
Week 1: Introduction
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Time Series

I sequence of random variables {Yt},
↪→ t is time
↪→ different time units
↪→ equidistant times

I stochastic process we observe a piece of one trajectory
Y1(ω), . . . ,Yn(ω)

I possible dependence I needs to be taken into account in the
analysis



Aims of a time series analysis

1. description of time behavior

I understand the generating mechanism
I simulation

2. statistical inference

I testing of hypotheses: global warming
I policy evaluation: number of traffic accidents after a change in a law
I change detection

3. prediction

I future behavior: stock price
I point and interval
I various criteria for prediction evaluation I comparison of different

methods
I prediction combining
I extrapolation

Prediction is very difficult, especially if it is about the future.
Niels Bohr
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Time series decomposition

Additive model
Yt = Trt + St + Et

Multiplicative model
Yt = Trt · St · Et

 logYt satisfies an additive model
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Additive or multiplicative model?
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Additive or multiplicative model?

No seasonality: See that

Yt = Trt + Et ⇐⇒ Yt = Trt · εt , εt =

(
1 +

Et

Trt

)
,

If Var Et = const , then

Var εt =
Var Et

Tr2
t
6= const ,



General approach

Yt = Trt + St + Et

1. estimate a deterministic trend Trt and seasonality St
2. possible approaches:

I parametric
I non-parametric

3. model for stationary series {Et}, constructed using
Êt = Yt − T̂r t − Ŝt
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Parametric trend estimation

Yt = Trt + Et

I mathematical curves:
Trt = f (t , θ)

I least squares estimation:

θ̂ = min
θ

n∑
t=1

(Yt − f (t , θ))2

I f polynomial ordinary least squares
I f nonlinear non-linear least squares

I then
T̂r t = f (t , θ̂)

is the fitted trend, Yt − f (t , θ̂) a detrended series



Linear and polynomial trend
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Estimation via ordinary least squares

Also recall spline methods


