Week 8:

Verification of a fitted ARMA
model

Stochastic modelling of trend



Last week

Setting: data Yi, ..., Y, from a stationary series {Y;} ~ fit a feasible
ARMA model

— determine the model order

— estimate the model parameters

> point estimates
> it is possible to derive formulas for std. deviations of the estimators
~ testing of significance

Next step
< model verification



Example

Data: Yi,..., Yioo

rrrrr

1. Based on some criteria ~» choose AR(2) model
Yi=01Yi1+02Yi 2+ e

2. Estimation (e.g. MLE) ~ »7 = 0.6634, ¢» = —0.3137.
Estimated model:

Y: =0.6634Y;_1 —0.3137Y;_2 + &;



Function arima

>arima(x,order=c(2,0,0),include.mean=FALSE)

Coefficients:
arl ar2
0.663439742961 -0.313670847370
s.e. 0.095764265201 0.098148294295

sigma”2 estimated as 0.83124222026: log likelihood = -132.9, aic = 271.81
Function arma (tseries):

> library(tseries)
> summary (arma(x,order=c(2,0),include.intercept=FALSE))

Model: ARMA(2,0)

Coefficient(s):

Estimate Std. Error t value Pr(>|tl)
arl 0.6531591632695 0.0921202981258 7.09028 1.3383e-12 ***
ar2 -0.2967312994312 0.0920865474614 -3.22231 0.0012716 *x*

Signif. codes: 0 “***’ 0.001 ‘*%’ 0.01 ‘x’ 0.05 ¢.” 0.1 ¢ * 1

Fit:
sigma”2 estimated as 0.779002581682, Conditional Sum-of-Squares = 77.03,
AIC = 262.81



Verification of a fitted model
Consider a fitted ARMA model

P(B)Y: = 0(B)&:

Checking stationarity
> roots of p(z), or their inverses

Inverse AR roots

Imaginary
0

-1 0 1
Real

(not necessary if we use MLE with stationarity constraints)
» impulse response function



Impulse response function

What is the effect of a unit shock at time s on Y5, for kK > 0?
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Impulse response function

What is the effect of a unit shock at time s on Y5, for kK > 0?
» Artificial noise {;}:
1 t=s,
Et =
0 t#s

» Compute and plot the corresponding effect on Yq 4 for k > 0
> If the model is stationary ~~ the impulse fades away to 0
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Examination of residuals

Consider a fitted ARMA model

2(B)Y: = 0(B)E:

The residuals {;} should behave like a white noise



Examination of residuals

Consider a fitted ARMA model

-~

2(B)Y: = 0(B)E:

The residuals {;} should behave like a white noise
» plot the sample ACF and PACF of {&;}

¢ ||
T
E

2]

? T T T T




Examination of residuals

Consider a fitted ARMA model

-~

2(B)Y: = 0(B)E:

The residuals {;} should behave like a white noise
» plot the sample ACF and PACF of {&;}

¢ ||
T
E

2]

? T T T T

> use portmanteau tests




Examination of residuals

Consider a fitted ARMA model

-~

2(B)Y: = 0(B)E:

The residuals {;} should behave like a white noise
» plot the sample ACF and PACF of {&;}
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> use portmanteau tests
~ recall week 5 tests of randomness



Portmanteau tests for fitted ARMA diagnostics

Let {&;} be residuals of a fitted ARMA(p, q) and {rx} its sample ACF

Test statistics (Box—Pierce)

or (Ljung—Box)
K I’E

Q*:n(n+2)zn_k

k=1

: 2
should be asymptotically Xk-p—q

(Notice the change in degrees of freedom.)



Portmanteau tests for fitted ARMA diagnostics

Let {&;} be residuals of a fitted ARMA(p, q) and {rx} its sample ACF

Test statistics (Box—Pierce)

or (Ljung—Box)
K I’E

Q*:n(n+2)zn_k

k=1

should be asymptotically Xf@pfq
(Notice the change in degrees of freedom.)
Testing procedure:

> fix K> 1
> if Q* > X%_p_qﬁ — «) ~ the considered model is not suitable



Example
> a=arima(x,order=c(2,0,0),include.mean=FALSE)
> r=resid(a)
> Box.test(r,lag=5,fitdf=2)
Box-Pierce test

data: T
X-squared = 2.576705486928, df = 3, p-value = 0.46158801884

> Box.test(r,lag=5,fitdf=2,type="Ljung-Box")
Box-Ljung test

data: T
X-squared = 2.726753122961, df = 3, p-value = 0.435700010104



Stochastic Modeling of Trend



Nonstationarity
So far: data Y;, ..

., Yn from a stationary series { Y;}

In economy and finance: majority of time series are nonstationary

4000 6000 8000

2000

Consequences:

US GDP

T T T T T T
1950 1960 1970 1980 1990 2000

Time

» ARMA models not suitable
» in regression: spurious regression



Different types of non-stationarity

Let {¢;} be a sequence of iid variables ~ (0, 0?)

Consider two simple models:
1. Linear trend model:

Y: = ap + af + &;

2. Random walk with a drift:

t
Yi=a+Yigte=at+) £+ Yo,
i=1
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Different types of non-stationarity

Let {¢;} be a sequence of iid variables ~ (0, 0?)

Consider two simple models:
1. Linear trend model:

Y: = ap + af + &;

~~ deterministic nonstationarity
if a deterministic trend is eliminated Y; — ap — af ~~ stationary
series

2. Random walk with a drift:

t
Yi=a+Yigte=at+) £+ Yo,
i=1

~ stochastic nonstationarity
AYi=Y:i— Y1 = a+e ~ {AY;} stationary
Different ways to achieve stationarity



Comparison

For model 1 compute:
1. EY;
2. VarY;
3. Cov (Y, Ys)
4. What happens if we use AY;.

For model 2 and Yy = 0 compute:
1. EY;
2. VarY;
3. Cov (Y, Ys)
4. What happens if we use Y; — at.



Random walk with a drift vs. AR(1) model

Model
Yi=oa+ Y1 +e

is AR(1) with an intercept
Yi=a+¢1Yi1+er
for o1 =1

» Recall that AR(1) is stationary iff || < 1.
> Ifp1 =1~~1—¢1z=0hasaroot z=1,i.e. a unit root.
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Random walk with a drift vs. AR(1) model

Model
Y[ =o+ Y[_1 + &t

is AR(1) with an intercept
Yi=a+¢1Yi1+er
for o1 =1

» Recall that AR(1) is stationary iff || < 1.
> Ifp1 =1~~1—¢1z=0hasaroot z=1,i.e. a unit root.

> it is not easy to distinguish a stationary AR(1) with ¢4 close to 1
and a random walk from a single trajectory

> statistical tests for unit root (will be described later today)



Trend stationarity vs. unit root
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Trend stationarity vs. unit root
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Differencing operator

AY, =Y~ Yy =(1-B)Y,
A9 defined recursively

AY(Y;) = A(ATTTY))

SO
DYy = A(Y;— Yie1) = A(Yy) — A(Yiet) = Y — 2Yio1 + Yoo,
A, =AY —2Y 1+ Yi2) = Yi—3Ys 1 +3Yi 20— Vi3

or see that

AYYy)=(1-B)Y, = (Zd:



Modelling of trend

1. Deterministic stationarity:
Yt = Tft + Uy,

where

— Tr is a deterministic time trend

< {ut} is a centred stationary process
Modelling:

> use known techniques for estimation of trend
> be careful with testing
> estimation can be improved if the correlation structure of {u;} is
taken into account (see Financial Econometrics course)
2. Stochastic stationarity:
A%Y,

is a (generally non-centred) stationary process ~~ ARIMA models
(I stands for integrated)



ARIMA model
ARIMA(p, d, q):

o(B) (Ad Y,) = a+0(B)z
where
< {e}is WN
CH

o(B) =1— 12— ¢22° — ... — $p2P,
0(B)=1+461z+ -+ 0429,

such that the roots of ¢(z) lie outside the unit circle
— (B)AY = ¢(B)(1 — B)? generalized autoregressive operator ~
polynomial ¢(z)(1 — z)?: d times the unit root
Principle of ARIMA
1. find suitable smallest d such that A?Y; stationary
2. model A?Y; using a suitable ARMA



Choice of d

Typically d € {0,1,2}
» Explore plots of Y;, AY;, A?Y; ...and their sample ACF and
PACF

> Use statistical tests for unit roots (see later)
» Some software: information criteria AIC, BIC



Choice of d

Typically d € {0,1,2}
» Explore plots of Y;, AY;, A?Y; ...and their sample ACF and
PACF

> Use statistical tests for unit roots (see later)
» Some software: information criteria AIC, BIC

Be careful with overdifferencing.

Example: If {¢;} is a white noise (i.e. stationary), then Ae; is a
stationary MA(1) with 6; = —1

A&‘[ =&t — Et-1

which is non-invertible and has a larger variance.
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US GDP: AY;
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US GDP: A%Y;
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Note: Intercept in ARIMA models

o(B) (Ad Y,) — o+ 0(B)e;

> d =0~ ARMA(p, ) with an intercept ~
«
T—p1— —op

EY; =

so « determines the level of the series
» d = 1:series AY; = Y; — Y;_; satisfies

EAY; = “ =,
T—p1— . —op

SO
EY;=EY, 1 +EAY; =EY 1+ pu=p-t+EY,

so « determines the slope



Note: Log returns

Let P; be a price of some financial asset (e.g. a stock)

» return

Pt — P4
R — Tt
t Pi—1

> log-return

r =log <P/:’t1) = log P; — log Py_+

i.e. r; corresponds to A log Py

» very often {r;} is a (shifted) white noise



Note: Log returns

Let P; be a price of some financial asset (e.g. a stock)

» return

Pt — P4
R — Tt
t Pi—1

> log-return

r =log (Pl:):) = log P; — log Py_+

i.e. r; corresponds to A log Py
> see that if x is small, then

log(1+x)~1+x

SO

rt—log<Plt3t1> = log (Pt,;tP1t1+1> =log(R:+1)~ R:

> very often {r;} is a (shifted) white noise



Example: Log returns

IBM Closing 2017-01-03/2022-01-31

100
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Tests of Unit Root

Simplest situation:
Y = th_1 +éE&t, Etr~~ WN(O,O'Z)

Test
Ho:p=1

against
H : p < 1.

Note: In practice H; often means p € (0, 1).



Tests of Unit Root

Simplest situation:
Y = th_1 +éE&t, Etr~~ WN(O,O'Z)

Test
Ho:p=1

against
H : p < 1.

Note: In practice H; often means p € (0, 1).
Transformation: Subtract Y;_4 from both sides ~
AYi=(p—1) Y1 +e
N——
6

then
Hy:0=0 and H;:6<0



Dickey—Fuller Test

AYy=0Yi1+e;

Idea: regress AY; on Y;_1 and test 0 = 0 using a standard t-test
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AYy=0Yi1+e;
Idea: regress AY; on Y;_1 and test 0 = 0 using a standard t-test
T = QA
sd(6)

Problem: under Hy the standard asymptotics does not apply
— T is not asymptotically N(0O, 1)

— asymptotic distribution of T more complicated ~» Dickey-Fuller
distribution ~~ critical values c,, tabulated



Dickey—Fuller Test

AYy=0Yi1+e;
Idea: regress AY; on Y;_1 and test 0 = 0 using a standard t-test
T = QA
sd(6)

Problem: under Hy the standard asymptotics does not apply
— T is not asymptotically N(0O, 1)

— asymptotic distribution of T more complicated ~» Dickey-Fuller
distribution ~~ critical values c,, tabulated

Reject H if
T <c,

if « = 0.05 ~ ¢, = —2.86 (compare: normal quantile uggs = —1.65)



Trend variants of DF test
> DF test: under H; ~ {Y;} is a stationary centered AR(1)
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More general model:
Yi=a+0t+pYi1 +et,
the same transformation ~~
AYi=a+6t+0Yi_1 +e;
and Hy : 6 =0 against H; : 6 <0

Casel. § =0 and é§ = 0 considered

Case ll. 6 =0 ~ under Hy RW with a drift, under H; stationary
non-centred process

Case lll. under H;: deterministic time trend



Trend variants of DF test
> DF test: under H; ~ {Y;} is a stationary centered AR(1)

More general model:
Yi=a+0t+pYi1 +et,
the same transformation ~~
AYi=a+6t+0Yi_1 +e;
and Hy : 6 =0 against H; : 6 <0

Casel. § =0 and § = 0 considered

Case ll. 6 =0 ~ under Hy RW with a drift, under H; stationary
non-centred process

Case lll. under H;: deterministic time trend

Testing procedure:
» fit the model and compute the t-statistic for Hy
» different DF critical values for cases I., Il. and Ill. ~ tabulated



Augmented Dickey Fuller test

» DF test: under Hy ~~ AY; is an uncorrelated sequence
» ADF test ~~ allows AY; to follow an AR model under Hy

Example: AR(1)

AYi=a+0Yi 1 +p1AYi 1 +&¢
with |¢1] < 1 and test

Hy:0=0 against H;:0<0
Then

— under Hy ~~ {AY;} stationary AR(1), so {Y:} ARIMA(1,1,0)
— under H; ~ {Y;} follows a non-centred stationary AR(2) model



Augmented Dickey Fuller test

Procedure for AR(p):
> Regress AY;on Yi_1,AY;_4,...AY;p
» Compute the ¢ statistics for coefficient standing next to Y;_4
» Use the same DF critical values as Case I

Choice of p:
» if p too large ~~ smaller power
» if p too small ~ incorrect size of the test

» book recommendations: take the frequency of the data into
account

» R:formula

k=|(n—1)"?]



US GDP

> adf.test(gdp,k=0)

Augmented Dickey-Fuller Test

data: gdp

Dickey-Fuller = 1.618931877674, Lag order = 0, p-value = 0.99

alternative hypothesis: stationary

Warning message:
In adf.test(gdp, k = 0) : p-value greater than printed p-value

> adf.test(gdp)

Augmented Dickey-Fuller Test

data: gdp

Dickey-Fuller = 0.2835363509014, Lag order = 5, p-value = 0.99

alternative hypothesis: stationary

Warning message:
In adf.test(gdp) : p-value greater than printed p-value



US GDP (cont.)

> adf.test(diff (gdp))

Augmented Dickey-Fuller Test

data: diff(gdp)

Dickey-Fuller = -5.427919342951, Lag order = 5, p-value = 0.01

alternative hypothesis: stationary

Warning message:
In adf.test(diff(gdp)) : p-value smaller than printed p-value



Other tests

Phillips—Perron Test:

» uses robust (HAC) standard errors for the standard DF test
statistics

KPSS Test:

» recall that DF: Hy : non-stationarity and H; : stationarity
if DF does not reject Hy ~ either Hy holds or not enough power

» Kwiatkowski—Phillips—Schmidt—Shin:

Ho : stationarity H; : non-stationarity
» Model

Y[:Oé+5t+ft+8t, rt = h—1 + Uy,

where u; are iid N(0, 02)
~~ LM test (score test) for Hy : 02 = 0

» combine DF and KPSS test. If conclusions differ ~» inconclusive
verdict



US GDP

> kpss.test (gdp)
KPSS Test for Level Statiomnarity

data: gdp
KPSS Level = 4.062992006614, Truncation lag parameter = 4, p-value = 0.01

Warning message:

In kpss.test(gdp) : p-value smaller than printed p-value
> kpss.test(diff (gdp))

KPSS Test for Level Stationarity

data: diff(gdp)
KPSS Level = 1.194908945277, Truncation lag parameter = 4, p-value = 0.01

Warning message:
In kpss.test(diff(gdp)) : p-value smaller than printed p-value



