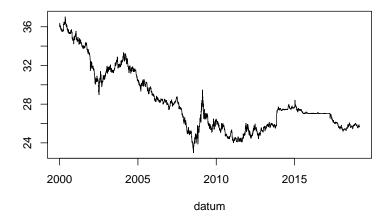
Week 1: Introduction

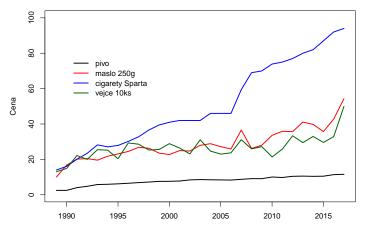
Bitcoin



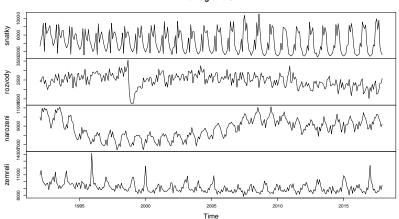
Time

EUR vs. CZK

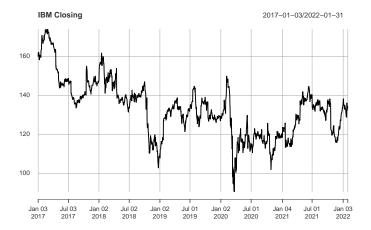


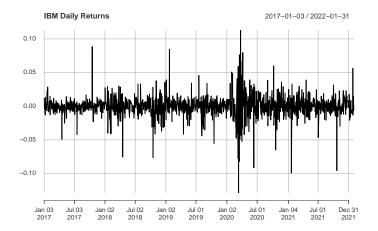


rok



Demografie CR





• sequence of random variables $\{Y_t\}$,

- \hookrightarrow *t* is time
- \hookrightarrow different time units
- $\,\,\hookrightarrow\,\,$ equidistant times
- stochastic process → we observe a piece of one trajectory Y₁(ω),..., Y_n(ω)

- 1. description of time behavior
- 2. statistical inference

3. prediction

- 1. description of time behavior
 - understand the generating mechanism
 - simulation
- 2. statistical inference

3. prediction

- 1. description of time behavior
 - understand the generating mechanism
 - simulation
- 2. statistical inference
 - testing of hypotheses: global warming
 - policy evaluation: number of traffic accidents after a change in a law
 - change detection
- 3. prediction

- 1. description of time behavior
 - understand the generating mechanism
 - simulation
- 2. statistical inference
 - testing of hypotheses: global warming
 - policy evaluation: number of traffic accidents after a change in a law
 - change detection
- 3. prediction
 - future behavior: stock price
 - point and interval
 - various criteria for prediction evaluation -> comparison of different methods
 - prediction combining
 - extrapolation

- 1. description of time behavior
 - understand the generating mechanism
 - simulation
- 2. statistical inference
 - testing of hypotheses: global warming
 - policy evaluation: number of traffic accidents after a change in a law
 - change detection
- 3. prediction
 - future behavior: stock price
 - point and interval
 - various criteria for prediction evaluation -> comparison of different methods
 - prediction combining
 - extrapolation

Prediction is very difficult, especially if it is about the future.

Niels Bohr

Time series decomposition

Additive model

$$Y_t = Tr_t + S_t + E_t$$

Multiplicative model

$$Y_t = Tr_t \cdot S_t \cdot E_t$$

Time series decomposition

Additive model

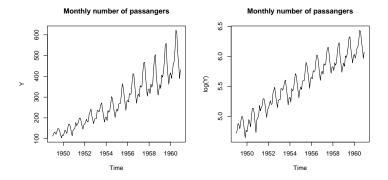
$$Y_t = Tr_t + S_t + E_t$$

Multiplicative model

$$Y_t = Tr_t \cdot S_t \cdot E_t$$

 $\rightsquigarrow \log Y_t$ satisfies an additive model

Additive or multiplicative model?



Additive or multiplicative model?

No seasonality: See that

$$Y_t = Tr_t + E_t \iff Y_t = Tr_t \cdot \varepsilon_t, \quad \varepsilon_t = \left(1 + \frac{E_t}{Tr_t}\right),$$

If Var $E_t = const$, then

$$\operatorname{Var} \varepsilon_t = \frac{\operatorname{Var} E_t}{\operatorname{Tr}_t^2} \neq const,$$

General approach

$$Y_t = Tr_t + S_t + E_t$$

- 1. estimate a deterministic trend Tr_t and seasonality S_t
- 2. possible approaches:
 - parametric
 - non-parametric
- 3. model for stationary series $\{E_t\}$, constructed using

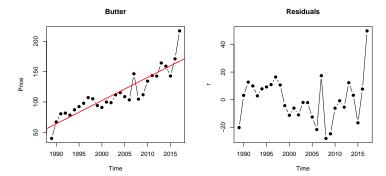
$$\widehat{E}_t = Y_t - \widehat{T}r_t - \widehat{S}_t$$

General approach

$$Y_t = Tr_t + S_t + E_t$$

- 1. estimate a deterministic trend Tr_t and seasonality S_t
- 2. possible approaches:
 - parametric
 - non-parametric
- 3. model for stationary series $\{E_t\}$, constructed using

$$\widehat{\mathsf{E}}_t = \mathsf{Y}_t - \widehat{\mathsf{Tr}}_t - \widehat{\mathsf{S}}_t$$



Parametric trend estimation

$$Y_t = Tr_t + E_t$$

mathematical curves:

$$Tr_t = f(t, \theta)$$

least squares estimation:

$$\widehat{\theta} = \min_{\theta} \sum_{t=1}^{n} (Y_t - f(t,\theta))^2$$

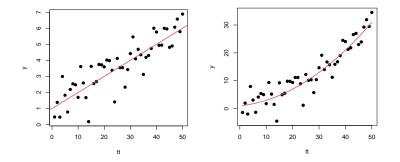
- f polynomial ~> ordinary least squares
- ► f nonlinear ~→ non-linear least squares

then

$$\widehat{T}r_t = f(t,\widehat{\theta})$$

is the fitted trend, $Y_t - f(t, \hat{\theta})$ a detrended series

Linear and polynomial trend



Estimation via ordinary least squares

Also recall spline methods