
Numerical solution of continuum physics problems with FEniCSor how to use FEM and not vary (too much) about programming ...
Jaroslav Hron

Mathematical Institute, Charles University in Prague

PL14

Numerical solution of continuum physics problems with FEniCSor how to use FEM and not vary (too much) about programming ...

lecture 1 introduction to FEniCS/python, FEM and how to solve laplaceequation
lecture 2 convection-diffusion equation, SUPG and IP stabilization
lecture 3 Stokes, incompressible Navier-Stokes equations, timediscretization
lecture 4 linear and non-linear elasticity
lecture 5 ALE-method, level-set method

PL14

How to log in....

PL14

Python - https://www.python.org/

I interpreted, dynamic-typed language, object oriented, extensible
I everything is an object, variables are just object "names"
>>> a=42>>> id(a); dir(a); print(a)>>> help(a)>>> b=a ; id(a) ; id(b)>>> b+=1 ; id(b)

>>> import math>>> math.sqrt(4.0)>>> from math import cos>>> cos(0.0)>>> from math import *>>> sin(pi)

>>> # Lists - collection of objects>>> a = [’apple’, ’orange’, 3, 11]>>> print(a[0:2])[’apple’, ’orange’]>>> print(a[3])11

>>> # Dictionary - indexed by any object>>> a = {’id1’: 0.2, ’id2’: 0.5, ’id3’: 0.05}>>> print(a[’id3’])0.05

PL14

Python - https://www.python.org/

I interpreted, dynamic-typed language, object oriented, extensible
I everything is an object, variables are just object "names"
I scripts in files, run by: python script.py

for i in range(3):print(i)print(’done’)
for i in [’apple’, ’orange’, 3, 11]:if i>6 :print(i)print(’done’)

def heaviside(x):if x>0.0:y = 1.0elif x < 0.0:y = -1.0else: y = 0.0return y
print(heaviside(1.0))

I usefull libraries:+ NumPy - www.numpy.org+ SciPy - www.scipy.org+ SymPy - www.sympy.org+ matplotlib - matplotlib.org

PL14

www.numpy.org
www.scipy.org
www.sympy.org
matplotlib.org

FEniCS - http://fenicsproject.org

I started in 2003, collaboration between University of Chicago andChalmers University of Technology
I 2011 - version 1.0, tutorial book published (Jan 2012) with maincontribution by 5 institutions (Simula Research Laboratory, University ofCambridge, University of Chicago, Texas Tech University, KTH RoyalInstitute of Technology)
I current 2014 - version 1.4
I open source license (GNU LGPL v3), open source developement onhttps://bitbucket.org/fenics-project

info: I A. Logg, K.-A. Mardal and G.N. Wells, editors. FENICS: Automated
Solution of Differential Equations by the Finite Element Method,volume 84 of Lecture Notes in Computational Science and Engineering.Springer, 2012.

I free electronic version of the book available
I official documentation http://fenicsproject.org/documentation

PL14

https://bitbucket.org/fenics-project
http://fenicsproject.org/documentation

FEniCS

I core components:
Instant Python module that allows for instant inlining of C++code in Python (Just in Time compilation)Dolfin C++/Python interface of FEniCS, providing a consistentProblem Solving EnvironmentFFC FEniCS Form Compiler - compiler for multilinear forms bygenerating code (C++)FIAT FInite element Automatic Tabulator (curently Lagrange,mixed FE)UFC Unified Form-assembly Code is a unified framework forfinite element assemblyUFL Unified Form Language is specific language fordeclaration of finite element discretizations of variationalforms

I additional libraries: FErari, UFLACS, Viper, ...
I external libraries: PETSc, UMFPACK, Trilinos, CGAL, VTK,

PL14

Poisson’s equation

I classical form: find u ∈ C2(Ω̄) such that
−div(∇u) = f in Ω

u = 0 on ∂Ω

I weak form: find u ∈ W 1,20 (Ω) such that∫
Ω
∇u · ∇ v dx =

∫
Ω

fv dx for all v ∈ W 1,20 (Ω)

I general weak form: u ∈ V (Ω) such that
a(u , v) = L (v) for all v ∈ V ′(Ω)

where a : V × V ′ → R is a bilinear form and L : V ′ → R is a linear form

PL14

Discretization - FEM

I discretization - way to transform a PDE into a discrete finite dimensionalsystem⇒ Ax = b
Finite Difference Method - based on the classical strong form,approximates the equation
Finite Volume Method - based on integral form of conservation laws,uses piece-wise constant approximations
Finite Element Method - based on the weak form, solves the equationas is, dicretize the space of solutions, uses piece-wisepolynomial approximations, very flexible, well analyzed,in generalizations like Discontinuous Galerkin can includeFVM

PL14

Poisson’s equation - FEM discretization
I weak form: u ∈ V (Ω) such that

a(u , v) = L (v) for all v ∈ V ′(Ω)

where a : V × V ′ → R is a bilinear form and L : V ′ → R is a linear form
a(u , v) =

∫
Ω
∇u · ∇ v dx L (v) =

∫
Ω

fv dx

I Let Vh ⊂ V (Ω) and V ′h ⊂ V ′(Ω) then we look for uh inVh such that
a(uh , v) = L (v) for all v ∈ V ′h

I assume that dim(Vh) = dim(V ′h) = N and we have a basis
Vh = span{φi }Ni=1 ,V ′h = span{φ′i }Ni=1, then uh =

∑N
i=1 Uiφi

a(
N∑
i=1
Uiφi , φ′j) = L (φ′j) for j = 1..N ⇒Ax = b

such that Ai ,j = a(φi , φ
′
j), xi = Ui and bi = L (φ′j)

PL14

Finite elements
P. Ciarlet, The Finite Element Method for Elliptic Problems, 1978

I Definition of the finite element: The tripple (T ,P ,Ψ) where:
T is bounded domain in R d with piece-wise smooth boundary (simplex)

P (T) is finite-dimensional function space on T of dimension n (polynomials)
Ψ is set of functionals, basis of V ′, {ψi }ni=1 (point evaluation)

I Special basis of P (T) = span{ψi }ni=1 such that ψi (φj) = δi ,j
I Computational domain Ω covered by elements domains Tk - usuallydefined as parametric mapping of a "reference" element.
I Continuity enforced by selection of the set Ψ.
I Result is the space

Vh (Ω) = {v ∈ C k (Ω), v/T ∈ P (T)}

such that Vh → V as h → 0.
I Variants of elements

I isoparametric vs. parametric vs. nonparametric
I conforming i.e. Vh ⊂ V v.s. non-conforming Vh 6⊂ V
I Lagrange (C 0), Hermite (C 1)

Periodic Table of the Finite Elements: http://femtable.org/
PL14

http://femtable.org/

Poisson’s problem in FEniCS

−div(∇u) = f in Ω = [0, 1]2, u = 0 on ∂Ω

I Ω = [0, 1]2
I Lagrange FEM:
Vh = {v ∈ C 0(Ω), v/T ∈ P1(T)}

I Dirichlet boundary condition
v ∈ Vh → v = 0 on ∂Ω

I f (x , y) = 1.0
I a(u , v) =

∫
Ω∇u · ∇ v dx

I L (v) =
∫

Ω
fv dx

I Find u ∈ Vh such that
a(u , v) = L (v) for all v ∈ Vh .

from dolfin import *
mesh = UnitSquare(10, 10)V = FunctionSpace(mesh, "Lagrange", 1)
u0 = Constant(0.0)bc = DirichletBC(V, u0, DomainBoundary())
u = TrialFunction(V)v = TestFunction(V)f = Expression("1.0")
a = inner(grad(u), grad(v))*dxL = f*v*dx
u = Function(V)solve(a == L, u, bc)

PL14

Poisson’s problem in FEniCS
I plot the mesh, solution

plot(mesh, interactive=True)plot(u, interactive=True)file=File("poisson.pvd")file << u
I fenecs parameters:

info(parameters,True)
prm = parameters[’krylov_solver’] # short formprm[’absolute_tolerance’] = 1E-10prm[’relative_tolerance’] = 1E-6prm[’maximum_iterations’] = 1000

I compute error with respect to exact solution
uex=Expression("....",degree=2)e1=sqrt(assemble(pow(u-uex,2)*dx))e=errornorm(uex, u, norm_type=’l2’, degree_rise=1, mesh=mesh)print "error:", e , e1

PL14

Task no.1 - ex1.py

−div(∇u) = 2π2 sin(πx) sin(πy) in Ω = [0, 1]2
u = 0 on ∂Ω

I uexact = sin(πx) sin(πy)

I Compute solution to precision ||u − uexact||2 < 10−6 in shortest time.
I Plot error vs. h , estimate convergence rate in different norms.

PL14

