Week 6:

Box-Jenkins methodology

Box-Jenkins methodology

- AutoRegressive Integrated Moving Average (ARIMA) models
- 1970s, popularized by Box and Jenkins
- rely on autocorrelation patterns in the data

George E. P. Box 1919-2013

Gwilym M. Jenkins
1932-1982

Time Series

 AnalysisForecasting and Control
 George E. P. Box - wwinm M. ienhins
Gregory C. Reinsel - Greta M. Liung

Wiley

Notions and definitions from Stochastic Processes II

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Notions and definitions from Stochastic Processes II

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Technical tools:

- Hilbert space $L_{2}=\left\{X\right.$: random variable $\left.E X^{2}<\infty\right\}$ with inner product

$$
\langle X, Y\rangle=E X Y
$$

Notions and definitions from Stochastic Processes II

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Technical tools:

- Hilbert space $L_{2}=\left\{X\right.$: random variable $\left.E X^{2}<\infty\right\}$ with inner product

$$
\langle X, Y\rangle=E X Y
$$

- orthogonality: $X \perp Y$ if $\langle X, Y\rangle=0$

Notions and definitions from Stochastic Processes II

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Technical tools:

- Hilbert space $L_{2}=\left\{X\right.$: random variable $\left.E X^{2}<\infty\right\}$ with inner product

$$
\langle X, Y\rangle=\mathrm{E} X Y
$$

- orthogonality: $X \perp Y$ if $\langle X, Y\rangle=0$
- projection on subspace \mathcal{H} :

$$
X=\underbrace{P_{\mathcal{H}} X}_{\in \mathcal{H}}+\underbrace{\left(X-P_{\mathcal{H}} X\right)}_{\perp \mathcal{H}}
$$

and

$$
\left\|X-P_{\mathcal{H}} X\right\|^{2}=\min _{Y \in \mathcal{H}}\|X-Y\|^{2}
$$

Projection principal

$$
X-P_{\mathcal{H}} X \perp V \quad \text { for all } V \in \mathcal{H}
$$

Projection principal II.

Let $\left\{Y_{t}\right\}$ be a stochastic process and $\mathcal{H}=\mathcal{H}_{1}^{k}=\left\{\sum_{i=1}^{k} c_{i} Y_{i}\right\}$.

Then

$$
P_{\mathcal{H}} X=\sum_{i=1}^{k} \beta_{i} Y_{i}
$$

where $\beta_{1}, \ldots, \beta_{k}$ minimize $\mathrm{E}\left(X-\sum_{i=1}^{k} \alpha_{i} Y_{i}\right)^{2}$ among all linear combinations. Computation of β 's:

$$
\begin{aligned}
& \left\langle X-\sum_{i=1}^{k} \beta_{i} Y_{i}, Y_{j}\right\rangle=0, \quad \text { for all } j=1, \ldots, k, \\
& \mathrm{E}\left(X-\sum_{i=1}^{k} \beta_{i} Y_{i}\right) Y_{j}=0
\end{aligned}
$$

Partial ACF

$\left\{Y_{t}\right\}$ weakly stationary, centered:

$$
\rho_{k k}=\operatorname{cor}\left(Y_{k+1}-\widehat{Y}_{k+1}, Y_{1}-\widehat{Y}_{1}\right),
$$

where

$$
\begin{aligned}
\widehat{Y}_{k+1} & =P_{\mathcal{H}_{2}^{k}} Y_{k+1}, \\
\widehat{Y}_{1} & =P_{\mathcal{H}_{2}^{k}} Y_{1},
\end{aligned}
$$

with

$$
\ldots, Y_{1}, \underbrace{Y_{2}, Y_{3}, \ldots, Y_{k}}_{\mathcal{H}_{2}^{k}}, Y_{k+1}, \ldots
$$

Recall $P_{\mathcal{H}_{2}^{k}} Y_{k+1}=\sum_{i=2}^{k} \beta_{i} Y_{i}$, such that $\beta_{2}, \ldots, \beta_{k}$ minimize
$\mathrm{E}\left(Y_{k+1}-\sum_{i=2}^{k} \alpha_{i} Y_{i}\right)^{2}$ among all linear combinations.

Alternative definition of partial ACF

If

$$
P_{\mathcal{H}_{1}^{k}} Y_{k+1}=\phi_{1} Y_{k}+\phi_{2} Y_{k-1}+\cdots+\phi_{k} Y_{1}
$$

then

$$
\rho_{k k}=\phi_{k} .
$$

Alternative definition of partial ACF

If

$$
P_{\mathcal{H}_{1}^{k}} Y_{k+1}=\phi_{1} Y_{k}+\phi_{2} Y_{k-1}+\cdots+\phi_{k} Y_{1},
$$

then

$$
\rho_{k k}=\phi_{k} .
$$

Computation: The projection implies

$$
\left\langle Y_{k+1}-P_{\mathcal{H}_{1}^{k}} Y_{k+1}, Y_{j}\right\rangle=0, \quad j=1, \ldots, k,
$$

which gives

$$
\left(\begin{array}{c}
\rho_{1} \tag{1}\\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right)=\left(\begin{array}{ccccc}
\rho_{0} & \rho_{1} & \rho_{2} & \ldots & \rho_{k-1} \\
\rho_{1} & \rho_{0} & \rho_{1} & \ldots & \rho_{k-2} \\
\vdots & & & & \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \ldots & \rho_{0}
\end{array}\right)\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{k}
\end{array}\right)
$$

\rightsquigarrow solve to get $\rho_{k k}=\phi_{k}$

Notions and definitions

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Sample estimates

- sample mean
- sample autocovariance function $\left\{c_{k}\right\}$
- sample ACF $\left\{r_{k}\right\}$
- sample PACF $\left\{r_{k k}\right\}$

Practical recommendation: $n>50, k<n / 4$

Sample PACF

PACF

$$
\left(\begin{array}{ccccc}
\rho_{0} & \rho_{1} & \rho_{2} & \cdots & \rho_{k-1} \\
\rho_{1} & \rho_{0} & \rho_{1} & \cdots & \rho_{k-2} \\
\vdots & & & & \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_{0}
\end{array}\right)^{-1}\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right)=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\rho_{k k}
\end{array}\right)
$$

\rightsquigarrow Sample PACF: replace ρ_{k} by r_{k},

Sample PACF

PACF

$$
\left(\begin{array}{ccccc}
\rho_{0} & \rho_{1} & \rho_{2} & \cdots & \rho_{k-1} \\
\rho_{1} & \rho_{0} & \rho_{1} & \cdots & \rho_{k-2} \\
\vdots & & & & \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_{0}
\end{array}\right)^{-1}\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right)=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\rho_{k k}
\end{array}\right)
$$

\rightsquigarrow Sample PACF: replace ρ_{k} by r_{k}, i.e.

$$
\left(\begin{array}{ccccc}
1 & r_{1} & r_{2} & \ldots & r_{k-1} \\
r_{1} & 1 & r_{1} & \ldots & r_{k-2} \\
\vdots & & & & \\
r_{k-1} & r_{k-2} & r_{k-3} & \ldots & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right)=\left(\begin{array}{c}
\widehat{\phi}_{1} \\
\widehat{\phi}_{2} \\
\vdots \\
r_{k k}
\end{array}\right)
$$

Sample PACF

PACF

$$
\left(\begin{array}{ccccc}
\rho_{0} & \rho_{1} & \rho_{2} & \cdots & \rho_{k-1} \\
\rho_{1} & \rho_{0} & \rho_{1} & \cdots & \rho_{k-2} \\
\vdots & & & & \\
\rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_{0}
\end{array}\right)^{-1}\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{k}
\end{array}\right)=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\rho_{k k}
\end{array}\right)
$$

\rightsquigarrow Sample PACF: replace ρ_{k} by r_{k}, i.e.

$$
\left(\begin{array}{ccccc}
1 & r_{1} & r_{2} & \ldots & r_{k-1} \\
r_{1} & 1 & r_{1} & \ldots & r_{k-2} \\
\vdots & & & & \\
r_{k-1} & r_{k-2} & r_{k-3} & \ldots & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right)=\left(\begin{array}{c}
\widehat{\phi}_{1} \\
\widehat{\phi}_{2} \\
\vdots \\
r_{k k}
\end{array}\right)
$$

\rightsquigarrow recursive Durbin-Levinson Algorithm

Asymptotics for sample ACF for iid

Proposition. If $\left\{Y_{t}\right\}$ are iid and let K be fixed, then

$$
\sqrt{n}\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{K}
\end{array}\right) \xrightarrow{D} \mathrm{~N}_{K}\left(\mathbf{0}, \boldsymbol{I}_{K}\right), \quad n \rightarrow \infty
$$

Application
\hookrightarrow for n large r_{1}, \ldots, r_{K} approximately iid $\mathrm{N}(0,1 / n)$
$\hookrightarrow r_{k}$ lies outside $\left(-\frac{u_{0.975}}{\sqrt{n}}, \frac{u_{0.975}}{\sqrt{n}}\right)$ with asymptotic probability 5% for each $1 \leq k \leq K$, independently
\hookrightarrow bounds in plots
\hookrightarrow more general situation: Bartlett's formula (later)

Asymptotics for sample PACF for iid

If $\left\{Y_{t}\right\}$ are iid, then

$$
\sqrt{n}\left(\begin{array}{c}
\widehat{\phi}_{1} \\
\widehat{\phi}_{2} \\
\vdots \\
r_{k k}
\end{array}\right)=\underbrace{\left(\begin{array}{ccccc}
1 & r_{1} & r_{2} & \ldots & r_{k-1} \\
r_{1} & 1 & r_{1} & \ldots & r_{k-2} \\
\vdots & & & & \\
r_{k-1} & r_{k-2} & r_{k-3} & \ldots & 1
\end{array}\right)^{-1}}_{\rightarrow \rightarrow I_{k}} \cdot \underbrace{\sqrt{n} \cdot\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{k}
\end{array}\right)}_{\rightarrow \rightarrow N_{k}\left(\mathbf{0}, I_{k}\right)},
$$

SO

$$
\sqrt{n} r_{k k} \xrightarrow{D} \mathrm{~N}(0,1), \quad n \rightarrow \infty .
$$

\hookrightarrow more general situation: Quenouille's approximation (later)

Correlograms

- plot of $\left\{r_{k}\right\}$ or $\left\{r_{k k}\right\}$

Sample ACF of AR(1)

Sample PACF of AR(1)

- bounds:

$$
\left(-\frac{u_{0.975}}{\sqrt{n}}, \frac{u_{0.975}}{\sqrt{n}}\right)
$$

- try to determine the model from truncation point k_{0}
- now: basic TS models and how their $\left\{\rho_{k}\right\}$ and $\left\{\rho_{k k}\right\}$ look like

Basic models

Motivation: Wold decomposition: $\left\{Y_{t}\right\}$ is weakly stationary purely nondeterministic (i.e. it does not contain a component process whose future values can be perfectly predicted from the past values), then

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}
$$

where $\left\{\varepsilon_{t}\right\}$ is a WN, $\sum_{i=1}^{\infty} \psi_{i}^{2}<\infty$.

Linear process: $\mathrm{MA}(\infty) Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}$
\hookrightarrow if $\sum \psi_{i}^{2}<\infty \rightsquigarrow$ convergence in mean square
\hookrightarrow if $\sum\left|\psi_{i}\right|<\infty \rightsquigarrow$ convergence almost surely

Linear process

Let $\sum_{i=1}^{\infty}\left|\psi_{i}\right|<\infty,\left\{\varepsilon_{t}\right\}$ WN

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(\boldsymbol{B}) \varepsilon_{t}
$$

$\hookrightarrow B$ lag operator: $B X_{t}=X_{t-1}, B^{\star} X_{t}=X_{t-k}$

$$
\psi(z)=\sum_{i=0}^{\infty} \psi_{i} z^{i} \quad \text { with } \psi_{0}=1
$$

converges absolutely for all $|z| \leq 1$

Linear process

Let $\sum_{i=1}^{\infty}\left|\psi_{i}\right|<\infty,\left\{\varepsilon_{t}\right\}$ WN

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(B) \varepsilon_{t}
$$

$\hookrightarrow B$ lag operator: $B X_{t}=X_{t-1}, B^{k} X_{t}=X_{t-k}$

$$
\psi(z)=\sum_{i=0}^{\infty} \psi_{i} z^{i} \quad \text { with } \psi_{0}=1
$$

converges absolutely for all $|z| \leq 1$
\hookrightarrow invertible if

$$
\varepsilon_{t}=\sum_{i=0}^{\infty} \pi_{i} Y_{t-i}=\pi(B) Y_{t}
$$

with $\sum_{i=1}^{\infty}\left|\pi_{i}\right|<\infty$. If it holds then $\pi(z)=\psi(z)^{-1}$.

Linear process

Let $\sum_{i=1}^{\infty}\left|\psi_{i}\right|<\infty,\left\{\varepsilon_{t}\right\}$ WN

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(B) \varepsilon_{t}
$$

$\hookrightarrow B$ lag operator: $B X_{t}=X_{t-1}, B^{k} X_{t}=X_{t-k}$
\hookrightarrow

$$
\psi(z)=\sum_{i=0}^{\infty} \psi_{i} z^{i} \quad \text { with } \psi_{0}=1
$$

converges absolutely for all $|z| \leq 1$
\hookrightarrow invertible if

$$
\varepsilon_{t}=\sum_{i=0}^{\infty} \pi_{i} Y_{t-i}=\pi(B) Y_{t}
$$

with $\sum_{i=1}^{\infty}\left|\pi_{i}\right|<\infty$. If it holds then $\pi(z)=\psi(z)^{-1}$.
\hookrightarrow useless model for practice: infinite number of unknown ψ_{i}

Innovations

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(B) \varepsilon_{t}
$$

ε_{t} is called innovation:

Innovations

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(B) \varepsilon_{t}
$$

ε_{t} is called innovation:

- Let Y_{t} be invertible. Then

$$
\varepsilon_{t}=Y_{t}-\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}=Y_{t}-P_{\mathcal{H}_{-\infty}^{t-1}} Y_{t}
$$

Innovations

$$
Y_{t}=\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}+\varepsilon_{t}=\psi(B) \varepsilon_{t}
$$

ε_{t} is called innovation:

- Let Y_{t} be invertible. Then

$$
\varepsilon_{t}=Y_{t}-\sum_{i=1}^{\infty} \psi_{i} \varepsilon_{t-i}=Y_{t}-P_{\mathcal{H}_{-\infty}^{t-1}} Y_{t}
$$

- If $\left\{Y_{t}\right\}$ normal and $\mathcal{F}_{t-1}=\sigma\left\{Y_{s}, s \leq t-1\right\}$, then

$$
P_{\mathcal{H}_{-\infty}^{t-1}} Y_{t}=\mathrm{E}\left[Y_{t} \mid \mathcal{F}_{t-1}\right]
$$

and

$$
\varepsilon_{t}=Y_{t}-\mathrm{E}\left[Y_{t} \mid \mathcal{F}_{t-1}\right]
$$

$\rightsquigarrow \varepsilon_{t}$ corresponds to unpredictable movements in values of Y_{t}

Moving Average Process MA(q)

Let $\left\{\varepsilon_{t}\right\} \mathbf{W N}\left(0, \sigma^{2}\right)$:

$$
Y_{t}=\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}=\theta(B) \varepsilon_{t}
$$

for

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
$$

Properties:

Moving Average Process MA(q)

Let $\left\{\varepsilon_{t}\right\} \mathbf{W N}\left(0, \sigma^{2}\right)$:

$$
Y_{t}=\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}=\theta(B) \varepsilon_{t}
$$

for

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
$$

Properties:

- stationary, $\mathrm{E} Y_{t}=0$ and $\operatorname{Var} Y_{t}=\sigma^{2}\left(1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}\right)$

Moving Average Process MA(q)

Let $\left\{\varepsilon_{t}\right\} \mathbf{W N}\left(0, \sigma^{2}\right)$:

$$
Y_{t}=\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}=\theta(B) \varepsilon_{t}
$$

for

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
$$

Properties:

- stationary, $\mathrm{E} Y_{t}=0$ and $\operatorname{Var} Y_{t}=\sigma^{2}\left(1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}\right)$
- invertible if

$$
\frac{1}{\theta(z)}
$$

analytic for $|z| \leq 1$, i.e. if the roots of $\theta(z)$ lie outside the unit circle

Moving Average Process MA(q)

Let $\left\{\varepsilon_{t}\right\} \mathbf{W N}\left(0, \sigma^{2}\right)$:

$$
Y_{t}=\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}=\theta(B) \varepsilon_{t}
$$

for

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
$$

Properties:

- stationary, $\mathrm{E} Y_{t}=0$ and $\operatorname{Var} Y_{t}=\sigma^{2}\left(1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}\right)$
- invertible if

$$
\frac{1}{\theta(z)}
$$

analytic for $|z| \leq 1$, i.e. if the roots of $\theta(z)$ lie outside the unit circle

- ACF:

$$
\rho_{k}=0 \text { for } k>q
$$

\rightsquigarrow truncation point $k_{0}=q$

Moving Average Process MA(q)

Let $\left\{\varepsilon_{t}\right\} \mathbf{W N}\left(0, \sigma^{2}\right)$:

$$
Y_{t}=\sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}+\varepsilon_{t}=\theta(B) \varepsilon_{t}
$$

for

$$
\theta(z)=1+\theta_{1} z+\cdots+\theta_{q} z^{q}
$$

Properties:

- stationary, E $Y_{t}=0$ and $\operatorname{Var} Y_{t}=\sigma^{2}\left(1+\theta_{1}^{2}+\cdots+\theta_{q}^{2}\right)$
- invertible if

$$
\frac{1}{\theta(z)}
$$

analytic for $|z| \leq 1$, i.e. if the roots of $\theta(z)$ lie outside the unit circle

- ACF:

$$
\rho_{k}=0 \text { for } k>q
$$

\rightsquigarrow truncation point $k_{0}=q$

- PACF: $\left\{\rho_{k k}\right\}$ no truncation point

Important Exercises

1. Consider MA(q) process $\left\{Y_{t}\right\}$.

- Compute E Y_{t}, Var Y_{t}.
- Compute ACF ρ_{k}.

2. Consider MA(1) process $Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$

- Express the ACF.
- Express the invertibility condition in terms of θ_{1}.

3. Consider MA(2):

$$
Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}
$$

- Express the ACF.
- Express the invertibility condition in terms of the set for $\left(\theta_{1}, \theta_{2}\right)$.

PACF of MA

$\operatorname{MA}(1): Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$
\hookrightarrow then

$$
\rho_{k k}=\frac{(-1)^{k+1} \theta_{1}^{k}\left(1-\theta_{1}^{2}\right)}{1-\theta_{1}^{2(k+1)}}=\frac{(-1)^{k+1} \theta_{1}^{k}}{1+\theta_{1}^{2}+\theta_{1}^{4}+\cdots+\theta_{1}^{2 k}}
$$

(not easy to show)
\hookrightarrow no truncation point k_{0}

PACF of MA

$\operatorname{MA}(1): Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$
\hookrightarrow then

$$
\rho_{k k}=\frac{(-1)^{k+1} \theta_{1}^{k}\left(1-\theta_{1}^{2}\right)}{1-\theta_{1}^{2(k+1)}}=\frac{(-1)^{k+1} \theta_{1}^{k}}{1+\theta_{1}^{2}+\theta_{1}^{4}+\cdots+\theta_{1}^{2 k}}
$$

(not easy to show)
\hookrightarrow no truncation point k_{0}

MA(q):
$\hookrightarrow \rho_{k k}$ has no truncation point k_{0}
$\hookrightarrow \rho_{k k} \rightarrow 0$ as $k \rightarrow \infty$

PACF of MA

$\operatorname{MA}(1): Y_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$
\hookrightarrow then

$$
\rho_{k k}=\frac{(-1)^{k+1} \theta_{1}^{k}\left(1-\theta_{1}^{2}\right)}{1-\theta_{1}^{2(k+1)}}=\frac{(-1)^{k+1} \theta_{1}^{k}}{1+\theta_{1}^{2}+\theta_{1}^{4}+\cdots+\theta_{1}^{2 k}}
$$

(not easy to show)
\hookrightarrow no truncation point k_{0}

MA(q):
$\hookrightarrow \rho_{k k}$ has no truncation point k_{0}
$\hookrightarrow \rho_{k k} \rightarrow 0$ as $k \rightarrow \infty$
$\hookrightarrow \rho_{k k}$ bounded by a linear combination of geometrically decreasing sequences and sinusoids with geometrically decreasing amplitudes
(see shape of ACF for $A R(p)$)

Autoregressive Process AR(p)

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}
$$

or

$$
\varphi(B) Y_{t}=\varepsilon_{t}
$$

for $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$
Properties:

Autoregressive Process AR(p)

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}
$$

or

$$
\varphi(B) Y_{t}=\varepsilon_{t}
$$

for $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$
Properties:

- stationary if roots of $\varphi(z)=0$ lie outside the unit circle

Autoregressive Process AR(p)

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}
$$

or

$$
\varphi(B) Y_{t}=\varepsilon_{t}
$$

for $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$
Properties:

- stationary if roots of $\varphi(z)=0$ lie outside the unit circle
- in that case centered and

$$
\operatorname{Var}\left(Y_{t}\right)=\frac{\sigma^{2}}{1-\varphi_{1}^{2}-\ldots-\varphi_{p}^{2}}
$$

Autoregressive Process AR(p)

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}
$$

or

$$
\varphi(B) Y_{t}=\varepsilon_{t}
$$

for $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$
Properties:

- stationary if roots of $\varphi(z)=0$ lie outside the unit circle
- in that case centered and

$$
\operatorname{Var}\left(Y_{t}\right)=\frac{\sigma^{2}}{1-\varphi_{1}^{2}-\ldots-\varphi_{\rho}^{2}}
$$

- $\operatorname{ACF} \rho_{k}$ is a solution of Yule Walker equations
\rightsquigarrow no truncation point

Autoregressive Process AR(p)

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}
$$

or

$$
\varphi(B) Y_{t}=\varepsilon_{t}
$$

for $\varphi(z)=1-\varphi_{1} z-\ldots-\varphi_{p} z^{p}$
Properties:

- stationary if roots of $\varphi(z)=0$ lie outside the unit circle
- in that case centered and

$$
\operatorname{Var}\left(Y_{t}\right)=\frac{\sigma^{2}}{1-\varphi_{1}^{2}-\ldots-\varphi_{\rho}^{2}}
$$

- $\operatorname{ACF} \rho_{k}$ is a solution of Yule Walker equations
\rightsquigarrow no truncation point
- PACF

$$
\rho_{k k}=0 \quad \text { for } k>p
$$

\rightsquigarrow truncation point $k_{0}=p$

Important Exercises

1. Consider a stationary $\operatorname{AR}(p)$ process

- Compute $\operatorname{Var}\left(Y_{t}\right)$.
- Derive the Yule Walker equations.
- Discuss the form of $\left\{\rho_{k}\right\}$, i.e. the form of a solution of a general system of difference equations.

2. Consider an $\operatorname{AR}(1)$ model $Y_{t}=\varphi_{1} Y_{t-1}+\varepsilon_{t}$.

- Express the stationarity condition in terms of φ_{1}.
- Compute ACF.
- Show that $\rho_{k k}=0$ for $k>1$.

3. Consider an AR(2) model $Y_{t}=\varphi_{1} Y_{t-1}+\varphi_{2} Y_{t-2}+\varepsilon_{t}$.

- Express the stationarity condition in terms of φ_{1} and φ_{2}.
- Compute ACF.
- Show that $\rho_{k k}=0$ for $k>2$.

