Week 1: Introduction

Time Series

Bitcoin

Time Series

EUR vs. CZK

Time Series

Time Series

Demografie CR

Time Series

Time Series

IBM Daily Returns
2017-01-03 / 2022-01-31

Time Series

- sequence of random variables $\left\{Y_{t}\right\}$,
$\hookrightarrow t$ is time
\hookrightarrow different time units
\hookrightarrow equidistant times
- stochastic process \rightsquigarrow we observe a piece of one trajectory $Y_{1}(\omega), \ldots, Y_{n}(\omega)$
- possible dependence \rightarrow needs to be taken into account in the analysis

Aims of a time series analysis

1. description of time behavior
2. statistical inference
3. prediction

Aims of a time series analysis

1. description of time behavior

- understand the generating mechanism
- simulation

2. statistical inference
3. prediction

Aims of a time series analysis

1. description of time behavior

- understand the generating mechanism
- simulation

2. statistical inference

- testing of hypotheses: global warming
- policy evaluation: number of traffic accidents after a change in a law
- change detection

3. prediction

Aims of a time series analysis

1. description of time behavior

- understand the generating mechanism
- simulation

2. statistical inference

- testing of hypotheses: global warming
- policy evaluation: number of traffic accidents after a change in a law
- change detection

3. prediction

- future behavior: stock price
- point and interval
- various criteria for prediction evaluation \rightarrow comparison of different methods
- prediction combining
- extrapolation

Aims of a time series analysis

1. description of time behavior

- understand the generating mechanism
- simulation

2. statistical inference

- testing of hypotheses: global warming
- policy evaluation: number of traffic accidents after a change in a law
- change detection

3. prediction

- future behavior: stock price
- point and interval
- various criteria for prediction evaluation \rightarrow comparison of different methods
- prediction combining
- extrapolation

Prediction is very difficult, especially if it is about the future.

Time series decomposition

Additive model

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}
$$

Multiplicative model

$$
Y_{t}=\operatorname{Tr}_{t} \cdot S_{t} \cdot E_{t}
$$

Time series decomposition

Additive model

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}
$$

Multiplicative model

$$
Y_{t}=\operatorname{Tr}_{t} \cdot S_{t} \cdot E_{t}
$$

$\rightsquigarrow \log Y_{t}$ satisfies an additive model

Additive or multiplicative model?

Additive or multiplicative model?

No seasonality: See that

$$
Y_{t}=\operatorname{Tr}_{t}+E_{t} \quad \Longleftrightarrow Y_{t}=\operatorname{Tr}_{t} \cdot \varepsilon_{t}, \quad \varepsilon_{t}=\left(1+\frac{E_{t}}{\operatorname{Tr}_{t}}\right)
$$

If $\operatorname{Var} E_{t}=$ const, then

$$
\operatorname{Var} \varepsilon_{t}=\frac{\operatorname{Var} E_{t}}{\operatorname{Tr}_{t}^{2}} \neq \text { const }
$$

General approach

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}
$$

1. estimate a deterministic trend Tr_{t} and seasonality S_{t}
2. possible approaches:

- parametric
- non-parametric

3. model for stationary series $\left\{E_{t}\right\}$, constructed using
$\widehat{E}_{t}=Y_{t}-\widehat{\operatorname{Tr}}_{t}-\widehat{S}_{t}$

General approach

$$
Y_{t}=\operatorname{Tr}_{t}+S_{t}+E_{t}
$$

1. estimate a deterministic trend Tr_{t} and seasonality S_{t}
2. possible approaches:

- parametric
- non-parametric

3. model for stationary series $\left\{E_{t}\right\}$, constructed using $\widehat{E}_{t}=Y_{t}-\widehat{\operatorname{Tr}}_{t}-\widehat{S}_{t}$

Butter

Residuals

Parametric trend estimation

$$
Y_{t}=\operatorname{Tr}_{t}+E_{t}
$$

- mathematical curves:

$$
T_{t}=f(t, \theta)
$$

- least squares estimation:

$$
\widehat{\theta}=\min _{\theta} \sum_{t=1}^{n}\left(Y_{t}-f(t, \theta)\right)^{2}
$$

- f polynomial \rightsquigarrow ordinary least squares
- f nonlinear \rightsquigarrow non-linear least squares
- then

$$
\widehat{\operatorname{Tr}}_{t}=f(t, \widehat{\theta})
$$

is the fitted trend, $Y_{t}-f(t, \widehat{\theta})$ a detrended series

Linear and polynomial trend

Estimation via ordinary least squares
Also recall spline methods

