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1. INTRODUCTION

There exist n-tuples of words u1, ..., u, such that raising to the k-power behaves
like an endomorphism, i.e.

(1.1) ub ok = (. ug)

This equality is trivial if uq, ..., u, are powers of a common word w, but there are
as well non-trivial cases. We shall say that the n-tuple uy,...,u, is k-invariant
if it is not trivial and (1.1) holds. One might ask whether there exists a n-tuple
that is k-invariant for two different integers ki, k2 > 1. In [4] it is shown that there
exists no k-invariant n-tuple for three different integers greater than one, but for
two integers the problem is open. The most simple case is that with k; = 2, ks = 3.
Note that if (1.1) holds for k = 2,3 than the equality

(1.2) (uf...u2)® = (uf.. . ud)?

holds as well.

It is not difficult, using the computer, to find a lot of 2-invariant or 3-invariant n-
tuples, but it turns out that it is not so easy to find a n-tuple realizing the equality
(1.2). In this paper we describe a method that allows to get such a n-tuple in rather
short time.

2. CLASSICAL METHOD

In this section we shall describe the classical method of searching a solution of
an equation (cf. e.g. [1]). First let us introduce basic notions.

Let ¥ be a finite alphabet. Elements of X are called letters and sequences of
letters are called words. The sequence of length zero is called the empty word. The
set of all words (all non-empty words) is denoted by £* (X7, resp.). It is a monoid
(semigroup, resp.) under the operation of concatenation.

Let T be a finite set of unknowns. Every

(e,e) e TT x T+

we shall call an equation in unknowns from T'.

We shall say that a morphism ¢ : TT — X7 is a solution of an equation (e,e’) €
T+ x TT in the semigroup YT if and only if the equality ¢(e) = p(e’) holds.

We shall say that a solution ¢ : Tt — ¥ is cyclic if and only if there exists a
word v € ¥F such that ¢(z) is a power of v for every z € T

Now let us have the equation

(2.1) (xF...22)% = (zF ... 23)?
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and p: XT = ¥+t X = {z1,...,2,}, be a solution of it in ¥*. Denote p(z;) = u;,
di = |uil, 1 <i<n,d=3)_,d; and

(2.2) w=p((zf...27)") = p((2] ... 27)%).

The word w is a sequence ¥y ...y, with ¢t = 6d, where y;, 1 < i < t, is a variable
for a letter from the alphabet ¥. The equality (2.2) imposes certain identifications
on y;.

Definition 2.1. Let &~ be the smallest equivalence relation on the set {y1,...,y:}
such that

l.yimy;jifi=7 mod 2d

2. y;~y;ifi=j mod 3d

3.y ~y; if

i—1 i
23 dy <i,j<2) dy
k=i k=1

for some 1 < k <n,and i =j mod dj
4. Yi R Yj if

i—1 i
3 dp <i,j<3) d
k=i k=i
for some 1 < k <n,and i =j mod dj

Items 1. and 3. express the fact that y; and y; are the same letter of a word
u; thanks to the left side of the equation (2.1), while items 2. and 4. express the
same fact deduced from the right side.

We say that the n-tuple (di,...,d,) is the type of the solution . Clearly the
equivalence =~ is defined by the type of the solution. Certainly for any solution of
the type (d1,...,d,) the equality y; = y; must hold as soon as y; ~ y;.

Definition 2.2. We shall say that ¢ is the canonical solution of the type (di, . .., dy)
if and only if

Yi =Yj < Yi = Yj.

The number of classes of equivalence ~ we shall call the rank of the canonical
solution.

We say that the (n,max(dy,...,dy)) is the size of the type (di,...,d,). We say
that the type with size (n,m) is smaller than the type with the size (n',m’) if and
only if n < n' and m < m/'. It is a partial ordering of canonical solutions.

Observation 2.3. Tt is sufficient to restrict ourselves to the types (d1,...,d,) with
ged(dy, ..., d,) =1 (greatest common divisor). Indeed let us suppose that

ged(dy,...dy) =g > 1.

It is easy to see that the canonical solution of the type (di,...,d,) results from the
canonical solution of the type (d1/g,...,d,/g) substituting each letter by a word
of length g. Furthermore two words substituted for two different letters have no
common letter.

Observation 2.4. Every canonical solution that is minimal non cyclic solution in
respect to the above ordering, is of rank two. Indeed, it must be of the rank at
least two to be non cyclic and if it was of the rank more than three we would get a
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smaller non-trivial solution by a morphism mapping one of the letters to the empty
word.

Definition 2.5. We say that a canonical solution ¢ is antihomogeneus if it is of
rank two and every word u; contains both letters.

Using the facts described in this section we can search for a non-trivial solution
of (2.1) taking different types and constructing their canonical solutions.

3. THE WEAK EQUIVALENCE

Clearly the time necessary to check all types smaller than a given one grows
exponentially with both parameters of the size. Using the following method it is
possible to check in the same time all solutions of double length with restriction to
antihomogeneus ones ! .

Let ¢ be a non-cyclic antihomogeneus solution of (2.1) of rank two in {A, B}*.
(We can understand the letters A, B as names of the two equivalence classes of
~.) Denote by a; the number of occurrences of the letter A in the word u;. The
equivalence & for the type (ai,...,a,) has obviously just one class. Now we shall
define a bit ”weaker” equivalence ~ on {y},...,y.}, with s = > " | a;. The equi-
valence = is generated by the relation "y; ~ y;, if they are the same letter in a
word u;”. The equivalence ~ is going to be generated by the relation "y; ~ y;, if
Yiyi+1 is the same word (of length two) as y;y;41” 2 .

That relation does not unify the last letter of a word w; followed by another copy
of u; (we shall call such a letter a final letter of the first type) with the last letter
of the same word followed by the word u;y1 ( a final letter of the second type) 3 .
The precise definition of ~ is as follows.

Definition 3.1. Let ~ be the smallest equivalence relation on the set {yi,...,y.}
such that

l.yimy;jifi=7 mod 2d

2. yy~y;ifi=j mod 3d

3.y ~y; if

i—1 i
23 dy <i,j<2) dy
k=i k=1

for some 1 <k <nandi=j mod dj

i—1 i
3 dp <i,j<3) dy
k=i k=i
for some 1 < k <nandi=j mod d

If y; ~ vy} then corresponding letters A are in w followed by the same power of
letter B (we define B° to be the empty word). If the word w contained only one
maximal power of the letter B, it would be cyclic. It implies that if ¢ is a non-cyclic
canonical solution then the equivalence ~ has at least two classes.

ISuch a restriction is not fatal as it can be proved (see [3]) that if there exists a non-trivial
2,3-invariant n-tuple then the minimal one is antihomogeneus.

2Further we consider the word w in the cyclic way.

3We identify u,41 with uj.
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Now the question is whether having a type (aj,...,a,) with the equivalence
~ of at least two classes, we can construct a non-cyclic solution of the equation
(2.1). Let us suppose that we have such a solution, with a; being the number of
occurrences of the letter A in the word u;.

Denote by 7n;, 1 < ¢ < n, the number of letters B that are placed between the
last and the first letter A of the word u; in the word u;u;, and by 1;541, 1 <i < n,
the same for the edge between words u; and u;4;.> The equivalence ~ generates
an equivalence between numbers 7; ;. Denote that equivalence <.

Denote by a; (8;), 1 < i < n, the number of letters B on the beginning (on the
end resp.) of the word u;. We get the following system of 2n linear equations

a;i+8 =mnyu, 1<i<n
(3.1) @i+ Bit1 = nijiy1, 1 <i<n
ap + ﬂn = Nn,n+1

The matrix of the system (3.1) is not regular and it is easy to see that a sufficient
condition for the existence of a solution is that in each class of the equivalence <
the number of variables of the type e;; is the same as the number of variables of
the type e; ;+1. In such a case there exists a solution such that e; ; are non-negative
integers, e; ; = ey j holds if and only if e; j < ey j, and all oy, 35, 1 < i@ < n are
non-negative integers. It means that it is enough to prove that in each class of the
equivalence ~ the number of representatives among the final letters of the first type
is the same as the number of representatives among the final letters of the second
type.

To prove this, fix C, an equivalence class of ~. Denote by a the number of
non-final letters contained in C, by f; the number of the final letters of the first
type and by fs the number of the final letters of the second type contained in C.
Now we shall count |w|c, the total number of occurrences of elements from C in
the word w. Looking at the left side of the equation (2.1) we get

lwle = 6a+3f1 +3f2,
while looking at the right side of the equation we get

lwle = 6a+4f1 + 2f5.
From that we deduce f; = f5, q.e.d.

4. CONCLUSION

We can conclude that each type (ai,...,a,) having at least two classes of the
weak equivalence ~, generates a non cyclic solution of the equation (2.1). The
method of the weak equivalence can be of course used even for other similar equa-
tions.

Using the method we have found following solution of the equation (2.1):

n="7 uy = ABA

u = ABABAABABAABAABABA wus = BAABA

uy = ABABA ug — ABABA

us = ABAAB u; — ABABAABAABABAABABA

It is the canonical solution of the type (18,5,5,3,5,5,18) and it was constructed
using the weak equivalence of the type (7,2,2,1,2,2,7).
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