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Abstract. We study some properties of palindromic (scattered) subwords of
binary words. In view of the classical problem on subwords, we show that the
set of palindromic subwords of a word characterizes the word up to reversal.

Since each word trivially contains a palindromic subword of length at least
half of its length—a power of the prevalent letter—we call a word that does
not contain any palindromic subword longer than half of its length minimal
palindromic. We show that every minimal palindromic word is abelian unbor-
dered.

We also propose to measure the degree of palidromicity of a word w by the
ratio |rws|/|w|, where the word rws is minimal palindromic and rs is as short
as possible. We prove that the ratio is always bounded by four, and construct
a sequence of words that achieves this bound asymptotically.

1. Introduction

In this paper we propose a property of binary words, which measures how palin-
dromic they are. For that purpose we investigate palindromes that are (scattered)
subwords of a given word. A binary word trivially contains a palindromic subword
of length at least half of its length: a power of the prevalent letter. Therefore a
word that does not contain any palindromic subword longer that half of its length
has the lowest degree of palindromicity, and deserves to be called minimal palin-

dromic. Table 1 lists the minimal palindromic words up to length 9 starting with
the letter 0. In this paper, we give some properties of such words.

It is less clear, on the other hand, which words should be understood as highly
palindromic. Our approach is the following: a word w is the more palindromic the

harder it is to construct a word z that is minimal palindromic and w is its factor.

Therefore we study shortest extensions rws of w that are minimal palindromic, and
use the fraction |rws|/|w| as the measure of palindromicity. It is not very difficult to
see that this measure always exists and it is bounded by 4, see Theorem 3. Rather
surprisingly, this bound is also optimal as we show by constructing a sequence of
words which reach the bound asymptotically.

We will also consider some other aspects of palindromic subwords to motivate this
notion further. We will show that minimal palindromic subwords are unbordered,
even in a stronger, abelian, sense. A classical problem regarding subwords is to
characterize a word by a collection of its subwords, see [4, 7, 3, 6, 2, 8]. We will
show that a word is characterized, up to reversal, by its palindromic subwords.

The content of the paper follows. In Section 2, we fix the notation and present
some definitions. In Section 3, we show that minimal palindromic words are abelian
unbordered. In Section 4, we show that a word is essentially characterized by its
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Length Minimal Palindromic Words

1 0
2 01
3 011, 001
4 0011,
5 00011, 00101, 00111, 01011
6 001011, 000111
7 0000111, 0001011, 0001101, 0001111, 0010111, 010011
8 00001111, 00010111
9 000001111, 000010111, 000011011, 000011101, 000011111,

000100111, 000101011, 000101111, 000110111, 000111011,
001000111, 001001111, 001010111, 010001111

Table 1. Minimal palindromic words up to length 9.

palindromic subwords. In Section 5, we present the main result of this paper.
Namely, we show that the number 4 is the optimal upper bound for the measure of
palindromicity of words. Section 6 concludes the paper with a discussion of some
further problems for future consideration.

The notion of palindromic subwords of a finite word has, to our knowledge, not
been much considered before. For a review on subwords, we refer to [1], and for a
more throughout treatment, we refer to [4, Chapter 6].

1ex

2. Definitions

We start by fixing the notation and presenting some definitions. For the notions
left undefined, the reader should consult, for example, [1].

Let w and u be words over the alphabet {0, 1}. The word u is a factor of w if
w = xuy for some words x, y ∈ {0, 1}∗. The word u is a subword of w if there exist
words x1, y1, . . . , xn, yn ∈ {0, 1}∗ such that

u = y1y2 · · · yn and w = x1y1x2y2 · · ·xnyn.

Note that factor is often called a subword in the literature; and subword is often
called a scattered subword. If the subword u of w is a palindrome, then we say that
u is a subpalindrome of w.

The length of the word w is denoted by |w|. For a letter a ∈ {0, 1}, the symbol
|w|a denotes the number of occurrences of a in w. The reversal of w is denoted by
w̃.

If w can be written in the form w = uxv, where u and v are nonempty words
with |u|0 = |v|0 and |u|1 = |v|1, we say that w is abelian bordered. Otherwise we
say that w is abelian unbordered.

We say that a letter a ∈ {0, 1} is prevalent in a word w ∈ {0, 1}∗ if

|w|a = max{|w|0, |w|1}.

Then we have

|w|a ≥

⌈

|w|

2

⌉

,
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and a|w|a is a subpalindrome of w.
We denote the length of a longest palindromic subword of a word w ∈ {0, 1}∗

by κ(w). Since the word w is over a binary alphabet, it follows that
⌈

|w|

2

⌉

≤ κ(w) ≤ |w|.

We say that the word w is minimal palindromic if κ(w) = ⌈|w|/2⌉ . Observe that
the number of letters 0 and 1 in a minimal palindromic word w differ by at most 1,
that is,

(2.1)
∣

∣ |w|0 − |w|1
∣

∣ ≤ 1.

For an arbitrary word w ∈ {0, 1}∗, if there exists two words r, s ∈ {0, 1}∗ such
that a word rws is minimal palindromic, then we say that the pair (r, s) is an MP-
extension of w (an MP-extension always exists, see Theorem 3). If, in addition,
the word rws is as short as possible, then we call the pair (r, s) a shortest MP-
extension, or SMP-extension for short, of w. Finally, the rational number |rws|/|w|,
where (r, s) is an SMP-extension of w, is called the MP-ratio of w. The MP-ratio
measures how much a word has to be extended to obtain a minimal palindromic
word.

Some additional definitions that are needed only locally will be presented later.

3. Minimal Palindromic Words are Abelian Unbordered

Here we establish a strong unborderedness property of minimal palindromic
words.

Theorem 1. Suppose a word w ∈ {0, 1}∗ is an abelian bordered word. Then w is

not minimal palindromic.

Proof. Let us write w = xuy, where x and y satisfy |x|0 = |y|0 and |x|1 = |y|1.
Suppose further that |x| is the least possible. Let a denote a prevalent letter of u,
and denote m = |u|a.

If x is a letter, then w = xux and xamx is a subpalindrome of w. We have
⌈

|w|

2

⌉

=

⌈

|u|

2

⌉

+ 1 ≤ |u|a + 1 < |xamx| ≤ κ(w),

and hence w is not minimal palindromic.
Now we may suppose that |x| ≥ 2. Since the length of x (and y) is minimal,

both letters 0 and 1 must occur in x (and y). Let b denote a prevalent letter of
x (and y), and denote l = |x|b = |y|b. The last letter of x differs from the first
letter of y. Indeed, otherwise w would have an abelian border of length |x| − 1,
contradicting the minimality of |x|. Therefore the letter a is either a suffix of x or
a prefix of y, and consequently the word

blam+1bl

is a subpalindrome of w. This implies that
⌈

|w|

2

⌉

≤

⌈

|x|

2

⌉

+

⌈

|u|

2

⌉

+

⌈

|y|

2

⌉

≤ 2l + m < |blam+1bl| ≤ κ(w),

so that w is not minimal palindromic. �

By negating the previous theorem, we get the following corollary.
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Corollary 1. If a word is minimal palindromic, then it is abelian unbordered.

As an application of this corollary, we show that already a very short prefix of a
word can tell if the word is not minimal palindromic.

Corollary 2. No word with a proper prefix 011 is minimal palindromic.

Proof. If a word w has a proper prefix 011, then Corollary 1 implies that w has a
suffix 111. If |w| ≤ 6, the word w clearly is not minimal palindromic. If |w| > 6,
we can write w = 011u111, and then w has a subpalindrome 11p11, where p is a
longest subpalindrome of u. Consequently,

κ(w) ≥ 4 + κ(u) ≥ 4 +

⌈

|u|

2

⌉

= 1 +

⌈

6 + |u|

2

⌉

>

⌈

|w|

2

⌉

.

Hence w is not minimal palindromic. �

Incidentally, the word 011 itself is minimal palindromic.

4. Determining a Word by Its Subpalindromes

In this section we show that a word is characterized, up to reversal, by the set
of its subpalindromes. Let P(w) denote the set of all subpalindromes of w.

Theorem 2. If w, z ∈ {0, 1}∗ with P(w) = P(z), then either w = z or w = z̃.

Proof. We proof the claim by induction on the length of w. The claim is clear if w
is empty or a letter; hence we may assume that |w| ≥ 2.

Denote P = P(w) = P(z), and let ma, where a ∈ {0, 1}, be the maximal integer
such that ama ∈ P . Then, clearly, |w|0 = |z|0 = m0 and |w|1 = |z|1 = m1.

Let us first suppose that w = aw′a, where a ∈ {0, 1} and w′ ∈ {0, 1}∗. Then
abmba ∈ P , where b = 1 − a. This implies that z = az′a for some z′ ∈ {0, 1}∗ and,
furthermore,

P(w′) = P(z′) = { u | aua ∈ P } .

By the induction assumption, either w′ = z′ or w′ = z̃′, and so it follows that either
w = z or w = z̃.

Let us then suppose that a = pref1(w) 6= suff1(w) = b, and let i, j be the largest
integers such that w can be written in the form w = aiw′bj. The word w′ is either
empty, or pref1(w

′) = b and suff1(w
′) = a. Then abmba /∈ P , whence either z or z̃

is of the form ai′z′bj′ , where z′ satisfies the same conditions as w′. The definition
of w′ and z′ implies that we have

P(w′) = P(z′) = { u | pref1(u) = suff1(u) = c and dud ∈ P, d = 1 − c } ∪ {ǫ} .

The induction assumption now implies that w′ = z′. Moreover i = ma − |w′|a =
ma − |z′|a = i′. Similarly, we obtain j = j′, and the proof is complete.

�

5. Extending a Word into a Minimal Palindromic Word

As mentioned in the introduction of this paper, we consider a word w highly
palindromic if it is difficult to construct a minimal palindromic word z with w as a
factor. That is to say, large MP-ratio corresponds to high palindromicity. In this
section we investigate how large the MP-ratio of a word can be. The first result
gives an upper bound.
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Theorem 3. The MP-ratio of any word w ∈ {0, 1}∗ is at most 4.

Proof. Let us denote

z = 0|w|+|w|1w 1|w|+|w|0.

Since w is a factor of z and |z|/|w| = 4, it suffices to show that z is minimal
palindromic. To do that, let p denote a subpalindrome of z. By symmetry, we may
suppose that p starts and ends with the letter 1. Consequently p is a subword of
w1|w|+|w|0, and hence either p ∈ 1∗ or p = r 01j, where r 0 is a subword of w. If
the former holds, then clearly |p| ≤ 2|w| = ⌈|z|/2⌉. If the latter holds, then the
palindomicity of p implies j ≤ |r|1 ≤ |w|1. Therefore

|p| = |r 0| + j ≤ |w| + |w|1 ≤ 2|w| =

⌈

|z|

2

⌉

.

We have shown that κ(z) = ⌈|z|/2⌉, so that z is minimal palindromic. �

Next we show that the constant 4 in the previous theorem is optimal. Next
theorem is the main result of this paper. Denote

R(n) = max{MP-ratio of w | w ∈ {0, 1}∗, |w| = n }.

Theorem 4. We have

lim
n→∞

R(n) = 4.

To prove the claim, we need some auxiliary definitions and Lemmas 1–4 below.
We say that a word w ∈ {0, 1}∗ is k-economic (with respect to the letter 1),

where k ≥ 0 is an integer, if w is a palindrome and the word w 1k contains a
subpalindrome of length at least |w|1 +k+2. Such a subpalindrome can be written
in the form 1mq 1m, where m ≤ k, the word q is a palindrome, and 1mq is a subword
of w. We call the pair (q, m) a k-witness of w. Note that the word w may have
several k-witnesses. Finally, we say that w is economic, if it is k-economic for each
integer k = 0, . . . , |w|1.

The importance of an economic word is that it is highly palindromic, provided
it has a high density of letter 1. This follows from the next two lemmas.

Lemma 1. Suppose that a word w ∈ {0, 1}∗ is economic. If a pair (r, s) is an

MP-extension of w, then |rs|1 > |w|1.

Proof. Suppose, contrary to what we want to prove, that |rs|1 ≤ |w|1. Denote
|r|1 = i and |s|1 = j. Suppose first that i ≤ j. Now, we have (j − i) ≤ |w|1, and
so the word w is (j − i)-economic. Let (q, m) be a (j − i)-witness of w. Then the
word 1mq is a subword of w, and

|1mq 1m| ≥ |w|1 + j − i + 2.

On one hand, since m + i ≤ j = |s|1, we see that the palindrome 1m+iq 1m+i is a
subword of rws. On the other hand, we have

|1m+iq 1m+i| ≥ |w|1 + j + i + 2 > |rws|1 + 1 ≥

⌈

|rws|

2

⌉

,

where the last inequality holds because rws is minimal palindromic, see Equa-
tion (2.1). But then the palindrome 1m+iq 1m+i cannot be a subword of rws as it
is too long, a contradiction. The case i > j can be proved in the same way, we just
have to recall that w is a palindrome. This completes the proof. �



6 ŠTĚPÁN HOLUB AND KALLE SAARI

Lemma 2. Suppose that a word w ∈ {0, 1}∗ is economic. If a pair (r, s) is an

MP-extension of w, then |rws| > 4|w|1.

Proof. Since rws is minimal palindromic, Equation (2.1) and Lemma 1 implies that

|rws| = |rws|0 + |rws|1 ≥ 2|rws|1 − 1 = 2|w|1 + 2|rs|1 − 1 > 4|w|1.

�

The previous lemma implies that if a word w is economic and the density of the
letter 1 in w is large, then w has a large MP-ratio. Therefore we want to find a
sequence of economic words with large densities.

Let w0 be an economic word. We define a sequence (wi)i≥0 recursively by

(5.1) wi+1 = wi 1tiwi for i ≥ 0,

where ti is a positive integer. Our sequence is fully defined by the starting word w0

and by the sequence (ti)i≥0. Note that, since w0 is a palindrome, the word wi is a
palindrome for all i ≥ 0.

Lemma 3. If ti < |wi|0 for every integer i ≥ 0, then the words wi are economic.

Proof. We prove the claim by induction on i. The word w0 is economic by assump-
tion. Suppose now that wi is economic. We show that wi+1 is economic, that is,
k-economic for all k = 0, . . . , |wi+1|1. This is done in three parts as follows.

Suppose first that 0 ≤ k ≤ |wi|1. By the induction assumption, wi is k-economic.
Let (q, m) be a k-witness of wi, and denote

p = 1mq 1ti+mq 1m.

Since 1mq is a subword of wi and wi+1 = wi1
tiwi, we see that the word

1mq 1ti+mq

is a subword of wi+1, and therefore p is a subpalindrome of wi+11
m. So, to show

that wi+1 is k-economic, we only have to show that

|p| ≥ |wi+1|1 + k + 2.

Since (q, m) is a k-witness of wi, we have

|q| + 2m = |1mq 1m| ≥ |wi|1 + k + 2,

and since m ≤ k, we obtain

|p| = 2|q| + 3m + ti ≥ 2|q| + 4m − k + ti ≥ 2|wi| + k + 4 + ti > |wi+1|1 + k + 2.

Hence wi+1 is k-economic.
Suppose then that |wi|1 < k ≤ |wi|1 + ti. Now the word 1kwi1

k is a subpalin-
drome of wi+11

k. Since ti < |wi|0 and |wi|1 < k, we have

|1kwi1
k| = 2k + |wi|1 + |wi|0 ≥ 2|wi|1 + ti + k + 2 = |wi+1|1 + k + 2,

and it follows that wi+1 is k-economic.
Suppose finally that |wi|1 + ti < k ≤ |wi+1|1. Denote j = |wi|1 + ti and l = k− j.

Since l ≤ |wi|1, the word wi is l-economic by the induction assumption. Let (q, m)
denote an l-witness of wi. Since the word 1j is a subword of wi1

ti , the word 1mq
is a subword of wi, and m + j ≤ k, we see that the palindrome

1m+jq 1m+j
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is a subword of wi+11
k. Furthermore,

|1m+jq 1m+j| ≥ 2j + |wi|1 + l + 2 = |wi+1|1 + k + 2,

and hence wi+1 is k-economic. The proof of Lemma 3 is complete. �

Next we will show that there exist economic words of any sufficiently large length
with high density of the letter 1. To do that, we denote by w(t0, . . . , tj−1), where
j ≥ 1, the word wj defined by (5.1) with w0 = 0000. If, in addition, the integers
ti’s satisfy

(5.2) 2i ≤ ti < 2i+2,

then we have

ti < 2i+2 = |w(t0, . . . , ti−1)|0

for all 0 ≤ i ≤ j−1, and therefore the word w(t0, . . . , tj−1) is economic by Lemma 3.

Lemma 4. For every integer k ≥ 448, there exist a word vk such that |vk| = k,

and vk = w(t0, . . . , tn−1) for some n ≥ 6, and some integers t0, . . . , tn−1 satisfying

the inequality (5.2).

Proof. To enhance readability, let us denote, for integers i ≥ 0,

αi = 2i and βi = 2i+2 − 1;

then (5.2) is equivalent to αi ≤ ti ≤ βi. It is easy to verify that, for all j ≥ 1, we
have

|w(t0, t1, . . . , tj−1)| = 2j+2 + 2j−1t0 + 2j−2t1 + · · · + 2tj−2 + tj−1,

and furthermore,

|w(α0, . . . , αj−1)| = 2j−1(8 + j) and |w(β0, . . . , βj−1)| = 2j(3 + 2j) + 1.

Now, a straightforward calculation shows that, for each j ≥ 6, we have

|w(α0, . . . , αj)| < |w(β0, . . . , βj−1)|.

This implies that, for each k ≥ |w(α0, . . . , α5)| = 448, there exists an integer n ≥ 6
such that

|w(α0, . . . , αn−1)| ≤ k ≤ |w(β0, . . . , βn−1)|.

It is now enough to verify that integers of the form |w(t0, . . . , tn−1)|, where ti’s
satisfy (5.2), cover the whole interval between |w(α0, . . . , αn−1)| and |w(β0, . . . , βn−1)|.
This can be done inductively by noting that if

k = |w(t0, . . . , ti, βi+1, . . . , βn−1)|

with ti < βi, then, as in the usual binary numeration system,

k + 1 = |w(t0, . . . , ti−1, ti + 1, βi+1 − 1, . . . , βn−1 − 1)|.

This concludes the proof of Lemma 4. �

In the previous lemma, the constant 448 is by no means essential—it could pos-
sibly be chosen to be smaller. However, since we are interested in the asymptotical
behavior of economic words, the constant suffices for our purposes.

Now, it is easy to see that

|w(α0, . . . , αj−1)|1
|w(α0, . . . , αj−1)|

≤
|w(t0, . . . , tj−1)|1
|w(t0, . . . , tj−1)|
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for all j, as soon as the ti’s satisfy inequality (5.2). We calculate

|w(α0, . . . , αj−1)|1
|w(α0, . . . , αj−1)|

=
2j−1j

2j−1(j + 8)
=

j

j + 8
.

Therefore, if we consider the density of the letter 1 in the words vk guaranteed by
Lemma 4, we obtain

lim
k→∞

|vk|1
|vk|

= 1.

We are now ready to finish the proof. Choose a positive real number ε, and let k0

denote an integer such that
|vk|1
|vk|

> 1 − ε/4

for all k ≥ k0. Let a pair (r, s) be an SMP-extension of vk. Then Lemma 2 implies
that

|rvks|

|vk|
>

4|vk|1
|vk|

> 4 − ε,

that is, the MP-ratio of vk is at least 4 − ε for k ≥ k0. It follows that

lim
n→∞

R(n) = 4,

and Theorem 4 is now proved.

6. Future Research

It is interesting to study the structure of words with maximal palindromicity, i.e.,
with MP-ratio R(|w|) (they should be called maximal palindromic). It seems that
economic words are best candidates for such maximal property. It is, however, an
open question whether each maximal palindromic word is economic, and whether
maximal palindromic words can be obtained using our construction. Oddly enough,
we do not even know whether maximal palindromic words are always palindromes.

We would also like to ask whether in the definition of the MP-extension it is
possible to suppose, without loss of generality, that the extending words r and s
are powers of a single letter. Again, we cannot answer even a weaker question,
whether the maximal extending words r and s can be always elements of 0∗1∗

or 1∗0∗.
Finally, since we are mostly dealing with subwords, not factors, it may be more

natural to study minimal palindromic extensions as follows. If w is an arbitrary
word, its minimal palindromic extension is a word u such that u is minimal palin-
dromic and it contains w as a subword (i.e., w does not have to be factor of u).
Finding an optimal upper bound for the length of a shortest MP extension in this
sense is open, but computational evidence suggests that the optimal bound may be
strictly less than 4.
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[1] Choffrut, Christian; Karhumäki, Juhani Combinatorics of words. Handbook of formal lan-
guages, Vol. 1, 329–438, Springer, Berlin, 1997.

[2] Dud́ık, Miroslav; Schulman, Leonard J. Reconstruction from subsequences. J. Combin. The-
ory Ser. A 103 (2003), no. 2, 337–348.

[3] Krasikov, Ilia; Roditty, Yehuda On a Reconstruction Problem for Sequences, J. Comb. The-
ory, Ser. A 77(2): 344-348 (1997)

[4] Lothaire, M. Combinatorics on words. Encyclopedia of Mathematics and its Applications, 17.
Addison-Wesley Publishing Co., Reading, Mass., 1983.



ON HIGHLY PALINDROMIC WORDS 9

[5] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Appli-
cations, 90. Cambridge University Press, Cambridge, 2002.
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