A UNIQUE STRUCTURE OF TWO-GENERATED
BINARY EQUALITY SETS.

STEPAN HOLUB

ABSTRACT. Let L be the equality set of two distinct injective mor-
phisms g and h, and let L be generated by at least two words. Re-
cently it was proved ([2]) that such an L is generated by two words
and g and h can be chosen marked from both sides. We use this
result to show that L is of the form {a'b,ba’}", with i > 1.

1. INTRODUCTION

Binary equality sets are the most simple non-trivial equality languages.
Nevertheless, their precise description is still not known. They were for
the first time extensively studied by K. Culik II and J. Karhumiki in
[3]. There the authors indicate that the only existing binary equality
sets of rank two have the form {a’b,ba’}*, but avoid to state it as a
conjecture. Instead, they made a conjecture that in non-periodic cases
(periodic cases being easy to deal with) the equality set is generated by at
most two words. This statement was partially proved by A. Ehrenfeucht,
J. Karhumiki and G. Rozenberg ([4]) leaving open the possibility of an
infinitely generated equality set of the form (ay*f)*. The result is a
corollary of the proof that the binary Post Correspondence Problem is
decidable, previously achieved by the same authors ([1]). The mentioned
possibility, contradicting the original conjecture, was excluded recently in
[2], where we prove a stronger statement: the two words generating the
equality set start (end resp.) with different letters. This in particular
means that the equality set belongs to a pair of morphisms marked from
both sides. In the present paper we therefore investigate such morphisms
and show that their equality set can be generated by two words only if
it is of the form {a’b,ba’}*. This yields the complete characterization of
binary equality sets generated by more than one word.

The paper at hand is actually an exercise in combinatorial analysis.
After preliminaries (Section 2) we present some auxiliary lemmas based
mostly on the primitivity of a word (Section 3). In the fourth section
some general results concerning our morphisms are obtained. In Section
5 special cases are treated.



2. ASSUMPTIONS AND DEFINITIONS

We first fix our notation.

By A we denote the binary alphabet {a,b}. The empty word is denoted
by €.

The set of all prefixes of u is denoted by pref(u). A prefix v of u is
proper if v # ¢ and v # u. Similarly proper suffiz is defined. The set of
all suffixes of u is denoted by suff(u). The first (the last resp.) letter of
a non-empty word u is denoted by pref; (u) (suff;(u) resp.). A word v is
called a factor of u if there exist words w,w’ € A* such that u = wow'.
A factor is said to be proper if and only if both w and w' are non-empty.
If v € pref(u) or u € pref(v), we say that v and v are comparable. If
uv = w we also write v = wv™! and v = v~ 'w. A word w is called an
overlap of u and v if w € suff(u)pref(v), or w € suff(v)Npref(u).

The ratio of a word u € A* is defined by, rat(u) = Ul Tt is either a

Julp *
non-negative rational number or, in case u € a™, infinity.
Let g, h : A* — A* be binary morphisms. Their equality set is defined
by

Eq(g, h) = {u € A%| g(u) = h(u)}.
The choice of A as the target alphabet does not harm generality, since
any alphabet can be encoded by two letters.

A binary morphism g is said to be marked if and only if pref,; (g(a)) #
pref; (g(b)). If, moreover, suff; (g(a)) # suff;(g(b)), we say that g is marked
from both sides. Similarly we say that two non-empty words z and y are
marked from both sides, if and only if pref; (z) # pref; (y) and suff; (z) #
suffy (y).

We say that ¢ is periodic, if words g(a) and g(b) commute, i.e., they
have the same primitive root.

It is easy to verify that the set Eq(g,h) is a free submonoid of A*
generated by the set of its minimal elements

ed(g,h) = Ea(g,h) \ (Ealg, h) \ {e})* \ {e} -
If g # h, and u and v are non-empty elements of Eq(g, h) then rat(u) =
rat(v). This follows easily from the length agreement of g and h on

elements of their equality set.
The following is known about the structure of Eq(g,h) (see [2]).

Theorem 2.1. Let g and h be non-periodic binary morphisms. Then

E(h,g) = {a, B}"
for some (possibly empty) words o, 8 € A*. If a and 8 are both non-empty

then they are marked from both sides. Moreover, there are binary mor-
phisms g' and h' marked from both sides, such that Eq(g,h) = Eq(g¢',h').



In this paper we investigate binary morphisms g,h : A* — A*, whose
equality set is generated by two non-empty words « and 8. The symmetry
of letters a and b, and of morphisms g and h, and Theorem 2.1 allow to
adopt following assumptions without loss of generality
Conditions 2.2.
lg(a)| > |h(a)]
9(b)| < [h(D)]

[h(b)] > |g(a)]

pref; (g(a)) = pref; (h(a)) = a

pref; (g(b)) = pref; (h(b)) = b

suffi(g(a)) = suff; (h(a)) # suff;(g(b)) = suff; (h(b))
pref; (o) = a

pref; (8) = b

suff; () # suffy (B)

We are going to prove the following

Theorem 2.3. Let g, h : A* — A* be binary morphisms, such that eq =
{a, B}, satisfying Conditions 2.2. Then there is a positive integer i such
that o = a'b and B = ba".

Since g # h, both @ and 8 contain both letters a and b. Note that the
difference between letters a and b is given only by the condition |h(b)| >
lg(a)|. Therefore if |h(b)| = |g(a)| then i = 1.

Throughout the paper k, k', [ and I’ will be positive integers such that

e a*b is a prefix of «,
e bla is a prefix of £,
e ba* and ab’ are elements of suff{a, 5}.

3. AUXILIARY LEMMAS

In this section we present several auxiliary lemmas. The proofs are
easy and we omit them. We also omit well known characterization of
conjugate words and the Periodicity Lemma.

The following Lemma is a consequence of the fact that two words gene-
rate a free semigroup if and only if they do not commute.

Lemma 3.1. Let all words g(a), g(b), h(a) and h(b) be generated by words
x and y, which do not commute. Define morphism w: A* — A* by w(a) =
z and n(b) = y. Then m is injective and Eq(g,h) = Eq(r~ o g,n71 o h).

It is the well known fact that a primitive word p is not a proper factor
of pp. This implies following list of claims.

Lemma 3.2. Let swp be a factor of w™. Then s is a suffiz, and p a
prefiz of w.



Lemma 3.3. Let x and y be words marked from both sides. Let u be a
factor of (xy)™. Then any overlap of u and zyyz is strictly shorter than

|zyl.
Lemma 3.4. Let x and y be words marked from both sides. Let u be a
word with a prefix (suffiz resp.) xyx. Let w be a word such that

w E pref(u)ﬂsuff(acyyac) (w e Suff(u)ﬂpref(xyyx) resp.)
Then w is strictly shorter than |zy).

Lemma 3.5. Let x and y be words marked from both sides. Then xyx is
not a factor of ryyz, and zyyz is not a factor of {xy, xyz}™T.

Lemma 3.6. Let z and y be words marked from both sides. Let u and v
be non-empty words such that

e yx € pref(u), zy € suff(u),

o v € {zy,zyz}™,

o |v| > |ul.

Then v is not a factor of u™.

4. GENERAL CONSIDERATIONS

Lemma 4.1. The words g(a) and h(a) (g(b) and h(b) resp.) do not
commute.

Proof. Suppose g(a) = t' and h(a) = #/, with i > j > 1. Then the
maximal element of t*, which is a prefix of g(af), is t**. On the other
hand, #/* is the maximal element of ¢+, which is a prefix of h(af). This
is a contradiction with g(af) = h(af). Similarly for g(b) and h(b). O

Lemma 4.2. The word g(b) (h(a)* resp.) is a prefiz of h(b) (9(a) resp.).
Similarly, g(b)" (h(a)¥ resp.) is a suffiz of h(b) (g9(a) resp.)

Proof. Suppose, on the contrary, that h(b) is a prefix of g(b)!. Since g(b)
is a suffix of h(b), the words g(b) and h(b) commute, a contradiction with
Lemma 4.1. The rest is analogical. O

We list some characteristic situations, which are implied by a word in
Eq(g, ).
Conditions 4.3.
) There is a proper suffiz s of g(b), such that h(b) is a prefiz of sg(a)™.
) There is a proper prefiz p of g(b), such that h(b) is a suffiz of g(a)*p.
) The word h(b) is a factor of g(a)™.
) There is a non-empty suffit u of g(a)™ and a non-empty prefiz v of
g(a)™, such that ug(b)v = h(b).



Lemma 4.4. Let ub be a prefix of Ba.
(1) If |g(u)| < |h(u)| or |g(u)| > |h(ub)| then condition (C) or (A) holds.
(i) If |g(ub)| > |h(ub)| or |g(ub)| < |h(u)| then condition (C) or (B) holds.

Proof. We first introduce some terminology. Let m = |af], and w =
g(apf) = h(aB). Each letter b is mapped by g to a factor g(b) of w, and
by h to a factor h(b) of w. The factor of w, which is an image of the i-th
occurrence of letter b, with 1 <14 < m, will be called i-th g(b)-factor of w.
Similarly we define i-th h(b)-factor of w. We shall consider the position
of g(b)-factors with respect to corresponding h(b)-factors.

(i) Let |g(u)| < |h(u)| and let u be the longest prefix of Sa satisfying the
assumption. Put i = |ubl,. By assumption, the i-th g(b)-factor of w
does not start within the i-th h(b)-factor. If the (i + 1)-th g(b)-factor
starts there, then |g(u')] < |h(u')| for the prefix u' of af such that
\u'bl, =i+ 1. But we supposed that u is the longest possible. Therefore
no g(b)-factor starts within the i-th h(b)-factor and the claim follows.
Similarly for the shortest possible u, if [g(u)| > |h(ub)].

(i) The proof is analogical.

0

Corollary 4.5.

(i) Ifl > 1 orl' > 1 then either conditions (A) and (B) hold, or condition
(C) holds.

(ii) If none of conditions (A), (B), (C) and (D) holds, then eq(g,h) =
{a’b,ba’}, i > 1.

Proof.

(i) Let / > 1 and put w = b. Then |g(u)| < |h(u)| and, by Lemma 4.2, also
\g(ub)| < |h(u)|. The statement now follows from Lemma 4.4. Similarly
if ' > 1.

(ii) It is not difficult to deduce, by Lemma 4.4, that if none of the conditions
holds, all letters b in a8 must be starting or ending. Therefore there
are only two letters b in {a, 3}. Since the case {ba’b,a’} implies g = h,
we are left with {a’b, ba’}. The length agreement yields i = j.

O
Lemma 4.6. Let © and y be words such that xy is primitive, and
9(a) € (zy) 'z, h(a) € (zy)"=,
g(b) € (yz)*y, h(b) € (yz)"y.

Then eq(g, h) = {ab,ba}.

Proof. Let w = g(u) = h(u). By Lemma 3.1, we can suppose z = a and
y=b



Let u be an element of Eq(g, h). Suppose that aa is a factor of u and
u = wujaauy, where aa is not a factor of uja. The word g(uja)a is the
shortest prefix of g(u) ending with aa. Similarly h(uja)a is the shortest
prefix of A(u) of that form. Thus g(u1a) = h(uia).

This implies that aa is a factor of neither a nor 8. In the same way
we can show that neither o nor 8 contains bb as a factor. Thus either
a € (ab)*a and B € (ba)Th, or a = ab and B = ba. The first possibility is
excluded by the fact that o and § have the same ratio. O

The previous lemma has the following modification.
Lemma 4.7. Let xy be a primitive word, with z,y € AT, such that
g(a) € (zy) "=,
9(b) € (yz) "y, h(b) € (yz)*y.
Then eq(g, h) = {ab, ba}.
Proof. By Lemma 4.6 it is enough to show h(a) is in (zy)*z. The as-

sumptions imply that z and y are marked from both sides.

1. Suppose ab is a prefix of a. Then h(a)yz is a prefix of (zy)"™ and
therefore h(a) € (zy)*x.

2. Suppose, on the other hand, that aa is a prefix of @. Then the word
yrzy is either a factor of A(b), or h(b) is a factor yzzy, or the two
words have an overlap of length at least |zy|. This is a contradiction
with Lemma 3.5 or Lemma 3.3.

O
5. CASES

The main principium divisionis is whether the word g(ab) is longer or
shorter than the word h(b).

Case 5.1. |g(ba)| < |h(b)].
The point of this case is to prove the following
Claim 5.1.
g(b'a) € pref(h(b)) and g(ab") € suff(h(b)).
Proof. Tt is enough to prove |g(b'a)| < |h(b)| and |g(ab’)| < |h(b)|.
Proceed by contradiction, and suppose, by symmetry, |g(b'a)| > |h(b)|.

Since |g(ba)| < |h(b)|, I > 2. Therefore the word g(b'a) is a prefix of
h(b)g(b)'~! and there is a word u and a proper prefix q of g(b), such that

h(b) = g(b)u, g9(a) = ug(b)'q,
with 0 <i<1[—2.



Suppose that blab is a prefix of 3. Then g(b)'qg(b) is a factor of g(b)’,
and Lemma 3.2 yields that ¢ is a suffix of g(b) ", a contradiction. Therefore
blaa is a prefix of S.

By Corollary 4.5 we have to consider two possibilities.

1. Suppose h(b) is a factor of g(a)™. Let ¢ be the primitive root of g(a)
and let v € suff(¢) and vy € pref(t) be words such that h(b) € (vit*ve).
Since g(b)'qt € suff(t*) is comparable with h(b), it is also comparable
with v, and primitivity of ¢ yileds that g(b)’q € v1t*. Therefore h(bb)
is a prefix of g(b)'t*. Similarly we deduce that h(bb) is a suffix of
tTg(b)". Hence, by primitivity of ¢, h(bbb) = ¢(b)'t™g(b)", for some
positive integer m. From

it +1g(b)| < lg(a)| + |g(b)| < [A(b)],
3-1h@) = (I +1') - 1g(b)] +m - ¢
it is not difficult to deduce that either
(L +1) - 1g(b)] > [g(b)| + |n(b)],
or
m - [t] > [t] + |h(D)].

This implies, by Periodicity Lemma, that either g(b) or ¢ commutes with
h(b). We thus get a contradiction with Lemma 4.1 or with pref; (h(b)) #

pref (g(a)).
2. Suppose now that h(b) is a prefix of sg(a)™ and a suffix of g(a) ™ p, with

a proper suffix s and a proper prefix p of g(b). Lemma 3.2 and g is
marked from both sides imply that

R (b)] <[s] + Ipl + [g(a)l-

Therefore there are words z and y such that zy is primitive, g(a) €
(zy)*x, yx is a prefix and zy a suffix of g(b). Therefore zyyx occurs
on the edge of h(b)h(b) and it is easy to derive a contradiction with
Lemma 3.5 or Lemma 3.4.

O

It is now straightforward to see that
Claim 5.2. None of conditions (A), (B) and (C) holds.

Proof.

1. If h(b) is a factor of g(a)*t, then, by Claim 5.1, g(b)'g(a) is a factor
of g(a)*. This is a contradiction with Lemma 3.2 and g being marked
from both sides.



2. Let (A) hold, and h(b) be a prefix of sg(a)™ for some proper suffix s of
g(b). Lemma 3.2 implies that s 'g(b)’ is a suffix of g(a)T, a contradic-
tion. Similarly for condition (B).

O

Lemma 4.4 now implies that [ = I’ = 1, and h(b) is a prefix of g(b)g(a)™
and a suffix of g(a)Tg(b). Tt is slightly more complicated to see that

Claim 5.3. The condition (D) does not hold.

Proof. In this proof p; (s; resp.) will always denote a proper prefix (a
proper suffix resp.) of g(a).
Suppose that (D) holds. We have

h(b) = g(b)g(a)™ p1 = sag(a)™ g(b) = s3g(a)"*g(b)g(a)™ pa,

with my, mg, m3,mq > 0. Since g(a)™r is a factor of g(a)™ for a non-
empty prefix r of g(b), Lemma 3.2 and ¢ is marked imply that mgz = 0.
The mirrored consideration yields m4 = 0.

Hence |h(b)| < |g(b)| + 2 - |g(a)|, and therefore m; = my = 1. We can
write

(1) h(b) = g(b)a(a)p T e e
(2) h(b) = s2g(a)g(b) s2 | g(a) | g(b)
(3) h(b) = s3g(b)ps, s3 | g) | pa

where |s9| < |s3] and |p1| < |p4|. From (1) and (3) we deduce ps = p3p1
and

g9(b)g(a) = s3g(b)ps ,
with s3p3 = g(a). Hence
g(b)pss3 = s39(b)ps

and words ¢g(b)p3 and s3 have a common primitive root, say t. Let ¢t = t1to
be a factorization of ¢ such that

g(b) = (trta)" 1, p3 = ta(tit2)™, s3 = (tita)’.
with 41,49 > 0, 7 > 1. Then also
g(a) = pssg = (tat1)* 1y,
g(b)gla) = (trty) T4+
g(a)g(b) = (tatr)1 4L,
From (2) and (1) it follows that so(tot1) is a prefix of g(b)g(a) and thus
s2 = (tit2)"t1, h(b) = sag(a)g(b) = (tita)1 724 H I gy,



with 73 > 0. The equality (3) gives
Py = (tth)i2+i3+1

and, since py is a prefix of g(a), the words ¢; and ¢35 commute. Therefore
also g(a) and g(b) commute, a contradiction. O

Corollary 4.5 together with the above claims now yields Eq(g,h) =
{a'b,ba"}*.
Case 5.2. |g(ab)| > |h(D)]

We first consider a special situation:
Lemma 5.4. If k =k =1=1"=1, then eq(g,h) = {ab,ba}.

Proof. If |g(ab)| = |h(ab)|, we are through. Suppose that |g(ab)| >
|h(ab)|. The case |g(ab)| < |h(ab)| is analogical. Assumptions now imply
that

(4) 9(ab) = h(ab)v

for some non-empty word v. Since h(b) is a suffix of g(ab), there is a word
u such that
uh(b) = h(b)v.

Let xy be a primitive word such that z is non-empty and
u=(ya), v = (zy)’, h(b) = (yz)’y,

with 4 > 1 and j > 0. From |h(ab)| > |g(a)| and from (4) we deduce
lg(b)| > |v|. Since g(b) is both prefix and suffix of h(b), primitivity of zy
yields g(b) = (yz)’'y, 71 > 1. We have

g(a) = h(a)(yz)"™ 77 = (zy)"*7 77 h(a).

Therefore, by characterization of conjugates, h(a),g(a) € (xy)*z and we
are through by Lemma 4.6. O

Subcase 5.2.1. (I +1")|g(b)| > |h(b)]

If (1 +1)g(b)| = |h(b)| then ¢g(b) and h(b) commute, a contradiction
with Lemma 4.1.

If (1 +10'"—=1)]g(b)] > |h(b)|, then g(b) and h(b) again commute, by
Periodicity Lemma.

Therefore |h(b)|+|g(b)| > (I+1")|g(b)| > |h(b)|. This implies that there
exists a primitive word zy, with z,y € AT, such that

g(b) = (y2)'y, h(b) = (y=)'y)"~ (o) ™y ((y)'y)" ",
with 4 > 1, and i < m < 2i. The factor (yx)™y in the expression of h(b)
represents the overlapping occurrences of g(b).



Then also

(5) (zy)™ ((yz)'y)" " € pref(g(a)), ((yz)'y)'~"(y2)™"" € suff(g(a)).
Note that x and y are marked from both sides.

1. Suppose first that either [ > 1 or I’ > 1, and apply Corollary 4.5. By
Lemma 3.6, the word h(b) is not a factor of g(a)*. Therefore there is
a proper suffix s of g(b), such that h(b) is a prefix of sg(a)™, and

(6) s7lg(b)'z s a prefix of g(a).

The prefix yz of h(b) is also a prefix of szy € pref(sg(a)), which is a
suffix of (yz)"*!y. This implies that s = (yz)"'y, with 4; > 0. Therefore

(7) (yz) ™y ((yz)'y)" =" € pref(h(b)).

We shall show that I’ < and i; = 2i — m.

1.1. Suppose that [ = 1 and I’ > 1. By (5), the word (yz)'y(zy)™ ‘y is
the shortest prefix of i(b) ending with zyy. From (7) we get another
expression of this word, namely (yz)"*™ lyy. This implies m =
11 + m — i. Therefore 4y = 4, a contradiction with s being proper
prefix of g(b).

1.2. If | > 1, the shortest prefix of h(b) ending with zyy is (yz)'yy, and,
as above, we deduce ¢ = 41 + m — 4, in accordance with the claim.
Thus both ((yz)%y)" and ((yz)iy)'z are prefixes of h(b), and I’ is at
most [.

Mirror considerations yield | < !’ and thus I = I’. From (6) we now
conclude that

(zy)""y((yz)'y)" "'z is a prefix of g(a).
It follows that the word

g0 (zy)™ ((yz)'y) 'z

is a prefix of h(b)!, and z is a prefix of h(b), a contradiction.

2. Suppose then that either £ > 1 or ¥’ > 1. By symmetry, let & > 1. We
shall use the fact that g(aa) contains a factor yzzy. By Lemma 3.6,
the word h(b) is not a factor of g(a)*. Therefore g(a)* is a factor of
h(b). Since |h(a*)| < |g(a)|, we get a contradiction with Lemma 3.4.

We have shown that any possibility, except k = k' =1 = [, is contra-
dictory, and can use Lemma 5.4.

Subcase 5.2.2. (I +1")|g(b)] < |h(b)]
We have



with u,v,w € AT. The word w is both a prefix and a suffix of g(a), and
9(a) = vg(6)'w = wo(b)"

Thus there is a primitive word zy, such that z and y are marked from
both sides, and

w = (zy)’z, g(®)"u = (yz), vg(b)' = (zy)’,
with 2 > 1, 7 > 0. We have

g(a) = (ay) ™z
and h(b) is a factor of (yz)*. We first prove the following

Claim 5.5. If k > 1, or k' > 1, or (C) holds, then h(b) is a factor of
yrTy.
Proof. This is a direct consequence of Lemma 3.3. O

1. Let first |g(b)| > |y|. Then yzy is a factor of h(b). Claim 5.5 and
Lemma 3.5 imply that (C) does not hold, and k = k' = 1.

Suppose I > 1. Then u = g(b)'~'q, with a prefix ¢ of g(b), and
g(b)'q is a factor of (zy)*. By Corollary 4.5, the condition (A) holds.
Consequently, the word g(b)!zy is a prefix of s(zy)* for some suffix s
of g(b). Lemma, 3.2 implies that s~ 'g(b)! commutes with zy, and zy is
a suffix of g(b)!. Again by Lemma 3.2, we conclude that q is a prefix of
(zy)T, a contradiction. Similarly if I > 1.

2. Let now |g(b)| < |yl
2.1. Suppose [ > 1. Then the word u is a prefix of h(b) and consequently
yx is a prefix of g(b)“‘l. Since ¢(b) is a suffix of y, Lemma 3.2 yields

that x is a prefix of g(b)™, a contradiction. Similarly if I’ > 1.

2.2. Suppose now [ =" =1 and k > 1. Claim 5.5 implies |h(b)| < |yzzy]
and |h(b)| > |g(a)| yields i + 5 = 1. Thus i = 1 and j = 0, and from

2|g(b)| + |z| = |n(b)] > |g(a)] = 2|z| + |y|
we deduce
z| + |yl < 2/g(D)|.

The word ¢(b) is a prefix and a suffix of y. Therefore there exist a
primitive word z1y;, with y; € AT, 21 € A*, and integers 1 < iy < 73

such that
(8) y = (y1z1)" iy, 9(b) = (y121) "y,
and o
[(yrz0) ™" yn] 2 |ya| > .
Therefore

h(b) = (y171)" y1 = (y121) y1



and Claim 5.5 now yields
(9) (yiz1)'y1z (y121)" y1 is a factor of (y1z1)" 'y 2z (yy ) !

Let u; and v; be words such that

Y1-

ur(y121) g1 2 (y121) 1o = (1) oy z (yro)
Note that x and y; are marked from both sides.
This implies that y;zy; is not a factor of yyzxy;, by Lemma 3.5, and

either

Y1-

i14+J1

(10) ui(y171)'y; s a proper prefix of  ((y121)" 'yy),

or
(11) (ylxl)jlylvl is a proper suffix of ((ylxl)“"'jlyl).

By symmetry, suppose (10). Consider the factor 1y zy121y; in claim
(9). Primitivity of its prefix z;y; yields that zy;z1y; is comparable
with (z1y1)™zz, m > 1. If m = 1 then y; and = are comparable,
a contradiction. On the other hand, m > 1 implies that zy;z1 is a
prefix of z1y121y1, and primitivity of y1z; yields z = 2. From (8)
we have yz = (yi21)" 77111, a contradiction with primitivity of zy.
We are left with [ = 1" = k = k' = 1, and Lemma 5.4 concludes the proof.
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