Week 10:

SARIMA

Predictions
Financial time series

Last week

\hookrightarrow different kinds of non-stationarity (deterministic vs. stochastic)
\hookrightarrow ARIMA models
\hookrightarrow unit root tests

ARIMA model

$\operatorname{ARIMA}(p, d, q):$

$$
\varphi(B) \underbrace{(1-B)^{d}}_{\Delta^{d}} Y_{t}=\alpha+\theta(B) \varepsilon_{t}
$$

where
$\hookrightarrow\left\{\varepsilon_{t}\right\}$ is WN
\hookrightarrow

$$
\begin{aligned}
\varphi(B) & =1-\phi_{1} z-\phi_{2} z^{2}-\ldots-\phi_{p} z^{p}, \\
\theta(B) & =1+\theta_{1} z+\cdots+\theta_{q} z^{q},
\end{aligned}
$$

such that the roots of $\varphi(z)$ lie outside the unit circle
$\hookrightarrow \Delta$ differencing operator

Stochastic seasonality

Example: log of monthly numbers of airline passengers in 1949 to 1960

Stochastic seasonality

Example: log of monthly numbers of airline passengers in 1949 to 1960

\rightsquigarrow need to model the trend as well as seasonality

Example (cont.)

SARIMA model for monthly observations

$\hookrightarrow \operatorname{ARIMA}(P, D, Q)$ for each month (same models)

$$
\Phi\left(B^{12}\right) \Delta_{12}^{D} Y_{t}=\Theta\left(B^{12}\right) \eta_{t}
$$

where $\Delta_{12}=1-B^{12}$ and $\left\{\eta_{t}\right\}$ random component (not WN)
\hookrightarrow model $\left\{\eta_{t}\right\}$ via $\operatorname{ARIMA}(p, d, q)$ model

$$
\varphi(B) \Delta^{d} \eta_{t}=\theta(B) \varepsilon_{t}
$$

where $\left\{\varepsilon_{t}\right\}$ is a white noise

SARIMA model for monthly observations

$\hookrightarrow \operatorname{ARIMA}(P, D, Q)$ for each month (same models)

$$
\Phi\left(B^{12}\right) \Delta_{12}^{D} Y_{t}=\Theta\left(B^{12}\right) \eta_{t}
$$

where $\Delta_{12}=1-B^{12}$ and $\left\{\eta_{t}\right\}$ random component (not WN)
\hookrightarrow model $\left\{\eta_{t}\right\}$ via $\operatorname{ARIMA}(p, d, q)$ model

$$
\varphi(B) \Delta^{d} \eta_{t}=\theta(B) \varepsilon_{t}
$$

where $\left\{\varepsilon_{t}\right\}$ is a white noise
Then

$$
\varphi(B) \Delta^{d} \Phi\left(B^{12}\right) \Delta_{12}^{D} Y_{t}=\Theta\left(B^{12}\right) \underbrace{\varphi(B) \Delta^{d} \eta_{t}}_{\theta(B) \varepsilon_{t}}=\Theta\left(B^{12}\right) \theta(B) \varepsilon_{t}
$$

i.e the resulting model

$$
\varphi(B) \Phi\left(B^{12}\right) \Delta^{d} \Delta_{12}^{D} Y_{t}=\Theta\left(B^{12}\right) \theta(B) \varepsilon_{t}
$$

multiplicative seasonal process SARIMA $(p, d, q) \times(P, D, Q)_{12}$

Example

SARIMA $(0,1,1) \times(0,1,1)_{12}$ (so called airline model)

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\left(1+\Theta_{1} B^{12}\right)\left(1+\theta_{1} B\right) \varepsilon_{t}
$$

or equivalently

$$
Y_{t}-Y_{t-1}-Y_{t-12}+Y_{t-13}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\Theta_{1} \varepsilon_{t-12}+\theta_{1} \Theta_{1} \varepsilon_{t-13}
$$

Example

SARIMA $(0,1,1) \times(0,1,1)_{12}$ (so called airline model)

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\left(1+\Theta_{1} B^{12}\right)\left(1+\theta_{1} B\right) \varepsilon_{t}
$$

or equivalently

$$
Y_{t}-Y_{t-1}-Y_{t-12}+Y_{t-13}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\Theta_{1} \varepsilon_{t-12}+\theta_{1} \Theta_{1} \varepsilon_{t-13}
$$

- How to choose $(p, d, q) \times(P, D, Q)$ for a given data?
d, D : exploratory graphs
p, q, P, Q typically based on information criteria

Example

SARIMA $(0,1,1) \times(0,1,1)_{12}$ (so called airline model)

$$
(1-B)\left(1-B^{12}\right) Y_{t}=\left(1+\Theta_{1} B^{12}\right)\left(1+\theta_{1} B\right) \varepsilon_{t}
$$

or equivalently

$$
Y_{t}-Y_{t-1}-Y_{t-12}+Y_{t-13}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\Theta_{1} \varepsilon_{t-12}+\theta_{1} \Theta_{1} \varepsilon_{t-13}
$$

- How to choose $(p, d, q) \times(P, D, Q)$ for a given data?
d, D : exploratory graphs
p, q, P, Q typically based on information criteria
- seasonality for different s number of seasons analogously

Example (cont.)

```
> a = auto.arima(y, d = 1,D=1)
> a
Series: y
ARIMA (0, 1, 1)(0, 1, 1)[12]
```

Coefficients:

	ma1	sma1
	-0.401828016756	-0.556944838448
s.e.	0.089643846165	0.073099677314

sigma^2 $=0.00137126000392:$ log likelihood $=244.7$
$\mathrm{AIC}=-483.4 \quad \mathrm{AICc}=-483.21 \quad \mathrm{BIC}=-474.77$

+ model verification

Predictions

Predictions for $\operatorname{ARMA}(p, q)$

Consider a stationary and invertible model

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}
$$

and data Y_{1}, \ldots, Y_{n} from this process
Aim: Construct a prediction $\widehat{Y}_{n+k}=\widehat{Y}_{n+k}(n)$ of Y_{n+k} based on information known upon time n for $k \geq 1$
\hookrightarrow linear prediction with minimal error

Time

Theoretical prediction

\widehat{Y}_{n+k} linear in the whole past $\left\{Y_{s}, s \leq n\right\}=\left\{Y_{s}\right\}_{s=-\infty}^{n}$

- stationarity \rightsquigarrow

$$
Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

with $\psi_{0}=1$ and
$Y_{n+k}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{n+k-j}=\varepsilon_{n+k}+\psi_{1} \varepsilon_{n+k-1}+\cdots+\psi_{k} \varepsilon_{n}+\psi_{k+1} \varepsilon_{n-1}+\ldots$

Theoretical prediction

\widehat{Y}_{n+k} linear in the whole past $\left\{Y_{s}, s \leq n\right\}=\left\{Y_{s}\right\}_{s=-\infty}^{n}$

- stationarity \rightsquigarrow

$$
Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

with $\psi_{0}=1$ and

$$
Y_{n+k}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{n+k-j}=\varepsilon_{n+k}+\psi_{1} \varepsilon_{n+k-1}+\cdots+\psi_{k} \varepsilon_{n}+\psi_{k+1} \varepsilon_{n-1}+\ldots
$$

- If we know $\left\{Y_{s}\right\}_{s=-\infty}^{n}+$ invertibility \rightsquigarrow we know $\left\{\varepsilon_{s}\right\}_{s=-\infty}^{n}$

Theoretical prediction

\widehat{Y}_{n+k} linear in the whole past $\left\{Y_{s}, s \leq n\right\}=\left\{Y_{s}\right\}_{s=-\infty}^{n}$

- stationarity \rightsquigarrow

$$
Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

with $\psi_{0}=1$ and

$$
Y_{n+k}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{n+k-j}=\varepsilon_{n+k}+\psi_{1} \varepsilon_{n+k-1}+\cdots+\psi_{k} \varepsilon_{n}+\psi_{k+1} \varepsilon_{n-1}+\ldots
$$

- If we know $\left\{Y_{s}\right\}_{s=-\infty}^{n}+$ invertibility \rightsquigarrow we know $\left\{\varepsilon_{s}\right\}_{s=-\infty}^{n}$
- \rightsquigarrow prediction \widehat{Y}_{n+k} linear in $\left\{\varepsilon_{s}\right\}_{s=-\infty}^{n}$ such that

$$
\mathrm{E}\left(Y_{n+k}-\widehat{Y}_{n+k}\right)^{2} \rightarrow \min
$$

Theoretical prediction

\widehat{Y}_{n+k} linear in the whole past $\left\{Y_{s}, s \leq n\right\}=\left\{Y_{s}\right\}_{s=-\infty}^{n}$

- stationarity \rightsquigarrow

$$
Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

with $\psi_{0}=1$ and

$$
Y_{n+k}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{n+k-j}=\varepsilon_{n+k}+\psi_{1} \varepsilon_{n+k-1}+\cdots+\psi_{k} \varepsilon_{n}+\psi_{k+1} \varepsilon_{n-1}+\ldots
$$

- If we know $\left\{Y_{s}\right\}_{s=-\infty}^{n}+$ invertibility \rightsquigarrow we know $\left\{\varepsilon_{s}\right\}_{s=-\infty}^{n}$
- \rightsquigarrow prediction \widehat{Y}_{n+k} linear in $\left\{\varepsilon_{s}\right\}_{s=-\infty}^{n}$ such that

$$
\mathrm{E}\left(Y_{n+k}-\widehat{Y}_{n+k}\right)^{2} \rightarrow \min
$$

- solution

$$
\widehat{Y}_{n+k}=\psi_{k} \varepsilon_{n}+\psi_{k+1} \varepsilon_{n-1}+\cdots=\sum_{j=k}^{\infty} \psi_{j} \varepsilon_{n+k-j}
$$

Theoretical prediction (cont.)

Error of the prediction

$$
e_{n+k}=Y_{n+k}-\widehat{Y}_{n+k}=\sum_{j=0}^{k-1} \psi_{j} \varepsilon_{n+k-j}
$$

and $e_{n+1}=\varepsilon_{t}$ (innovation).
Variance of the error

$$
\operatorname{Var} e_{n+k}=\sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}
$$

(formula useful for prediction intervals)

Practical construction of predictions

Model

$$
Y_{t}=\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\varepsilon_{t}+\cdots+\theta_{q} \varepsilon_{t-q}
$$

1. Estimate parameters $\widehat{\varphi}_{1}, \ldots, \widehat{\theta}_{q}$
2. Compute recursively

$$
\widehat{Y}_{n+k}=\widehat{\varphi}_{1} \widehat{Y}_{n+k-1}+\cdots+\widehat{\varphi}_{p} \widehat{Y}_{n+k-p}+\widehat{\varepsilon}_{n+k}+\cdots+\widehat{\theta}_{q} \widehat{\varepsilon}_{n+k-q},
$$

where

$$
\widehat{Y}_{n+j}= \begin{cases}Y_{n+j} & j \leq 0, \\ \widehat{Y}_{n+j} & j>0,\end{cases}
$$

and

$$
\widehat{\varepsilon}_{n+j}= \begin{cases}0 & j>0 \\ Y_{n+j}-\widehat{Y}_{n+j}(n+j-1) & j \leq 0\end{cases}
$$

where $\widehat{Y}_{k}(k-1)$ is prediction of Y_{k} based on data up to time $k-1$

Example: AR(2) model

Model

$$
Y_{t}=\varphi_{1} Y_{t-1}+\varphi_{2} Y_{t-2}+\varepsilon_{t}
$$

and data Y_{1}, \ldots, Y_{n}.
Then

$$
\begin{aligned}
& \widehat{Y}_{n+1}=\widehat{\varphi}_{1} Y_{n}+\widehat{\varphi}_{2} Y_{n-1}, \\
& \widehat{Y}_{n+2}=\widehat{\varphi}_{1} \widehat{Y}_{n+1}+\widehat{\varphi}_{2} Y_{n}, \\
& \widehat{Y}_{n+3}=\widehat{\varphi}_{1} \widehat{Y}_{n+2}+\widehat{\varphi}_{2} \widehat{Y}_{n+1},
\end{aligned}
$$

Time

Example: ARMA(1,1) model

Model

$$
Y_{t}=\varphi_{1} Y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}
$$

and data Y_{1}, \ldots, Y_{n} :

$$
\begin{aligned}
& \widehat{Y}_{n+1}=\widehat{\varphi}_{1} Y_{n}+\widehat{\theta}_{1} \widehat{\varepsilon}_{n} \\
& \widehat{Y}_{n+2}=\widehat{\varphi}_{1} \widehat{Y}_{n+1} \\
& \widehat{Y}_{n+3}=\widehat{\varphi}_{1} \widehat{Y}_{n+2}
\end{aligned}
$$

where $\widehat{\varepsilon}_{n}$ is computed recursively from

$$
\varepsilon_{t}=Y_{t}-\varphi_{1} Y_{t-1}-\theta_{1} \varepsilon_{t-1}
$$

Set $\varepsilon_{0}=0$ and Y_{0} arbitrary (reasonably), then

$$
\begin{aligned}
& \widehat{\varepsilon}_{1}=Y_{1}-\widehat{\varphi}_{1} Y_{0}-0, \\
& \widehat{\varepsilon}_{2}=Y_{2}-\widehat{\varphi}_{1} Y_{1}-\widehat{\theta}_{1} \widehat{\varepsilon}_{1}, \\
& \vdots \\
& \widehat{\varepsilon}_{n}=Y_{n}-\widehat{\varphi}_{1} Y_{n-1}-\widehat{\theta}_{1} \widehat{\varepsilon}_{n-1}
\end{aligned}
$$

Example: prediction

Further examples \rightsquigarrow read in the book: page 167-169

Interval predictions

Theoretical prediction:

$$
\widehat{Y}_{n+k}=\sum_{j=k}^{\infty} \psi_{j} \varepsilon_{t+k-j}
$$

with error

$$
e_{n+k}=Y_{n+k}-\widehat{Y}_{n+k}=\sum_{j=0}^{k-1} \psi_{j} \varepsilon_{n+k-j}
$$

Assumption: ε_{i} are iid from $\mathrm{N}\left(0, \sigma^{2}\right)$
Let $\mathcal{F}_{n}=\sigma\left\{Y_{s}, \boldsymbol{s} \leq n\right\}=\sigma\left\{\varepsilon_{s}, s \leq n\right\}$. Then

- e_{n+k} is independent of \mathcal{F}_{n}

$$
e_{n+k} \sim \mathrm{~N}\left(0, \sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}\right)
$$

Interval predictions (cont.) Hence

$$
\begin{aligned}
& Y_{n+k}-\widehat{Y}_{n+k} \sim \mathrm{~N}\left(0, \sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}\right) \\
& \frac{Y_{n+k}-\widehat{Y}_{n+k}}{\sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

- If σ^{2} and ψ_{j} were known \rightsquigarrow prediction interval with confidence $1-\alpha$

$$
\left(\widehat{Y}_{n+k}-u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}, \widehat{Y}_{n+k}+u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}\right)
$$

Interval predictions (cont.)

Hence

$$
\begin{aligned}
& Y_{n+k}-\widehat{Y}_{n+k} \sim \mathrm{~N}\left(0, \sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}\right) \\
& \frac{Y_{n+k}-\widehat{Y}_{n+k}}{\sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

- If σ^{2} and ψ_{j} were known \rightsquigarrow prediction interval with confidence $1-\alpha$

$$
\left(\widehat{Y}_{n+k}-u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}, \widehat{Y}_{n+k}+u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}\right)
$$

- In practice: replace σ^{2} and ψ_{j} with estimates \rightsquigarrow no exact prescribed confidence, but typically acceptable

Interval predictions (cont.)

Hence

$$
\begin{aligned}
& Y_{n+k}-\widehat{Y}_{n+k} \sim \mathrm{~N}\left(0, \sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}\right) \\
& \frac{Y_{n+k}-\widehat{Y}_{n+k}}{\sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

- If σ^{2} and ψ_{j} were known \rightsquigarrow prediction interval with confidence $1-\alpha$

$$
\left(\widehat{Y}_{n+k}-u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}, \widehat{Y}_{n+k}+u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}\right)
$$

- In practice: replace σ^{2} and ψ_{j} with estimates \rightsquigarrow no exact prescribed confidence, but typically acceptable
- How to get estimates of the MA(∞) representation $Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}$?

Interval predictions (cont.)

Hence

$$
\begin{aligned}
& Y_{n+k}-\widehat{Y}_{n+k} \sim \mathrm{~N}\left(0, \sigma^{2} \sum_{j=0}^{k-1} \psi_{j}^{2}\right) \\
& \frac{Y_{n+k}-\widehat{Y}_{n+k}}{\sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}} \sim \mathrm{~N}(0,1)
\end{aligned}
$$

- If σ^{2} and ψ_{j} were known \rightsquigarrow prediction interval with confidence $1-\alpha$

$$
\left(\widehat{Y}_{n+k}-u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}, \widehat{Y}_{n+k}+u_{1-\alpha / 2} \sigma \sqrt{\sum_{j=0}^{k-1} \psi_{j}^{2}}\right)
$$

- In practice: replace σ^{2} and ψ_{j} with estimates \rightsquigarrow no exact prescribed confidence, but typically acceptable
- How to get estimates of the $\mathrm{MA}(\infty)$ representation $Y_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}$?
\rightsquigarrow estimate AR and MA polynomials \rightsquigarrow use Taylor expansion on their ratio

Prediction intervals based on bootstrap

Prediction intervals based on bootstrap

Prediction intervals based on bootstrap

Setting:
\hookrightarrow data Y_{1}, \ldots, Y_{n},
\hookrightarrow estimated model parameters ϕ
\hookrightarrow residuals $\widehat{\varepsilon}_{t} \rightsquigarrow$ normalized residuals

$$
\widehat{\varepsilon}_{t}^{*}=\widehat{\varepsilon}_{t}-\frac{1}{n} \sum_{t=1}^{n} \widehat{\varepsilon}_{t}
$$

Prediction intervals based on bootstrap

Setting:
\hookrightarrow data Y_{1}, \ldots, Y_{n},
\hookrightarrow estimated model parameters ϕ
\hookrightarrow residuals $\widehat{\varepsilon}_{t} \rightsquigarrow$ normalized residuals

$$
\widehat{\varepsilon}_{t}^{*}=\widehat{\varepsilon}_{t}-\frac{1}{n} \sum_{t=1}^{n} \widehat{\varepsilon}_{t}
$$

Idea: For $b=1, \ldots, B$

1. Simulate possible future values for $Y_{n+1}^{b}, \ldots, Y_{n+k}^{b}$ from the original series Y_{1}, \ldots, Y_{n} and $\widehat{\phi}$ (using the estimated model) and innovations sampled from $\widehat{\varepsilon}_{1}^{*}, \ldots, \widehat{\varepsilon}_{n}^{*}$.
2. For each $j=1, \ldots, k$ compute 0.025 and 0.975 sample quantiles from Y_{n+j}^{b} to get the prediction intervals.

Prediction intervals based on bootstrap

Setting:
\hookrightarrow data Y_{1}, \ldots, Y_{n},
\hookrightarrow estimated model parameters ϕ
\hookrightarrow residuals $\widehat{\varepsilon}_{t} \rightsquigarrow$ normalized residuals

$$
\widehat{\varepsilon}_{t}^{*}=\widehat{\varepsilon}_{t}-\frac{1}{n} \sum_{t=1}^{n} \widehat{\varepsilon}_{t}
$$

Prediction intervals based on bootstrap

Setting:

\hookrightarrow data Y_{1}, \ldots, Y_{n},
\hookrightarrow estimated model parameters ϕ
\hookrightarrow residuals $\widehat{\varepsilon}_{t} \rightsquigarrow$ normalized residuals

$$
\widehat{\varepsilon}_{t}^{*}=\widehat{\varepsilon}_{t}-\frac{1}{n} \sum_{t=1}^{n} \widehat{\varepsilon}_{t}
$$

Algorithm: For $b=1, \ldots, B$

1. Simulate $\left\{Y_{t}^{(b)}\right\}$ from the same model using the estimated parameters and innovations resampled from $\widehat{\varepsilon}_{1}^{*}, \ldots, \widehat{\varepsilon}_{n}^{*}$.
2. Compute $\widehat{\phi}^{(b)}$.
3. Simulate possible future values for $Y_{n+1}^{b}, \ldots, Y_{n+k}^{b}$ from the original series Y_{1}, \ldots, Y_{n} and $\widehat{\phi}^{(b)}$ and innovations sampled from $\widehat{\varepsilon}_{1}^{*}, \ldots, \widehat{\varepsilon}_{n}^{*}$.
For each $j=1, \ldots, k$ compute 0.025 and 0.975 sample quantiles to get the prediction intervals.

Financial time series: Volatility modelling using ARCH and GARCH model

Motivation

Let Y_{t} follow a stationary and invertible $\operatorname{ARMA}(p, q)$ model and $\mathcal{F}_{t-1}=\sigma\left\{Y_{s}, \varepsilon_{s}, s \leq t-1\right\}$.
Then we can write

$$
Y_{t}=\underbrace{\varphi_{1} Y_{t-1}+\cdots+\varphi_{p} Y_{t-p}+\theta_{1} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}}_{\mu\left(\mathcal{F}_{t-1}\right)}+\varepsilon_{t}
$$

where
$\hookrightarrow \mu$ is linear in \mathcal{F}_{t-1}

$$
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{t-1}\right)=\operatorname{Var}\left(\varepsilon_{t} \mid \mathcal{F}_{t-1}\right)=\operatorname{Var} \varepsilon_{t}=\sigma^{2}
$$

so the data are conditionally homoscedastic

However, many financial time series are conditionally heteroscedastic

Volatility

$=$ conditional variance (of e.g. underlying asset return) \rightsquigarrow not directly observable

- important factor in options trading, risk management
- modelling volatility \rightsquigarrow improvement in prediction intervals

Characteristics of volatility for log-returns

- volatility clustering
- leverage effect (asymmetry of the impact of past positive and negative log returns)
(read more in the book, part 8.1)

Moreover, log-returns are often

- uncorrelated, but not independent
- heavy-tailed

Conditionally heteroscedastic white noise

Series r

Series r^{\wedge} 2

A sequence $\left\{e_{t}\right\}$ can be a dependent white noise

- $\left\{e_{t}\right\}$ are uncorrelated and $\operatorname{Var} e_{t}=\sigma^{2}$
- the conditional variance
$\operatorname{Var}\left[e_{t} \mid e_{t-1}, e_{t-2}, \ldots\right]$ is a function of the past observations

General time series model

$$
\begin{aligned}
& \text { If } \mathcal{F}_{t-1}=\sigma\left\{Y_{s}, \boldsymbol{s} \leq t-1\right\} \\
& \qquad Y_{t}=\mu\left(\mathcal{F}_{t-1}\right)+\sigma\left(\mathcal{F}_{t-1}\right) \varepsilon_{t}
\end{aligned}
$$

where ε_{t} are iid $(0,1)$ and ε_{t} is independent of \mathcal{F}_{s} for $s \leq t$
Then

$$
\begin{aligned}
\mathrm{E}\left[Y_{t} \mid \mathcal{F}_{t-1}\right] & =\mu\left(\mathcal{F}_{t-1}\right)+\sigma\left(\mathcal{F}_{t-1}\right) \mathrm{E}\left[\varepsilon_{t} \mid \mathcal{F}_{t-1}\right]=\mu\left(\mathcal{F}_{t-1}\right), \\
\operatorname{Var}\left[Y_{t} \mid \mathcal{F}_{t-1}\right] & =\sigma\left(\mathcal{F}_{t-1}\right)^{2} .
\end{aligned}
$$

- ARMA: model for μ linear in \mathcal{F}_{t-1}
- we now focus on nonlinear modelling of $\sigma\left(\mathcal{F}_{t-1}\right)$

$$
e_{t}=\sigma_{t} \varepsilon_{t}, \quad \sigma_{t}=\sigma\left(\mathcal{F}_{t-1}\right)
$$

application: either to residuals from a fitted ARMA (or regression model), or series with $\mu \equiv 0$ (white noise)

ARCH model

ARCH (autoregressive conditional heteroscedasticity) by Engle (1982). He observed that
\hookrightarrow Financial time series are heteroscedastic, i.e., their volatility changes in time.
\hookrightarrow The volatility is a simple quadratic function of past prediction errors.

ARCH(r) model:

$$
\begin{aligned}
e_{t} & =\sigma_{t} \varepsilon_{t} \\
\sigma_{t}^{2} & =\alpha_{0}+\alpha_{1} e_{t-1}^{2}+\cdots+\alpha_{r} e_{t-r}^{2}
\end{aligned}
$$

where ε_{t} are iid

$$
\mathrm{E} \varepsilon_{t}=0, \quad \operatorname{Var} \varepsilon_{t}=1
$$

and

$$
\begin{equation*}
\alpha_{0}>0, \quad \alpha_{1}, \ldots, \alpha_{r} \in[0,1), \quad \sum_{i=1}^{r} \alpha_{i}<1 \tag{A}
\end{equation*}
$$

Conditional expectation

Let $\boldsymbol{X}, \boldsymbol{Y}$ be random vectors with finite means. Then

$$
\begin{aligned}
\mathrm{E} \boldsymbol{X} & =\mathrm{E}[\mathrm{E}(\boldsymbol{X} \mid \boldsymbol{Y})], \\
\operatorname{Var} \boldsymbol{X} & =\mathrm{E} \operatorname{Var}[\boldsymbol{X} \mid \boldsymbol{Y}]+\operatorname{Var} \mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}],
\end{aligned}
$$

and

$$
\mathrm{E}[\boldsymbol{X} g(\boldsymbol{Y}) \mid \boldsymbol{Y}]=g(\boldsymbol{Y}) \mathrm{E}[\boldsymbol{X} \mid \boldsymbol{Y}]
$$

for any measurable function g. Furthermore,

$$
\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\operatorname{Cov}(\boldsymbol{X}, \mathrm{E}[\boldsymbol{Y} \mid \boldsymbol{X}]) .
$$

If $\mathcal{F} \subset \mathcal{G}$

$$
\mathrm{E}[\boldsymbol{X} \mid \mathcal{F}]=\mathrm{E}[\mathrm{E}[\boldsymbol{X}| | \mathcal{G}] \mid \mathcal{F}]=\mathrm{E}[\mathrm{E}[\boldsymbol{X}| | \mathcal{F}] \mid \mathcal{G}] .
$$

