
Week 10:

SARIMA
Predictions

Financial time series



Last week

↪→ different kinds of non-stationarity (deterministic vs. stochastic)
↪→ ARIMA models
↪→ unit root tests



ARIMA model

ARIMA(p,d ,q):

ϕ(B)(1− B)d︸ ︷︷ ︸
∆d

Yt = α + θ(B)εt

where
↪→ {εt} is WN
↪→

ϕ(B) = 1− φ1z − φ2z2 − . . .− φpzp,

θ(B) = 1 + θ1z + · · ·+ θqzq ,

such that the roots of ϕ(z) lie outside the unit circle
↪→ ∆ differencing operator



Stochastic seasonality

Example: log of monthly numbers of airline passengers in 1949 to
1960
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Example (cont.)
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SARIMA model for monthly observations
↪→ ARIMA(P,D,Q) for each month (same models)

Φ(B12)∆D
12Yt = Θ(B12)ηt ,

where ∆12 = 1− B12 and {ηt} random component (not WN)
↪→ model {ηt} via ARIMA(p,d ,q) model

ϕ(B)∆dηt = θ(B)εt ,

where {εt} is a white noise

Then

ϕ(B)∆d Φ(B12)∆D
12Yt = Θ(B12)ϕ(B)∆dηt︸ ︷︷ ︸

θ(B)εt

= Θ(B12)θ(B)εt ,

i.e the resulting model

ϕ(B)Φ(B12)∆d ∆D
12Yt = Θ(B12)θ(B)εt

multiplicative seasonal process SARIMA (p,d ,q)× (P,D,Q)12
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Example

SARIMA (0,1,1)× (0,1,1)12 (so called airline model)

(1− B)(1− B12)Yt = (1 + Θ1B12)(1 + θ1B)εt

or equivalently

Yt − Yt−1 − Yt−12 + Yt−13 = εt + θ1εt−1 + Θ1εt−12 + θ1Θ1εt−13.

I How to choose (p,d ,q)× (P,D,Q) for a given data?
d ,D: exploratory graphs
p,q,P,Q typically based on information criteria

I seasonality for different s number of seasons analogously
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Example (cont.)
> a = auto.arima(y, d = 1,D=1)

> a

Series: y

ARIMA(0,1,1)(0,1,1)[12]

Coefficients:

ma1 sma1

-0.401828016756 -0.556944838448

s.e. 0.089643846165 0.073099677314

sigma^2 = 0.00137126000392: log likelihood = 244.7

AIC=-483.4 AICc=-483.21 BIC=-474.77

+ model verification



Predictions



Predictions for ARMA(p,q)
Consider a stationary and invertible model

Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q

and data Y1, . . . ,Yn from this process

Aim: Construct a prediction Ŷn+k = Ŷn+k (n) of Yn+k based on
information known upon time n for k ≥ 1
↪→ linear prediction with minimal error

Time

n n+k



Theoretical prediction
Ŷn+k linear in the whole past {Ys, s ≤ n} = {Ys}n

s=−∞
I stationarity 

Yt =
∞∑
j=0

ψjεt−j

with ψ0 = 1 and

Yn+k =
∞∑
j=0

ψjεn+k−j = εn+k +ψ1εn+k−1+· · ·+ψkεn+ψk+1εn−1+. . .

I If we know {Ys}n
s=−∞ + invertibility we know {εs}n

s=−∞

I  prediction Ŷn+k linear in {εs}n
s=−∞ such that

E(Yn+k − Ŷn+k )2 → min

I solution

Ŷn+k = ψkεn + ψk+1εn−1 + · · · =
∞∑

j=k

ψjεn+k−j
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E(Yn+k − Ŷn+k )2 → min

I solution
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E(Yn+k − Ŷn+k )2 → min

I solution
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Theoretical prediction (cont.)

Error of the prediction

en+k = Yn+k − Ŷn+k =
k−1∑
j=0

ψjεn+k−j

and en+1 = εt (innovation).

Variance of the error

Var en+k = σ2
k−1∑
j=0

ψ2
j

(formula useful for prediction intervals)



Practical construction of predictions

Model
Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + εt + · · ·+ θqεt−q

1. Estimate parameters ϕ̂1, . . . , θ̂q

2. Compute recursively

Ŷn+k = ϕ̂1Ŷn+k−1 + · · ·+ ϕ̂pŶn+k−p + ε̂n+k + · · ·+ θ̂q ε̂n+k−q ,

where

Ŷn+j =

{
Yn+j j ≤ 0,
Ŷn+j j > 0,

and

ε̂n+j =

{
0 j > 0,
Yn+j − Ŷn+j (n + j − 1) j ≤ 0,

where Ŷk (k − 1) is prediction of Yk based on data up to time
k − 1



Example: AR(2) model
Model

Yt = ϕ1Yt−1 + ϕ2Yt−2 + εt

and data Y1, . . . ,Yn.

Then

Ŷn+1 = ϕ̂1Yn + ϕ̂2Yn−1,

Ŷn+2 = ϕ̂1Ŷn+1 + ϕ̂2Yn,

Ŷn+3 = ϕ̂1Ŷn+2 + ϕ̂2Ŷn+1,

...
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Example: ARMA(1,1) model
Model

Yt = ϕ1Yt−1 + εt + θ1εt−1

and data Y1, . . . ,Yn:

Ŷn+1 = ϕ̂1Yn + θ̂1ε̂n,

Ŷn+2 = ϕ̂1Ŷn+1,

Ŷn+3 = ϕ̂1Ŷn+2,

...

where ε̂n is computed recursively from

εt = Yt − ϕ1Yt−1 − θ1εt−1

Set ε0 = 0 and Y0 arbitrary (reasonably), then

ε̂1 = Y1 − ϕ̂1Y0 − 0,

ε̂2 = Y2 − ϕ̂1Y1 − θ̂1ε̂1,

...

ε̂n = Yn − ϕ̂1Yn−1 − θ̂1ε̂n−1



Example: prediction

Further examples read in the book: page 167–169



Interval predictions

Theoretical prediction:

Ŷn+k =
∞∑

j=k

ψjεt+k−j

with error

en+k = Yn+k − Ŷn+k =
k−1∑
j=0

ψjεn+k−j

Assumption: εi are iid from N(0, σ2)

Let Fn = σ{Ys, s ≤ n} = σ{εs, s ≤ n}. Then
I en+k is independent of Fn

I

en+k ∼ N

0, σ2
k−1∑
j=0

ψ2
j





Interval predictions (cont.)
Hence
I

Yn+k − Ŷn+k ∼ N

0, σ2
k−1∑
j=0

ψ2
j


Yn+k − Ŷn+k

σ
√∑k−1

j=0 ψ
2
j

∼ N (0,1)

I If σ2 and ψj were known prediction interval with confidence
1− αŶn+k − u1−α/2σ

√√√√k−1∑
j=0

ψ2
j , Ŷn+k + u1−α/2σ

√√√√k−1∑
j=0

ψ2
j



I In practice: replace σ2 and ψj with estimates no exact
prescribed confidence, but typically acceptable

I How to get estimates of the MA(∞) representation
Yt =

∑∞
j=0 ψjεt−j?

 estimate AR and MA polynomials use Taylor expansion on
their ratio
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1− αŶn+k − u1−α/2σ

√√√√k−1∑
j=0

ψ2
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j , Ŷn+k + u1−α/2σ

√√√√k−1∑
j=0

ψ2
j


I In practice: replace σ2 and ψj with estimates no exact

prescribed confidence, but typically acceptable
I How to get estimates of the MA(∞) representation

Yt =
∑∞

j=0 ψjεt−j?
 estimate AR and MA polynomials use Taylor expansion on
their ratio



Prediction intervals based on bootstrap

Time

x

0 10 20 30 40 50

−
2

−
1

0
1

2
3



Prediction intervals based on bootstrap
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Prediction intervals based on bootstrap

Setting:
↪→ data Y1, . . . ,Yn,
↪→ estimated model parameters φ

↪→ residuals ε̂t  normalized residuals

ε̂∗t = ε̂t −
1
n

n∑
t=1

ε̂t

Idea: For b = 1, . . . ,B
1. Simulate possible future values for Y b

n+1, . . . ,Y
b
n+k from the

original series Y1, . . . ,Yn and φ̂ (using the estimated model) and
innovations sampled from ε̂∗1, . . . , ε̂

∗
n.

2. For each j = 1, . . . , k compute 0.025 and 0.975 sample quantiles
from Y b

n+j to get the prediction intervals.
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Prediction intervals based on bootstrap
Setting:
↪→ data Y1, . . . ,Yn,
↪→ estimated model parameters φ

↪→ residuals ε̂t  normalized residuals

ε̂∗t = ε̂t −
1
n

n∑
t=1
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Algorithm: For b = 1, . . . ,B

1. Simulate {Y (b)
t } from the same model using the estimated

parameters and innovations resampled from ε̂∗1, . . . , ε̂
∗
n.

2. Compute φ̂
(b)

.
3. Simulate possible future values for Y b
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b
n+k from the
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Financial time series: Volatility
modelling using ARCH and

GARCH model



Motivation

Let Yt follow a stationary and invertible ARMA(p,q) model and
Ft−1 = σ{Ys, εs, s ≤ t − 1}.

Then we can write

Yt = ϕ1Yt−1 + · · ·+ ϕpYt−p + θ1εt−1 + · · ·+ θqεt−q︸ ︷︷ ︸
µ(Ft−1)

+εt

where
↪→ µ is linear in Ft−1

↪→
Var (Yt |Ft−1) = Var (εt |Ft−1) = Var εt = σ2

so the data are conditionally homoscedastic

However, many financial time series are conditionally heteroscedastic



Volatility

= conditional variance (of e.g. underlying asset return) not
directly observable

I important factor in options trading, risk management
I modelling volatility improvement in prediction intervals

Jan 03
2017

Jul 03
2017

Jan 02
2018

Jul 02
2018

Jan 02
2019

Jul 01
2019

Jan 02
2020

Jul 01
2020

Jan 04
2021

Jul 01
2021

Dec 31
2021

IBM Daily Returns 2017−01−03 / 2022−01−31

−0.10

−0.05

 0.00

 0.05

 0.10



Characteristics of volatility for log-returns
I volatility clustering
I leverage effect (asymmetry of the impact of past positive and

negative log returns)
(read more in the book, part 8.1)
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Moreover, log-returns are often
I uncorrelated, but not independent
I heavy-tailed



Conditionally heteroscedastic white noise
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A sequence {et} can be a dependent white noise
I {et} are uncorrelated and Var et = σ2

I the conditional variance

Var [et |et−1,et−2, . . . ] is a function of the past observations



General time series model
If Ft−1 = σ{Ys, s ≤ t − 1}

Yt = µ(Ft−1) + σ(Ft−1)εt

where εt are iid (0,1) and εt is independent of Fs for s ≤ t

Then

E[Yt |Ft−1] = µ(Ft−1) + σ(Ft−1)E[εt |Ft−1] = µ(Ft−1),

Var [Yt |Ft−1] = σ(Ft−1)2.

I ARMA: model for µ linear in Ft−1

I we now focus on nonlinear modelling of σ(Ft−1)

et = σtεt , σt = σ(Ft−1)

application: either to residuals from a fitted ARMA (or regression
model), or series with µ ≡ 0 (white noise)



ARCH model
ARCH (autoregressive conditional heteroscedasticity) by Engle
(1982). He observed that
↪→ Financial time series are heteroscedastic, i.e., their volatility

changes in time.
↪→ The volatility is a simple quadratic function of past prediction

errors.

ARCH(r ) model:

et = σtεt ,

σ2
t = α0 + α1e2

t−1 + · · ·+ αr e2
t−r

where εt are iid
Eεt = 0, Var εt = 1

and

α0 > 0, α1, . . . , αr ∈ [0,1),
r∑

i=1

αi < 1 (A)



Conditional expectation

Let X ,Y be random vectors with finite means. Then

EX = E[E(X |Y )],

Var X = EVar [X |Y ] + Var E[X |Y ],

and
E[Xg(Y )|Y ] = g(Y )E[X |Y ]

for any measurable function g. Furthermore,

Cov (X ,Y ) = Cov (X ,E[Y |X ]).

If F ⊂ G
E[X |F ] = E[E[X ||G]|F ] = E[E[X ||F ]|G].


