
A SOLUTION OF THE EQUATION (x21 : : : x2n)3 = (x31 : : : x3n)2�ST�EP�AN HOLUB1. IntroductionThere exist n-tuples of words u1; : : : ; un such that raising to the k-power behaveslike an endomorphism, i.e. uk1 : : : ukn = (u1 : : : un)k:(1.1)This equality is trivial if u1; : : : ; un are powers of a common word w, but there areas well non-trivial cases. We shall say that the n-tuple u1; : : : ; un is k-invariantif it is not trivial and (1.1) holds. One might ask whether there exists a n-tuplethat is k-invariant for two di�erent integers k1; k2 > 1. In [4] it is shown that thereexists no k-invariant n-tuple for three di�erent integers greater than one, but fortwo integers the problem is open. The most simple case is that with k1 = 2, k2 = 3.Note that if (1.1) holds for k = 2; 3 than the equality(u21 : : : u2n)3 = (u31 : : : u3n)2(1.2)holds as well.It is not di�cult, using the computer, to �nd a lot of 2-invariant or 3-invariant n-tuples, but it turns out that it is not so easy to �nd a n-tuple realizing the equality(1.2). In this paper we describe a method that allows to get such a n-tuple in rathershort time. 2. Classical methodIn this section we shall describe the classical method of searching a solution ofan equation (cf. e.g. [1]). First let us introduce basic notions.Let � be a �nite alphabet. Elements of � are called letters and sequences ofletters are called words. The sequence of length zero is called the empty word. Theset of all words (all non-empty words) is denoted by �� (�+, resp.). It is a monoid(semigroup, resp.) under the operation of concatenation.Let T be a �nite set of unknowns. Every(e; e0) 2 T+ � T+we shall call an equation in unknowns from T .We shall say that a morphism ' : T+ ! �+ is a solution of an equation (e; e0) 2T+ � T+ in the semigroup �+ if and only if the equality '(e) = '(e0) holds.We shall say that a solution ' : T+ ! �+ is cyclic if and only if there exists aword v 2 �+ such that '(x) is a power of v for every x 2 TNow let us have the equation(x21 : : : x2n)3 = (x31 : : : x3n)2(2.1) 1



2 �ST�EP�AN HOLUBand ' : X+ ! �+, X = fx1; : : : ; xng, be a solution of it in �+. Denote '(xi) = ui,di = juij, 1 � i � n, d =Pni=1 di andw = '((x21 : : : x2n)3) = '((x31 : : : x3n)2):(2.2)The word w is a sequence y1 : : : yt, with t = 6d, where yi, 1 � i � t, is a variablefor a letter from the alphabet �. The equality (2.2) imposes certain identi�cationson yi.De�nition 2.1. Let � be the smallest equivalence relation on the set fy1; : : : ; ytgsuch that1. yi � yj if i � j mod 2d2. yi � yj if i � j mod 3d3. yi � yj if 2 i�1Xk=i dk < i; j � 2 iXk=i dkfor some 1 � k � n, and i � j mod dk4. yi � yj if 3 i�1Xk=i dk < i; j � 3 iXk=i dkfor some 1 � k � n, and i � j mod dkItems 1. and 3. express the fact that yi and yj are the same letter of a wordui thanks to the left side of the equation (2.1), while items 2. and 4. express thesame fact deduced from the right side.We say that the n-tuple (d1; : : : ; dn) is the type of the solution '. Clearly theequivalence � is de�ned by the type of the solution. Certainly for any solution ofthe type (d1; : : : ; dn) the equality yi = yj must hold as soon as yi � yj .De�nition 2.2. We shall say that ' is the canonical solution of the type (d1; : : : ; dn)if and only if yi = yj , yi � yj :The number of classes of equivalence � we shall call the rank of the canonicalsolution.We say that the (n;max(d1; : : : ; dn)) is the size of the type (d1; : : : ; dn). We saythat the type with size (n;m) is smaller than the type with the size (n0;m0) if andonly if n � n0 and m � m0. It is a partial ordering of canonical solutions.Observation 2.3. It is su�cient to restrict ourselves to the types (d1; : : : ; dn) withgcd(d1; : : : ; dn) = 1 (greatest common divisor). Indeed let us suppose thatgcd(d1; : : : dn) = g > 1:It is easy to see that the canonical solution of the type (d1; : : : ; dn) results from thecanonical solution of the type (d1=g; : : : ; dn=g) substituting each letter by a wordof length g. Furthermore two words substituted for two di�erent letters have nocommon letter.Observation 2.4. Every canonical solution that is minimal non cyclic solution inrespect to the above ordering, is of rank two. Indeed, it must be of the rank atleast two to be non cyclic and if it was of the rank more than three we would get a



A SOLUTION OF THE EQUATION (x21 : : : x2n)3 = (x31 : : : x3n)2 3smaller non-trivial solution by a morphism mapping one of the letters to the emptyword.De�nition 2.5. We say that a canonical solution ' is antihomogeneus if it is ofrank two and every word ui contains both letters.Using the facts described in this section we can search for a non-trivial solutionof (2.1) taking di�erent types and constructing their canonical solutions.3. The weak equivalenceClearly the time necessary to check all types smaller than a given one growsexponentially with both parameters of the size. Using the following method it ispossible to check in the same time all solutions of double length with restriction toantihomogeneus ones 1 .Let ' be a non-cyclic antihomogeneus solution of (2.1) of rank two in fA;Bg+.(We can understand the letters A, B as names of the two equivalence classes of�.) Denote by ai the number of occurrences of the letter A in the word ui. Theequivalence � for the type (a1; : : : ; an) has obviously just one class. Now we shallde�ne a bit "weaker" equivalence � on fy01; : : : ; y0sg, with s = Pni=1 ai. The equi-valence � is generated by the relation "yi � yj , if they are the same letter in aword ui". The equivalence � is going to be generated by the relation "yi � yj , ifyiyi+1 is the same word (of length two) as yjyj+1" 2 .That relation does not unify the last letter of a word ui followed by another copyof ui (we shall call such a letter a �nal letter of the �rst type) with the last letterof the same word followed by the word ui+1 ( a �nal letter of the second type) 3 .The precise de�nition of � is as follows.De�nition 3.1. Let � be the smallest equivalence relation on the set fy01; : : : ; y0sgsuch that1. yi � yj if i � j mod 2d2. yi � yj if i � j mod 3d3. yi � yj if 2 i�1Xk=i dk < i; j < 2 iXk=i dkfor some 1 � k � n and i � j mod dk4. yi � yj if 3 i�1Xk=i dk < i; j < 3 iXk=i dkfor some 1 � k � n and i � j mod dkIf y0i � y0j then corresponding letters A are in w followed by the same power ofletter B (we de�ne B0 to be the empty word). If the word w contained only onemaximal power of the letter B, it would be cyclic. It implies that if ' is a non-cycliccanonical solution then the equivalence � has at least two classes.1Such a restriction is not fatal as it can be proved (see [3]) that if there exists a non-trivial2,3-invariant n-tuple then the minimal one is antihomogeneus.2Further we consider the word w in the cyclic way.3We identify un+1 with u1.



4 �ST�EP�AN HOLUBNow the question is whether having a type (a1; : : : ; an) with the equivalence� of at least two classes, we can construct a non-cyclic solution of the equation(2.1). Let us suppose that we have such a solution, with ai being the number ofoccurrences of the letter A in the word ui.Denote by �i;i, 1 � i � n, the number of letters B that are placed between thelast and the �rst letter A of the word ui in the word uiui, and by �i;i+1, 1 � i � n,the same for the edge between words ui and ui+1.3 The equivalence � generatesan equivalence between numbers �i;j . Denote that equivalence ./.Denote by �i (�i), 1 � i � n, the number of letters B on the beginning (on theend resp.) of the word ui. We get the following system of 2n linear equations�i + �i = �i;i; 1 � i � n�i + �i+1 = �i;i+1; 1 � i < n�1 + �n = �n;n+1(3.1)The matrix of the system (3.1) is not regular and it is easy to see that a su�cientcondition for the existence of a solution is that in each class of the equivalence ./the number of variables of the type ei;i is the same as the number of variables ofthe type ei;i+1. In such a case there exists a solution such that ei;j are non-negativeintegers, ei;j = ei0;j0 holds if and only if ei;j ./ ei0;j0 , and all �i, �i, 1 � i � n arenon-negative integers. It means that it is enough to prove that in each class of theequivalence � the number of representatives among the �nal letters of the �rst typeis the same as the number of representatives among the �nal letters of the secondtype.To prove this, �x C, an equivalence class of �. Denote by a the number ofnon-�nal letters contained in C, by f1 the number of the �nal letters of the �rsttype and by f2 the number of the �nal letters of the second type contained in C.Now we shall count jwjC , the total number of occurrences of elements from C inthe word w. Looking at the left side of the equation (2.1) we getjwjC = 6a+ 3f1 + 3f2;while looking at the right side of the equation we getjwjC = 6a+ 4f1 + 2f2:From that we deduce f1 = f2, q.e.d.4. ConclusionWe can conclude that each type (a1; : : : ; an) having at least two classes of theweak equivalence �, generates a non cyclic solution of the equation (2.1). Themethod of the weak equivalence can be of course used even for other similar equa-tions.Using the method we have found following solution of the equation (2.1):n = 7 u4 = ABAu1 = ABABAABABAABAABABA u5 = BAABAu2 = ABABA u6 = ABABAu3 = ABAAB u7 = ABABAABAABABAABABAIt is the canonical solution of the type (18,5,5,3,5,5,18) and it was constructedusing the weak equivalence of the type (7,2,2,1,2,2,7).
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