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Numerical solution of continuum physics problems with FEniCSor how to use FEM and not vary (too much) about programming ...

lecture 1 introduction to FEniCS/python, FEM and how to solve laplaceequation
lecture 2 convection-diffusion equation, SUPG and IP stabilization
lecture 3 Stokes, incompressible Navier-Stokes equations, timediscretization
lecture 4 linear and non-linear elasticity
lecture 5 ALE-method, level-set method
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Python - https://www.python.org/

I interpreted, dynamic-typed language, object oriented, extensible
I everything is an object, variables are just object "names"
>>> a=42>>> id(a); dir(a); print(a)>>> help(a)>>> b=a ; id(a) ; id(b)>>> b+=1 ; id(b)

>>> import math>>> math.sqrt(4.0)>>> from math import cos>>> cos(0.0)>>> from math import *>>> sin(pi)

>>> # Lists - collection of objects>>> a = [’apple’, ’orange’, 3, 11]>>> print(a[0:2])[’apple’, ’orange’]>>> print(a[3])11

>>> # Dictionary - indexed by any object>>> a = {’id1’: 0.2, ’id2’: 0.5, ’id3’: 0.05}>>> print(a[’id3’])0.05
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Python - https://www.python.org/

I interpreted, dynamic-typed language, object oriented, extensible
I everything is an object, variables are just object "names"
I scripts in files, run by: python script.py

for i in range(3):print(i)print(’done’)
for i in [’apple’, ’orange’, 3, 11]:if i>6 :print(i)print(’done’)

def heaviside(x):if x>0.0:y = 1.0elif x < 0.0:y = -1.0else: y = 0.0return y
print(heaviside(1.0))

I usefull libraries:+ NumPy - www.numpy.org+ SciPy - www.scipy.org+ SymPy - www.sympy.org+ matplotlib - matplotlib.org
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FEniCS - http://fenicsproject.org

I started in 2003, collaboration between University of Chicago andChalmers University of Technology
I 2011 - version 1.0, tutorial book published (Jan 2012) with maincontribution by 5 institutions (Simula Research Laboratory, University ofCambridge, University of Chicago, Texas Tech University, KTH RoyalInstitute of Technology)
I current 2014 - version 1.4
I open source license (GNU LGPL v3), open source developement onhttps://bitbucket.org/fenics-project

info: I A. Logg, K.-A. Mardal and G.N. Wells, editors. FENICS: Automated
Solution of Differential Equations by the Finite Element Method,volume 84 of Lecture Notes in Computational Science and Engineering.Springer, 2012.

I free electronic version of the book available
I official documentation http://fenicsproject.org/documentation
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FEniCS

I core components:
Instant Python module that allows for instant inlining of C++code in Python (Just in Time compilation)Dolfin C++/Python interface of FEniCS, providing a consistentProblem Solving EnvironmentFFC FEniCS Form Compiler - compiler for multilinear forms bygenerating code (C++)FIAT FInite element Automatic Tabulator (curently Lagrange,mixed FE)UFC Unified Form-assembly Code is a unified framework forfinite element assemblyUFL Unified Form Language is specific language fordeclaration of finite element discretizations of variationalforms

I additional libraries: FErari, UFLACS, Viper, ...
I external libraries: PETSc, UMFPACK, Trilinos, CGAL, VTK, ....
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Poisson’s equation

I classical form: find u ∈ C2(Ω̄) such that
−div(∇u) = f in Ω

u = 0 on ∂Ω

I weak form: find u ∈ W 1,20 (Ω) such that∫
Ω
∇u · ∇ v dx =

∫
Ω

fv dx for all v ∈ W 1,20 (Ω)

I general weak form: u ∈ V (Ω) such that
a(u , v) = L (v) for all v ∈ V ′(Ω)

where a : V × V ′ → R is a bilinear form and L : V ′ → R is a linear form
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Discretization - FEM

I discretization - way to transform a PDE into a discrete finite dimensionalsystem⇒ Ax = b
Finite Difference Method - based on the classical strong form,approximates the equation
Finite Volume Method - based on integral form of conservation laws,uses piece-wise constant approximations
Finite Element Method - based on the weak form, solves the equationas is, dicretize the space of solutions, uses piece-wisepolynomial approximations, very flexible, well analyzed,in generalizations like Discontinuous Galerkin can includeFVM
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Poisson’s equation - FEM discretization
I weak form: u ∈ V (Ω) such that

a(u , v) = L (v) for all v ∈ V ′(Ω)

where a : V × V ′ → R is a bilinear form and L : V ′ → R is a linear form
a(u , v) =

∫
Ω
∇u · ∇ v dx L (v) =

∫
Ω

fv dx

I Let Vh ⊂ V (Ω) and V ′h ⊂ V ′(Ω) then we look for uh inVh such that
a(uh , v) = L (v) for all v ∈ V ′h

I assume that dim(Vh ) = dim(V ′h ) = N and we have a basis
Vh = span{φi }Ni=1 ,V ′h = span{φ′i }Ni=1, then uh =

∑N
i=1 Uiφi

a(
N∑
i=1
Uiφi , φ′j ) = L (φ′j ) for j = 1..N ⇒Ax = b

such that Ai ,j = a(φi , φ
′
j ), xi = Ui and bi = L (φ′j )
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Finite elements
P. Ciarlet, The Finite Element Method for Elliptic Problems, 1978

I Definition of the finite element: The tripple (T ,P ,Ψ) where:
T is bounded domain in R d with piece-wise smooth boundary (simplex)

P (T ) is finite-dimensional function space on T of dimension n (polynomials)
Ψ is set of functionals, basis of V ′, {ψi }ni=1 (point evaluation)

I Special basis of P (T ) = span{ψi }ni=1 such that ψi (φj ) = δi ,j
I Computational domain Ω covered by elements domains Tk - usuallydefined as parametric mapping of a "reference" element.
I Continuity enforced by selection of the set Ψ.
I Result is the space

Vh (Ω) = {v ∈ C k (Ω), v/T ∈ P (T )}

such that Vh → V as h → 0.
I Variants of elements

I isoparametric vs. parametric vs. nonparametric
I conforming i.e. Vh ⊂ V v.s. non-conforming Vh 6⊂ V
I Lagrange (C 0), Hermite (C 1)

Periodic Table of the Finite Elements: http://femtable.org/
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Poisson’s problem in FEniCS

−div(∇u) = f in Ω = [0, 1]2, u = 0 on ∂Ω

I Ω = [0, 1]2
I Lagrange FEM:
Vh = {v ∈ C 0(Ω), v/T ∈ P1(T )}

I Dirichlet boundary condition
v ∈ Vh → v = 0 on ∂Ω

I f (x , y) = 1.0
I a(u , v) =

∫
Ω∇u · ∇ v dx

I L (v) =
∫

Ω
fv dx

I Find u ∈ Vh such that
a(u , v) = L (v) for all v ∈ Vh .

from dolfin import *
mesh = UnitSquare(10, 10)V = FunctionSpace(mesh, "Lagrange", 1)
u0 = Constant(0.0)bc = DirichletBC(V, u0, DomainBoundary())
u = TrialFunction(V)v = TestFunction(V)f = Expression("1.0")
a = inner(grad(u), grad(v))*dxL = f*v*dx
u = Function(V)solve(a == L, u, bc)
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Poisson’s problem in FEniCS
I plot the mesh, solution

plot(mesh, interactive=True)plot(u, interactive=True)file=File("poisson.pvd")file << u
I fenecs parameters:

info(parameters,True)
prm = parameters[’krylov_solver’] # short formprm[’absolute_tolerance’] = 1E-10prm[’relative_tolerance’] = 1E-6prm[’maximum_iterations’] = 1000

I compute error with respect to exact solution
uex=Expression("....",degree=2)e1=sqrt(assemble(pow(u-uex,2)*dx))e=errornorm(uex, u, norm_type=’l2’, degree_rise=1, mesh=mesh)print "error:", e , e1
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Task no.1 - ex1.py

−div(∇u) = 2π2 sin(πx) sin(πy) in Ω = [0, 1]2
u = 0 on ∂Ω

I uexact = sin(πx) sin(πy)

I Compute solution to precision ||u − uexact||2 < 10−6 in shortest time.
I Plot error vs. h , estimate convergence rate in different norms.
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