Week 2: Trend modelling

Nonlinear trends

- exponential $\operatorname{Tr}_{t}=\alpha \beta^{t}$
- modified exponential $T_{r}=\gamma+\alpha \beta^{t}$
- logarithmic trend $7 r_{t}=\alpha+\beta \log (t)$
- logistic

$$
\operatorname{Tr}_{t}=\frac{\gamma}{1+\alpha \beta^{t}}
$$

- Gompertz

$$
T r_{t}=e^{\gamma+\alpha \beta^{t}}
$$

Nonlinear \rightsquigarrow nonlinear least squares \rightsquigarrow need for starting values \rightsquigarrow formulas in the book

R: function nls()
Task: Try to plot the curves for various values of the parameters

Parametric modelling: summary

1. Plot the series
2. Choose several candidate models \rightsquigarrow fit them
3. Choose the best fitting model: graphical visualization, goodness-of-fit criteria
4. Explore the residuals.

- If they can be considered as iid \rightsquigarrow you are done
- If they exhibit a dependence \rightsquigarrow model for innovations

Adaptive approaches: moving averages (linear filters)

Adaptive approaches: moving averages (linear filters)

$$
\widehat{\operatorname{Tr}}_{t}=\sum_{i=-m}^{m} w_{i} y_{t-i}
$$

where $w_{i} \geq 0, \sum_{i=-m}^{m} w_{i}=1$ are weights
How to choose the weights and m ?

R functions filter, decompose

Adaptive approaches: moving averages (linear filters)

$$
\widehat{\operatorname{Tr}}_{t}=\sum_{i=-m}^{m} w_{i} y_{t-i}
$$

where $w_{i} \geq 0, \sum_{i=-m}^{m} w_{i}=1$ are weights
How to choose the weights and m ?

- seasonal data
- monthly $\rightsquigarrow m=6, w_{i}=\frac{1}{12}(1 / 2,1, \ldots, 1,1 / 2)$

R functions filter, decompose

Adaptive approaches: moving averages (linear filters)

$$
\widehat{\operatorname{Tr}}_{t}=\sum_{i=-m}^{m} w_{i} y_{t-i}
$$

where $w_{i} \geq 0, \sum_{i=-m}^{m} w_{i}=1$ are weights
How to choose the weights and m ?

- seasonal data
- monthly $\rightsquigarrow m=6, w_{i}=\frac{1}{12}(1 / 2,1, \ldots, 1,1 / 2)$
- non-seasonal data
- the choice of m rather subjective
- very often $w_{i}=\frac{1}{2 m+1}$
- book reading:
\hookrightarrow more fancy methods for w_{i} under local polynomial trends
\hookrightarrow "edges"
R functions filter, decompose

