Week 5:

Transformation of time series, Tests of randomness

Transformations of Time Series

Aim: achieve normality and constant variance

- most of the methods assume that

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}, \quad \mathrm{E} E_{t}=0, \quad \operatorname{Var} E_{t}=\sigma^{2}=\mathrm{const}
$$

and optimality for normal E_{t}

- prediction intervals: normality

Transformations of Time Series

Aim: achieve normality and constant variance

- most of the methods assume that

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}, \quad \mathrm{E} E_{t}=0, \quad \operatorname{Var} E_{t}=\sigma^{2}=\mathrm{const}
$$

and optimality for normal E_{t}

- prediction intervals: normality

\rightsquigarrow find transformation g such that $g\left(Y_{t}\right)$ satisfies the conditions

Box-Cox

$$
g_{\lambda}(y)= \begin{cases}\frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (y+c), & \lambda=0\end{cases}
$$

and use

$$
Y_{t}^{\lambda}=g_{\lambda}\left(Y_{t}\right)
$$

for a suitable λ and a suitable c

Box-Cox

$$
g_{\lambda}(y)= \begin{cases}\frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (y+c), & \lambda=0\end{cases}
$$

and use

$$
Y_{t}^{\lambda}=g_{\lambda}\left(Y_{t}\right)
$$

for a suitable λ and a suitable c

- g_{λ} continuous in λ

Box-Cox

$$
g_{\lambda}(y)= \begin{cases}\frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (y+c), & \lambda=0\end{cases}
$$

and use

$$
Y_{t}^{\lambda}=g_{\lambda}\left(Y_{t}\right)
$$

for a suitable λ and a suitable c

- g_{λ} continuous in λ
- if you intend to fit a regression model \rightsquigarrow it suffices to take $\left(Y_{t}+c\right)^{\lambda}$ for $\lambda>0$

Box-Cox

$$
g_{\lambda}(y)= \begin{cases}\frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (y+c), & \lambda=0\end{cases}
$$

and use

$$
Y_{t}^{\lambda}=g_{\lambda}\left(Y_{t}\right)
$$

for a suitable λ and a suitable c

- g_{λ} continuous in λ
- if you intend to fit a regression model \rightsquigarrow it suffices to take $\left(Y_{t}+c\right)^{\lambda}$ for $\lambda>0$

Parameters:

- $c>0$ such that $Y_{t}+c>0$

Box-Cox

$$
g_{\lambda}(y)= \begin{cases}\frac{(y+c)^{\lambda}-1}{\lambda}, & \lambda \neq 0 \\ \log (y+c), & \lambda=0\end{cases}
$$

and use

$$
Y_{t}^{\lambda}=g_{\lambda}\left(Y_{t}\right)
$$

for a suitable λ and a suitable c

- g_{λ} continuous in λ
- if you intend to fit a regression model \rightsquigarrow it suffices to take $\left(Y_{t}+c\right)^{\lambda}$ for $\lambda>0$

Parameters:

- $c>0$ such that $Y_{t}+c>0$
- How to find λ ?
- profile maximum likelihood
- approximate methods

Box-Cox profile likelihood

Assume that there exists λ such that $g_{\lambda}\left(Y_{t}\right)$ are independent for $t=1, \ldots, T$ and

$$
g_{\lambda}\left(Y_{t}\right)=\frac{Y_{t}^{\lambda}-1}{\lambda} \sim \mathrm{~N}\left(\mu_{t}, \sigma^{2}\right)
$$

where either $\mu_{t}=\operatorname{Tr}_{t}$ or $\mu_{t}=T r_{t}+S_{t}$ modelled by a regression model.

Box-Cox profile likelihood

Assume that there exists λ such that $g_{\lambda}\left(Y_{t}\right)$ are independent for $t=1, \ldots, T$ and

$$
g_{\lambda}\left(Y_{t}\right)=\frac{Y_{t}^{\lambda}-1}{\lambda} \sim \mathrm{~N}\left(\mu_{t}, \sigma^{2}\right)
$$

where either $\mu_{t}=\operatorname{Tr}_{t}$ or $\mu_{t}=T r_{t}+S_{t}$ modelled by a regression model.
\hookrightarrow derive the density of Y_{t} (use the transformation theorem)

$$
\log f_{Y_{t}}(y)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(g_{\lambda}(y)-\mu_{t}\right)^{2}+(\lambda-1) \log y
$$

Box-Cox profile likelihood

Assume that there exists λ such that $g_{\lambda}\left(Y_{t}\right)$ are independent for $t=1, \ldots, T$ and

$$
g_{\lambda}\left(Y_{t}\right)=\frac{Y_{t}^{\lambda}-1}{\lambda} \sim \mathrm{~N}\left(\mu_{t}, \sigma^{2}\right)
$$

where either $\mu_{t}=\operatorname{Tr}_{t}$ or $\mu_{t}=T r_{t}+S_{t}$ modelled by a regression model.
\hookrightarrow derive the density of Y_{t} (use the transformation theorem)

$$
\log f_{Y_{t}}(y)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(g_{\lambda}(y)-\mu_{t}\right)^{2}+(\lambda-1) \log y
$$

\hookrightarrow independence \rightsquigarrow log-likelihood

$$
I\left(\lambda, \boldsymbol{\beta}, \sigma^{2}\right)=\text { const }-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{n}\left(g_{\lambda}\left(Y_{t}\right)-\mu_{t}\right)^{2}+(\lambda-1) \sum_{t=1}^{n} \log Y_{t}
$$

Box-Cox profile likelihood

Assume that there exists λ such that $g_{\lambda}\left(Y_{t}\right)$ are independent for $t=1, \ldots, T$ and

$$
g_{\lambda}\left(Y_{t}\right)=\frac{Y_{t}^{\lambda}-1}{\lambda} \sim \mathrm{~N}\left(\mu_{t}, \sigma^{2}\right)
$$

where either $\mu_{t}=\operatorname{Tr}_{t}$ or $\mu_{t}=T r_{t}+S_{t}$ modelled by a regression model.
\hookrightarrow derive the density of Y_{t} (use the transformation theorem)

$$
\log f_{Y_{t}}(y)=-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(g_{\lambda}(y)-\mu_{t}\right)^{2}+(\lambda-1) \log y
$$

\hookrightarrow independence \rightsquigarrow log-likelihood

$$
I\left(\lambda, \boldsymbol{\beta}, \sigma^{2}\right)=\text { const }-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{n}\left(g_{\lambda}\left(Y_{t}\right)-\mu_{t}\right)^{2}+(\lambda-1) \sum_{t=1}^{n} \log Y_{t}
$$

\hookrightarrow profile likelihood

$$
I(\lambda)=\max _{\boldsymbol{\beta}, \sigma^{2}} I\left(\lambda, \boldsymbol{\beta}, \sigma^{2}\right)=\text { const }-\frac{n}{2} \log \operatorname{SSe}(\lambda)+(\lambda-1) \sum_{t=1}^{n} \log Y_{t}
$$

Box-Cox profile likelihood

$\triangleright \min Y_{t}=-0.93 \rightsquigarrow c=1$, MLE $\rightsquigarrow \hat{\lambda}=0.2 \rightsquigarrow g\left(Y_{t}\right)=\left(Y_{t}+1\right)^{1 / 5}$

- analyze $\left\{g\left(Y_{t}\right)\right\} \rightsquigarrow$ prediction interval for $g\left(Y_{n+1}\right) \rightsquigarrow$ prediction interval for Y_{n+1}

Approximate methods for λ

Let Y be a random variable. Taylor expansion of g :

$$
g(Y) \approx g(\mathrm{E} Y)+g^{\prime}(\mathrm{E} Y)(Y-\mathrm{E} Y)
$$

SO

$$
\operatorname{Var} g(Y) \approx\left[g^{\prime}(E Y)\right]^{2} \operatorname{Var} Y \stackrel{!}{=} k^{2}=\text { const }
$$

Approximate methods for λ

Let Y be a random variable. Taylor expansion of g :

$$
g(Y) \approx g(\mathrm{E} Y)+g^{\prime}(\mathrm{E} Y)(Y-\mathrm{E} Y)
$$

so

$$
\operatorname{Var} g(Y) \approx\left[g^{\prime}(E Y)\right]^{2} \operatorname{Var} Y \stackrel{!}{=} k^{2}=\text { const }
$$

For g_{λ} :

$$
g_{\lambda}^{\prime}(y)=y^{\lambda-1}
$$

so

$$
\begin{aligned}
(\mathrm{E} Y)^{2(\lambda-1)} \operatorname{Var} Y & \approx k^{2} \\
\sqrt{\operatorname{Var} Y} & \approx k(\mathrm{E} Y)^{1-\lambda}
\end{aligned}
$$

And similar relationship should be observed for the sample counterparts (SD and MEAN)

Approximate methods for λ (cont.)

1. divide data into J segments of the same length
2. compute $s_{Y}(j), \bar{Y}(j)$ for $j=1, \ldots, J$ from $Y_{t}+c$
3. plot $\left(\bar{Y}(j), s_{Y}(j)\right)$ and try to determine approximate λ from

$$
s_{Y}(j) \approx k \cdot(\bar{Y}(j))^{1-\lambda}
$$

for some $k>0$
4. typically one takes $\hat{\lambda} \in\{0,1,1 / 2,-1 / 2\}$

Example

Approximate methods for λ (cont.)

$$
\begin{gathered}
s_{Y}(j) \approx k \cdot(\bar{Y}(j))^{1-\lambda} \\
\log \left[s_{Y}(j)\right] \approx \log k+(1-\lambda) \log [\bar{Y}(j)]
\end{gathered}
$$

\rightsquigarrow plot points

$$
\left(\log [\bar{Y}(j)], \log \left[s_{Y}(j)\right]\right)
$$

and $1-\lambda$ is the regression slope

Approximate methods for λ (cont.)

$$
\begin{aligned}
s_{Y}(j) & \approx k \cdot(\bar{Y}(j))^{1-\lambda} \\
\log \left[s_{Y}(j)\right] & \approx \log k+(1-\lambda) \log [\bar{Y}(j)]
\end{aligned}
$$

\rightsquigarrow plot points

$$
\left(\log [\bar{Y}(j)], \log \left[s_{Y}(j)\right]\right)
$$

and $1-\lambda$ is the regression slope

$$
\widehat{\lambda}=1-0.77=0.23
$$

Pros and cons of Box-Cox

Pros +

Cons -

Pros and cons of Box-Cox

Pros +

Cons -

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Pros and cons of Box-Cox

Pros +

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Cons

- point prediction typically biased
- except special cases $\lambda=0,1$ no interpretation for the parameters (slope etc) in terms of Y_{t}

Pros and cons of Box-Cox

Pros +

- prediction intervals with exact coverage
- exact statistical tests (if other assumptions satisfied)
- some procedures optimal under normality

Most popular transformations
$\hookrightarrow \lambda=1$: no transformation
$\hookrightarrow \lambda=0$: log transformation

Cons

- point prediction typically biased
- except special cases $\lambda=0,1$ no interpretation for the parameters (slope etc) in terms of Y_{t}

Tests of randomness

Tests of randomness

$$
H_{0}: Y_{t} \sim \text { iid }
$$

against
H_{1} : either Y_{t} not independent, or Y_{t} not id

Why?

- plot: no presence of any systematic component
- apply this on $\widehat{E}_{t}=Y_{t}-\widehat{\operatorname{Tr}}_{t}-\widehat{S}_{t}-\widehat{C}_{t}$
H_{1} very broad \rightsquigarrow various tests

Example I

Log returns CZK/EUR

Example II

Air Passengers data: $Y_{t}=\beta_{1} t+\sum_{j=1}^{12} \gamma_{j} \cdot \mathrm{I}\left(\right.$ month $\left._{t}=j\right)+E_{t}$

Log of monthly number of passangers

Residuals for AirPassengers data

Example III: Is my pseudo random generator good?

Setting

Data Y_{1}, \ldots, Y_{n}

For simplicity: $Y_{t} \neq Y_{t=1}$ for all t (no ties allowed)
(Is it restrictive?)

Setting

Data Y_{1}, \ldots, Y_{n}
For simplicity: $Y_{t} \neq Y_{t=1}$ for all t (no ties allowed)
(Is it restrictive?)
Discussed tests:

1. based on signs of differences
2. based on turning points
3. based on runs (median test)
4. based on Kendall's tau
5. based on Spearman's rho
6. tools based on ACF

Discussion: Usefulness of such tests?

1. Test Based on Signs of Differences

$$
V_{t}= \begin{cases}1 & Y_{t}<Y_{t+1} \\ 0 & Y_{t}>Y_{t+1}\end{cases}
$$

Then

$$
K_{n}=\sum_{t=1}^{n-1} V_{t}
$$

is the number of points of growth.
Idea of the test: Reject if K_{n} differs "too much" from its expectation under H_{0} (i.e. K_{n} "too extreme")

1. Test Based on Signs of Differences

$$
V_{t}= \begin{cases}1 & Y_{t}<Y_{t+1} \\ 0 & Y_{t}>Y_{t+1}\end{cases}
$$

Then

$$
K_{n}=\sum_{t=1}^{n-1} V_{t}
$$

is the number of points of growth.
Idea of the test: Reject if K_{n} differs "too much" from its expectation under H_{0} (i.e. K_{n} "too extreme")
\hookrightarrow either exact or asymptotic distribution of K_{n}

1. Test Based on Signs of Differences

$$
V_{t}= \begin{cases}1 & Y_{t}<Y_{t+1} \\ 0 & Y_{t}>Y_{t+1}\end{cases}
$$

Then

$$
K_{n}=\sum_{t=1}^{n-1} V_{t}
$$

is the number of points of growth.
Idea of the test: Reject if K_{n} differs "too much" from its expectation under H_{0} (i.e. K_{n} "too extreme")
\hookrightarrow either exact or asymptotic distribution of K_{n}
$\hookrightarrow K_{n}$ is a sum of (dependent) variables \rightsquigarrow CLT might give us asymptotics

Illustration

$$
V_{t}= \begin{cases}1 & Y_{t}<Y_{t+1} \\ 0 & Y_{t}>Y_{t+1}\end{cases}
$$

Moments of K_{n}

$$
\mathrm{E} K_{n}=\mathrm{E} \sum_{t=1}^{n-1} V_{t}=\sum_{t=1}^{n-1} \mathrm{E} V_{t}=\frac{n-1}{2}
$$

because

$$
V_{t}=\mathrm{I}\left[Y_{t}<Y_{t-1}\right] \stackrel{H_{0}: i i d}{\sim} \operatorname{Alt}(1 / 2) .
$$

Moments of K_{n}

$$
\mathrm{E} K_{n}=\mathrm{E} \sum_{t=1}^{n-1} V_{t}=\sum_{t=1}^{n-1} \mathrm{E} V_{t}=\frac{n-1}{2}
$$

because

$$
\begin{gathered}
V_{t}=I\left[Y_{t}<Y_{t-1}\right] \stackrel{H_{0}: i i d}{\sim} \operatorname{Alt}(1 / 2) \\
\operatorname{Var} K_{n}=\operatorname{Var}\left(\sum_{t=1}^{n-1} V_{t}\right)=\sum_{t=1}^{n-1} \operatorname{Var} V_{t}+2 \sum \sum_{s<t} \operatorname{Cov}\left(V_{s}, V_{t}\right)
\end{gathered}
$$

Moments of K_{n}

$$
\mathrm{E} K_{n}=\mathrm{E} \sum_{t=1}^{n-1} V_{t}=\sum_{t=1}^{n-1} \mathrm{E} V_{t}=\frac{n-1}{2}
$$

because

$$
V_{t}=\mathrm{I}\left[Y_{t}<Y_{t-1}\right] \stackrel{H_{0}: i i d}{\sim} \operatorname{Alt}(1 / 2) .
$$

$$
\operatorname{Var} K_{n}=\operatorname{Var}\left(\sum_{t=1}^{n-1} V_{t}\right)=\sum_{t=1}^{n-1} \operatorname{Var} V_{t}+2 \sum \sum_{s<t} \operatorname{Cov}\left(V_{s}, V_{t}\right)
$$

If $s+1<t$, then V_{s} and V_{t} independent $\rightsquigarrow \operatorname{Cov}\left(V_{s}, V_{t}\right)=0$.
If $s+1=t$, then

$$
\operatorname{Cov}\left(V_{s}, V_{t}\right)=\operatorname{El}\left[Y_{s}<Y_{s+1}<Y_{s+2}\right]-\frac{1}{4} \stackrel{H_{0}: i i d}{=} \frac{1}{6}-\frac{1}{4}=-\frac{1}{12},
$$

so

$$
\operatorname{Var} K_{n}=\frac{n-1}{4}-2 \frac{n-2}{12}=\frac{n+1}{12}
$$

Asymptotic distribution

It holds that

$$
\frac{K_{n}-\mathrm{E} K_{n}}{\sqrt{\operatorname{Var} K_{n}}}=\frac{K_{n}-\frac{n-1}{2}}{\sqrt{\frac{n+1}{12}}} \xrightarrow{D} \mathrm{~N}(0,1) .
$$

\hookrightarrow Justification: CLT for m-dependent processes.
\hookrightarrow Equivalent versions of the test statistic

Test:

$$
\text { If } \quad \frac{\left|K_{n}-\frac{n-1}{2}\right|}{\sqrt{\frac{n+1}{12}}}>u_{1-\alpha / 2} \Rightarrow \text { reject } H_{0}
$$

2. Test Based on Turning Points

$$
V_{t}= \begin{cases}1 & Y_{t-1}<Y_{t}, Y_{t}>Y_{t+1} \text { or } Y_{t-1}>Y_{t}, Y_{t}<Y_{t+1} \\ 0 & Y_{t-1}<Y_{t}<Y_{t+1} \text { or } Y_{t-1}>Y_{t}>Y_{t+1}\end{cases}
$$

and

$$
R_{n}=\sum_{t=2}^{n-1} V_{t}
$$

the total number of upper and lower turning points

Idea of the test: Reject if R_{n} differs "too much" from its expectation under H_{0} (i.e. R_{n} "too extreme")
\hookrightarrow tables for exact distribution exist
$\hookrightarrow R_{n}$ asymptotically normal (again use CLT for m-dependent)
\hookrightarrow we need to computed $\mathrm{E} R_{n}, \operatorname{Var} R_{n}$

Moments of R_{n}

Now

$$
V_{t}=I\left[Y_{t-1}<Y_{t}, Y_{t}>Y_{t+1} \text { or } Y_{t-1}>Y_{t}, Y_{t}<Y_{t+1}\right] \stackrel{H_{0}: i i d}{\sim} \operatorname{Alt}(2 / 3)
$$

SO

$$
\mathrm{E} R_{n}=\sum_{t=2}^{n-1} \mathrm{E} V_{t}=\frac{2(n-2)}{3}
$$

Similar computations as for K_{n} give

$$
\operatorname{Var} R_{n}=\frac{16 n-29}{90}
$$

Test:

$$
\text { If } \frac{\left|R_{n}-E R_{n}\right|}{\sqrt{\operatorname{Var} R_{n}}}>u_{1-\alpha / 2} \quad \Rightarrow \text { reject } H_{0}
$$

3. Test Based on Runs (Median Test)

- M median of Y_{1}, \ldots, Y_{n}
- U_{n} is number of runs

Idea of the test: Reject if U_{n} "too extreme"

Illustration

Asymptotic distribution

It is possible to show

$$
\mathrm{E} U_{n}=m+1, \quad \operatorname{Var} U_{n}=\frac{m(m-1)}{2 m-1}
$$

where $m=\sum_{t=1}^{n} \mathrm{I}\left[Y_{t}>M\right]$ ($m=n / 2$ if n even), and

$$
\frac{U_{n}-E U_{n}}{\sqrt{\operatorname{Var} U_{n}}} \xrightarrow{D} \mathrm{~N}(0,1) .
$$

Reject if

$$
\frac{\left|U_{n}-\mathrm{E} U_{n}\right|}{\sqrt{\operatorname{Var} U_{n}}}>u_{1-\alpha / 2}
$$

Simulations

$$
\begin{aligned}
\text { IID: } Y_{t} & \sim \text { iid } \mathrm{N}(0,1), \\
\text { AR: } Y_{t} & =0.6 \cdot Y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \text { iid } \mathrm{N}(0,1), \\
\text { LT: } Y_{t} & =\frac{3}{n} t+\varepsilon_{t}, \quad \varepsilon_{t} \text { iid } \mathrm{N}(0,1), \\
\text { RW: } Y_{t} & =\sum_{i=1}^{t} \varepsilon_{i}, \quad \varepsilon_{t} \text { iid } \mathrm{N}\left(0,0.5^{2}\right),
\end{aligned}
$$

$N=1000$ replications \rightsquigarrow percentage of rejection

Simulations

IID: $Y_{t} \sim \operatorname{iid} \mathrm{~N}(0,1)$,
AR: $Y_{t}=0.6 \cdot Y_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t}$ iid $\mathrm{N}(0,1)$,
$\mathrm{LT}: Y_{t}=\frac{3}{n} t+\varepsilon_{t}, \quad \varepsilon_{t}$ iid $\mathrm{N}(0,1)$,
$\mathrm{RW}: Y_{t}=\sum_{i=1}^{t} \varepsilon_{i}, \quad \varepsilon_{t}$ iid $\mathrm{N}\left(0,0.5^{2}\right)$,
$N=1000$ replications \rightsquigarrow percentage of rejection

		K_{n}		R_{n}				U_{n}		
n	50	100	200	50	100	200	50	100	200	
IID	5	4	5	6	5	6	6	5	6	
AR	6	5	6	43	67	91	79	96	100	
LT	7	6	6	6	6	5	58	85	99	
RW	24	25	27	78	95	100	100	100	100	

\rightsquigarrow back to the critics of the tests....

AR

Linear Trend

Kendall's τ and Spearman's ρ

Consider iid random vectors

$$
\binom{U_{1}}{V_{1}}, \ldots\binom{U_{n}}{V_{n}}
$$

- Pearson's correlation $\rho=\operatorname{cor}\left(U_{i}, V_{i}\right)$ estimated by

$$
\widehat{\rho}=\frac{\sum_{i=1}^{n}\left(U_{i}-\bar{U}_{n}\right)\left(V_{i}-\bar{V}_{n}\right)}{\sqrt{\sum_{i=1}^{n}\left(U_{i}-\bar{U}_{n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(V_{i}-\bar{V}_{n}\right)^{2}}}
$$

- Kendall's $\tau \quad \tau=\mathrm{P}\left(U_{i}<V_{i}\right)-\mathrm{P}\left(U_{i}>V_{i}\right)$
estimated by

$$
\widehat{\tau}=\frac{2}{n(n-1)} \sum_{i<j} \operatorname{sgn}\left(U_{i}-U_{j}\right) \operatorname{sgn}\left(V_{i}-V_{j}\right)
$$

- Spearman's ρ

$$
\rho_{S}=\operatorname{cor}\left(F_{U}\left(U_{i}\right), F_{V}\left(V_{i}\right)\right)
$$

estimated by

$$
\widehat{\rho_{S}}=\frac{\sum_{i=1}^{n}\left(R_{i}-\bar{R}_{n}\right)\left(S_{i}-\bar{S}_{n}\right)}{\sqrt{\sum_{i=1}^{n}\left(R_{i}-\bar{R}_{n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(S_{i}-\bar{S}_{n}\right)^{2}}}=1-\frac{6}{n^{2}(n-1)} \sum_{i=1}^{n}\left(R_{i}-S_{i}\right)^{2},
$$

where R_{i} and S_{i} are ranks of U_{i} and V_{i} respectively.

- U_{i} and V_{i} independent $\rightsquigarrow \rho=\tau=\rho_{S}=0$

4. and 5. Tests Based on τ and ρ_{S}

Idea of the test: Compute correlation between $U_{i}=Y_{i}$ and $V_{i}=i$

$$
\begin{aligned}
\widehat{\tau} & =\frac{2}{n(n-1)} \sum_{i<j} \operatorname{sgn}\left(Y_{i}-Y_{j}\right)=\frac{4}{n(n-1)} \sum_{i<j} \mathrm{I}\left(Y_{i}-Y_{j}\right) \\
\widehat{\rho}_{S} & =1-\frac{6}{n^{2}(n-1)} \sum_{i=1}^{n}\left(R_{i}-i\right)^{2}
\end{aligned}
$$

where R_{1}, \ldots, R_{n} are ranks of Y_{1}, \ldots, Y_{n}
Asymptotic tests: Compare

$$
\frac{|\widehat{\tau}|}{\sqrt{\frac{2(2 n+5)}{9 n(n-1)}}} \text { or } \sqrt{n-1}\left|\widehat{\rho}_{S}\right|
$$

with $u_{1-\alpha / 2}$, and reject for large values

Simulations

$N=1000$ replications \rightsquigarrow percentage of rejection of H_{0}

	τ			ρ_{S}		
n	50	100	200	50	100	200
IID	5	5	6	5	5	6
AR	34	29	33	34	30	33
LT	100	100	100	100	100	100
RW	81	85	90	82	85	91

Graphical tools

- plot
- suitable graphical tools from regression
- tools based on sample ACF of $\left\{Y_{t}\right\}$

Graphical tools

- plot
- suitable graphical tools from regression
- tools based on sample ACF of $\left\{Y_{t}\right\}$

Course Stoch. processes II: $\left\{Y_{t}\right\}$ random proces

- ACF

$$
\rho_{k}=\operatorname{cor}\left(Y_{t}, Y_{t+k}\right)
$$

If $\left\{Y_{t}\right\}$ iid $\rightsquigarrow \rho_{k}=0$ for $k \neq 0$

- sample ACF

$$
r_{k}=\frac{\sum_{t=1}^{n-k}\left(Y_{t}-\bar{Y}_{n}\right)\left(Y_{t+k}-\bar{Y}_{n}\right)}{\sum_{t=1}^{n}\left(Y_{t}-\bar{Y}_{n}\right)^{2}}
$$

If $\left\{Y_{t}\right\}$ iid $\rightsquigarrow \sqrt{n} r_{k} \xrightarrow{D} N(0,1)$, i.e. $r_{k} \dot{\sim} N(0,1 / n)$ for large n

Sample ACF

Horizontal lines:

$$
\pm \frac{u_{0.975}}{\sqrt{n}}
$$

Sample ACF

Horizontal lines:

$$
\pm \frac{u_{0.975}}{\sqrt{n}}
$$

Under $H_{0}: r_{k}$ lies outside $\left(-\frac{u_{0.975}}{\sqrt{n}}, \frac{u_{0.975}}{\sqrt{n}}\right)$ with asymptotic probability 5% for each $k \geq 1$, independently

Portmanteau tests

Box-Pierce, Ljung- Box, Q-test
Idea of the test:
\hookrightarrow fix K
\hookrightarrow If $\left\{Y_{t}\right\}$ iid, then $\sqrt{n} r_{1}, \ldots, \sqrt{n} r_{K}$ asymptotically $\mathrm{N}(0,1)$ and independent

Portmanteau tests

Box-Pierce, Ljung- Box, Q-test
Idea of the test:
\hookrightarrow fix K
\hookrightarrow If $\left\{Y_{t}\right\}$ iid, then $\sqrt{n} r_{1}, \ldots, \sqrt{n} r_{K}$ asymptotically $N(0,1)$ and independent
\hookrightarrow Take

$$
Q=n \sum_{k=1}^{K} r_{k}^{2}
$$

and it should be asymptotically χ_{K}^{2}

Portmanteau tests

Box-Pierce, Ljung- Box, Q-test
Idea of the test:
\hookrightarrow fix K
\hookrightarrow If $\left\{Y_{t}\right\}$ iid, then $\sqrt{n} r_{1}, \ldots, \sqrt{n} r_{K}$ asymptotically $N(0,1)$ and independent
\hookrightarrow Take

$$
Q=n \sum_{k=1}^{K} r_{k}^{2}
$$

and it should be asymptotically χ_{K}^{2}
Test: Reject if $Q>q_{K, 1-\alpha}$ for $q_{1-\alpha}$ quantile of χ_{K}^{2}

Portmanteau tests

Box-Pierce, Ljung- Box, Q-test
Idea of the test:
\hookrightarrow fix K
\hookrightarrow If $\left\{Y_{t}\right\}$ iid, then $\sqrt{n} r_{1}, \ldots, \sqrt{n} r_{K}$ asymptotically $N(0,1)$ and independent
\hookrightarrow Take

$$
Q=n \sum_{k=1}^{K} r_{k}^{2}
$$

and it should be asymptotically χ_{K}^{2}
Test: Reject if $Q>q_{K, 1-\alpha}$ for $q_{1-\alpha}$ quantile of χ_{K}^{2}
Small sample improvement:

$$
Q^{*}=n(n+2) \sum_{k=1}^{k} \frac{r_{k}^{2}}{n-k}
$$

If $\left\{Y_{t}\right\}$ are residuals from an ARMA model \rightsquigarrow modify the degrees of freedom

Box-Jenkins methodology

Box-Jenkins methodology

- AutoRegressive Integrated Moving Average (ARIMA) models
- 1970s, popularized by Box and Jenkins
- rely on autocorrelation patterns in the data

Gwilym M. Jenkins 1932-1982
George E. P. Box 1919-2013

Notions and definitions

Time series $\left\{Y_{t}\right\}$

- strict stationarity
- (weak) stationarity
- white noise WN
- autocovariance function $\left\{\gamma_{k}\right\}$
- autocorrelation function (ACF) $\left\{\rho_{k}\right\}$
- partial autocorrelation function (PACF) $\left\{\rho_{k k}\right\}$

Sample counterparts

- sample mean
- sample autocovariance function $\left\{c_{k}\right\}$
- sample ACF $\left\{r_{k}\right\}$
- sample PACF $\left\{r_{k k}\right\}$

Practical recommendation: $n>50, k<n / 4$

