Week 8:

Verification of a fitted ARMA model

Stochastic modelling of trend

Last week

Setting: data Y_{1}, \ldots, Y_{n} from a stationary series $\left\{Y_{t}\right\} \rightsquigarrow$ fit a feasible ARMA model
\hookrightarrow determine the model order
\hookrightarrow estimate the model parameters

- point estimates
- it is possible to derive formulas for std. deviations of the estimators \rightsquigarrow testing of significance

Next step
\hookrightarrow model verification

Example

Data: Y_{1}, \ldots, Y_{100}

1. Based on some criteria \rightsquigarrow choose $\operatorname{AR}(2)$ model

$$
Y_{t}=\varphi_{1} Y_{t-1}+\varphi_{2} Y_{t-2}+\varepsilon_{t}
$$

2. Estimation (e.g. MLE) $\rightsquigarrow \widehat{\varphi}_{1}=0.6634, \widehat{\varphi}_{2}=-0.3137$. Estimated model:

$$
Y_{t}=0.6634 Y_{t-1}-0.3137 Y_{t-2}+\widehat{\varepsilon}_{t}
$$

Function arima

```
>arima(x, order=c(2,0,0),include.mean=FALSE)
```

Coefficients:

ar1	ar2
s.e.	0.663439742961
0.095764265201	-0.313670847370

sigma^2 estimated as 0.83124222026: log likelihood $=-132.9$, aic $=271.81$

Function arma (tseries):
> library(tseries)
$>$ summary (arma $(x, \operatorname{order}=c(2,0)$, include. intercept=FALSE))
Model: $\operatorname{ARMA}(2,0)$

Coefficient (s) :

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
ar1	0.6531591632695	0.0921202981258	7.09028	$1.3383 e-12$	***
ar2	-0.2967312994312	0.0920865474614	-3.22231	0.0012716	**

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fit:
sigma^2 estimated as 0.779002581682, Conditional Sum-of-Squares $=77.03$, AIC $=262.81$

Verification of a fitted model

Consider a fitted ARMA model

$$
\widehat{\varphi}(B) Y_{t}=\widehat{\theta}(B) \widehat{\varepsilon}_{t}
$$

Checking stationarity

- roots of $\widehat{\varphi}(z)$, or their inverses

Inverse AR roots

(not necessary if we use MLE with stationarity constraints)

- impulse response function

Impulse response function

What is the effect of a unit shock at time s on Y_{s+k} for $k \geq 0$?

Impulse response function

What is the effect of a unit shock at time s on Y_{s+k} for $k \geq 0$?

- Artificial noise $\left\{\varepsilon_{t}\right\}$:

$$
\varepsilon_{t}= \begin{cases}1 & t=s \\ 0 & t \neq s\end{cases}
$$

Impulse response function

What is the effect of a unit shock at time s on Y_{s+k} for $k \geq 0$?

- Artificial noise $\left\{\varepsilon_{t}\right\}$:

$$
\varepsilon_{t}= \begin{cases}1 & t=s, \\ 0 & t \neq s\end{cases}
$$

- Compute and plot the corresponding effect on Y_{s+k} for $k \geq 0$

Impulse response function

What is the effect of a unit shock at time s on Y_{s+k} for $k \geq 0$?

- Artificial noise $\left\{\varepsilon_{t}\right\}$:

$$
\varepsilon_{t}= \begin{cases}1 & t=s, \\ 0 & t \neq s\end{cases}
$$

- Compute and plot the corresponding effect on Y_{s+k} for $k \geq 0$
- If the model is stationary \rightsquigarrow the impulse fades away to 0

Examination of residuals

Consider a fitted ARMA model

$$
\widehat{\varphi}(B) Y_{t}=\widehat{\theta}(B) \widehat{\varepsilon}_{t}
$$

The residuals $\left\{\widehat{\varepsilon}_{t}\right\}$ should behave like a white noise

Examination of residuals

Consider a fitted ARMA model

$$
\widehat{\varphi}(B) Y_{t}=\widehat{\theta}(B) \widehat{\varepsilon}_{t}
$$

The residuals $\left\{\widehat{\varepsilon}_{t}\right\}$ should behave like a white noise

- plot the sample ACF and PACF of $\left\{\widehat{\varepsilon}_{t}\right\}$

Examination of residuals

Consider a fitted ARMA model

$$
\widehat{\varphi}(B) Y_{t}=\widehat{\theta}(B) \widehat{\varepsilon}_{t}
$$

The residuals $\left\{\widehat{\varepsilon}_{t}\right\}$ should behave like a white noise

- plot the sample ACF and PACF of $\left\{\widehat{\varepsilon}_{t}\right\}$

- use portmanteau tests

Examination of residuals

Consider a fitted ARMA model

$$
\widehat{\varphi}(B) Y_{t}=\widehat{\theta}(B) \widehat{\varepsilon}_{t}
$$

The residuals $\left\{\widehat{\varepsilon}_{t}\right\}$ should behave like a white noise

- plot the sample ACF and PACF of $\left\{\widehat{\varepsilon}_{t}\right\}$

- use portmanteau tests
\rightsquigarrow recall week 5 tests of randomness

Portmanteau tests for fitted ARMA diagnostics

Let $\left\{\widehat{\varepsilon}_{t}\right\}$ be residuals of a fitted $\operatorname{ARMA}(p, q)$ and $\left\{r_{k}\right\}$ its sample ACF Test statistics (Box-Pierce)

$$
Q=n \sum_{k=1}^{K} r_{k}^{2}
$$

or (Ljung-Box)

$$
Q^{*}=n(n+2) \sum_{k=1}^{k} \frac{r_{k}^{2}}{n-k}
$$

should be asymptotically χ_{K-p-q}^{2}
(Notice the change in degrees of freedom.)

Portmanteau tests for fitted ARMA diagnostics

Let $\left\{\widehat{\varepsilon}_{t}\right\}$ be residuals of a fitted $\operatorname{ARMA}(p, q)$ and $\left\{r_{k}\right\}$ its sample ACF Test statistics (Box-Pierce)

$$
Q=n \sum_{k=1}^{K} r_{k}^{2}
$$

or (Ljung-Box)

$$
Q^{*}=n(n+2) \sum_{k=1}^{k} \frac{r_{k}^{2}}{n-k}
$$

should be asymptotically χ_{K-p-q}^{2}
(Notice the change in degrees of freedom.)
Testing procedure:

- fix $K>1$
- if $Q^{*}>\chi_{K-p-q}^{2}(1-\alpha) \rightsquigarrow$ the considered model is not suitable

Example

$>\mathrm{a}=\operatorname{arima}(\mathrm{x}$, order $=\mathrm{c}(2,0,0)$, include.mean=FALSE)
> r=resid(a)
> Box.test(r,lag=5,fitdf=2)

Box-Pierce test
data: r
X-squared $=2.576705486928, d f=3, p$-value $=0.46158801884$
> Box.test(r,lag=5,fitdf=2,type="Ljung-Box")
Box-Ljung test
data: r
X-squared $=2.726753122961, d f=3, p$-value $=0.435700010104$

Stochastic Modeling of Trend

Nonstationarity

So far: data Y_{1}, \ldots, Y_{n} from a stationary series $\left\{Y_{t}\right\}$
In economy and finance: majority of time series are nonstationary

Consequences:

- ARMA models not suitable
- in regression: spurious regression

Different types of non-stationarity

Let $\left\{\varepsilon_{t}\right\}$ be a sequence of iid variables $\sim\left(0, \sigma^{2}\right)$
Consider two simple models:

1. Linear trend model:

$$
Y_{t}=\alpha_{0}+\alpha t+\varepsilon_{t}
$$

2. Random walk with a drift:

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}=\alpha t+\sum_{i=1}^{t} \varepsilon_{i}+Y_{0}
$$

Different types of non-stationarity

Let $\left\{\varepsilon_{t}\right\}$ be a sequence of iid variables $\sim\left(0, \sigma^{2}\right)$
Consider two simple models:

1. Linear trend model:

$$
Y_{t}=\alpha_{0}+\alpha t+\varepsilon_{t}
$$

\rightsquigarrow deterministic nonstationarity
if a deterministic trend is eliminated $Y_{t}-\alpha_{0}-\alpha t \rightsquigarrow$ stationary series
2. Random walk with a drift:

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}=\alpha t+\sum_{i=1}^{t} \varepsilon_{i}+Y_{0}
$$

Different types of non-stationarity

Let $\left\{\varepsilon_{t}\right\}$ be a sequence of iid variables $\sim\left(0, \sigma^{2}\right)$
Consider two simple models:

1. Linear trend model:

$$
Y_{t}=\alpha_{0}+\alpha t+\varepsilon_{t}
$$

\leadsto deterministic nonstationarity
if a deterministic trend is eliminated $Y_{t}-\alpha_{0}-\alpha t \rightsquigarrow$ stationary series
2. Random walk with a drift:

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}=\alpha t+\sum_{i=1}^{t} \varepsilon_{i}+Y_{0}
$$

\rightsquigarrow stochastic nonstationarity
$\Delta Y_{t}=Y_{t}-Y_{t-1}=\alpha+\varepsilon_{t} \rightsquigarrow\left\{\Delta Y_{t}\right\}$ stationary

Different types of non-stationarity

Let $\left\{\varepsilon_{t}\right\}$ be a sequence of iid variables $\sim\left(0, \sigma^{2}\right)$
Consider two simple models:

1. Linear trend model:

$$
Y_{t}=\alpha_{0}+\alpha t+\varepsilon_{t}
$$

\rightsquigarrow deterministic nonstationarity
if a deterministic trend is eliminated $Y_{t}-\alpha_{0}-\alpha t \rightsquigarrow$ stationary series
2. Random walk with a drift:

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}=\alpha t+\sum_{i=1}^{t} \varepsilon_{i}+Y_{0}
$$

\rightsquigarrow stochastic nonstationarity
$\Delta Y_{t}=Y_{t}-Y_{t-1}=\alpha+\varepsilon_{t} \rightsquigarrow\left\{\Delta Y_{t}\right\}$ stationary
Different ways to achieve stationarity

Comparison

For model 1 compute:

1. $E Y_{t}$
2. $\operatorname{Var} Y_{t}$
3. $\operatorname{Cov}\left(Y_{t}, Y_{s}\right)$
4. What happens if we use ΔY_{t}.

For model 2 and $Y_{0}=0$ compute:

1. $\mathrm{E} Y_{t}$
2. $\operatorname{Var} Y_{t}$
3. $\operatorname{Cov}\left(Y_{t}, Y_{s}\right)$
4. What happens if we use $Y_{t}-\alpha t$.

Random walk with a drift vs. $\mathrm{AR}(1)$ model

Model

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}
$$

is $\mathrm{AR}(1)$ with an intercept

$$
Y_{t}=\alpha+\phi_{1} Y_{t-1}+\varepsilon_{t}
$$

for $\phi_{1}=1$

- Recall that $\operatorname{AR}(1)$ is stationary iff $\left|\phi_{1}\right|<1$.
- If $\phi_{1}=1 \rightsquigarrow 1-\phi_{1} z=0$ has a root $z=1$, i.e. a unit root.

Random walk with a drift vs. $\mathrm{AR}(1)$ model

Model

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}
$$

is $\mathrm{AR}(1)$ with an intercept

$$
Y_{t}=\alpha+\phi_{1} Y_{t-1}+\varepsilon_{t}
$$

for $\phi_{1}=1$

- Recall that $\operatorname{AR}(1)$ is stationary iff $\left|\phi_{1}\right|<1$.
- If $\phi_{1}=1 \rightsquigarrow 1-\phi_{1} z=0$ has a root $z=1$, i.e. a unit root.

Random walk with a drift vs. $\mathrm{AR}(1)$ model

Model

$$
Y_{t}=\alpha+Y_{t-1}+\varepsilon_{t}
$$

is $A R(1)$ with an intercept

$$
Y_{t}=\alpha+\phi_{1} Y_{t-1}+\varepsilon_{t}
$$

for $\phi_{1}=1$

- Recall that $\mathrm{AR}(1)$ is stationary iff $\left|\phi_{1}\right|<1$.
- If $\phi_{1}=1 \rightsquigarrow 1-\phi_{1} z=0$ has a root $z=1$, i.e. a unit root.
- it is not easy to distinguish a stationary $\operatorname{AR}(1)$ with ϕ_{1} close to 1 and a random walk from a single trajectory
- statistical tests for unit root (will be described later today)

Trend stationarity vs. unit root

$\operatorname{AR}(1, \rho=0.9)$

$\mathrm{Y}_{\mathrm{t}}=0.2 \mathrm{t}+\mathrm{AR}(1, \rho=0.8)$

$\alpha=0$

$\alpha=0.2$

Trend stationarity vs. unit root

$\operatorname{AR}(1, \rho=0.9)$

$\mathrm{Y}_{\mathrm{t}}=0.2 \mathrm{t}+\mathrm{AR}(1, \rho=0.8)$

$\alpha=0$

$$
\alpha=0.2
$$

Differencing operator

$$
\Delta Y_{t}=Y_{t}-Y_{t-1}=(1-B) Y_{t}
$$

Δ^{d} defined recursively

$$
\Delta^{d}\left(Y_{t}\right)=\Delta\left(\Delta^{d-1} Y_{t}\right)
$$

SO

$$
\begin{aligned}
& \Delta^{2} Y_{t}=\Delta\left(Y_{t}-Y_{t-1}\right)=\Delta\left(Y_{t}\right)-\Delta\left(Y_{t-1}\right)=Y_{t}-2 Y_{t-1}+Y_{t-2} \\
& \Delta^{3} Y_{t}=\Delta\left(Y_{t}-2 Y_{t-1}+Y_{t-2}\right)=Y_{t}-3 Y_{t-1}+3 Y_{t-2}-Y_{t-3}
\end{aligned}
$$

or see that
$\Delta^{d}\left(Y_{t}\right)=(1-B)^{d} Y_{t}=\left(\sum_{k=0}^{d}\binom{d}{k}(-1)^{k} B^{k}\right) Y_{t}=\sum_{k=0}^{d}\binom{d}{k}(-1)^{k} Y_{t-k}$

Modelling of trend

1. Deterministic stationarity:

$$
Y_{t}=\pi r_{t}+u_{t}
$$

where
$\hookrightarrow T_{t}$ is a deterministic time trend
$\hookrightarrow\left\{u_{t}\right\}$ is a centred stationary process
Modelling:

- use known techniques for estimation of trend
- be careful with testing
- estimation can be improved if the correlation structure of $\left\{u_{t}\right\}$ is taken into account (see Financial Econometrics course)

2. Stochastic stationarity:

$$
\Delta^{d} Y_{t}
$$

is a (generally non-centred) stationary process \rightsquigarrow ARIMA models (I stands for integrated)

ARIMA model

$\operatorname{ARIMA}(p, d, q):$

$$
\varphi(B)\left(\Delta^{d} Y_{t}\right)=\alpha+\theta(B) \varepsilon_{t}
$$

where
$\hookrightarrow\left\{\varepsilon_{t}\right\}$ is WN
\hookrightarrow

$$
\begin{aligned}
\varphi(B) & =1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p}, \\
\theta(B) & =1+\theta_{1} z+\cdots+\theta_{q} z^{q},
\end{aligned}
$$

such that the roots of $\varphi(z)$ lie outside the unit circle
$\hookrightarrow \varphi(B) \Delta^{d}=\varphi(B)(1-B)^{d}$ generalized autoregressive operator \rightsquigarrow polynomial $\varphi(z)(1-z)^{d}$: d times the unit root

Principle of ARIMA

1. find suitable smallest d such that $\Delta^{d} Y_{t}$ stationary
2. model $\Delta^{d} Y_{t}$ using a suitable ARMA

Choice of d

Typically $d \in\{0,1,2\}$

- Explore plots of $Y_{t}, \Delta Y_{t}, \Delta^{2} Y_{t} \ldots$ and their sample ACF and PACF
- Use statistical tests for unit roots (see later)
- Some software: information criteria AIC, BIC

Choice of d

Typically $d \in\{0,1,2\}$

- Explore plots of $Y_{t}, \Delta Y_{t}, \Delta^{2} Y_{t} \ldots$ and their sample ACF and PACF
- Use statistical tests for unit roots (see later)
- Some software: information criteria AIC, BIC

Be careful with overdifferencing.
Example: If $\left\{\varepsilon_{t}\right\}$ is a white noise (i.e. stationary), then $\Delta \varepsilon_{t}$ is a stationary MA(1) with $\theta_{1}=-1$

$$
\Delta \varepsilon_{t}=\varepsilon_{t}-\varepsilon_{t-1}
$$

which is non-invertible and has a larger variance.

US GDP

US GDP: ΔY_{t}

US GDP: $\Delta^{2} Y_{t}$

Note: Intercept in ARIMA models

$$
\varphi(B)\left(\Delta^{d} Y_{t}\right)=\alpha+\theta(B) \varepsilon_{t}
$$

$-d=0 \rightsquigarrow \operatorname{ARMA}(p, q)$ with an intercept \rightsquigarrow

$$
E Y_{t}=\frac{\alpha}{1-\varphi_{1}-\ldots-\varphi_{p}}
$$

so α determines the level of the series

- $d=1$: series $\Delta Y_{t}=Y_{t}-Y_{t-1}$ satisfies

$$
\mathrm{E} \Delta Y_{t}=\frac{\alpha}{1-\varphi_{1}-\ldots-\varphi_{p}}=: \mu
$$

so

$$
\mathrm{E} Y_{t}=\mathrm{E} Y_{t-1}+\mathrm{E} \Delta Y_{t}=\mathrm{E} Y_{t-1}+\mu=\mu \cdot t+\mathrm{E} Y_{0}
$$

so α determines the slope

Note: Log returns

Let P_{t} be a price of some financial asset (e.g. a stock)

- return

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}
$$

- log-return

$$
r_{t}=\log \left(\frac{P_{t}}{P_{t-1}}\right)=\log P_{t}-\log P_{t-1}
$$

i.e. r_{t} corresponds to $\Delta \log P_{t}$

- very often $\left\{r_{t}\right\}$ is a (shifted) white noise

Note: Log returns

Let P_{t} be a price of some financial asset (e.g. a stock)

- return

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}
$$

- log-return

$$
r_{t}=\log \left(\frac{P_{t}}{P_{t-1}}\right)=\log P_{t}-\log P_{t-1}
$$

i.e. r_{t} corresponds to $\Delta \log P_{t}$

- see that if x is small, then

$$
\log (1+x) \approx 1+x
$$

so

$$
r_{t}=\log \left(\frac{P_{t}}{P_{t-1}}\right)=\log \left(\frac{P_{t}-P_{t-1}}{P_{t-1}}+1\right)=\log \left(R_{t}+1\right) \approx R_{t}
$$

- very often $\left\{r_{t}\right\}$ is a (shifted) white noise

Example: Log returns

IBM Daily Returns
2017-01-03 / 2022-01-31

Tests of Unit Root

Simplest situation:

$$
Y_{t}=\rho Y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Test

$$
H_{0}: \rho=1
$$

against

$$
H_{1}: \rho<1 .
$$

Note: In practice H_{1} often means $\rho \in(0,1)$.

Tests of Unit Root

Simplest situation:

$$
Y_{t}=\rho Y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Test

$$
H_{0}: \rho=1
$$

against

$$
H_{1}: \rho<1 .
$$

Note: In practice H_{1} often means $\rho \in(0,1)$.
Transformation: Subtract Y_{t-1} from both sides \rightsquigarrow

$$
\Delta Y_{t}=\underbrace{(\rho-1)}_{\theta} Y_{t-1}+\varepsilon_{t}
$$

then

$$
H_{0}: \theta=0 \quad \text { and } \quad H_{1}: \theta<0
$$

Dickey-Fuller Test

$$
\Delta Y_{t}=\theta Y_{t-1}+\varepsilon_{t}
$$

Idea: regress ΔY_{t} on Y_{t-1} and test $\theta=0$ using a standard t-test

$$
T=\frac{\widehat{\theta}}{\operatorname{sd}(\widehat{\theta})}
$$

Dickey-Fuller Test

$$
\Delta Y_{t}=\theta Y_{t-1}+\varepsilon_{t}
$$

Idea: regress ΔY_{t} on Y_{t-1} and test $\theta=0$ using a standard t-test

$$
T=\frac{\widehat{\theta}}{\operatorname{sd}(\widehat{\theta})}
$$

Problem: under H_{0} the standard asymptotics does not apply
$\hookrightarrow T$ is not asymptotically $N(0,1)$
\hookrightarrow asymptotic distribution of T more complicated \rightsquigarrow Dickey-Fuller distribution \rightsquigarrow critical values c_{α} tabulated

Dickey-Fuller Test

$$
\Delta Y_{t}=\theta Y_{t-1}+\varepsilon_{t}
$$

Idea: regress ΔY_{t} on Y_{t-1} and test $\theta=0$ using a standard t-test

$$
T=\frac{\widehat{\theta}}{\operatorname{sd}(\widehat{\theta})}
$$

Problem: under H_{0} the standard asymptotics does not apply
$\hookrightarrow T$ is not asymptotically $N(0,1)$
\hookrightarrow asymptotic distribution of T more complicated \rightsquigarrow Dickey-Fuller distribution \rightsquigarrow critical values c_{α} tabulated

Reject H_{0} if

$$
T<c_{\alpha}
$$

if $\alpha=0.05 \rightsquigarrow c_{\alpha}=-2.86$ (compare: normal quantile $u_{0.05}=-1.65$)

Trend variants of DF test

- DF test: under $H_{1} \rightsquigarrow\left\{Y_{t}\right\}$ is a stationary centered $\operatorname{AR}(1)$

Trend variants of DF test

- DF test: under $H_{1} \rightsquigarrow\left\{Y_{t}\right\}$ is a stationary centered $\operatorname{AR}(1)$

More general model:

$$
Y_{t}=\alpha+\delta t+\rho Y_{t-1}+\varepsilon_{t}
$$

the same transformation \rightsquigarrow

$$
\Delta Y_{t}=\alpha+\delta t+\theta Y_{t-1}+\varepsilon_{t}
$$

and $H_{0}: \theta=0$ against $H_{1}: \theta<0$
Case I. $\delta=0$ and $\delta=0$ considered
Case II. $\delta=0 \rightsquigarrow$ under H_{0} RW with a drift, under H_{1} stationary non-centred process
Case III. under H_{1} : deterministic time trend

Trend variants of DF test

- DF test: under $H_{1} \rightsquigarrow\left\{Y_{t}\right\}$ is a stationary centered $\operatorname{AR}(1)$

More general model:

$$
Y_{t}=\alpha+\delta t+\rho Y_{t-1}+\varepsilon_{t}
$$

the same transformation \rightsquigarrow

$$
\Delta Y_{t}=\alpha+\delta t+\theta Y_{t-1}+\varepsilon_{t}
$$

and $H_{0}: \theta=0$ against $H_{1}: \theta<0$
Case I. $\delta=0$ and $\delta=0$ considered
Case II. $\delta=0 \rightsquigarrow$ under H_{0} RW with a drift, under H_{1} stationary non-centred process
Case III. under H_{1} : deterministic time trend
Testing procedure:

- fit the model and compute the t-statistic for H_{0}
- different DF critical values for cases I., II. and III. \rightsquigarrow tabulated

Augmented Dickey Fuller test

- DF test: under $H_{0} \rightsquigarrow \Delta Y_{t}$ is an uncorrelated sequence
- ADF test \rightsquigarrow allows ΔY_{t} to follow an AR model under H_{0}

Example: AR(1)

$$
\Delta Y_{t}=\alpha+\theta Y_{t-1}+\varphi_{1} \Delta Y_{t-1}+\varepsilon_{t}
$$

with $\left|\varphi_{1}\right|<1$ and test

$$
H_{0}: \theta=0 \text { against } H_{1}: \theta<0
$$

Then
\hookrightarrow under $H_{0} \rightsquigarrow\left\{\Delta Y_{t}\right\}$ stationary $\operatorname{AR}(1)$, so $\left\{Y_{t}\right\} \operatorname{ARIMA}(1,1,0)$
\hookrightarrow under $H_{1} \rightsquigarrow\left\{Y_{t}\right\}$ follows a non-centred stationary $\operatorname{AR}(2)$ model

Augmented Dickey Fuller test

Procedure for $\mathrm{AR}(p)$:

- Regress ΔY_{t} on $Y_{t-1}, \Delta Y_{t-1}, \ldots \Delta Y_{t-p}$
- Compute the t statistics for coefficient standing next to Y_{t-1}
- Use the same DF critical values as Case II

Choice of p :

- if p too large \rightsquigarrow smaller power
- if p too small \rightsquigarrow incorrect size of the test
- book recommendations: take the frequency of the data into account
- R: formula

$$
k=\left\lfloor(n-1)^{1 / 3}\right\rfloor
$$

US GDP

> adf.test(gdp,k=0)
Augmented Dickey-Fuller Test
data: gdp
Dickey-Fuller $=1.618931877674$, Lag order $=0, p$-value $=0.99$
alternative hypothesis: stationary
Warning message:
In adf.test (gdp, $k=0$) : p-value greater than printed p-value
> adf.test(gdp)
Augmented Dickey-Fuller Test
data: gdp
Dickey-Fuller $=0.2835363509014$, Lag order $=5$, p -value $=0.99$ alternative hypothesis: stationary

Warning message:
In adf.test (gdp) : p-value greater than printed p-value

US GDP (cont.)

> adf.test(diff(gdp))
Augmented Dickey-Fuller Test
data: diff(gdp)
Dickey-Fuller = -5.427919342951, Lag order = 5, p-value $=0.01$ alternative hypothesis: stationary

Warning message:
In adf.test(diff(gdp)) : p-value smaller than printed p-value

Other tests

Phillips-Perron Test:

- uses robust (HAC) standard errors for the standard DF test statistics

KPSS Test:

- recall that DF: H_{0} : non-stationarity and H_{1} : stationarity if DF does not reject $H_{0} \rightsquigarrow$ either H_{0} holds or not enough power
- Kwiatkowski-Phillips-Schmidt-Shin:

$$
H_{0} \text { : stationarity } \quad H_{1} \text { : non-stationarity }
$$

- Model

$$
Y_{t}=\alpha+\delta t+r_{t}+\varepsilon_{t}, \quad r_{t}=r_{t-1}+u_{t}
$$

where u_{t} are iid $\mathrm{N}\left(0, \sigma_{u}^{2}\right)$
\rightsquigarrow LM test (score test) for $H_{0}: \sigma_{u}^{2}=0$

- combine DF and KPSS test. If conclusions differ \rightsquigarrow inconclusive verdict

US GDP

```
> kpss.test(gdp)
KPSS Test for Level Stationarity
data: gdp
KPSS Level = 4.062992006614, Truncation lag parameter = 4, p-value = 0.01
Warning message:
In kpss.test(gdp) : p-value smaller than printed p-value
> kpss.test(diff(gdp))
KPSS Test for Level Stationarity
data: diff(gdp)
KPSS Level = 1.194908945277, Truncation lag parameter = 4, p-value = 0.01
Warning message:
In kpss.test(diff(gdp)) : p-value smaller than printed p-value
```

