
Week 8:

Verification of a fitted ARMA
model

Stochastic modelling of trend



Last week

Setting: data Y1, . . . ,Yn from a stationary series {Yt} fit a feasible
ARMA model
↪→ determine the model order
↪→ estimate the model parameters

I point estimates
I it is possible to derive formulas for std. deviations of the estimators
 testing of significance

Next step
↪→ model verification



Example

Data: Y1, . . . ,Y100
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1. Based on some criteria choose AR(2) model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + εt

2. Estimation (e.g. MLE) ϕ̂1 = 0.6634, ϕ̂2 = −0.3137.
Estimated model:

Yt = 0.6634Yt−1 − 0.3137Yt−2 + ε̂t



Function arima

>arima(x,order=c(2,0,0),include.mean=FALSE)

Coefficients:

ar1 ar2

0.663439742961 -0.313670847370

s.e. 0.095764265201 0.098148294295

sigma^2 estimated as 0.83124222026: log likelihood = -132.9, aic = 271.81

Function arma (tseries):

> library(tseries)

> summary(arma(x,order=c(2,0),include.intercept=FALSE))

Model: ARMA(2,0)

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

ar1 0.6531591632695 0.0921202981258 7.09028 1.3383e-12 ***

ar2 -0.2967312994312 0.0920865474614 -3.22231 0.0012716 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Fit:

sigma^2 estimated as 0.779002581682, Conditional Sum-of-Squares = 77.03,

AIC = 262.81



Verification of a fitted model
Consider a fitted ARMA model

ϕ̂(B)Yt = θ̂(B)ε̂t

Checking stationarity
I roots of ϕ̂(z), or their inverses

Inverse AR roots
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(not necessary if we use MLE with stationarity constraints)
I impulse response function



Impulse response function
What is the effect of a unit shock at time s on Ys+k for k ≥ 0?

I Artificial noise {εt}:

εt =

{
1 t = s,
0 t 6= s

I Compute and plot the corresponding effect on Ys+k for k ≥ 0
I If the model is stationary the impulse fades away to 0
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Examination of residuals

Consider a fitted ARMA model

ϕ̂(B)Yt = θ̂(B)ε̂t

The residuals {ε̂t} should behave like a white noise

I plot the sample ACF and PACF of {ε̂t}
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 recall week 5 tests of randomness
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Portmanteau tests for fitted ARMA diagnostics

Let {ε̂t} be residuals of a fitted ARMA(p,q) and {rk} its sample ACF

Test statistics (Box–Pierce)

Q = n
K∑

k=1

r2
k

or (Ljung–Box)

Q∗ = n(n + 2)
K∑

k=1

r2
k

n − k

should be asymptotically χ2
K−p−q

(Notice the change in degrees of freedom.)

Testing procedure:
I fix K > 1
I if Q∗ > χ2

K−p−q(1− α) the considered model is not suitable
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Example

> a=arima(x,order=c(2,0,0),include.mean=FALSE)

> r=resid(a)

> Box.test(r,lag=5,fitdf=2)

Box-Pierce test

data: r

X-squared = 2.576705486928, df = 3, p-value = 0.46158801884

> Box.test(r,lag=5,fitdf=2,type="Ljung-Box")

Box-Ljung test

data: r

X-squared = 2.726753122961, df = 3, p-value = 0.435700010104



Stochastic Modeling of Trend



Nonstationarity
So far: data Y1, . . . ,Yn from a stationary series {Yt}

In economy and finance: majority of time series are nonstationary

US GDP

Time
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Consequences:
I ARMA models not suitable
I in regression: spurious regression



Different types of non-stationarity

Let {εt} be a sequence of iid variables ∼ (0, σ2)

Consider two simple models:
1. Linear trend model:

Yt = α0 + αt + εt

 deterministic nonstationarity
if a deterministic trend is eliminated Yt − α0 − αt  stationary
series

2. Random walk with a drift:

Yt = α + Yt−1 + εt = αt +
t∑

i=1

εi + Y0,

 stochastic nonstationarity
∆Yt = Yt − Yt−1 = α + εt  {∆Yt} stationary

Different ways to achieve stationarity
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Comparison

For model 1 compute:
1. EYt

2. Var Yt

3. Cov (Yt ,Ys)

4. What happens if we use ∆Yt .

For model 2 and Y0 = 0 compute:
1. EYt

2. Var Yt

3. Cov (Yt ,Ys)

4. What happens if we use Yt − αt .



Random walk with a drift vs. AR(1) model

Model
Yt = α + Yt−1 + εt

is AR(1) with an intercept

Yt = α + φ1Yt−1 + εt

for φ1 = 1

I Recall that AR(1) is stationary iff |φ1| < 1.
I If φ1 = 1 1− φ1z = 0 has a root z = 1, i.e. a unit root.

I it is not easy to distinguish a stationary AR(1) with φ1 close to 1
and a random walk from a single trajectory

I statistical tests for unit root (will be described later today)
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Trend stationarity vs. unit root
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Differencing operator

∆Yt = Yt − Yt−1 = (1− B)Yt

∆d defined recursively

∆d (Yt ) = ∆(∆d−1Yt )

so

∆2Yt = ∆(Yt − Yt−1) = ∆(Yt )−∆(Yt−1) = Yt − 2Yt−1 + Yt−2,

∆3Yt = ∆(Yt − 2Yt−1 + Yt−2) = Yt − 3Yt−1 + 3Yt−2 − Yt−3

...

or see that

∆d (Yt ) = (1− B)dYt =

(
d∑

k=0

(
d
k

)
(−1)k Bk

)
Yt =

d∑
k=0

(
d
k

)
(−1)k Yt−k



Modelling of trend

1. Deterministic stationarity:

Yt = Trt + ut ,

where
↪→ Trt is a deterministic time trend
↪→ {ut} is a centred stationary process

Modelling:
I use known techniques for estimation of trend
I be careful with testing
I estimation can be improved if the correlation structure of {ut} is

taken into account (see Financial Econometrics course)

2. Stochastic stationarity:
∆dYt

is a (generally non-centred) stationary process ARIMA models
(I stands for integrated)



ARIMA model
ARIMA(p,d ,q):

ϕ(B)
(

∆dYt

)
= α + θ(B)εt

where
↪→ {εt} is WN
↪→

ϕ(B) = 1− φ1z − φ2z2 − . . .− φpzp,

θ(B) = 1 + θ1z + · · ·+ θqzq ,

such that the roots of ϕ(z) lie outside the unit circle
↪→ ϕ(B)∆d = ϕ(B)(1− B)d generalized autoregressive operator 

polynomial ϕ(z)(1− z)d : d times the unit root

Principle of ARIMA
1. find suitable smallest d such that ∆dYt stationary
2. model ∆dYt using a suitable ARMA



Choice of d

Typically d ∈ {0,1,2}
I Explore plots of Yt , ∆Yt , ∆2Yt . . . and their sample ACF and

PACF
I Use statistical tests for unit roots (see later)
I Some software: information criteria AIC, BIC

Be careful with overdifferencing.

Example: If {εt} is a white noise (i.e. stationary), then ∆εt is a
stationary MA(1) with θ1 = −1

∆εt = εt − εt−1

which is non-invertible and has a larger variance.
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US GDP
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US GDP: ∆Yt

1. diff of US GDP
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US GDP: ∆2Yt

2. diff of US GDP
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Note: Intercept in ARIMA models

ϕ(B)
(

∆dYt

)
= α + θ(B)εt

I d = 0 ARMA(p,q) with an intercept 

EYt =
α

1− ϕ1 − . . .− ϕp

so α determines the level of the series
I d = 1: series ∆Yt = Yt − Yt−1 satisfies

E∆Yt =
α

1− ϕ1 − . . .− ϕp
=: µ,

so
EYt = EYt−1 + E∆Yt = EYt−1 + µ = µ · t + EY0,

so α determines the slope



Note: Log returns
Let Pt be a price of some financial asset (e.g. a stock)
I return

Rt =
Pt − Pt−1

Pt−1

I log-return

rt = log

(
Pt

Pt−1

)
= log Pt − log Pt−1

i.e. rt corresponds to ∆ log Pt

I see that if x is small, then

log(1 + x) ≈ 1 + x

so

rt = log

(
Pt

Pt−1

)
= log

(
Pt − Pt−1

Pt−1
+ 1
)

= log (Rt + 1) ≈ Rt

I very often {rt} is a (shifted) white noise
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Example: Log returns
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Tests of Unit Root
Simplest situation:

Yt = ρYt−1 + εt , εt ∼WN(0, σ2)

Test
H0 : ρ = 1

against
H1 : ρ < 1.

Note: In practice H1 often means ρ ∈ (0, 1).

Transformation: Subtract Yt−1 from both sides 

∆Yt = (ρ− 1)︸ ︷︷ ︸
θ

Yt−1 + εt

then
H0 : θ = 0 and H1 : θ < 0
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Dickey–Fuller Test

∆Yt = θYt−1 + εt

Idea: regress ∆Yt on Yt−1 and test θ = 0 using a standard t-test

T =
θ̂

sd(θ̂)

Problem: under H0 the standard asymptotics does not apply
↪→ T is not asymptotically N(0,1)

↪→ asymptotic distribution of T more complicated Dickey-Fuller
distribution critical values cα tabulated

Reject H0 if
T < cα

if α = 0.05 cα = −2.86 (compare: normal quantile u0.05 = −1.65)
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Trend variants of DF test
I DF test: under H1  {Yt} is a stationary centered AR(1)

More general model:

Yt = α + δt + ρYt−1 + εt ,

the same transformation 

∆Yt = α + δt + θYt−1 + εt

and H0 : θ = 0 against H1 : θ < 0

Case I. δ = 0 and δ = 0 considered
Case II. δ = 0 under H0 RW with a drift, under H1 stationary

non-centred process
Case III. under H1: deterministic time trend

Testing procedure:
I fit the model and compute the t-statistic for H0

I different DF critical values for cases I., II. and III. tabulated
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Augmented Dickey Fuller test

I DF test: under H0  ∆Yt is an uncorrelated sequence
I ADF test allows ∆Yt to follow an AR model under H0

Example: AR(1)

∆Yt = α + θYt−1 + ϕ1∆Yt−1 + εt

with |ϕ1| < 1 and test

H0 : θ = 0 against H1 : θ < 0

Then
↪→ under H0  {∆Yt} stationary AR(1), so {Yt} ARIMA(1,1,0)
↪→ under H1  {Yt} follows a non-centred stationary AR(2) model



Augmented Dickey Fuller test

Procedure for AR(p):
I Regress ∆Yt on Yt−1,∆Yt−1, . . .∆Yt−p

I Compute the t statistics for coefficient standing next to Yt−1

I Use the same DF critical values as Case II

Choice of p:
I if p too large smaller power
I if p too small incorrect size of the test
I book recommendations: take the frequency of the data into

account
I R: formula

k =
⌊

(n − 1)1/3
⌋



US GDP
> adf.test(gdp,k=0)

Augmented Dickey-Fuller Test

data: gdp

Dickey-Fuller = 1.618931877674, Lag order = 0, p-value = 0.99

alternative hypothesis: stationary

Warning message:

In adf.test(gdp, k = 0) : p-value greater than printed p-value

> adf.test(gdp)

Augmented Dickey-Fuller Test

data: gdp

Dickey-Fuller = 0.2835363509014, Lag order = 5, p-value = 0.99

alternative hypothesis: stationary

Warning message:

In adf.test(gdp) : p-value greater than printed p-value



US GDP (cont.)

> adf.test(diff(gdp))

Augmented Dickey-Fuller Test

data: diff(gdp)

Dickey-Fuller = -5.427919342951, Lag order = 5, p-value = 0.01

alternative hypothesis: stationary

Warning message:

In adf.test(diff(gdp)) : p-value smaller than printed p-value



Other tests
Phillips–Perron Test:
I uses robust (HAC) standard errors for the standard DF test

statistics

KPSS Test:
I recall that DF: H0 : non-stationarity and H1 : stationarity

if DF does not reject H0  either H0 holds or not enough power
I Kwiatkowski–Phillips–Schmidt–Shin:

H0 : stationarity H1 : non-stationarity

I Model
Yt = α + δt + rt + εt , rt = rt−1 + ut ,

where ut are iid N(0, σ2
u)

 LM test (score test) for H0 : σ2
u = 0

I combine DF and KPSS test. If conclusions differ inconclusive
verdict



US GDP
> kpss.test(gdp)

KPSS Test for Level Stationarity

data: gdp

KPSS Level = 4.062992006614, Truncation lag parameter = 4, p-value = 0.01

Warning message:

In kpss.test(gdp) : p-value smaller than printed p-value

> kpss.test(diff(gdp))

KPSS Test for Level Stationarity

data: diff(gdp)

KPSS Level = 1.194908945277, Truncation lag parameter = 4, p-value = 0.01

Warning message:

In kpss.test(diff(gdp)) : p-value smaller than printed p-value


