Week 2: Trend modelling

Nonlinear trends

• exponential $Tr_t = \alpha \beta^t$

- modified exponential $T_r = \gamma + \alpha \beta^t$
- logarithmic trend $Tr_t = \alpha + \beta \log(t)$

Iogistic

$$Tr_t = \frac{\gamma}{1 + \alpha \beta^t}$$

Gompertz

$$Tr_t = e^{\gamma + \alpha \beta^t}$$

Nonlinear \rightsquigarrow nonlinear least squares \rightsquigarrow need for starting values \rightsquigarrow formulas in the book

R: function nls()

Task: Try to plot the curves for various values of the parameters

Parametric modelling: summary

- 1. Plot the series
- 2. Choose several candidate models ~> fit them
- 3. Choose the best fitting model: graphical visualization, goodness-of-fit criteria
- 4. Explore the residuals.
 - If they can be considered as iid ~ you are done
 - ► If they exhibit a dependence ~> model for innovations

$$\widehat{T}r_t = \sum_{i=-m}^m w_i y_{t-i},$$

where $w_i \ge 0$, $\sum_{i=-m}^{m} w_i = 1$ are weights

How to choose the weights and m?

R functions filter, decompose

$$\widehat{T}r_t = \sum_{i=-m}^m w_i y_{t-i},$$

where $w_i \ge 0$, $\sum_{i=-m}^{m} w_i = 1$ are weights

How to choose the weights and m?

seasonal data

• monthly
$$\rightsquigarrow m = 6, w_i = \frac{1}{12}(1/2, 1, \dots, 1, 1/2)$$

R functions filter, decompose

$$\widehat{T}r_t = \sum_{i=-m}^m w_i y_{t-i},$$

where $w_i \ge 0$, $\sum_{i=-m}^{m} w_i = 1$ are weights

How to choose the weights and m?

seasonal data

• monthly
$$\rightsquigarrow m = 6, w_i = \frac{1}{12}(1/2, 1, \dots, 1, 1/2)$$

- non-seasonal data
 - the choice of m rather subjective
 - very often $w_i = \frac{1}{2m+1}$
 - book reading:
 - \hookrightarrow more fancy methods for w_i under local polynomial trends
 - \hookrightarrow "edges"

R functions filter, decompose