A variety V is congruence distributive if and only if there are 3-ary terms d₀,..., d_k (called Jónsson terms) such that

$$egin{aligned} & d_0(x,y,z) pprox x \ & d_i(x,y,x) pprox x & ext{for } 0 \leq i \leq k \ & d_i(x,x,y) pprox d_{i+1}(x,x,y) & ext{for all even } i < k & ext{(1)} \ & d_i(x,y,y) pprox d_{i+1}(x,y,y) & ext{for all odd } i < k & ext{d_k} \ & d_k(x,y,z) pprox z. & ext{} \end{aligned}$$

The *Jónsson level* of \mathcal{V} is the least *k*.

How hard is it to test if V(A) is congruence distributive for a finite A?

 $(a, b, c) \rho(a', b', c')$ if b = b' and either a = a' or c = c'.

$$(a, b, c) \rho (a', b', c')$$
 if $b = b'$ and either $a = a'$ or $c = c'$.

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}_{\mathcal{V}}^{3}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

$$(a, b, c) \rho (a', b', c')$$
 if $b = b'$ and either $a = a'$ or $c = c'$.

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}^{3}_{\mathcal{V}}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

V is congruence distributive iff there is a ρ-path in S from (x, x, y) to (y, x, x), where the first link is ρ₀₁.

 $(a, b, c) \rho (a', b', c')$ if b = b' and either a = a' or c = c'.

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}_{\mathcal{V}}^{3}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

- V is congruence distributive iff there is a ρ-path in S from (x, x, y) to (y, x, x), where the first link is ρ₀₁.
- If 𝒱 is congruence distributive then the Jónsson level of 𝒱 is the length of the shortest such path.

 $(a, b, c) \rho (a', b', c')$ if b = b' and either a = a' or c = c'.

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}_{\mathcal{V}}^{3}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

- V is congruence distributive iff there is a ρ-path in S from (x, x, y) to (y, x, x), where the first link is ρ₀₁.
- If 𝒱 is congruence distributive then the Jónsson level of 𝒱 is the length of the shortest such path.
- ► Moreover, if V is congruence distributive then the Jónsson level is at most 2m 2, where m = |F_V(x, y)| and this is the best possible bound in terms of m.

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}^3_{\mathcal{V}}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

- V is congruence distributive iff there is a ρ-path in S from (x, x, y) to (y, x, x), where the first link is ρ₀₁.
- If V is congruence distributive then the Jónsson level of V is the length of the shortest such path.
- ► Moreover, if V is congruence distributive then the Jónsson level is at most 2m 2, where m = |F_V(x, y)| and this is the best possible bound in terms of m.

Proof.

More or less obvious,

Theorem

Let \mathcal{V} be a variety and let **S** be the subalgebra of $\mathbf{F}^3_{\mathcal{V}}(x, y)$ generated by (x, x, y), (x, y, x) and (y, x, x).

- V is congruence distributive iff there is a ρ-path in S from (x, x, y) to (y, x, x), where the first link is ρ₀₁.
- If V is congruence distributive then the Jónsson level of V is the length of the shortest such path.
- Moreover, if 𝔅 is congruence distributive then the Jónsson level is at most 2m − 2, where m = |F_𝔅(x, y)| and this is the best possible bound in terms of m.

Proof.

More or less obvious, (except the last part).

Taylor Terms

Theorem (Siggers)

For a locally finite variety, having a Taylor term is a strong Maltsev condition.

Taylor Terms

Theorem (Siggers)

For a locally finite variety, having a Taylor term is a strong Maltsev condition.

 Variants of Siggers term have been given by several people.

Taylor Terms

Theorem (Siggers)

For a locally finite variety, having a Taylor term is a strong Maltsev condition.

- Variants of Siggers term have been given by several people.
- Matt Valeriote's talk will give some variants of Siggers original term that are best for our computational purposes, along with short proofs.

Congruence SD_{\wedge}

A weak near unanimity term is an idempotent term satisfying

 $t(y, x, \ldots, x) \approx t(x, y, \ldots, x) \approx \cdots \approx t(x, x, \ldots, y)$

Congruence SD_{\wedge}

Theorem (Kozik)

A finitely generated variety is congruence SD_{\wedge} iff it has wnu terms w(x, y, z, u) and s(x, y, z) satisfying

 $w(x, x, x, y) \approx s(x, x, y)$

Congruence SD_{\wedge}

Theorem (Kozik)

A finitely generated variety is congruence SD_{\wedge} iff it has wnu terms w(x, y, z, u) and s(x, y, z) satisfying

$$w(x, x, x, y) \approx s(x, x, y)$$

Corollary (M.Maroti and A. Janko)

A finitely generated variety is congruence SD_{\wedge} iff it has a wnu term s(x, y, z) and terms r(x, y, z) and t(x, y, z) satisfying

$$r(x, x, y) \approx r(x, y, x) \approx t(y, x, x) \approx t(x, y, x) \approx s(x, x, y)$$

 $r(y, x, x) \approx t(y, y, x)$

Testing Congruence SD $_{\wedge}$

Form the subalgebra of $\mathbf{F}(x, y)^4$ generated by

(x, x, y, x) (x, y, x, x) (y, x, x, x)

Testing Congruence SD_A

Form the subalgebra of $\mathbf{F}(x, y)^4$ generated by

$$(x, x, y, x)$$
 (x, y, x, x) (y, x, x, x)

And look for elements of the form

$$(a, a, a, x)$$
 (a, a, b, x) (b', a, a, x)

where $b' = \tau(b)$, where τ is the automorphism of $\mathbf{F}(x, y)$ interchanging *x* and *y*.

Directoids Again

Directoids Again

The calculator found SD $_{\wedge}$ terms:

$$r(x, y, z) = yz \cdot (zy \cdot yx)$$

$$s(x, y, z) = (xy \cdot yz)(zx \cdot xy)$$

$$t(x, y, z) = (zx \cdot xy) \cdot yx$$

The calculator found SD $_{\wedge}$ terms:

$$r(x, y, z) = yz \cdot (zy \cdot yx)$$

$$s(x, y, z) = (xy \cdot yz)(zx \cdot xy)$$

$$t(x, y, z) = (zx \cdot xy) \cdot yx$$

And also single whu term s(x, y, z) with s(x, x, y) = s(y, y, x):

$$(xy \cdot yx)[(yz \cdot zx)(zy \cdot xz)]$$

Theorem

The variety of directoids satisfies the Maltsev condition of the Corollary with

$$r(x, y, z) = yz \cdot (zy \cdot yx)$$

$$s(x, y, z) = (xy \cdot yz)(zx \cdot xy)$$

$$t(x, y, z) = (zx \cdot xy) \cdot yx$$

Theorem

The variety of directoids satisfies the Maltsev condition of the Corollary with

$$r(x, y, z) = yz \cdot (zy \cdot yx)$$

$$s(x, y, z) = (xy \cdot yz)(zx \cdot xy)$$

$$t(x, y, z) = (zx \cdot xy) \cdot yx$$

The variety of directoids is congruence SD_{\wedge} (using results of Kearnes, Kiss, and Szendrei).

Theorem

The variety of directoids satisfies the Maltsev condition of the Corollary with

$$r(x, y, z) = yz \cdot (zy \cdot yx)$$

$$s(x, y, z) = (xy \cdot yz)(zx \cdot xy)$$

$$t(x, y, z) = (zx \cdot xy) \cdot yx$$

The variety of directoids is congruence SD_{\wedge} (using results of Kearnes, Kiss, and Szendrei).

Proof.

$$r(x, x, y) = r(x, y, x) = t(y, x, x) = t(x, y, x) = s(x, x, y) = xy \cdot yx$$
$$r(y, x, x) = xy$$
$$t(x, x, y) = yx$$

Theorem If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

 $s(x, x, y) \approx s(y, y, x)$

Theorem If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

$$s(x, x, y) \approx s(y, y, x)$$

Proof.

A finite directoid has a greatest element.

Theorem If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

$$\mathbf{s}(\mathbf{x},\mathbf{x},\mathbf{y})\approx\mathbf{s}(\mathbf{y},\mathbf{y},\mathbf{x})$$

Proof.

- A finite directoid has a greatest element.
- If s(x, y, z) is the top of F(x, y, z), then all maps of {x, y, z} onto {x, y} map s to the top of F(x, y).

Theorem

If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

$$\mathbf{s}(\mathbf{x},\mathbf{x},\mathbf{y})\approx\mathbf{s}(\mathbf{y},\mathbf{y},\mathbf{x})$$

Proof.

- A finite directoid has a greatest element.
- If s(x, y, z) is the top of F(x, y, z), then all maps of {x, y, z} onto {x, y} map s to the top of F(x, y).
- So s(x, y, z) is a wnu term and s(x, x, y) = s(y, y, x).

Theorem

If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

$$s(x, x, y) \approx s(y, y, x)$$

Proof.

- A finite directoid has a greatest element.
- If s(x, y, z) is the top of F(x, y, z), then all maps of {x, y, z} onto {x, y} map s to the top of F(x, y).
- So s(x, y, z) is a wnu term and s(x, x, y) = s(y, y, x).

Theorem

The variety of all directoids does not have such a term.

Theorem

If \mathcal{V} is a locally finite variety of directoids, it has a wnu term s(x, y, z) satisfying

$$s(x, x, y) \approx s(y, y, x)$$

Proof.

- A finite directoid has a greatest element.
- If s(x, y, z) is the top of F(x, y, z), then all maps of {x, y, z} onto {x, y} map s to the top of F(x, y).
- So s(x, y, z) is a wnu term and s(x, x, y) = s(y, y, x).

Theorem

The variety of all directoids does not have such a term.

Proof.

Ježek and Quackenbush show directoids do not have a term satisfying $u(x, y) \approx u(y, x)$.

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie) Let **A** be an algebra on $\{0, 1, ..., n-1\}$. **A** is primal iff

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie)

Let **A** be an algebra on $\{0, 1, \ldots, n-1\}$. **A** is primal iff

► the subalgebra of A⁴ generated by (0,0,1,1) and (0,1,0,1) contains (0,0,0,1) (the meet), and

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie)

Let **A** be an algebra on $\{0, 1, \ldots, n-1\}$. **A** is primal iff

► the subalgebra of A⁴ generated by (0,0,1,1) and (0,1,0,1) contains (0,0,0,1) (the meet), and

• $F_{V(A)}(1) \leq A^n$ contains

$$\chi_0 = (1, 0, \dots, 0),$$

 \vdots
 $\chi_{n-1} = (0, \dots, 0, 1),$

and

Theorem (Clark, Davey, Pitkethly, Rifqui; McKenzie)

Let **A** be an algebra on $\{0, 1, \ldots, n-1\}$. **A** is primal iff

► the subalgebra of A⁴ generated by (0,0,1,1) and (0,1,0,1) contains (0,0,0,1) (the meet), and

• $F_{V(A)}(1) \leq A^n$ contains

$$\chi_0 = (1, 0, \dots, 0),$$

 \vdots
 $\chi_{n-1} = (0, \dots, 0, 1),$

and

► the subalgebra of $\mathbf{F}_{V(\mathbf{A})}(1)$ generated by the χ_i 's includes (0, 1, ..., n-1).

Day Quadruples

Let a, b, c and $d \in \mathbf{A}$ and let

$$\alpha = \mathsf{Cg}^{\mathsf{A}}(\boldsymbol{c},\boldsymbol{d}) \quad \beta = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{b})(\boldsymbol{c},\boldsymbol{d})) \quad \gamma = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{c})(\boldsymbol{b},\boldsymbol{d}))$$

Day Quadruples

Let a, b, c and $d \in \mathbf{A}$ and let

$$\alpha = \mathsf{Cg}^{\mathsf{A}}(\boldsymbol{c},\boldsymbol{d}) \quad \beta = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{b})(\boldsymbol{c},\boldsymbol{d})) \quad \gamma = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{c})(\boldsymbol{b},\boldsymbol{d}))$$

Day Quadruples

Let a, b, c and $d \in \mathbf{A}$ and let

$$\alpha = \mathsf{Cg}^{\mathsf{A}}(\boldsymbol{c},\boldsymbol{d}) \quad \beta = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{b})(\boldsymbol{c},\boldsymbol{d})) \quad \gamma = \mathsf{Cg}^{\mathsf{A}}((\boldsymbol{a},\boldsymbol{c})(\boldsymbol{b},\boldsymbol{d}))$$

(a, b, c, d) is a **Day quadruple** if in the subalgebra **B** generated by $\{a, b, c, d\}$

 $(a,b) \notin \mathsf{Cg}^{\mathsf{B}}(c,d) \vee [\mathsf{Cg}^{\mathsf{B}}((a,b)(c,d)) \wedge \mathsf{Cg}^{\mathsf{B}}((a,c)(b,d))]$

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra and \mathcal{V} be the variety it generates. Then \mathcal{V} fails to be congruence modular if and only if there is a Day quadruple, (a, b, c, d) in **A**².

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra and \mathcal{V} be the variety it generates. Then \mathcal{V} fails to be congruence modular if and only if there is a Day quadruple, (a, b, c, d) in **A**².

Moreover, this Day quadruple can be chosen so that

► there exist x₀, x₁, y₀, y₁ in A such that a = (x₀, x₁), b = (x₀, y₁), c = (y₀, x₁), and d = (y₀, y₁);

$$n = |\mathbf{A}|$$
$$m = ||\mathbf{A}|| = \sum_{i=0}^{r} k_i n^i$$

r = the largest arity of the operations of **A**

 $(k_i = \text{the number of basic operations of arity } i)$

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra with parameters as above. Then each of the following can be determined in the time indicated:

V(**A**) is congruence modular:

crn⁴m².

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra with parameters as above. Then each of the following can be determined in the time indicated:

V(A) is congruence modular:V(A) is congruence distributive:

crn⁴ m². crn⁴ m².

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra with parameters as above. Then each of the following can be determined in the time indicated:

V(A) is congruence modular:V(A) is congruence distributive:V(A) is congruence semidistributive:

crn⁴m². crn⁴m². crn²m².

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra with parameters as above. Then each of the following can be determined in the time indicated:

V(A) is congruence modular: crn^4m^2 .V(A) is congruence distributive: crn^4m^2 .V(A) is congruence semidistributive: crn^2m^2 .V(A) is congruence meet semidistributive: crn^2m^2 .

Theorem (Freese, Valeriote)

Let **A** be a finite idempotent algebra with parameters as above. Then each of the following can be determined in the time indicated:

V(A) is congruence modular: crn^4m^2 .V(A) is congruence distributive: crn^4m^2 .V(A) is congruence semidistributive: crn^2m^2 .V(A) is congruence meet semidistributive: crn^2m^2 .V(A) is congruence permutable: crn^4m^2 .

Theorem (Freese, Valeriote)

crn ⁴ m ² .
crn ⁴ m ² .
crn²m².
crn²m².
crn ⁴ m ² .
crn ³ m.

Theorem (Freese, Valeriote)

V(A) is congruence modular:	crn ⁴ m ² .
V(A) is congruence distributive:	crn ⁴ m ² .
V(A) is congruence semidistributive:	crn²m².
V(A) is congruence meet semidistributive:	crn²m².
V(A) is congruence permutable:	crn ⁴ m ² .
V(A) is congruence k-permutable for some k:	crn ³ m.
A has a Taylor term:	crn ³ m.

Theorem (Freese, Valeriote)

V(A) is congruence modular:	crn ⁴ m ² .
V(A) is congruence distributive:	crn ⁴ m ² .
V(A) is congruence semidistributive:	crn²m².
V(A) is congruence meet semidistributive:	crn²m².
V(A) is congruence permutable:	crn ⁴ m ² .
V(A) is congruence k-permutable for some k:	crn ³ m.
A has a Taylor term:	crn ³ m.
A has a Hobby-McKenzie term:	crn ³ m.

Theorem (Freese, Valeriote)

V(A) is congruence modular:	crn ⁴ m ² .
V(A) is congruence distributive:	crn ⁴ m ² .
V(A) is congruence semidistributive:	crn²m².
V(A) is congruence meet semidistributive:	crn²m².
V(A) is congruence permutable:	crn ⁴ m ² .
V(A) is congruence k-permutable for some k:	crn ³ m.
A has a Taylor term:	crn ³ m.
A has a Hobby-McKenzie term:	crn ³ m.
A has a majority term:	crn ⁶ m ² .

Theorem (Freese, Valeriote)

	V(A) is congruence modular:	crn ⁴ m ² .
	V(A) is congruence distributive:	crn ⁴ m ² .
->	V(A) is congruence semidistributive:	crn²m².
->	V(A) is congruence meet semidistributive:	crn²m².
	V(A) is congruence permutable:	crn ⁴ m ² .
->	V(A) is congruence k-permutable for some k:	crn ³ m.
->	A has a Taylor term:	crn ³ m.
->	A has a Hobby-McKenzie term:	crn³m.
	A has a majority term:	crn ⁶ m ² .

Theorem (Szendrei, Valeriote)

- Let T be a proper order ideal of the lattice of types, and
- ▶ let **A** be a finite idempotent algebra that fails to omit *T*.

Theorem (Szendrei, Valeriote)

- Let T be a proper order ideal of the lattice of types, and
- let A be a finite idempotent algebra that fails to omit T.

Then a witness of this failure can be found in a strictly simple algebra **S** in HS(A).

Theorem (Szendrei, Valeriote)

- Let T be a proper order ideal of the lattice of types, and
- ▶ let A be a finite idempotent algebra that fails to omit T.

Then a witness of this failure can be found in a strictly simple algebra **S** in HS(A).

If **S** is a strictly simple idempotent algebra of TCT type **1**, **4**, or **5**, then $|\mathbf{S}| = 2$.

Theorem (Szendrei, Valeriote)

- Let T be a proper order ideal of the lattice of types, and
- ▶ let A be a finite idempotent algebra that fails to omit T.

Then a witness of this failure can be found in a strictly simple algebra **S** in HS(A).

If **S** is a strictly simple idempotent algebra of TCT type **1**, **4**, or **5**, then $|\mathbf{S}| = 2$.

Theorem

Let A be finite indempotent, and let $\textbf{S} \in \textbf{HS}(\textbf{A})$ be strictly simple. Then

- there are $a, b \in A$ such that, if $\mathbf{B} = Sg^{\mathbf{A}}(a, b)$, then
- Cg^B(a, b) = 1_B and is join irreducible with lower cover ρ such that B/ρ = S.
The End

The End

UACalc Web Site: http://uacalc.org/