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Abstract

An endomorphism of the free monoid A∗ is invertible if it is injec-
tive and extends to an automorphism of the free group generated by
A. A simple example: the endomorphism that leaves all generators A
invariant except one, say a, which is mapped to ba for some other gen-
erator b. We give a monoid presentation for the submonoid generated
by all such endomorphisms when a and b are taken arbitrarily. These
left translations are a special case of Nielsen positive transformations:
“left” because the mutiplicative constant acts on the left and “posi-
tive” because this constant belongs to the free monoid, not the free
group.

1 Introduction

Given a finite set A, denote by A∗ and F (A) respectively the free monoid
and the free group generated by A. Let k be the cardinality of A. Taking
advantage of the natural embedding of A∗ in F (A) and following [10], we say
that an endomorphism of A∗ is invertible if it extends to an automorphism
of F (A) or seen differently as an automorphism of F (A) which preserves the
free monoid. Little seems to be known so far: it is not finitely generated
provided k > 2, cf. [18] and independently [11], and a nice and fairly precise
characterization is given in the case k = 3, see [16], but the authors do not
give any monoid presentation for this case.

The automorphism group of the free group has been much more studied.
Nielsen’s publication ninety years ago can be reformulated as saying that the
group is generated by two types of automorphisms which are traditionally
called Nielsen transformations, cf. [9]. The first type performs a permu-
tation on the generators and their inverses subject to natural restrictions.
The second is associated with any distinct generators a, b ∈ A: it assigns to
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b one of the four different elements ab, ba, ab−1 or b−1a and leaves all other
generators invariant. The group presentation of Nielsen was simplified by J.
McCool in [8] and later a presentation for the so-called special subgroup of
automorphisms was given by S. M. Gersten in [2]. Nielsen’s result is focused
on an algorithm for testing whether an endomorphism of the free group is
actually an automorphism, i.e., it solves both the characterization of the
group of automorphisms of F (A) and the membership problem. For this
latter problem a more recent presentation can be read in [15].

The Nielsen transformations of the type b 7→ ab or b 7→ ba denotedN and
N ρ respectively map A∗ into itself and are invertible. They generate the two
submonoids 〈N〉 and 〈N ρ〉 of all invertible endomorphisms. Here we study
the subsemigroup of invertible endomorphisms generated by N along with
those automorphisms of the free monoid ΩA which induce permutations on
A. Our main contribution is to give a monoid presentation. We also show
that the monoid has a decidable membership problem.

A few words on previous works in the domain might be of interest. In
[17], the monoid of invertible endomorphisms over the binary alphabet has
been shown to be generated by three endomorphisms: the two Nielsen trans-
formations and the transposition exchanging the two letters. The presenta-
tion (with infinitely many relations) for this simplest case was given in [13].
For at least three letters, the monoid of invertible endomorphisms is not
finitely generated [11, 18]. In the case of precisely three letters, however,
it is generated by the union of N , N ρ and ΩA along with the cyclic shifts
thereof, [16]. Invertible substitutions over two letters were originally studied
as Sturmian morphisms, that is, morphisms preserving Sturmian words, [13].
Generalizing this approach, Justin and Pirillo introduced the so-called stan-
dard Episturmian morphisms which happen to be invertible endomorphisms
generating a proper submonoid of 〈N ∪ ΩA〉. The Episturmian morphisms
were obtained by adding the “right” version of the standard Episturmian
morphisms and thus the submonoid E they generate is properly included
in the monoid generated by the union of N , N ρ and ΩA. Richomme [11]
gives a monoid presentation for E which generalizes the above mentioned
presentation of Sturmian morphisms by Séébold.

Our motivation was not originally the study of a class of endomorphisms
of the free monoid. Rather, our curiosity started with a revisit of the very
old issue on the combinatorial problem of solving word equations in the free
monoid, see the Chapter “Equations in words” in [6] where the problem
of describing the set of solutions of a fixed equation is surveyed. Actually,
apart from the case of an equation with at most three unknowns, no such
description is available. For three unknowns, Hmelevskii [3] showed that
all solutions can be described by finitely many expressions, the so-called
parametric words, containing two types of parameters: word and integer pa-
rameters. He also gave a conterexample ruining the possibility of extending
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the result to equations with more than three unknowns. Solving an equation
in words such as xy = zt, where x, y, z, t are unknowns, consists of deter-
mining all morphsims φ from {x, y, z, t}∗ into an arbitrary free monoid A∗

such that φ(xy) = φ(zt) holds. With this particular example the morphism
xφ = ab, yφ = cde, zφ = abc, tφ = de is a solution with A = {a, b, c, d, e}.
Lentin showed that all solutions of a given equation can be factored through
an up to a renaming unique minimal solution which he called principal, see
[5]. In the present equation this solution associates x with x, zy with y,
xz with z and t with t. It turns out that it is a composition of one-sided
Nielsen automorphisms and of endomorphisms which identify letters. In the
Chapter entitled “Equations in words” of the handbook [6], this composition
is made unique by imposing restrictions on the way endomorphisms occur.
The natural question was then to study the consequences of relaxing these
restrictions, said differently, to investigate in which different ways the same
solution can be expressed as a product of transformations in N . A final
word of caution: the equations we are dealing with contain word variables
only and no constants. Makanin initiated the very rich field of determining
whether or not such an equation has a solution, which is trivial with con-
stant free equations. This latter problem is completely different a thorough
account of which can be found in [7].

Now we briefly comment on the organization of the paper. In section 2
we survey the various submonoids of the automorphism group of the free
group which leave the free monoid invariant and which were introduced
for different purposes in the literature placing thus our investigation in the
string of publications on the subject. Section 3 is the core of the work and
is dedicated to the presentations of the monoid generated by N , and then
to the monoid generated by N along with the permutations of the letters.
Section 4 shows that the membership problem is solvable in quadratic time
and that the word problem is polynomially decidable. We conjecture that
these estimations can be refined by use of suitable data structures. An
intriguing question is that of finding a presentation of the full monoid of
invertible endomorphisms.

2 Preliminaries

The free monoid generated by the (in our context finite) set A is denoted
by A∗ and its identity by 1. Let A−1 be a disjoint copy of A. The one-to-
one correspondence x ↔ x−1 between A and A−1 defines an involution on
A∪A−1. The free group F (A) generated by A is the quotient of (A∪A−1)∗
by the relations of the form aa−1 = a−1a = 1. The elements in A are
called positive and those in A−1 are called negative. Since this paper is
concerned with composition of morphisms, we make the convention that the
composition is performed from left to right. Thus we write the arguments
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of the functions to the left of the function symbol. The composition of two
mappings f and g is written as f · g or simply as fg.

Let I(A∗), or simply I when A is understood, be the family of invert-
ible endomorphisms of A∗, which is better introduced by making a detour
through the group Aut(F (A)) of automorphisms of F (A). Because A∗ is
naturally embedded in F (A), I can be identified with the submonoid of
those elements h ∈ Aut(F (A)) preserving A∗, i.e., h ∈ Aut(F (A)) belongs
to I if and only if it satisfies h(A∗) ⊆ A∗.

The group Aut(F (A)) has been shown to be (finitely) generated by two
types of mappings. First, by morphisms σ inducing a permutations over
A ∪ A−1 and consistent with the sign, namely satisfying σ(a−1) = σ(a)−1.
The set of such automorphisms form a subgroup of Aut(F (A)). The second
type are automorphisms Nab defined by the rules

Nab

{
b 7→ ab
c 7→ c, if c 6= b, b−1 .

(1)

where a, b ∈ A ∪A−1, a 6= b, b−1. When a and b are positive, the restriction
of Nab to A∗ defines an endomorphism of A∗ which belongs to I. Similarly,
again with the same hypothesis that a and b are positive, the automorphism
Na−1b−1 belongs to I since it associates ba to b. We denote it by Nρ

ba.
The superscript ρ is meant to suggest that Nρ

ba is the reverse of Nab in the
following sense. For all a1, b1, . . . , an, bn ∈ A and each w ∈ A∗ we have

(wNa1,b1 · · ·Nan,bn)ρ = wρNρ
b1,a1
· · ·Nρ

bn,an

where vρ denotes the reverse or mirror image of v (wρ = w if w is the empty
word and (wa)ρ = awρ if a ∈ A and w ∈ A∗).

The standard Episturmian morphisms were introduced in [4] and are
defined by the rules

Ea

{
b 7→ ba, if b 6= a,
a 7→ a .

(2)

We draw the attention of the reader to the subtle difference between Ea and
Nρ
ba: in the former case the image of all letters except that of a is followed

by a while in the latter case the only letter whose image is followed by a
is b. Furthermore, Ea is generated by the endomorphisms Nρ

ba. Indeed, if
{a1, . . . , an} is an enumeration of the letters in A, then we have

Ea1 = Nρ
a2a1 ·N

ρ
a3a1 · · ·N

ρ
ana1

The converse does not hold, [11, page 31]. In the same way that the
endomorphisms Nρ

ba is the reverse of Nba, the morphism Eρa is obtained by
reversing Ea, to wit

Eρa

{
b 7→ ab, if b 6= a,
a 7→ a .

(3)
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We review the main families of invertible endomorphisms encountered
in the literature. Given a subset of morphisms M we denote by 〈M〉 the
monoid they generate. Also, ΩA is the group of automorphisms of A∗, i.e.,
the morphisms obtained by extending any permutation of A to A∗.

Definition 2.1. We set the following notations.
1. I is the monoid of invertible endomorphisms of A∗.
2. N = {Nab | a, b ∈ A}.
3. N ρ = {Nρ

ab | a, b ∈ A}.
4. E = {Ea | a ∈ A}.
5. Eρ = {Eρa | a ∈ A}.

If |A| ≥ 3, the proper inclusions between the different submonoids are
illustrated in the diagram 2. The proper inclusion 〈N ∪ N ρ ∪ ΩA〉 ( I
follows from the fact that I is not finitely generated, [18, Th. 2.2.], [11,
Th. 10.4], and the proper inclusion 〈E ∪ Eρ ∪ ΩA〉 ( 〈N ∪ N ρ ∪ ΩA〉 is
mentioned above. In [11, Th. 7.1], a presentation of 〈E ∪ Eρ ∪ ΩA〉 is given.
If the cardinality of A is three, then I is equal to 〈E ∪ Eρ ∪ ΩA〉 up to
conjugation by words from A∗, see [16]. In analogy with the automorphsims
of the free associative algebra, cf. [14], the elements in 〈N ∪ N ρ ∪ ΩA〉 are
known as the tame automorphisms, see [1].

Example 2.2. Consider substitutions

φn : a 7→ ab, b 7→ acb, c 7→ acn .

with n ≥ 2 over three letters. Since {ab, acb, acn} is a bifix code, the sub-
stitution φn is not tame. Indeed, in the image of a tame automorphism at
least one word is a prefix or a suffix of some other according to whether the
first generator applied is in N or in N ρ respectively. On the other hand,
the substitution

φ′n : a 7→ ba, b 7→ cba, c 7→ cna,

which results from composition of φn with the inner automorphism x 7→
a−1xa, satisfies φ′n = Nρ

baN
n
bcN

ρ
ac π, where π denotes the permutation a 7→

b, b 7→ c, c 7→ a. This illustrates the above mentioned result that each
invertible substitution over three letters can be written as a product of a
tame automorphism and an inner automorphism. In [18], it is also shown
that φn is indecomposable for each n, showing that I is not finitely generated
for |A| ≥ 3.

For |A| ≥ 4, inner automoprhisms along with tame automorphisms are
not anymore enough to generate the whole I. To see this, we work out the
example given in [16] after Remark 3.2. Consider the substitution

φ : a 7→ ab, b 7→ acb, c 7→ ac2, d 7→ d , (4)

which is a trivial extension of the above φ2 to the alphabet of four letters.
As above for φn, we can see that φ is not tame. The subgroup of inner
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automorphisms is a normal subgroup of the group of automorphisms. In
particular, for all inner automorphisms ιw, defined by x 7→ w−1xw, and all
automorphisms θ, we have

ιwθ = θιwθ .

Thus, if the automorphism φ were a product of tame and inner automor-
phisms, it could be written as φ = ψιu for some tame automorphism ψ.
Then dφ = dψιu = u−1(dψ)u = d which easily implies u = dk for some
integer k. But then ab = aφ = d−k(aψ)dk. Considering dkab = (aψ)dk and
abd−k = d−k(aψ) we obtain that k = 0 and φ is tame, a contradiction.

Remark 2.3. Observe that we have 〈N ∪ ΩA〉 = 〈{Nab} ∪ ΩA〉 for arbitrary
a 6= b ∈ A, since for each σ ∈ ΩA we have Nσ(a)σ(b) = σ−1Nabσ.

I

〈N ∪ N ρ ∪ ΩA〉

〈N ∪ ΩA〉 〈E ∪ Eρ ∪ ΩA〉 〈N ρ ∪ ΩA〉

〈E ∪ ΩA〉 〈Eρ ∪ ΩA〉

Figure 1: Proper inclusions between families of invertible endomorphisms

We wrap up the preliminaries by observing that the literature provides
us with all the material to obtain “for free” the solution in case of a binary
alphabet where the above picture is greatly simplified since it reduces to a
hierarchy of three monoids. Indeed, from one hand it is proved in [17, Th.
1] that I = 〈N ∪ N ρ ∪ ΩA〉 =

〈
Nab, N

ρ
ba, X

〉
, where X is the transposition

a ↔ b. On the other hand by definition the sets E and N coincide and〈
Nab, N

ρ
ba, X

〉
is the monoid of Sturmian morphisms of which Séébold gave

a presentation with the following equations, [13]

XX = Id

NabX
(
Nρ
ba

)k
XNρ

ba = Nρ
baXN

k
abXNab, k ≥ 0 .

Consequently, the above is the monoid presentation of the invertible mor-
phisms for a binary alphabet and it is the only case when a presentation of
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I is known. Concerning 〈Nab, X〉 it is an easy exercise to prove that it has
a presentation with the following two equations

XX = Id NabX = XNba.

From now on we assume that A has at least three elements.

3 Monoid presentation

A monoid presentation is concerned with the different ways a given element
of a monoid can be written as a product of generators and how it is possible
or not to convert one factorization into another by applying a set of rewrite
rules.

We start with a modest question: given an endomorphism θ ∈ 〈N〉, i.e.,
a composition of elements in N , can we say something about the possible
candidates to be the last element of the composition ?

3.1 Tracking the possible last elementary transformations

A morphism Nab is called an elementary transformation. We say that it is
a b-transformation to emphasize the fact that b is the only letter which is
not invariant under the mapping.

Example 3.1. The images of {1, 2, 3, 4} by the product of six transformations
N31 ·N14 ·N21 ·N13 ·N24 ·N43 in 〈N〉 is

1 7→ 14321, 2 7→ 2, 3 7→ 143, 4 7→ 2124 .

In this paragraph we show how to determine the possible last elementary
transformation of a product of transformations.

Assume that θ ∈ 〈N〉 is a product of elementary transformations the
last of which is Nab. Then it is clear that all occurrences of b in all xθ are
preceded by a. We are going to show that the opposite implication holds as
well. More precisely, we will show that if for some θ ∈ 〈N〉 each occurrence
of each letter b in each xθ is preceded by a then θ can be written as a product
of elementary transformations the last of them being Nab (Lemma 3.8).

With this idea in mind, we define for a θ ∈ 〈N〉 the mapping Pθ : A →
P (A ∪ {#}) as follows: for all b ∈ A ∪ {#} we have

b ∈ aPθ ⇔
{
∃c ∈ A : cθ ∈ A∗baA∗
or b = # and ∃c ∈ A : cθ ∈ aA∗ .

The relationship between Pθ and the expression of θ in terms of elementary
transformations is established by the following rules, which allow to compute
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Pθ easily:

cPθ = {#} for all c if θ is identity,

cPθ·Nab
=


{a} if c = b,
aPθ ∪ bPθ if c = a,
cPθ otherwise .

(5)

Example 3.2. (Continued) For the transformation of Example 3.1 we get

N31 N14 N21 N13 N24 N43

1 # 3 #, 3 2 #, 2 #, 2 #, 2

2 # # # #, 3 #, 3 #, 1, 3 #, 1, 3

3 # # # # 1 1 4

4 # # 1 1 1 2 1, 2

For future reference, we formulate the following direct consequence of
the definition of Pθ.

Corollary 3.3. Let θ ∈ 〈N〉 and let φ1, . . . , φm be elementary transforma-
tions none of which is a b-transformation. Pose

θi = θ · φ1 · · · · · φi, i = 0, . . . ,m

Then
bPθ0 ⊆ · · · ⊆ bPθi ⊆ · · · bPθm .

In particular, if b has a unique predecessor in Pθm, then it also has a unique
predecessor in θ.

This observation gives us the following piece of information about a
composition of elementary transformations.

Lemma 3.4. Consider

θ = φ1 · · · · · φk with φi ∈ N , i = 1, . . . , k , (6)

and assume that bPθ = {a}. Then the following holds if a 6= #
1. there exists some b-transformation in the sequence φ1, . . . , φk;
2. the last occurrence of a b-transformation in the sequence is Nab.
Moreover, bPθ = {#} if and only if bθ = b.

Proof. It is straightforward that bPθ = {#} and bθ = b hold if and only if
there is no b-transformation in the sequence φ1, . . . , φk.

Assume now that the last occurrence of a b-transformation is φ` = Ncb

for some c ∈ A and some 1 ≤ ` ≤ k. Then bPφ1···φ` = {c}. By Corollary 3.3,
bPφ1···φ` is included in bPθ, and

{c} = bPφ1···φ` ⊆ bPθ = {a}

implies c = a.
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Observe that Lemma 3.4 does not imply that if Nab is the last occurrence
of a b-transformation in (6) then all occurrences of b are preceded by a, see
Example 3.2.

The following is trivial and will be used in our proofs.

Lemma 3.5. For each θ ∈ 〈N〉, we have

∀a ∈ A aθ ∈ A∗a .

The following definition is useful when proving claims by induction.

Definition 3.6. The size of an endomorphisms θ : A∗ → A∗ is the integer∑
a∈A (|aθ| − 1) and is denoted by |θ|.

Since we are working with invertible endomorphisms, we have |θ| ≥ 0
and |θ| = 0 if and only if θ ∈ ΩA.

3.2 A monoid presentation for 〈N〉

We recall that a monoid presentation of a monoid M is given by a set of
generators A and a set of relations R ⊆ A∗×A∗ such that M is isomorphic
to A∗/∼R , the quotient of the A∗ by the monoid congruence ∼R generated
by the relation R. This presentation is written 〈A;R〉. We shall adopt
the notation u = v for each (u, v) ∈ R. For example, the free abelian
monoid with two generators has the presentation is 〈a, b; ab = ba〉 and the
free group with two generators has the monoid presentation 〈a, b, ā, b̄; aā =
1, āa = 1, bb̄ = 1, b̄b = 1〉.

Here we give the following presentation of the monoid 〈N〉.

Theorem 3.7. A presentation for 〈N〉 is given by the set of generators N
and the following set R of relations for all a, b, c, d ∈ A

NabNcd = NcdNab if {a, b} ∩ {c, d} = ∅ or a = c , (7)

NabNca = NcaNcbNab if b 6= c . (8)

Proof. We use the following notation. For φi, ψj ∈ N , i = 1, . . . , k and
j = 1, . . . , ` we write

φ1 · · · · · φk =
R
ψ1 · · · · · ψ` (9)

if the two handsides are equal inN ∗/∼R . Sometimes we shall add the number
of the relation as a superscript in order to make the derivation explicit. We
want to show that φ1 ·· · ··φk = ψ1 ·· · ··ψ` if and only if φ1 ·· · ··φk =

R
ψ1 ·· · ··ψ`.

It is routine to verify that the equations (7) and (8) are satisfied in 〈N〉
which proves the “if” part. It remains to prove the converse. The main
ingredient is to show that the two rules (7) and (8) allow us to shift some
elementary transformations to the left.
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Lemma 3.8. Let θ ∈ 〈N〉 be such that bPθ = {a} for some a, b ∈ A. If
θ = φ1 · · ·φk, φi ∈ N , i = 1, . . . , k, then

φ1 · · ·φk =
R
ψ1 · · ·ψ` ·Nab (10)

for some ψi ∈ N , i = 1, . . . , `.

Proof. We proceed by induction on the length |θ|. If |θ| = 0, then θ is
identity, and the claim is trivial. Let |θ| > 0.

By Lemma 3.4, there is some p ∈ {1, . . . , k} such that φp = Nab and no
φp+1, . . . , φk is a b-transformation. Let m be the smallest integer such that

φ1 · · ·φk =
R
ψ1 · · ·ψ` ·Nab · ψ′1 · · ·ψ′m,

for some ψ′1, · · · , ψ′m ∈ N , none of them being a b-transformation, and some
ψ1, · · · , ψ` ∈ N . We want to show that m = 0. Suppose the contrary, and
let ψ′1 = Ncd, where d 6= b.
Case 1. If {c, d} ∩ {a, b} = ∅ or c = a, then

ψ1 · · ·ψ` ·NabNcd · ψ′2 · · ·ψ′m
(7)
=
R
ψ1 · · ·ψ` ·NcdNab · ψ′2 · · ·ψ′m ,

a contradiction with the minimality of m.
Case 2. If d = a and c 6= b, then

ψ1 · · ·ψ` ·NabNcaψ
′
2 · · ·ψ′m

(8)
=
R
ψ1 · · ·ψ` ·NcaNcbNab · ψ′2 · · ·ψ′m ,

again a contradiction.
Case 3. Let finally c = b. Let α denote the element ψ1 · · ·ψ` of 〈N〉. Since
θ = α ·Nab ·Nbd · ψ′2 · · ·ψ′m, Corollary 3.3 yields

{a} = bPαNab
⊆ bPαNabNbd

⊆ bPθ = {a},

which implies bPαNabNbd
= {a}. From (5), we have

bPαNabNbd
= bPαNab

∪ dPαNab
,

and therefore dPαNab
= {a}. This, in particular, rules out the case d = a,

since, in a finite word, not every occurrence of a can be preceded by another
occurrence of a. Therefore d /∈ {a, b}, and we have dPαNab

= dPα = {a}
from (5). Since |α| < |θ|, the induction assumption implies that

ψ1 · · ·ψ` =
R
ψ′′1 · · ·ψ′′`′ ·Nad

for some ψ′′1 , . . . , ψ
′′
`′ ∈ N , i.e., α = β ·Nad for some β ∈ 〈N〉. Therefore,

ψ1 · · ·ψ` ·Nab ·Nbd · ψ′2 · · ·ψ′m =
R
ψ′′1 · · ·ψ′′`′ ·Nad ·Nab ·Nbd · ψ′2 · · ·ψ′m

(7)
=
R
ψ′′1 · · ·ψ′′`′ ·Nab ·Nad ·Nbd · ψ′2 · · ·ψ′m

(8)
=
R
ψ′′1 · · ·ψ′′`′ ·Nbd ·Nab · ψ′2 · · ·ψ′m ,

a contradiction. This concludes the proof of Lemma 3.8.
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Now we return to the proof of the theorem and show by induction on |θ|
that for any two factorizations of θ, say φ1φ2 · · ·φk and ψ1 ·ψ2 · · ·ψ` we have

φ1 · φ2 · · ·φk =
R
ψ1 · ψ2 · · ·ψ` .

The claim is trivial if |θ| = 0. Let |θ| > 0 and pose ψ` = Nab. By Lemma
3.8 applied to φ1 · · · · · φk, we obtain

φ1 · · · · · φk =
R
χ1 · · · · · χh ·Nab ,

for some χ1, . . . , χh ∈ N . Because 〈N〉 is cancellative, χ1 · χ2 · · ·χh and
ψ1 · ψ2 · · ·ψ`−1 are two factorizations of the same endomorphism θ′ with
|θ′| < |θ|. By induction, this implies

χ1 · · · · · χh =
R
ψ1 · · · · · ψ`−1, thus χ1 · · · · · χh · ψ` =

R
ψ1 · · · · · ψ` .

We conclude by observing that

φ1 · · · · · φk =
R
χ1 · · · · · χh · ψ` =

R
ψ1 · · · · · ψ` .

3.3 Adding the permutations of the letters

Recall that ΩA is the group of automorphisms of the free monoid, i.e., auto-
morphisms generated by a permutation on A. Here we give a presentation
for 〈N ∪ ΩA〉. Let Eab be the automorphism exchanging the letters a and b.

Theorem 3.9. The monoid 〈N ∪ ΩA〉 has the presentation whose generator
set is

{Nab | a, b ∈ A} ∪ {Eab | a, b ∈ A, a 6= b}

and whose set of relations S is given by (7), (8), the relations

σNab = Nσ(a)σ(b) σ (11)

for each σ ∈ {Eab | a, b ∈ A, a 6= b}, and some set of relations for the
presentation of the symmetric group over A.

Proof. Similarly to the notation in Theorem 3.7, we set

φ1 · · · · · φk =
S
ψ1 · · · · · ψ` with φi, ψj ∈ N ∪ ΩA (12)

if the two handsides are equal in (N ∪ ΩA)∗/∼R . Since it is clear that
〈N ∪ ΩA〉 satisfies the equalities of the statement, it remains to prove that
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whenever φ1 · · · · · φk and ψ1 · · · · · ψ`, with φi, ψj ∈ N ∪ΩA, are two factor-
izations of the same element θ ∈ 〈N ∪ ΩA〉, then

φ1 · · · · · φk =
S
ψ1 · · · · · ψ` .

We prove it by induction on |θ|. First, observe that by using repeatedly
the relations (11), it is possible to shift all transpositions to the left of each
factorization so that we may assume that the two factorizations are of the
form

θ = α1 · · ·αp · φ1 · · · · · φk = β1 · · ·βr · ψ1 · · · · · ψ` (13)

where the α’s and the β’s are transpositions and the φ’s and ψ’s are elemen-
tary transformations.

We want to prove

α1 · · ·αp · φ1 · · · · · φk =
S
β1 · · ·βr · ψ1 · · · · · ψ` . (14)

Because of Lemma 3.5, α1 · · ·αp and β1 · · ·βr are equal to the permutation
γ satisfying, for all a, b ∈ A,

aγ = b⇔ aθ ∈ A∗b

Then α1 · · ·αp =
S
β1 · · ·βr by using the presentation of the symmetric group.

Since 〈N ∪ ΩA〉, is cancelative we have φ1 · · ·φk = ψ1 · · ·ψ`, and we may
conclude by Theorem 3.7.

3.4 Stability of 〈N〉

If we turn our attention from the last generator to the first one, we obtain
the following counterpart of Lemma 3.8.

Lemma 3.10. Let θ ∈ 〈N〉 be such that aθ is a prefix of bθ for some a, b ∈ A.
Then θ = Nab · φ for some φ ∈ 〈N〉.

Proof. We proceed by induction on |θ|. The claim is trivial for |θ| = 0. Let
|θ| > 0 and let aθ be a prefix of bθ, written aθ < bθ. Let θ = Ncd · χ with
χ ∈ 〈N〉 and Ncd 6= Nab.

Case 1: If d /∈ {a, b}, then aθ = aχ < bχ = bθ and by induction we obtain
χ = Nab · ψ with ψ ∈ 〈N〉.

Case 1a: If c 6= b, then

θ = NcdNab · ψ
(7)
= NabNcd · ψ,

and we are through.
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Case 1b: Similarly, if c = b, then

θ = NbdNab · ψ
(8)
= NabNadNbd · ψ .

Case 2: Let d = a. Then c 6= b since aθ < bθ. Note that cχ = cθ < aθ <
bθ = bχ. By induction, we have that χ = Ncb · ψ for some ψ ∈ 〈N〉. Then
aθ = (cψ)(aψ) < bθ = (cψ)(bψ) which implies aψ < bψ. By induction, we
have ψ = Nab · ψ′ for some ψ′ ∈ 〈N〉. Then

θ = NcaNcbNab · ψ′
(8)
= NabNca · ψ′ .

Case 3: Let, finally, d = b (and a 6= c). Then aθ = aχ < bθ = (cχ)(bχ).
Therefore aχ and cχ are prefix-comparable.

Case 3a: If aχ < cχ, then, by induction, χ = Nac · ψ for some ψ ∈ 〈N〉.
Therefore

θ = NcbNac · ψ
(8)
= NacNabNcb · ψ

(7)
= NabNacNcb · ψ .

Case 3b: If cχ < aχ, then χ = Nca · ψ for some ψ ∈ 〈N〉. As above,

aθ = (cψ)(aψ) < bθ = (cψ)(bψ) implies that ψ = Nab ·ψ′ for some ψ′ ∈ 〈N〉,
and

θ = NcbNcaNab · ψ′
(7)
= NcaNcbNab · ψ′

(8)
= NabNca · ψ′ .

We can now formulate the following “stability” property of 〈N〉.

Theorem 3.11. Let θ, φ ∈ 〈N〉.

1. If θ · φ−1 ∈ I, then θ · φ−1 ∈ 〈N〉.

2. If φ−1 · θ ∈ I, then φ−1 · θ ∈ 〈N〉.

Proof. It suffices to consider the basic case φ = Nab. Set ψ = θ · φ−1. Then
θ = ψ ·Nab ∈ 〈N〉. Since ψ ∈ I, we have bPθ = {a}, and Lemma 3.8 implies
that θ = χ ·Nab with χ = θ · φ−1 ∈ 〈N〉.

The proof of the second claim is analogous, using Lemma 3.10.

4 Complexity remarks

We conclude by evoking two natural complexity results. In both cases we
leave open a more precise estimate of the complexity.

Proposition 4.1. The following Membership problem is decidable in O(|φ|)2.
Instance: a morphism φ : A∗ → A∗ given by the images aφ for all a ∈ A.
Question: φ ∈ 〈N〉 resp. 〈N ∪ ΩA〉?
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Proof. Consider the morphism λφ : A∗ → A∗ which assigns to each letter
the last letter of its image by φ, i.e., defined for all a, b ∈ A by

aλφ = b if aφ ∈ A∗b .

If this mapping is not in ΩA, i.e., if it does not permute A, then φ does
not belong to 〈N〉 nor 〈N ∪ ΩA〉. If λφ ∈ Ω, then φ belongs to 〈N ∪ ΩA〉 if
and only if λ−1φ φ belongs to 〈N〉. It thus suffices to consider the question

φ
?
∈ 〈N〉.

Theorem 3.11 yields that for any θ : A∗ → A∗ we have

θ ∈ 〈N〉 ⇔ Nab · θ ∈ 〈N〉 .

This leads to the following procedure, starting with X = {aφ | a ∈ A} ⊆ A∗:

while ∃x, y ∈ X : x < y do

X := X \ {y} ∪ {x−1y}

If the procedure ends with X = A, then φ belongs to 〈N〉, otherwise it does
not. The number of while-loops is bounded by |φ|. Testing whether or not
a word of a subset X is a prefix of another word of the subset can again be
achieved in |φ| by constructing the prefix-tree of {aφ | a ∈ A}.

Proposition 4.2. There exists a polynomial algorithm deciding the follow-
ing problem
Instance: two words from N ∗
Question: are these two words equivalent in =

R
?

Proof. It is proved in [12] that the word problem in the automorphism group
of the free group is polynomially decidable. This covers the word problem
for the monoid 〈N ∪ ΩA〉.
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