Week 3: Adaptive smoothing (cont.)

Adaptive approaches: moving averages (linear filters)

$$
\widehat{\operatorname{Tr}}_{t}=\sum_{i=-m}^{m} w_{i} y_{t-i}
$$

where $\sum_{i=-m}^{m} w_{i}=1$ are weights
What did you read about

- derivation of w_{i} under local polynomial trend of order r

Adaptive approaches: moving averages (linear filters)

$$
\widehat{\operatorname{Tr}}_{t}=\sum_{i=-m}^{m} w_{i} y_{t-i}
$$

where $\sum_{i=-m}^{m} w_{i}=1$ are weights
What did you read about

- derivation of w_{i} under local polynomial trend of order r

This week:

- criterion for selection of r
- how to compute the edges
- other linear filters:
- simple $w_{i}=\frac{1}{2 m+1}$
- filter for seasonal data \rightsquigarrow centered moving average
- robust approach: take the median instead of the mean

See some R examples.

Exponential smoothing

Assumption

$$
Y_{t}=\operatorname{Tr}_{t}+E_{t}=L_{t}+E_{t}
$$

where L_{t} is a level locally constant

Exponential smoothing

Assumption

$$
Y_{t}=\operatorname{Tr}_{t}+E_{t}=L_{t}+E_{t}
$$

where L_{t} is a level locally constant

Linear filters

- Aim: series decomposition (trend elimination)
- $\widehat{T r}_{t}$ computed from

$$
Y_{t-m}, \ldots, Y_{t+m}
$$

Exponential smoothing

- Aim: forecast of future values
- \widehat{L}_{t} computed only from the past Y_{t-i}

Exponential smoothing

Exponential smoothing: motivation

Series Y_{1}, \ldots, Y_{n}, locally constant

- Naive forecasts of future Y_{n+h}

$$
\widehat{Y}_{n+h}(n)=\frac{1}{n} \sum_{t=1}^{n} Y_{t}
$$

gives the same weight to all observations. Or

$$
\widehat{Y}_{n+h}(n)=Y_{n}
$$

gives weight 1 to the last observation

- we typically want something in between

$$
\widehat{Y}_{n+h}(n)=\widehat{L}_{n},
$$

where \widehat{L} gives more weight to recent observations, but at the same time takes into account all observations

Idea of exponential smoothing

- Compute

$$
\widehat{L}_{t}=\widehat{Y}_{t+1}(t)=\sum_{i=0}^{\infty} w_{i} Y_{t-i}
$$

as a weighted average of Y_{t}, Y_{t-1}, \ldots with geometrically decaying weights $w_{i}=$ const $\cdot \beta^{i} \quad 0<\beta<1$.

Idea of exponential smoothing

- Compute

$$
\widehat{L}_{t}=\widehat{Y}_{t+1}(t)=\sum_{i=0}^{\infty} w_{i} Y_{t-i}
$$

as a weighted average of Y_{t}, Y_{t-1}, \ldots with geometrically decaying weights $w_{i}=$ const $\cdot \beta^{i} \quad 0<\beta<1$.

- From $\sum_{i=0}^{\infty} w_{i}=1$, we get

$$
w_{i}=(1-\beta) \beta^{i}=\alpha(1-\alpha)^{i}
$$

for $\alpha=1-\beta$ a smoothing constant

Idea of exponential smoothing

- Compute

$$
\widehat{L}_{t}=\widehat{Y}_{t+1}(t)=\sum_{i=0}^{\infty} w_{i} Y_{t-i}
$$

as a weighted average of Y_{t}, Y_{t-1}, \ldots with geometrically decaying weights $w_{i}=$ const $\cdot \beta^{i} \quad 0<\beta<1$.

- From $\sum_{i=0}^{\infty} w_{i}=1$, we get

$$
w_{i}=(1-\beta) \beta^{i}=\alpha(1-\alpha)^{i}
$$

for $\alpha=1-\beta$ a smoothing constant

- Then

$$
\begin{aligned}
\widehat{L}_{t} & =\alpha Y_{t}+\alpha(1-\alpha) Y_{t-1}+\alpha(1-\alpha)^{2} Y_{t-2}+\ldots \\
& =\alpha Y_{t}+(1-\alpha) \underbrace{\left[\alpha Y_{t-1}+\alpha(1-\alpha) Y_{t-2}+\ldots\right]}_{\widehat{L}_{t-1}} \\
& =\alpha Y_{t}+(1-\alpha) \widehat{L}_{t-1}
\end{aligned}
$$

a recursive formula

Another point of view

Let say we want to find θ such that

$$
\min _{\theta} \sum_{j=0}^{\infty}\left(Y_{t-j}-\theta\right)^{2} w_{j}
$$

The solution is

$$
\widehat{\theta}=\sum_{j=0}^{\infty} w_{j} Y_{t-j}
$$

so for $w_{j}=\alpha(1-\alpha)^{j}$, we get \widehat{L}_{t}

Another point of view

Let say we want to find θ such that

$$
\min _{\theta} \sum_{j=0}^{\infty}\left(Y_{t-j}-\theta\right)^{2} w_{j}
$$

The solution is

$$
\widehat{\theta}=\sum_{j=0}^{\infty} w_{j} Y_{t-j}
$$

so for $w_{j}=\alpha(1-\alpha)^{j}$, we get \widehat{L}_{t}
Also see

$$
\widehat{Y}_{t+1}(t)=\widehat{L}_{t}=\widehat{L}_{t-1}+\alpha\left(Y_{t}-\widehat{L}_{t-1}\right)=\widehat{L}_{t-1}+\alpha \underbrace{\left(Y_{t}-\widehat{Y}_{t}(t-1)\right)}_{e_{t}}
$$

e_{t} one-step-ahead error

Practical issues

Recall $\widehat{L}_{t}=\widehat{Y}_{t+1}(t)$ and $\widehat{L}_{t}=\alpha Y_{t}+(1-\alpha) \widehat{L}_{t-1} \rightsquigarrow$

$$
\begin{aligned}
& \widehat{L}_{1}=\alpha Y_{1}+(1-\alpha) \widehat{L}_{0}, \\
& \widehat{L}_{2}=\alpha Y_{2}+(1-\alpha) \widehat{L}_{1}, \\
& \vdots \\
& \widehat{L}_{n}=\alpha Y_{n}+(1-\alpha) \widehat{L}_{n-1},
\end{aligned}
$$

and \hat{L}_{n} will be used for predictions
We need: choose \widehat{L}_{0}, α

See R examples

Practical issues

Recall $\widehat{L}_{t}=\widehat{Y}_{t+1}(t)$ and $\widehat{L}_{t}=\alpha Y_{t}+(1-\alpha) \widehat{L}_{t-1} \rightsquigarrow$

$$
\begin{aligned}
& \widehat{L}_{1}=\alpha Y_{1}+(1-\alpha) \widehat{L}_{0}, \\
& \widehat{L}_{2}=\alpha Y_{2}+(1-\alpha) \widehat{L}_{1}, \\
& \vdots \\
& \widehat{L}_{n}=\alpha Y_{n}+(1-\alpha) \widehat{L}_{n-1},
\end{aligned}
$$

and \hat{L}_{n} will be used for predictions
We need: choose \widehat{L}_{0}, α

- e.g. $\hat{L}_{0}=\frac{1}{K} \sum_{t=1}^{K} Y_{t}$ for small K, e.g. $K=6$

See R examples

Practical issues

Recall $\widehat{L}_{t}=\widehat{Y}_{t+1}(t)$ and $\widehat{L}_{t}=\alpha Y_{t}+(1-\alpha) \widehat{L}_{t-1} \rightsquigarrow$

$$
\begin{aligned}
& \widehat{L}_{1}=\alpha Y_{1}+(1-\alpha) \widehat{L}_{0} \\
& \widehat{L}_{2}=\alpha Y_{2}+(1-\alpha) \widehat{L}_{1}, \\
& \vdots \\
& \widehat{L}_{n}=\alpha Y_{n}+(1-\alpha) \widehat{L}_{n-1},
\end{aligned}
$$

and \hat{L}_{n} will be used for predictions
We need: choose \widehat{L}_{0}, α

- e.g. $\widehat{L}_{0}=\frac{1}{K} \sum_{t=1}^{K} Y_{t}$ for small K, e.g. $K=6$
- α chosen to minimize sum of squared errors

$$
S S E=\sum_{t=2}^{n} e_{t}^{2}=\sum_{t=2}^{n}\left(Y_{t}-\widehat{Y}_{t}(t-1)\right)^{2}=\sum_{t=2}^{n}\left(Y_{t}-\widehat{L}_{t-1}\right)^{2}
$$

See R examples

Prediction intervals

Recall that $e_{t}=Y_{t}-\widehat{L}_{t-1}$ and $\widehat{L}_{t}=\widehat{L}_{t-1}+\alpha e_{t}$. Assume that

$$
\begin{aligned}
& Y_{t}=L_{t-1}+\varepsilon_{t}, \\
& L_{t}=L_{t-1}+\alpha \varepsilon_{t} .
\end{aligned}
$$

So called state space model.
Prediction intervals

- can be constructed under normality and independence assumptions for ε_{t}
- modern approach: use bootstrap

Double exponential smoothing

Locally linear trend

$$
\operatorname{Tr}_{t+j}=L_{t}+B_{t} \cdot j
$$

L_{t} level, B_{t} slope

Then

$$
\widehat{Y}_{t+h}(t)=\widehat{L}_{t}+\widehat{B}_{t} h
$$

Double exponential smoothing

Locally linear trend

$$
\operatorname{Tr}_{t+j}=L_{t}+B_{t} \cdot j
$$

L_{t} level, B_{t} slope

Then

$$
\widehat{Y}_{t+h}(t)=\widehat{L}_{t}+\widehat{B}_{t} h
$$

Basic idea:

$$
\min _{\beta_{0 t}, \beta_{1 t}} \sum_{j=0}^{\infty}\left[Y_{t-j}-\beta_{0 t}-\beta_{1 t}(-j)\right]^{2} \cdot(1-\alpha)^{j}
$$

\rightsquigarrow recursive formulas (see the book)
More general approach: Holt's linear trend method (next week)

