
Week 3: Adaptive smoothing
(cont.)



Adaptive approaches: moving averages (linear filters)

T̂r t =
m∑

i=−m

wiyt−i ,

where
∑m

i=−m wi = 1 are weights

What did you read about
I derivation of wi under local polynomial trend of order r

This week:
I criterion for selection of r
I how to compute the edges
I other linear filters:

I simple wi =
1

2m+1
I filter for seasonal data centered moving average
I robust approach: take the median instead of the mean

See some R examples.
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Exponential smoothing

Assumption
Yt = Trt + Et = Lt + Et

where Lt is a level locally constant

Linear filters
I Aim: series decomposition

(trend elimination)
I T̂r t computed from

Yt−m, . . . ,Yt+m

Exponential smoothing
I Aim: forecast of future

values
I L̂t computed only from the

past Yt−i
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Exponential smoothing: motivation

Series Y1, . . . ,Yn, locally constant
I Naive forecasts of future Yn+h

Ŷn+h(n) =
1
n

n∑
t=1

Yt

gives the same weight to all observations. Or

Ŷn+h(n) = Yn

gives weight 1 to the last observation
I we typically want something in between

Ŷn+h(n) = L̂n,

where L̂ gives more weight to recent observations, but at the
same time takes into account all observations
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Idea of exponential smoothing
I Compute

L̂t = Ŷt+1(t) =
∞∑
i=0

wiYt−i

as a weighted average of Yt ,Yt−1, . . . with geometrically
decaying weights wi = const · β i 0 < β < 1.

I From
∑∞

i=0 wi = 1, we get

wi = (1 − β)β i = α(1 − α)i

for α = 1 − β a smoothing constant
I Then

L̂t = αYt + α(1 − α)Yt−1 + α(1 − α)2Yt−2 + . . .

= αYt + (1 − α) [αYt−1 + α(1 − α)Yt−2 + . . . ]︸ ︷︷ ︸
L̂t−1

= αYt + (1 − α)L̂t−1

a recursive formula
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Another point of view

Let say we want to find θ such that

min
θ

∞∑
j=0

(Yt−j − θ)2wj .

The solution is

θ̂ =
∞∑
j=0

wjYt−j ,

so for wj = α(1 − α)j , we get L̂t

Also see

Ŷt+1(t) = L̂t = L̂t−1 + α(Yt − L̂t−1) = L̂t−1 + α (Yt − Ŷt(t − 1))︸ ︷︷ ︸
et

et one-step-ahead error
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Practical issues
Recall L̂t = Ŷt+1(t) and L̂t = αYt + (1 − α)L̂t−1  

L̂1 = αY1 + (1 − α)L̂0,

L̂2 = αY2 + (1 − α)L̂1,

...

L̂n = αYn + (1 − α)L̂n−1,

and L̂n will be used for predictions

We need: choose L̂0, α

I e.g. L̂0 = 1
K

∑K
t=1 Yt for small K , e.g. K = 6

I α chosen to minimize sum of squared errors

SSE =
n∑

t=2

e2
t =

n∑
t=2

(Yt − Ŷt(t − 1))2 =
n∑

t=2

(Yt − L̂t−1)
2

See R examples
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Prediction intervals

Recall that et = Yt − L̂t−1 and L̂t = L̂t−1 + αet . Assume that

Yt = Lt−1 + εt ,

Lt = Lt−1 + αεt .

So called state space model.

Prediction intervals
I can be constructed under normality and independence

assumptions for εt

I modern approach: use bootstrap



Double exponential smoothing

Locally linear trend
Trt+j = Lt + Bt · j

Lt level, Bt slope

Then
Ŷt+h(t) = L̂t + B̂th

Basic idea:

min
β0t ,β1t

∞∑
j=0

[Yt−j − β0t − β1t(−j)]2 · (1 − α)j

 recursive formulas (see the book)

More general approach: Holt’s linear trend method (next week)
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