
Michele Mosca

Wolfson College

University of Oxford

Quantum Computer Algorithms

Thesis for the degree of Doctor of Philosophy at the University of Oxford

Trinity Term 1999

Abstract

Quantum computer algorithms are designed to exploit the properties of quan-

tum physics. Quantum computations can be carried out in parallel on superposi-

tions of exponentially many computational basis states and information about the

outcomes of these computations can be measured via quantum interference. By

casting quantum algorithms within the paradigm of quantum interferometry, most

of the known quantum algorithms are clari�ed, uni�ed, and generalised.

Further, the limitations of quantum computer algorithms is studied in the

black-box model of computation, where the black-box reveals information about

certain parameters (in this case Boolean values X

1

; X

2

; : : : ; X

N

) and we wish to

compute a function of these parameters. It is shown that the probability ampli-

tudes of a quantum algorithm which has made T black-box calls is a polynomial

in X

1

; X

2

; : : : ; X

N

of degree at most T . From this fact we can derive several

lower bounds on the number of queries required to compute various functions of

X

1

; X

2

; : : : ; X

N

, such as their parity, or majority value. Further, any function that

can be evaluated probabilistically using T queries on a quantum computer can be

evaluate deterministically on a classical computer using at most (4T)

6

queries.

Several other relationships are also established.

Lastly, techniques for better exploiting a �xed amount of quantum resources

are illustrated and versions of quantum algorithms that can be implemented with

very few qubits are suggested. I describe some of the �rst quantum algorithms and

detail the �rst implementation, namely, the Deutsch algorithm.

1

Preface

Quantum computer algorithms are designed to exploit the properties of quan-

tum physics. Few powerful quantum algorithms are known. Although it is inter-

esting to �nd applications of the existing quantum algorithms, we really seek a

fundamentally new one or an understanding of why we cannot �nd one.

As part of this endeavour I have sought to understand the fundamental as-

pects of the existing quantum algorithms. Quantum computations can be carried

out in parallel on superpositions of exponentially many input states and infor-

mation about the outcomes of these computations can be measured via quan-

tum interference. By casting the known quantum algorithms within the para-

digm of quantum interferometry, I was able (together with co-authors) to clarify,

unite and generalise most of the known quantum algorithms in a series of papers

[CEMM98, CEH

+

99, vDDE

+

99, Mos98, Mos99, ME99, BHMT99]. These

results appear in Chapter 2. One class of algorithms that I have not yet studied

closely are those for simulating physical systems. However, one of the algorithms

developed for this purpose [AL98] turns out to be a rediscovery of the eigenvalue

estimation algorithm described in [CEMM98] (which was based on the one in

[Kit95]).

As a second part of this endeavour, I have sought to understand the limitations

of quantum computers, identifying approaches that cannot work, and shedding

light on why we �nd it so hard to �nd fundamentally new quantum algorithms. One

2

PREFACE 3

approach is to study the limitations of quantum computer algorithms in the black-

box model of computation, where we have a black-box that reveals information

about certain parameters (such as a string X of Boolean values X

1

; X

2

; : : : ; X

N

),

and we wish to compute a function F (X) of those parameters. We [BBC

+

98]

showed that the probability amplitudes of a quantum algorithm which has made

T black-box calls is a polynomial inX

1

; X

2

; : : : ; X

N

of degree at most T . From this

fact we derive several lower bounds on the number of queries required to compute

various functions of X

1

; X

2

; : : : ; X

N

, such as their parity, or majority value. We

show that any function that can be evaluated probabilistically using T queries

on a quantum computer can be evaluate deterministically on a classical computer

using at most (4T)

6

queries. Several other relationships are also established. This

approach and the major results are presented in Chapter 3.

Some algorithms are interesting even if we never implement them. Perhaps

they prove a new mathematical theorem or possess some other intrinsic beauty.

However algorithms are often interesting because they solve a problem of practical

interest in which case their realisability is of fundamental importance. A good

example are algorithms for breaking cryptographic protocols. There is a large

gap between theory and practice in quantum computer algorithms. For the �rst

few years since the �eld of quantum computing was born [Fey82, Deu85] not

even two qubit algorithms had been implemented. Recently, nuclear magnetic

resonance technology was shown to be suitable for implementing quantum logic

[CFH96, GC97]. However no practical way of scaling NMR quantum computers

to large numbers of qubits is known and we are currently limited to a handful of

qubits. We illustrate techniques for better exploiting a �xed amount of quantum

resources and suggest versions of quantum algorithms that can be implemented

PREFACE 4

with very few qubits. We have realised several of the �rst quantum computations

[JM98, JMH98, JM99] and these are described in Chapter 4.

Acknowledgements

I am truly grateful to my supervisors Artur Ekert and Dominic Welsh for all

their teaching, advice, help and support.

Many thanks to my co-authors and collaborators. I thank those who have

generously hosted me, and the rest of the people at Oxford and around the world

who have helped me learn about this �eld over the past three years. I also thank

my examiners for the many helpful suggestions.

Special thanks to Adriano Barenco, Simon Benjamin, Harry Buhrman, Richard

Cleve, Holly Cummins, Wim van Dam, Mark Ettinger, Matt Gevaert, Rasmus

Hvass Hansen, Bernard Howes, Peter H�yer, Hitoshi Inamori, Jonathan Jones,

Chiara Macchiavello, Fr�ed�eric Magniez, Juan Poyatos, Miklos Santha, Alain Tapp,

Vlatko Vedral, Sue Witney, and Ronald de Wolf.

I am grateful to Richard Booth, Pete Seeviour, Kevin Thacker, and the

C.E.S.G. who funded this D.Phil. Many thanks to Wolfson College for supporting

me in so many ways over the past four years, this last year as the Robin Gandy

Junior Research Fellow. I thank the Wolfson College Boat Club and the mem-

bers of the many other clubs and societies in which I have participated during the

preparation of this thesis.

Many special thanks to my parents, brother, family, and friends for their love

and support.

5

Contents

Abstract 1

Preface 2

Acknowledgements 5

List of Figures 8

List of Tables 10

Chapter 1. Introduction 11

1.1. Quantum Physics 15

1.2. Quantum Computers 34

Chapter 2. Algorithms 37

2.1. The Deutsch algorithm 37

2.2. Eigenvalue Kick-Back 39

2.3. Phase Estimation and the Quantum Fourier Transform 42

2.4. Quantum Eigenvalue Estimation 47

2.5. Finding orders 50

2.6. Discrete Logarithms 56

2.7. Amplitude Estimation 59

2.8. Finding Hidden Subgroups 71

2.9. Equivalence of Shor and Kitaev approaches 82

2.10. Finding Hidden A�ne Functions 85

6

CONTENTS 7

Chapter 3. Limitations of Quantum Computers 93

3.1. What is a complexity class? 94

3.2. Black-boxes 98

3.3. Relation between quantum networks, black-boxes and polynomials 101

3.4. Applications to lower bounds 104

3.5. Relating quantum and deterministic query complexity 107

3.6. Some examples and applications 108

3.7. Controlled-O

X

and some open problems 112

Chapter 4. Implementations 116

4.1. Dealing with errors and faults 116

4.2. Maximising exploitation of quantum resources 119

4.3. Quantum Computation using Nuclear Magnetic Resonance 123

4.4. Interesting algorithms for implementation with few qubits 130

Appendix A. Appendix 137

A.1. Computing a controlled-U 137

A.2. Computing �

M

(U) 139

A.3. Reversible Computing without keeping the input 140

A.4. Fourier Transforms 141

A.5. Public Key Cryptography and Quantum Computing 144

A.6. Finding logarithms, DSA, and Di�e-Hellman 148

A.7. Implementing a function with a pulse sequence 149

Bibliography 152

List of Figures

1.1 NOT and AND gates 13

1.2 Reversible AND 14

1.3 Reversibly computing a function 16

1.4 Beam-splitter 17

1.5 Two beam-splitters 18

1.6 Two beam-splitters and phase-shifters 19

1.7 Energy eigenstates of single spins 29

1.8 Energy eigenstates of two independent spins 31

1.9 Energy eigenstates of two coupled spins 32

2.1 Deutsch algorithm 38

2.2 Phase kick-back 40

2.3 Quantum Fourier transform and phase estimation 42

2.4 Eigenvalue estimation 49

2.5 Amplitude ampli�cation 61

2.6 Hidden subgroup problem 73

2.7 Factoring algorithm analysis: computational vs. eigenvector

basis 84

2.8 Hidden subgroup analysis: computational vs. eigenvector basis 85

8

LIST OF FIGURES 9

2.9 Hidden a�ne functions algorithm 90

3.1 3-Colouring 95

3.2 A network which makes T black-box queries 102

3.3 A controlled black-box application 113

4.1 \Semi-classical" Fourier transform 121

4.2 Cytosine quantum computer 124

4.3 Classically computing f(0) and f(1) 133

4.4 Implementation of Deutsch algorithm 134

A.1 Network for controlled-controlled-NOT 138

A.2 Network for controlled-U 138

A.3 A network for �

M

(U) 140

A.4 Reversible computing without keeping the input 141

A.5 QFT (AB) with A and B coprime 142

A.6 QFT (ABC) for arbitrary A;B;C 144

List of Tables

2.5 Quantum vs. classical counting complexities 70

3.2 Quantum query complexities 113

10

CHAPTER 1

Introduction

An algorithm is a procedure for performing a task. For example, a cake recipe

is an algorithm that takes as input standard kitchen ingredients and uses standard

kitchen equipment to output a cake (sometimes with only a bounded probability of

success). A computer is a physical device that helps us process information, and an

information processing task can always be translated into physical one. Theorists

tend to work with an abstract model of computation, but when pondering the

capabilities and limitations of a computing device for some practical reason, it is

important not to forget the relationship between computing and physics. Dramatic

examples are the physical attacks used to break certain cryptosystems that made

use of RSA encryption. These protocols were designed with the hope that the

security of the system relies on the di�culty of solving a problem which is closely

related to factoring large numbers. However, without factoring any integers, people

have been able correctly to infer the encryption keys. They did so by cleverly

probing physical devices performing the encryption for clues leaked during the

physical act of computing the ciphertext (see for example, [Koc96]).

A prototype computer is the Turing machine (see e.g. [GJ79, AHU74,

Pap94, MR95, Wel88]). The key ingredients are a piece of hardware which

runs according to some software and uses additional memory to carry out the

software instructions and produce some output. A su�ciently complex Turing

machine with an arbitrarily large supply of memory can simulate any other Turing

machine M provided the input contains a description of how M works. Such a

11

1. INTRODUCTION 12

Turing machine is called a universal Turing machine. If we equip a Turing ma-

chine with the ability to
ip a fair coin, we get a probabilistic Turing machine. A

probabilistic Turing machine computers a function by outputting an answer that

is correct with probability at least

2

3

(the average is over all possible outcomes

of the coin
ips, not the di�erent inputs to the function f). A universal Turing

machine can simulate any other Turing machine and in fact, they can simulate any

other reasonable computer known to date. Furthermore, a universal probabilistic

Turing machine can simulate any Turing machine (and any other reasonable device

known to date) with at most a polynomial overhead (this is the strong form of the

Church-Turing thesis). By polynomial overhead we mean that if our machine uses

T units of some resource (usually time or space), then the universal probabilistic

Turing machine will simulate it using at most p(T) units of that resource where p is

a �xed polynomial (often referred to as poly(T)). To do so, we specify the way our

reasonable computer works, and then the universal Turing machine simulates our

machine. Another model of computation is that of a uniform families of acyclic

circuits (see [Pap94] for example). An acyclic circuit C

n

is described by a circuit

diagram which has n input wires, and at each time step t each wire can enter at

most one gate G. The term circuit seems to correspond to a particular physical

implementation. The acyclic circuits look more like an array or network of gates,

which is the terminology we will use in the quantum setting. The gates come from

a �nite family of gates which take information from input wires and output infor-

mation along some output wires. A family of acyclic circuits is a family of circuits

fC

n

jn 2 Z

+

g. The family is uniform if we can easily construct C

n

(say by an appro-

priately resource-bounded Turing machine - see [GJ79, Pap94, MR95, Cle99],

for a discussion). A deterministic Turing machine can compute whatever a prob-

abilistic one can (in �nite time) by trying all possible outcomes of the coin
ips.

1. INTRODUCTION 13

There is a well-de�ned family of functions that can be computed in a �nite number

of steps and those that cannot (see e.g. [Rog87] or [Dav82]). However not all

problems which have \e�ective procedures" for solving them will have \e�cient

procedures", that is procedures that use a `reasonable' amount of resources. The

computational complexity of a problem or task attempts to quantify the amount

of resources, such as time, space, or energy, necessary to perform the task for an

input of size n. We will restrict attention to worst-case complexities, that is the

complexity of a problem on the worst-case input of a speci�c size. In particu-

lar, when using the acyclic circuit model, a natural measure of complexity is the

number of gates used in the circuit C

n

.

In studying the minimum energy requirements of any computing device, Ben-

nett [Ben73] observed that the amount of energy necessary can be made arbitrarily

small if the computer has reversible components, that is if each operation was log-

ically reversible. For example, the NOT operation is reversible, but the AND

operation is not reversible (see �gure 1.1).

Figure 1.1. The NOT and AND gate. Note that the NOT gate

is logically reversible while the AND is not.

1. INTRODUCTION 14

He also showed how any irreversible classical algorithm can be transformed into

a reversible one. This is easy to see in the circuit model of computation. Each gate

in a �nite family of gates can be made reversible by adding some additional input

and output wires if necessary. For example, the AND gate can be made reversible

by adding an additional input wire and two additional output wires (see �gure 1.2).

Note that additional information necessary to reverse the operation is now kept

Figure 1.2. The reversible AND gate keeps a copy of the inputs

and adds the AND of x

0

and x

1

(denoted x

1

^ x

2

) to the value in

the additional input bit. Note that by �xing the additional input bit

to 0 and discarding the copies of the x

0

and x

1

we can simulate the

non-reversible AND gate.

instead of being somehow absorbed into the environment, as is done in any logically

irreversible computation. By simply replacing all the non-reversible components

with their reversible counterparts

1

, we get a reversible version of the algorithm.

1

Our universal set of reversible gates might not contain this particular gate, but a �xed size

circuit made from our universal set of gates could be used instead.

1.1. QUANTUM PHYSICS 15

If we start with the output, and run the circuit backwards, we obtain the input

again. The reversible version might introduce some constant number of additional

wires for each gate. Thus if we have a non-reversible algorithm which used time T

(the depth of the circuit) and space S, we can easily construct a reversible version

that used a total of O(T+S) space and time T . Furthermore, the additional `junk'

information generated by making each gate reversible can also be erased at the end

of the computation by �rst copying the output, and then running the reversible

algorithm in reverse to obtain the starting state again. This is illustrated in �gure

1.3. Bennett subsequently showed how to turn a computation using time T and

space S in a reversible one using time O(T

1+�

) and space O(S logT) or time O(T)

and space O(ST

�

), for any � > 0 (see [Ben89], [LTV98]).

This beautiful theory of reversible computation was sparked by a simple ques-

tion about the physics of computation. It is important to note that Turing ma-

chines and modern-day computers implicitly refer only to notions of physics that

are over a century old and known as `classical physics'. This past century a new

theory has been developed which includes the theory of quantum mechanics.

In the next section we take a closer look at quantum physics and its relationship

to computation.

1.1. Quantum Physics

One experimental set-up that exempli�es in a very simple way some of the

main principles of quantum mechanics is the Mach-Zehnder interferometer. The

interferometer is an apparatus that allows us to measure the interference of photons

following two di�erent paths. It consists of two half-silvered mirrors (or beam-

splitters), some full-mirrors to help direct the photons along one of two desired

paths (we will not illustrate these full-mirrors, but whenever you see a light path

take a sharp turn, there implicitly is a mirror there!), and two photon detectors

1.1. QUANTUM PHYSICS 16

Figure 1.3. A network for computing f(x) reversibly. Start with

the input. Compute f(x) using reversible logic, possibly generat-

ing some extra 'junk' bits of information. Copy the output f(x) to

another register (this is a `classical' state, so copying simply corre-

sponds to performing a controlled-NOT between every qubit of the

output register and a qubit of the copy register). Run the circuit

for f backwards (replacing each gate by its inverse gate - here we

illustrate self-inverse gates) to erase the contents of the output and

workspace registers.

1.1. QUANTUM PHYSICS 17

at the end of each path. Let us denote a photon in the upper path as being in

state j 0i, and in the lower path as state j 1i. We �rst describe the behaviour of

the half-silvered mirrors (see �gure 1.4). We start with a single photon in the j 0i

Figure 1.4. When a photon enters the beam-splitter along the j 0i

path, we get a single click at either the j 0i or j 1i detector, each with

probability 50%.

path and set up the photon detectors along both possible directions the photon

could take. When the photon passes through the half-silvered mirror, we notice

that exactly one of the two photon detectors clicks (this is an ideal situation). We

never get two \half-clicks", or other fractions of a click. This discreteness is one of

the main features of quantum mechanics. We repeat this experiment many times,

and each time exactly one detector clicks, each one about half of the time. The

simplest explanation is that the photon impinging upon the half-silvered mirror

takes one of the two paths with 50% probability - a simple coin
ip.

1.1. QUANTUM PHYSICS 18

Now let us repeat this experiment, except this time with two beam-splitters

aligned so that no matter which of the two paths the photon takes it will arrive at

the second beam-splitter at the same time (see �gure 1.5).

Figure 1.5. Contrary to our classical intuition, all of the photons

are detected at detector j 1i.

Assuming that a photon going through a beam-splitter simply takes one of the

two paths at random, then we expect roughly half of the photons to be detected

at the j 1i detector and the other half at the j 0i detector. Quite logical, but false.

Set up this apparatus, and you will notice that you only detect photons at the j 1i

detector! By inserting an appropriate phase-shifter (usually a piece of glass), along

the j 0i path, the probability distribution shifts from only j 1i detections to only

j 0i detections. We call this a �-phase-shifter. Thus we can reliably distinguish

between the presence and absence of this �-phase-shifter. Further, by placing a

�

0

-phase-shifter along the j 0i path and �

1

-phase-shifter (we can adjust the phase

shift � of a phase shifter by changing internal properties such as thickness and

refractive index) along the j 1i path the proportions are sin

2

(

�

0

��

1

2

) j 0i detections

and cos

2

(

�

0

��

1

2

) j 1i detections.

1.1. QUANTUM PHYSICS 19

Figure 1.6. The phase shifters induce an interference pattern de-

pending on the di�erence between the two phase shifts.

So our simple explanation needs to be revamped. Our current understanding

is the following: when exiting the �rst beam-splitter, the photon is in the state

i

p

2

j 0i+

1

p

2

j 1i, that is a linear combination or superposition of the two states. The

amplitude of j 0i tells us the probability of observing the photon in path j 0i if we

set up our detectors. You obtain the probability by squaring the modulus of the

amplitude. Thus we measure the photon in path j 0i with probability

�

�

�

i

p

2

�

�

�

2

=

1

2

.

Similarly, if we send a photon through the beam-splitter starting in the j 1i path it

would come out in the state

1

p

2

j 0i+

i

p

2

j 1i (that is the re
ected beam picks up a

phase of i). The phase shifts of �

0

and �

1

change the state from

i

p

2

j 0i+

1

p

2

j 1i to

ie

i�

0

p

2

j 0i+

e

i�

1

p

2

j 1i. The second beam-splitter acts in the same way as the �rst one,

that is it maps j 0i !

i

p

2

j 0i+

1

p

2

j 1i and j 1i !

1

p

2

j 0i+

i

p

2

j 1i, and therefore it

maps

ie

i�

0

p

2

j 0i+

e

i�

1

p

2

j 1i to

ie

i�

0

p

2

�

i

p

2

j 0i+

1

p

2

j 1i

�

+

e

i�

1

p

2

�

1

p

2

j 0i+

i

p

2

j 1i

�

:(1)

Thus a photon can arrive at the j 0i detector by two di�erent paths, one with

amplitude

�

ie

i�

0

p

2

��

i

p

2

�

=

�e

i�

0

2

, and the other path with amplitude

e

i�

1

2

. The

1.1. QUANTUM PHYSICS 20

total amplitude of the state j 0i is

�e

i�

0

2

+

e

i�

1

2

= ie

i

�

0

+�

1

2

sin(

�

0

��

1

2

). Similarly we

see that the total amplitude of the state j 1i is ie

i

�

0

+�

1

2

cos(

�

0

��

1

2

) and the state

in equation (1) is equal to ie

i

�

0

+�

1

2

�

sin(

�

0

��

1

2

) j 0i+ cos(

�

0

��

1

2

) j 1i

�

. Note that all

that determines the magnitude of the amplitudes is the di�erence between �

0

and

�

1

. In general the photon could be in any linear combination or superposition state

of the form

�

0

j 0i+ �

1

j 1i

where j�

0

j

2

+j�

1

j

2

= 1. This state can also be described by the vector (�

0

; �

1

) 2 C

2

,

where the basis vectors (1; 0) and (0; 1) correspond to j 0i and j 1i respectively. The

action of the beam-splitter can thus be described by the 2� 2 matrix

0

@

i

p

2

1

p

2

1

p

2

i

p

2

1

A

and the phase-shifters by the matrix

0

@

e

i�

0

0

0 e

i�

1

1

A

:

Suppose we had two such Mach-Zehnder apparatuses set up with the state of each

of photon described by

1

p

2

j 0i+

1

p

2

j 1i. The 2-photon system would be described

by the state

�

1

p

2

j 0i+

1

p

2

j 1i

��

1

p

2

j 0i+

1

p

2

j 1i

�

=

X

x

1

;x

2

2f0;1g

1

2

jx

1

i j x

2

i :(2)

We will often denote a state j x

1

i jx

2

i as jx

1

i
 jx

2

i or simply as jx

1

x

2

i. The two

photon system could in fact exist in any linear combination of the form

X

x2f00;01;10;11g

�

x

j xi ;(3)

1.1. QUANTUM PHYSICS 21

where

P

j�

x

j

2

= 1, and j�

x

j

2

is the probability of observing the state jxi =

jx

1

i j x

2

i if we set up our four detectors along the possible paths. This means the

2-photon system can be in a state that is not simply two independent 1-photon

systems as we describe in equation (2). Consider for example the state, also known

as an Einstein-Podolsky-Rosen (EPR) [EPR35] state,

1

p

2

j 0i j 0i+

1

p

2

j 1i j 1i :(4)

This state cannot be factored into the product of two independent states. Note

that superpositions of the form in equation (3) can also be denoted as vectors in

C

4

, (�

00

; �

01

; �

10

; �

11

). In general, if we have two systems in states (a

0

j 0i+ a

1

j 1i)

and (b

0

j 0i+ b

1

j 1i), the joint system

a

0

b

0

j 00i+ a

0

b

1

j 01i+ a

1

b

0

j 10i+ a

1

b

1

j 11i

is denoted by the vector

(a

0

b

0

; a

0

b

1

; a

1

b

0

; a

1

b

1

) = (a

0

; a

1

)
 (b

0

; b

1

)

the tensor product of the vectors describing the subsystems. We can prove that

state (4) cannot be factorised into two independent one-qubit states by showing

that the vector (

1

p

2

; 0; 0;

1

p

2

) cannot be decomposed as the tensor product of two

complex vectors (a

0

; a

1

)
 (b

0

; b

1

). The two particles are strongly correlated in a

way we refer to as being entangled. This notation where (1; 0; 0; 0) is denoted j 00i

is Dirac's bra-ket notation [Dir58].

However, the path of a photon in a Mach-Zehnder interferometer is just one

example of a system with two discrete states which we label j 0i and j 1i. Any

quantum system with at least two reliably distinguishable states (for example, two

discrete energy levels which can represent the logical states 0 and 1) can be used

1.1. QUANTUM PHYSICS 22

as a qubit and prepared in a superposition of its logical states

j	i = �

0

j 0i+ �

1

j 1i ;(5)

where j�

0

j

2

+ j�

1

j

2

= 1, and as before, j�

0

j

2

is the probability of observing j 0i and

j�

1

j

2

is the probability of observing j 1i.

Other candidates for physical realisation of qubits are polarised photons,

trapped ions and nuclear spins. The physical details of preparing, manipulating

and measuring a qubit depend on the type of physical realisation. For example,

a proton has a nuclear spin of

1

2

and therefore when in a static magnetic �eld

oriented along the z-axis it has two possible energy levels, one corresponding to

\spin-up" which we call state j 1i and one corresponding to \spin-down" which we

call state j 0i. If the spin is in state j 0i and we wish to apply the NOT opera-

tion, we can send in a radio-frequency pulse of appropriate intensity and duration,

with frequency corresponding to the energy di�erence between the j 1i and j 0i

states. This causes a spin initially in the state j 0i to evolve into the state j 1i

and vice versa. We can also apply the same pulse for half of the duration to give

us an equally weighted superposition of j 0i and j 1i, similar to the state of the

photon after it goes through the beam-splitter

2

Just as going through a second

beam-splitter sends the photon to the state j 1i, applying another pulse of half the

duration of the NOT pulse sends the spin to the state j 1i thereby completing the

NOT operator. This operation is often called the square-root of NOT ,

p

NOT .

2

When we view the beam-splitter (from the previous example) and radio-frequency pulse as

quantum objects, we see that the interaction between the qubit and the apparatus does leave

in the apparatus a very small trace of information about the state of the qubit. The degree of

entanglement between the qubit and apparatus in the case of a beam-splitter or a large radio-

frequency pulse is negligible, so in practice we ignore it.

1.1. QUANTUM PHYSICS 23

In general a single spin can be prepared, by a suitable sequence of various types

of pulses, in any superposition as in equation (5).

We can also consider a register composed of n qubits. Any classical register of

n bits can store just one of 2

n

strings at a time. Suppose we prepare a quantum

register of 3 qubits, say nuclear spins, in the state j 0i j 0i j 0i and we apply a

suitably tuned radio-frequency pulse to evolve the �rst qubit into the state

1

p

2

j 0i+

1

p

2

j 1i. Then the three-qubit system will be in the state

1

p

2

j 0i j 0i j 0i+

1

p

2

j 1i j 0i j 0i :

A similar pulse applied to the second qubit will act in parallel on both con�gura-

tions j 0i j 0i j 0i and j 1i j 0i j 0i to produce

1

2

j 0i j 0i j 0i+

1

2

j 0i j 1i j 0i+

1

2

j 1i j 0i j 0i+

1

2

j 1i j 1i j 0i

and another pulse applied to the third qubit creates a superposition of all eight

con�gurations 000, 001, : : : , 111. With n qubits we can similarly prepare superpo-

sitions of all 2

n

con�gurations. All 2

n

possible strings are now physically present,

and any operation we apply to the register of n qubits will be applied to all con-

�gurations in parallel. For example, if we apply an operation U only once to this

system, we will produce the state

X

x2f0;1g

n

1

p

2

n

U jxi :

An n-qubit system can be in any state of the form

X

x2f0;1g

n

�

x

j xi

1.1. QUANTUM PHYSICS 24

where

P

j�

x

j

2

= 1 and j�

x

j

2

is the probability of observing the state jxi =

jx

1

i j x

2

i : : : jx

n

i. The amplitude �

x

of j xi in the state j	i is the inner prod-

uct hxj	i between the state vectors j	i and jxi. We can thus also write

j	i =

X

x2f0;1g

n

�

x

jxi =

X

x2f0;1g

n

j xi�

x

=

X

x2f0;1g

n

j xi h xj	i:

Any linear transformation U that maps states

P

x

�

x

jxi satisfying

X

j�

x

j

2

= 1

to other states

P

x

�

x

jxi satisfying

X

j�

x

j

2

= 1

must be unitary. Unitary transformations are precisely those that satisfy U

�

=

U

�1

, where U

�

denotes the conjugate transpose of U (often denoted U

y

in the

literature).

A quantum operation such as applying a radio-frequency pulse or putting a

beam-splitter in the path of a photon, can be described without reference to any

particular quantum technology. We will describe operations on qubits in terms of

some prescribed elementary operations which we refer to as quantum logic gates.

We have already described the NOT and

p

NOT . A similar operation which maps

j 0i !

1

p

2

j 0i+

1

p

2

j 1i

and

j 1i !

1

p

2

j 0i �

1

p

2

j 1i

1.1. QUANTUM PHYSICS 25

is called a Hadamard gate denoted by H. A gate such as the phase shifter of angle

� along the j 1i path, that maps

j 0i ! j 0i

j 1i ! e

i�

j 1i

(6)

is called a phase gate R

�

.

These one-qubit gates alone will not allow us to perform every unitary operation

possible on n-qubits. They will not even allow us to create entangled states from

unentangled ones. We need a non-trivial two-qubit gate, such as the controlled-

NOT which maps

j 00i ! j 00i

j 01i ! j 01i

j 10i ! j 11i

j 11i ! j 10i :

We call this a controlled-NOT because the NOT is e�ected to the second qubit

(or target qubit) when the �rst qubit (or control qubit) is in the state j 1i. Another

non-trivial two-qubit gate is the controlled-R

�

that maps

j 00i ! j 00i

j 01i ! j 01i

j 10i ! j 10i

j 11i ! e

i�

j 11i

(note the symmetry between the control and target qubits).

We need such two-qubit gates to map the state j 0i j 0i to the state

1

p

2

j 0i j 0i+

1

p

2

j 1i j 1i. We can do this by �rst applying a Hadamard gate to the �rst qubit to

create

�

1

p

2

j 0i+

1

p

2

j 1i

�

j 0i =

1

p

2

j 0i j 0i+

1

p

2

j 1i j 0i. Applying a controlled-NOT

then yields the EPR state

1

p

2

j 0i j 0i+

1

p

2

j 1i j 1i. As mentioned earlier, this state

1.1. QUANTUM PHYSICS 26

cannot be decomposed as the product of two independent one-qubit states, and is

thus entangled. Superpositions that can be so decomposed are called unentangled

or separable. Qubits typically become very entangled in the intermediate stages

of most interesting quantum computations. Entangled pairs of qubits are also a

valuable physical resource in other applications of quantum information theory,

such as quantum communication and quantum key exchange.

The fact that one qubit in an entangled pair of qubits cannot be described

as a superposition independently of the other qubit forces us to reconsider the

mathematical description of quantum states in terms of state vectors. For example,

how should we describe the state of one qubit of an EPR pair? Such a state

can be described in terms of density operators [CTDL77] which provide a more

general mathematical description of a quantum state. For a single qubit in the

superposition state (or pure state) j	i = � j 0i+ � j 1i, the corresponding density

operator is the projector � = j	i h	j = ��

�

j 0i h 0j + ��

�

j 0i h 1j + ��

�

j 1i h 0j +

��

�

j 1i h 1j. This operator can be written in the fj 0i ; j 1ig basis as

0

@

�

�

1

A

�

�

�

�

�

�

�

=

0

@

j�j

2

��

�

�

�

� j�j

2

1

A

:

The probability of measuring j 0i is equal to

j�j

2

= ��

�

= h 0j	ih	j 0i = Tr(h 0j	ih	j 0i) = Tr(j	ih	jj 0ih 0j) = Tr(�j 0ih 0j):

In general, given a state described by a density matrix �, the probability of mea-

suring a state j�i equals

Tr(� j�i h�j):

Note that for any unitary operator U acting on a qubit, the density operator

j	

0

i h	

0

j of the state j	

0

i = U j	i is equal to U�U

�

where � = j	i h	j.

1.1. QUANTUM PHYSICS 27

With any quantum state we can associate a density operator, �, such that � is

positive and the trace of �, Tr(�) = 1 (see [CTDL77]). If we apply the unitary

operator U to that state, the outcome state has density operator U�U

�

.

If we wish to describe a qubit that is entangled to another we start by writing

the quantum state vector of the two qubit system

j	i =

X

w;x2f0;1g

�

wx

jwxi

then we construct the density operator of the two qubits

� = j	i h	j =

X

w;x;y;z2f0;1g

�

wx

�

�

yz

jwxi h yzj :

To compute the density operator �

1

of the �rst qubit, we perform the partial trace

(see [CTDL77]) over the second qubit to get

�

1

= Tr

2

(�) =

X

w;y;x2f0;1g

�

wx

�

�

yx

jwi h yj :

Similarly we can compute the density operator �

2

of the second qubit by performing

the partial trace over the �rst qubit to get

�

2

= Tr

1

(�) =

X

w;x;z2f0;1g

�

wx

�

�

wz

jxi h zj :

For example, the state

j	i =

1

p

2

j 00i+

1

2

j 01i+

i

2

j 11i

is described by the density operator

� =

0

B

B

B

B

B

B

@

1

2

1

2

p

2

0

�i

2

p

2

1

2

p

2

1

4

0

�i

4

0 0 0 0

i

2

p

2

i

4

0

1

4

1

C

C

C

C

C

C

A

1.1. QUANTUM PHYSICS 28

and, after taking the partial traces we get

�

1

= Tr

2

(�) =

0

@

3

4

�i

4

i

4

1

4

1

A

�

2

= Tr

1

(�) =

0

@

1

2

1

2

p

2

1

2

p

2

1

2

1

A

:

If the bit value is measured on the two qubits then with the probabilities

1

2

;

1

4

,and

1

4

one obtains respectively 00 , 01; and 11: The outcome 10 has the probability zero.

These probabilities are given by the diagonal elements of �: Suppose the second

qubit was taken away so that one can measure only the bit value on the �rst qubit.

In this case one obtains the bit values 0,1 with probabilities

3

4

;

1

4

respectively,

which are given by the diagonal elements of �

1

: The diagonal elements of �

2

give

probabilities of obtaining 0 or 1 when the measurement is performed on the second

qubit alone. The partial trace of larger systems is de�ned similarly [CTDL77].

So how do we actually e�ect an operation, such as the controlled-NOT , that

will create entanglement? Let us return to our example of a spin-

1

2

particle, say a

proton, in a magnetic �eld oriented along the z-axis. The energy of a proton in the

spin-up state is

!

2

~ and in the spin-down state is

�!

2

~ where ~ = 6:626� 10

�34

J � s

and

!

2�

is a frequency. The frequency

!

2�

depends on the strength B of the magnetic

�eld and on the type of nucleus according to ! =
B, where
 is the gyromagnetic

ratio (which for a proton is about 2:675�10

�6

Hz=Tesla). Thus a proton in a �eld

of strength 9:4Tesla has a frequency ! = 400MHz. (The strength of magnetic

�elds is often given in terms of the frequency

!

2�

the magnetic �eld would induce

on a proton.) We thus denote the energy operator H, or the Hamiltonian, by the

1.1. QUANTUM PHYSICS 29

Figure 1.7. The energy eigenstates of the energy operator are j 0i

with energy eigenvalue

!~

2

and j 1i with energy eigenvalue

�!~

2

.

matrix

0

@

!~

2

0

0

�!~

2

1

A

=

1

2

!~�

z

where

�

z

=

0

@

1 0

0 �1

1

A

:

As mentioned earlier, we can e�ect the NOT gate by sending a radio-frequency

pulse of frequency

!

2�

of appropriate intensity and duration. Suppose we had two

independent nuclei in the same magnetic �eld, one with energy eigenvalues �

!

1

~

2

and the other with energy eigenvalues �

!

2

~

2

. The joint system has a Hamiltonian

1.1. QUANTUM PHYSICS 30

equal to

~

2

0

B

B

B

B

B

B

@

!

1

+ !

2

0 0 0

0 !

1

� !

2

0 0

0 0 �!

1

+ !

2

0

0 0 0 �!

1

� !

2

1

C

C

C

C

C

C

A

=

1

2

!

1

~�

z

 I+

1

2

!

2

~I
 �

z

as illustrated in �gure 1.8.

However two such nuclei do not behave independently of each other, since their

own magnetic �elds a�ect the energy levels of surrounding nuclei. The energy

levels are increased by

�

2

J

12

~ if the nuclei are oriented in the same direction, and

decreased by the same amount if they are oriented in the opposite direction. The

Hamiltonian thus gets shifted to

!

1

~

2

�

z

 I+

!

2

~

2

I
 �

z

+

�~

2

J

12

�

z

 �

z

=

~

2

0

B

B

B

B

B

B

@

!

1

+ !

2

+ �J

12

0 0 0

0 !

1

� !

2

� �J

12

0 0

0 0 �!

1

+ !

2

� �J

12

0

0 0 0 �!

1

� !

2

+ �J

12

1

C

C

C

C

C

C

A

(see �gure 1.9). A radio-frequency pulse of frequency

1

2�

(!

2

+ �J

12

) of appropriate

intensity and duration would e�ect the NOT on the second nucleus if and only if

the �rst nucleus is in the state j 1i. The coupling of the two nuclei thus gives us

the opportunity to e�ect conditional dynamics on the two qubits.

We have just illustrated one way of realising the controlled-NOT . We can use

similar pulse sequences to implement quantum algorithms using NMR technology.

I have said how quantum operations are unitary (some operations may seem

non-unitary, but only when ignoring part of the entire system), and have even

illustrated some examples of unitary operations, such as putting a beam-splitter

in the path of a photon, or applying a radio-frequency pulse to a nucleus. The

Schr�odinger equation tells us how these black-boxes work.

1.1. QUANTUM PHYSICS 31

Figure 1.8. With two independent nuclei, we have four energy

eigenstates. A radio-frequency pulse of frequency !

1

and appropri-

ate duration and intensity will e�ect a NOT on the �rst qubit. A

radio-frequency pulse of frequency !

2

and appropriate duration and

intensity will e�ect a NOT on the second qubit.

Consider a closed system in the state j	(0)i 2 H

N

. This state can change

over time, and we denote by j	(t)i the state of this system at time t. Let us

suppose that we start with a system in the state j	(0)i and the system is in an

environment where the energy of a state j	i is de�ned by the operator H(t). The

1.1. QUANTUM PHYSICS 32

Figure 1.9. The energy eigenvalues of two nuclei with respective

energies �

!

1

~

2

and �

!

2

~

2

and coupling term J

12

are illustrated. A

radio-frequency pulse of frequency

!

2

2�

+

J

12

2

of appropriate intensity

and duration will e�ect the controlled-NOT .

Schr�odinger equation states

i~

d

dt

j	(t)i = H(t) j	(t)i :

This equation implies that the evolution of the state j	i is unitary. If we assume

the Hamiltonian remains constant then the solution to the Schr�odinger equation

is

j	(t)i = e

�i

~

Ht

j	(0)i :

1.1. QUANTUM PHYSICS 33

This equation implies that the evolution of the state j	i is unitary. For example,

if we change the environment of a qubit so that we e�ect a Hamiltonian !~I

x

,

where

I

x

=

0

@

0

1

2

1

2

0

1

A

=

1

2

�

x

;

(I

x

is typically used in chemistry) then by letting the qubit evolve in this environ-

ment for a period of time t we e�ect the unitary operation

0

@

cos(

!

2

t) �i sin(

!

2

t)

�i sin(

!

2

t) cos(

!

2

t)

1

A

:

So if we set t =

�

!

we get a unitary operation equal to

e

�i�I

x

= �i

0

@

0 1

1 0

1

A

which corresponds to a NOT gate (apart from the global phase factor

3

of �i).

This is often called a �-pulse, or a 180

�

I

x

pulse. If t =

�

2!

, we call this a

�

2

-pulse

or a 90

�

I

x

pulse, which realises the square root of NOT operation.

A 180

�

I

y

pulse, where

I

y

=

0

@

0 �

i

2

i

2

0

1

A

=

1

2

�

y

;

realises the operation

e

�i�I

y

=

0

@

0 �1

1 0

1

A

3

Global phase shifts, say by a factor e

i�

, of a state j	i do not a�ect the probability of

observing any particular state jxi even if the state j	i is transformed by unitary operator U .

1.2. QUANTUM COMPUTERS 34

and applying a 90

�

I

y

pulse realises what we call a pseudo-Hadamard gate [JM98]:

e

�i

�

2

I

y

=

1

p

2

0

@

1 �1

1 1

1

A

:(7)

One- and two-qubit gates like these will form the basis of a quantum computer,

which we describe in the next section.

This brief summary of quantum physics should su�ce for this course. For more

details, see for example [Fey65, CTDL77].

1.2. Quantum Computers

Our model of computation will be a quantum version of the uniform families of

acyclic circuits, namely uniform families of quantum networks or acyclic quantum

gate arrays. We will restrict attentions to �nite universal sets G of gates that can

e�ciently simulate any other �nite set of gates. Let us explain this in more detail.

A set G of gates is universal if for every positive integer n, any real � > 0, and

any unitary operation U on n qubits, we can approximate U with an error of at

most � using gates from G . This means that there is a network N of gates from

G such that for any input j xi, the network outputs a state N jxi that is within

distance � (in the Euclidean norm) of the state U jxi.

An example of a universal (but not �nite) set of gates that can exactly simulate

any unitary operation is the set of single-qubit operations and the controlled-NOT

gate [BBC

+

95]. It is not reasonable of course to have an in�nite number of gates

at our disposal, but the controlled-NOT with almost any one-qubit gate allows

us to approximate any unitary operator arbitrarily well. Other �nite families of

universal gates are also known [Deu89, BDEJ95, DiV95, Llo95].

We also require our universal set G of gates to be able to e�ciently simulate

any network N of T gates from another speci�ed set of gates. This means that for

1.2. QUANTUM COMPUTERS 35

any � > 0, we can e�ciently construct a network N

0

of at most poly(T;

1

�

) gates

from G that approximates N with accuracy �. We therefore require our universal

set G of gates to have the property that given a gate G (acting on a �nite number

of qubits) and an integer N > 0, we can e�ciently �nd a sequence of poly(N)

gates in G that approximates G with accuracy

1

N

. Many such families are known

[BV97, Cle99, Kit97, ADH97]. Kitaev [Kit97] and Solovay [Sol99] de�ne sets

of gates that have only a polylog(N) overhead.

As in the classical case, we also require uniformity. In this course it will be

clear from the description of the quantum networks that a classical Turing machine

(either a reversible or an irreversible one) can easily construct them. For exam-

ple, one could easily write a short C program that will e�ciently output circuit

diagrams for the algorithms described. Some of the algorithms involve construct-

ing a network, executing it, and then depending on the output, we construct and

execute another quantum network if necessary. Another natural model of compu-

tation is the universal quantum Turing machine [Deu85]. See [BV97, Yao93]

for a discussion of the relationship between these models of computation. We will

stick with the uniform families of networks, because they most accurately represent

what researchers are attempting to construct in practice and is the model in which

most quantum algorithms have been designed.

How are quantum computers di�erent from classical reversible ones? The states

of classical reversible computers are con�ned to one of the computational basis

states. Quantum computers can branch out into superpositions of exponentially

many computational basis states such as

2

n

�1

P

x=0

1

p

2

n

jxi. Once in such a superposi-

tion, they are able to compute functions in parallel on all of the basis states. That

is, by computing a reversible function � only once, via a quantum gate array that

maps jxi ! j�(x)i, we will map the state

2

n

�1

P

x=0

1

p

2

n

j xi to the state

2

n

�1

P

x=0

1

p

2

n

j�(x)i.

1.2. QUANTUM COMPUTERS 36

The function � could for example map jx

1

i jx

2

i ! j x

1

i jx

2

� f(x

1

)i for any func-

tion f (even a non-reversible f will work since we keep a copy of the input). With

exponentially many outputs of � in superposition, we can probe some of the global

properties of � (that is properties depending on many of its inputs) by techniques

we describe later.

Are quantum computers essentially di�erent from classical probabilistic com-

puters? Probabilistic algorithms can also e�ectively branch over exponentially

many computational paths, but there is a subtle di�erence in how the various

outcomes of di�erent paths combine to produce an output. In probabilistic com-

puting, if outcome 0 can be reached by two di�erent paths with probabilities

p

00

= ja

00

j

2

and p

10

= ja

10

j

2

, then the probability of obtaining outcome 0 is

p

00

+ p

10

= ja

00

j

2

+ ja

10

j

2

. In a quantum algorithm, if outcome 0 can be obtained

by two di�erent paths, like the j 0i detection in the Mach-Zehnder interferometer,

with probability amplitudes a

00

and a

10

, then the probability of observing 0 is

ja

00

+ a

10

j

2

. The relative phase between the two amplitudes is important and can

result in either constructive or destructive interference. Destructive interference

occurs when the amplitudes a

00

and a

10

cancel each other out, the most extreme

case being when a

00

= �a

10

and we thus measure 0 with probability 0. Con-

structive interference occurs when the amplitudes are aligned in some common

direction, an extreme case being when a

00

= a

10

=

1

p

2

in which case we measure

0 with probability 1. The challenge is to design quantum algorithms which induce

constructive interference on good states and destructive interference on bad states.

CHAPTER 2

Algorithms

This chapter will discuss the algorithms which make explicit use of the quantum

nature of a quantum computer. I summarise the known quantum algorithms and

present them in a simple and uni�ed way. The simplest quantum algorithm is

presented �rst. I then generalise the basic elements of this algorithm and show

how they lead to the known powerful quantum algorithms.

2.1. The Deutsch algorithm

In [Deu85], Deutsch considers the task of determining f(0) � f(1) for some

Boolean function f : f0; 1g ! f0; 1g, where � corresponds to addition modulo

2. However, he supposes that we only have the resources to implement f once.

Note that f(0)� f(1) = 0 if and only if f is constant. If we restrict ourselves to a

`classical' setting, it is impossible to determine f(0)�f(1) using only one evaluation

of f . In a quantum setting however, given a reversible means of computing f , we

can perform this task! Deutsch presented an algorithm which outputs the correct

answer with probability

1

2

and outputs an inconclusive result otherwise. By a

subtle modi�cation [CEMM98], as we show here, we can compute the correct

answer with probability 1 using only one application of f .

We are given a quantum means of computing f , namely, we have a unitary

operator U

f

which implements:

jxi j bi ! j xi j b� f(x)i(8)

37

2.1. THE DEUTSCH ALGORITHM 38

where x; b 2 f0; 1g. The `trick' used in [CEMM98] is to the encode the value of

f(x) into the phase. To do this we start with a second, auxiliary register in the

state j 0i� j 1i (remember that we will often drop the normalisation factors), then

the operation j bi ! j b� f(x)i maps j 0i � j 1i to

j f(x)i � j 1� f(x)i = (�1)

f(x)

(j 0i � j 1i):

Consequently we can describe U

f

in a di�erent basis as

jxi (j 0i � j 1i) ! (�1)

f(x)

jxi (j 0i � j 1i)

jxi (j 0i+ j 1i) ! jxi (j 0i+ j 1i)

for x 2 f0; 1g. If we �x the auxiliary register to be in state j 0i�j 1i , then its state

remains unchanged and we e�ectively have a way of mapping j xi ! (�1)

f(x)

jxi.

Let us go back to the example of the Mach-Zehnder interferometer. There

we saw that if the relative phase-shift between the two computational paths was

either 0 or �, then we could correctly distinguish the two cases 100% of the time.

The same `algorithm' can be applied to solve Deutsch's problem, as illustrated

in �gure 2.1. We will now ignore the state of the auxiliary qubit, since it stays

Figure 2.1. Network representation of the Deutsch algorithm

in the state j 0i � j 1i. The �rst Hadamard gate H creates the state j 0i + j 1i.

The U

f

induces phase shifts to produce (�1)

f(0)

j 0i+(�1)

f(1)

j 1i, and the �nal H

2.2. EIGENVALUE KICK-BACK 39

completes the interference that produces the state (�1)

f(0)

j f(0)� f(1)i, in other

words, the answer.

As we will see in the subsequent sections, this simple algorithm illustrates all

the main ingredients of the known quantum algorithms.

2.2. Eigenvalue Kick-Back

One of the key steps in the quantum solution to Deutsch's problem was

encoding the value of f(x) into the phases given a quantum version of a re-

versible algorithm for computing f , namely, an operation U

f

that maps jxi j bi !

jxi j b� f(x)i. Here � refers to an appropriate group addition, such as addition

modulo 2 if b 2 f0; 1g, or addition in Z

n

2

if b 2 f0; 1g

n

, or addition modulo N if

b 2 f0; 1; : : : ; N � 1g. Computing f into the phases, where b 2 f0; 1g meant send-

ing jxi ! (�1)

f(x)

jxi. More generally, when f(x) 2 f0; 1g

n

this means sending

jxi ! (�1)

f(x)�b

jxi for some b 2 f0; 1g

n

and when f(x) 2 f0; 1; : : : ; N � 1g this

means sending j xi ! e

2�if(x)

N

jxi.

In this section we generalise the method of inducing relative phases in the states

of the register (which we call the control register) that contains the input values

jxi. We make use of an auxiliary or target register and a function evaluation.

Suppose we have a family of unitary operators U

x

which share an eigenvector

j	i with eigenvalues e

2�i!

x

, respectively. The value !

x

corresponds to

f(x)

2

;

f(x)�b

2

, or

f(x)

N

in the above examples. We de�ne the controlled-U

x

to be a unitary operation

acting on two systems, a control system of dimension M and a target system of

dimension N . The controlled-U

x

maps jxi j yi to jxiU

x

j yi. We give an example

of such a controlled-U

x

, and how to implement it, later in this section. Figure

2.2 shows how to use this operator to compute w

x

into the phases. Starting with

the state j	i in a second target register, and the state jxi in a control register,

2.2. EIGENVALUE KICK-BACK 40

Figure 2.2. A) The controlled-U

x

applies U

x

to the second regis-

ter when the �rst register is in state jxi. B) The net e�ect of a

controlled-U

x

when the target register is in an eigenstate of U

x

with

eigenvalue e

2�i!

x

is to induce a phase factor of e

2�i!

x

on the state

jxi j	i. C) When the target register is in eigenstate j	i and the

control register is in any superposition of computational basis states,

we can write the outcome as a product of the control register with

all the appropriate phase factors kicked back and the target register

in the original eigenstate.

apply the controlled-U

x

operator. The net e�ect is to map the state jxi j	i to

the state e

2�i!

x

jxi j	i; the phase e

2�i!

x

is associated to the product of the two

states. If the second register is in the eigenstate j	i, and the �rst register is in a

superposition, say

M�1

P

x=0

jxi, applying a controlled-U

x

will produce the product state

2.2. EIGENVALUE KICK-BACK 41

M�1

P

x=0

e

2�i!

x

jxi j	i, which can be nicely written as

�

M�1

P

x=0

e

2�i!

x

jxi

�

j	i. In other

words, the eigenvalues were \kicked back" into the �rst register. This might seem

wrong since the operators U

x

were applied to the second register and we `only' used

the �rst register as a control. However the �rst register behaves as an una�ected

\control" register only when the controlled-U

x

is considered in the computational

basis. The controlled-U

x

acts linearly on all superpositions of these basis states

and has eigenstates jxi j	i with eigenvalues e

2�i!

x

.

An important example of a controlled-U

x

is the operator �

M

(U) which we now

de�ne.

Definition 1. Let U be any unitary operator on a vector space H

N

of dimen-

sion N . The operator �

M

(U) acts on the space H

M

 H

N

and sends jxi j yi !

jxiU

x

j yi.

Given a quantum network for computing U that uses T elementary quantum

gates, we can create a quantum network for �

M

(U) that has O(MT) elementary

quantum gates (see appendix A.2). If U

2

; : : : ; U

2

l

are also easily expressible us-

ing only T elementary gates, then the network for �

M

(U) has only O(T logM)

elementary gates.

Note that the operator �

M

(U) applied to two registers in the state

M�1

X

x=0

jxi j	i ;

where U j	i = e

2�i!

j	i, encodes the value ! in the state

M�1

X

x=0

e

2�ix!

jxi j	i :

The next section describes how estimating this phase shift is related to the

quantum Fourier transform.

2.3. PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 42

2.3. Phase Estimation and the Quantum Fourier Transform

One of the important features that distinguishes quantum computation from

classical randomised computation is the relative phase between states. Estimating

such a phase turns out to lie in the kernel of most quantum algorithms. Therefore

in this section we will describe some techniques for estimating parameters encoded

in the phase of quantum states.

We start with a simple phase estimation task whose natural solution will di-

rectly lead to the quantum Fourier transform methods. Suppose, for some real !,

0 � ! < 1, that we have the product state

(j0i+ e

2�i(4!)

j1i)(j0i+ e

2�i(2!)

j1i)(j0i+ e

2�i!

j1i).

Let us (for now) conveniently assume that ! is of the form

a

8

, for some integer a.

Figure 2.3. This phase estimation network implements the inverse

quantum Fourier transform (reversing the order of the output

qubits).

Let a

1

a

2

a

3

be the binary expansion of a, that is a = 4a

1

+ 2a

2

+ a

3

, and each a

j

is

either 0 or 1. Using the fact that e

2�i

= 1, we can also express this state as

(j0i+ e

2�i(0:a

3

)

j1i)(j0i+ e

2�i(0:a

2

a

3

)

j1i)(j0i+ e

2�i(0:a

1

a

2

a

3

)

j1i).

2.3. PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 43

We know immediately how to obtain the value of a

3

since the Hadamard gate H

de�ned in the introduction maps, for b 2 f0; 1g,

j bi ! j0i+ (�1)

b

j1i = j0i+ e

2�i(0:b)

j1i ;

and vice versa since H

�1

= H. Thus applying the Hadamard gate to the leftmost

qubit gives us the state

j a

3

i (j0i+ e

2�i(0:a

2

a

3

)

j1i)(j0i+ e

2�i(0:a

1

a

2

a

3

)

j1i).

It would be very convenient if the second qubit were in the state j0i+ e

2�i(0:a

2

)

j1i

since we could then easily determine a

2

. Fortunately, since the �rst qubit is in the

state ja

3

i, we can simply apply a controlled-R

�

�

2

gate (recall equation (6)) to the

leftmost and middle qubits to give us this state. Applying this gate and then a

Hadamard gate on the second qubit gives us

j a

3

i j a

2

i (j0i+ e

2�i(0:a

1

a

2

a

3

)

j1i).

A controlled-R

�

�

2

gate and a controlled-R

�

�

4

gate, as shown in �gure 2.3, gives us

the state

j a

3

i j a

2

i (j0i+ e

2�i(0:a

1

)

j1i)

which after applying a Hadamard gate becomes

j a

3

i j a

2

i j a

1

i .

A straightforward generalisation of this network maps the n qubits

(j0i+ e

2�i(2

n�1

!)

j1i)(j0i+ e

2�i(2

n�2

!)

j1i):::(j0i+ e

2�i(2!)

j1i)(j0i+ e

2�i!

j1i);(9)

with ! = 0:a

1

a

2

: : : a

n

, to the state

ja

n

i ja

n�1

i ::: ja

2

i ja

1

i .

2.3. PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 44

This network might seem familiar since state (9), is in fact equal to

2

n

�1

X

x=0

e

2�ix!

jxi ;(10)

which for ! =

0

2

n

;

1

2

n

; :::;

2

n

�1

2

n

is a basis state in what we call the Fourier basis.

Thus the network we described above, apart from a reversing of the �nal qubits,

realises the inverse quantum Fourier transform.

Definition 2. (QFT(M)) For any integer M > 1, the quantum Fourier

transform, QFT (M), acts on the vector space generated by the states

j0i ; j1i ; j2i ; :::; jM � 1i, and maps jji to

M�1

P

x=0

e

2�i

j

M

x

jxi.

We just illustrated how to e�ciently implement the quantum Fourier transform

for M = 2

n

(�rst done in [Cop94]), and it is easy to generalise these methods

for any M whose prime factors are bounded above by a polynomial in n (done

for distinct primes in [Sho94] and generally in [Cle94]; see appendix A.4). For

general M , say a large prime, we can also e�ciently approximate QFT (M) by the

technique of Kitaev [Kit95] but for all applications mentioned in this course, an

appropriate power of 2 su�ces.

Given the state

M�1

P

k=0

e

2�ik!

jki, where M is known and ! is of the form

j

M

for

some integer j, applying QFT (M)

�1

will yield the state jji and thus correctly

determine ! =

j

M

. This is an immediate consequence of the de�nition of the quan-

tum Fourier transform. What happens if we apply the same estimation technique

for arbitrary !?

Definition 3. For any real !, de�ne

g

j!i

M

= QFT (M)

�1

�

M�1

P

k=0

e

2�ik!

j ki

�

.

When the value of M is implicit we will just use

g

j!i.

Lemma 4. For all positive integers M ,

2.3. PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 45

� if ! =

j

M

; j = 0; 1; : : : ;M � 1, we have

g

j!i

M

= j ji and

� for all other real !, 0 < ! < 1,

g

j!i

M

=

M�1

P

j=0

�

j;!

j ji, where j�

j;!

j =

�

�

�

sin(�(M!�j))

M sin(�(!�

j

M

))

�

�

�

.

Proof. We have that

j�

j;!

j =

1

p

M

�

�

�

�

�

h jjQFT

�1

(M)

M�1

X

k=0

e

2�i!k

j ki

�

�

�

�

�

(11)

=

1

M

�

�

�

�

�

M�1

X

k=0

e

2�ik(!�

j

M

)

�

�

�

�

�

(12)

=

1

M

�

�

�

�

�

1� e

2�iM(!�

j

M

)

1� e

2�i(!�

j

M

)

�

�

�

�

�

(13)

=

�

�

�

�

�

sin(�(M! � j))

M sin(�(! �

j

M

))

�

�

�

�

�

:(14)

We have the following corollaries describing the quality of this estimator. As

we can see in Lemma 4, what matters is

�

�

sin(�(

j

M

� !))

�

�

and thus the relevant

distance between our estimate

j

M

and ! is not simply

�

�

j

M

� !

�

�

. For example

1

M

is

just as good an estimate of ! = 0 as

M�1

M

.

Definition 5. The distance d(!

0

; !

1

) between two real numbers !

0

and !

1

is

the real number d such that the shortest arclength of the unit circle between e

2�i!

0

and e

2�i!

1

is 2�d.

In other words d(!

0

; !

1

) = min

z2Z

fj!

0

� !

1

+ zjg. Roughly speaking, the prob-

ability of getting an error of size � is proportional to

1

�

2

.

Corollary 6. Given the integer M > 0 and the state

M�1

P

j=0

e

2�ij!

j ji, applying

QFT (M)

�1

and then measuring will yield the state j ji satisfying the following.

Let � = d(!;

j

M

).

2.3. PHASE ESTIMATION AND THE QUANTUM FOURIER TRANSFORM 46

� { If M! is an integer, then with probability 1, j =M!, that is � = 0.

{ Otherwise, the probability of observing j ji is

sin

2

(M��)

M

2

sin

2

(��)

�

1

(2M�)

2

.

� With probability at least

8

�

2

we have � �

1

M

.

� For k > 1, with probability at least 1�

1

2(k�1)

we have � �

k

M

.

Proof. We make use of the fact that for x between 0 and

1

2

, 2x � sin(�x) �

�x. From Lemma 4 the probability that we measure j is

�

�

�

sin(�(M!�j))

M sin(�(!�

j

M

))

�

�

�

2

�

�

1

M sin(��)

�

2

�

�

1

2M�

�

2

. We use this fact to prove the rest of the theorem.

Prob (jj �M!j � k) = 1� Prob(jj �M!j > k)

� 1� 2

1

X

j=k

1

4M

2

(

j

M

)

2

� 1�

1

2(k � 1)

:

The last inequality is easily proved by bounding the summation by an appropriate

integral.

We now use the fact that for M > 2, the function

sin

2

(x)

M

2

�

1

sin

2

(x=M)

+

1

sin

2

((� � x)=M)

�

;

0 � x � �, attains its minimum at x =

�

2

Prob (jj �M!j � 1) = Prob(j = bM!c) + Prob(j = dM!e)

=

sin

2

(M��)

M

2

sin

2

(��)

+

sin

2

(M(

1

M

��)�)

M

2

sin

2

((

1

M

��)�)

�

8

�

2

:

We have described and analysed techniques for estimating phases encoded in

the state

M�1

P

x=0

e

2�ix!

jxi. This is not the only way to encode phases, but it is

2.4. QUANTUM EIGENVALUE ESTIMATION 47

simple and elegant. In [vDDE

+

99] it is shown how encoding ! in a state of

the form

M�1

P

x=0

�

x

e

2�ix!

j xi for appropriate �

x

and then applying QFT

�1

(M) can

provide a `better' estimate of !, where the �

x

depend on the de�nition of `better'.

We will not discuss these methods here since the techniques we have described

above su�ce for the algorithms presented in this course. It would be slightly

misleading not to note that the QFT as described earlier is not practical since it

uses exponentially precise phase rotations. For the purpose of phase estimation

and for the algorithms described herein, the transformations described above can

be approximated su�ciently well with phase shifts of bounded size as described in

[Cop94] and [BEST96]. By using di�erent encodings of !, Kitaev [Kit95] shows

how to estimate ! without any quantum controlled rotations. I also noted that

it is possible to combine the phase estimation techniques used by Kitaev [Kit95]

with the approximate quantum Fourier transform methods. Some work in this

direction has been carried out [Bhi98] and these techniques show promise of being

practical and more e�cient than those in [Kit95, Cop94, BEST96]. We will not

discuss these methods in this course, but simply point out that they exist, so that

exponential precision in the full QFT is not necessary. We use the QFT methods

for their simplicity.

With these last two sections under our belt, the content of the next section

might now seem obvious, yet it is the essence of the powerful quantum algorithms

such as those for factoring and �nding discrete logarithms.

2.4. Quantum Eigenvalue Estimation

The previous two sections have described the two main ingredients for esti-

mating an eigenvalue of a unitary operator U . The algorithm, whose network

is illustrated in �gure 2.4, uses a control register and a target register. We ini-

tialise the control register to the state j 00 : : : 0i. The target register can be in

2.4. QUANTUM EIGENVALUE ESTIMATION 48

any state, but we analyse the algorithm in the basis of eigenvectors of U . Let

j	

k

i ; k = 0; 1; : : : ; N � 1, be the eigenvectors of U with respective eigenvalues

e

2�i!

k

. We will make use of the operator �

M

(U) from de�nition 1.

It is easy to see that �

M

(U) jxi j	

k

i = e

2�ix!

k

jxi j	

k

i. Combining this phase

kick-back with the phase estimation method described earlier, we have the follow-

ing algorithm.

Algorithm 7. (Eig Est(U; �;M))

Input:

� An integer N .

� A quantum network for a unitary operator U which acts on a vector space

H

N

of dimension N .

� A positive integer M .

� A target register in an arbitrary state described by the density matrix �.

[Note that the input is the quantum state itself not a classical description of

it.]

Output:

� A rational ~! (i.e. an integer x such that ~! =

x

M

).

Complexity:

� 1 application of �

M

(U).

� O(log

2

M) other elementary operations.

Procedure:

1. Initialise a control register to the state j 0i 2 H

M

.

2. Apply QFT (M) to the control register.

3. Apply �

M

(U).

2.4. QUANTUM EIGENVALUE ESTIMATION 49

4. Apply QFT (M)

�1

to the control register.

5. Measure the control register, denote the outcome x. Output ~! =

x

M

.

Figure 2.4. We illustrate the e�ect of the algorithm Eig Est with

the target register in an eigenvector of U and the control register in

the speci�ed starting state.

Theorem 8. After running algorithm Eig Est(U; �;M), the control register is

in the state

N�1

X

k=0

�

k;k

jf!

k

i hf!

k

j

where the target register started in the state � =

P

j;k

�

j;k

j	

j

i h	

k

j. Thus if we

measure the control register we will get an estimate f!

k

of !

k

with probability

Tr(� j	

k

i h	

k

j) = �

k;k

. The probability distribution of f!

k

is equivalent to that

of measuring jf!

k

i, as described in corollary 6, and outputting the result x divided

by M .

More simply, if the target register contains the state j	

j

i with probability �

j;j

,

then we will measure j e!

j

i with probability �

j;j

.

2.5. FINDING ORDERS 50

Proof. At step 1 the density matrix of the two-system state is

j 0i h 0j
 � =

X

j;k

�

j;k

j 0i h 0j
 j	

j

i h	

k

j :

The sequence (QFT (M)

�1

� I)�

M

(U)(QFT (M)� I) maps j 0i j	

j

i to j e!

j

i j	

j

i.

Thus the state of the two systems becomes

X

j;k

�

j;k

j e!

j

i hf!

k

j
 j	

j

i h	

k

j :

Tracing out the second register gives us the state

X

j

�

j;j

j e!

j

i h e!

j

j :

The result follows.

We described the above algorithm in the most general setting where we were

given any input state �. In this chapter we only use pure states.

Corollary 9. Let the density operator � describe the state

r�1

X

k=0

1

p

r

j	

k

i :

Algorithm (Eig Est(U; �;M)) outputs an estimate f!

k

of !

k

with probability

1

r

. The

probability distribution of the estimate f!

k

is equivalent to that of measuring jf!

k

i

and outputting the result x divided by M .

2.5. Finding orders

We are now ready to describe the most well-known application of the above

techniques. The task is a `classical' one:

Let G be any �nite group for which we know how to compute the group oper-

ation and for which we have a unique binary representation for every element and

2.5. FINDING ORDERS 51

an algorithm for computing the group operation in that representation. We will

represent the operation multiplicatively.

Problem 10. Given an element a from a �nite group G, �nd the order of a,

that is the smallest positive integer r such that a

r

= 1.

This problem is not only of theoretical interest, but it is of great practical in-

terest. The reason is that integer factorisation and cracking the RSA cryptosystem

reduce to this problem for G = Z

�

N

, the multiplicative group integers modulo N

(see appendix A.5.3).

The quantum version we will address is the following. Let G be any group for

which we have unique binary representatives for each element and an algorithm

for computing the group operation and for computing inverses.

Problem 11. Given an element a of a �nite group G, denote by U

a

the unitary

operator that maps, for all x 2 G, jxi ! j axi. Find the order of U

a

.

Before we describe the solution to this problem, we will make a few remarks

regarding the statement of these problems. First note that to turn Problem 10

into Problem 11, it su�ces to know a

�1

, since this means we have an e�cient

reversible way of implementing U

a

(see appendix A.3). For groups where a

�1

is

not easily obtained, we can apply the period-�nding technique discussed later to

�nd the order r of a (note that we can then simply compute a

�1

= a

r�1

). We need

unique representatives for each element of G since this is necessary for quantum

interference to occur. Most groups of interest have some easy-to-compute canonical

representatives. Note that the group G does not need to be Abelian: it su�ces

that the subgroup generated by a is Abelian, which is always true.

Solving this quantum version is simple once we measure the following. Since

U

x

a

= U

a

x

, then r is also the order of U

a

. Since U

r

a

= I, the identity operator, then

2.5. FINDING ORDERS 52

any eigenvector j	i must satisfy U

r

a

j	i = j	i ; which implies that the eigenvalues

of U

a

are rth roots of unity. For each coset fc; ac; a

2

c; :::; a

r�1

cg of hai, the subgroup

generated by a, there correspond r eigenvectors [Kit95]:

j	

c

k

i =

1

p

r

r�1

X

j=0

e

�

2�ijk

r

�

�

ca

j

�

, for k = 0; 1; :::; r � 1:(15)

Then note that

U

a

j	

c

k

i =

1

p

r

r�1

X

j=0

e

�

2�ijk

r

�

�

ca

j+1

�

=

e

2�ik

r

p

r

r�1

X

j=0

e

�

2�ijk

r

�

�

ca

j

�

= e

2�ik

r

j	

c

k

i :

Further,

jci =

1

p

r

r�1

X

k=0

j	

c

k

i

(that is we get constructive interference on the basis state j ca

0

i and totally de-

structive interference on the other j ca

j

i states).

Estimating such random eigenvalues precisely enough will allow us to �nd r.

This fact is based on the theory of continued fractions. Every real number y has

a sequence of rationals, called convergents, that approximate it. The convergents

can be e�ciently computed as outlined in [Kob94] or [Knu98]. The following

lemma follows from Theorem 184 of [HW79].

Lemma 12. Given the integers x and M , if

�

�

�

�

k

r

�

x

M

�

�

�

�

�

1

M

<

1

2r

2

then the fraction

k

r

is a convergent of

x

M

.

It is easy to see that there can be at most one fraction

a

b

that satis�es b � r

and

�

�

a

b

�

x

M

�

�

<

1

2r

2

. The continued fractions algorithm will �nd integers a and b

such that

a

b

=

k

r

after computing at most O(logM) convergents.

2.5. FINDING ORDERS 53

We will use the following algorithm as a subroutine later. This algorithm

assumes we have an upper bound on r, whereas this subsequent algorithm does

not.

Algorithm 13.

Input:

� An integer M

� An element a 2 G.

Output:

� A positive integer t or FAIL.

Complexity:

� O(T logM) elementary operations where a group operation uses O(T) ele-

mentary operations.

� O(log

2

M) other elementary operations.

Procedure:

1. Repeat Eig Est(U

a

; j 1i h 1j ;M) twice to obtain two estimates

x

1

M

and

x

2

M

of

random eigenvalues of U

a

.

2. Use the continued fractions algorithm to seek two fractions

a

1

r

1

and

a

2

r

2

with

r

1

; r

2

�

q

M

2

that satisfy

�

�

�

�

x

1

M

�

a

1

r

1

�

�

�

�

�

1

M

(16)

�

�

�

�

x

2

M

�

a

2

r

2

�

�

�

�

�

1

M

:(17)

If both do not exist, then return FAIL.

3. Let t be the lowest common multiple of r

1

and r

2

. If this is not less than

q

M

2

then return FAIL.

2.5. FINDING ORDERS 54

4. If a

t

6= 1 return FAIL,

5. Return t.

Proposition 14. If M > 2r

2

, then Algorithm 13 �nds the correct order r with

probability at least

32

�

4

. If it does not output FAIL, then it outputs a multiple of r.

Proof. The proposition follows by �rst showing that with probability at least

�

8

�

2

�

2

, x

1

and x

2

satisfy the equations (16) and (17) for k

1

and k

2

chosen indepen-

dently and uniformly at random from the set f1; : : : ; rg. The second part of the

proof shows that assuming x

1

and x

2

satisfy these equations for such k

1

and k

2

then we obtain r with probability at least

1

2

.

By Theorem 8 (Eig Est) we will obtain integers x

1

and x

2

such that for each

k

1

and k

2

2 f0; 1; : : : ; r � 1g with probability

1

r

the value

x

1

M

is an estimate of

k

1

r

, and similarly for

x

2

M

. Further, for j = 0; 1 the distribution of x

j

is equivalent to

that of measuring

�

�

�

�

e

k

j

r

�

, as described in corollary 6, and outputting the outcome

x divided by M . Since Eig Est(U

a

;M; j 1i h 1j) was run twice independently, the

integers k

1

and k

2

are independent.

Since the error in the estimate is thus at most

1

2r

2

, then the continued fractions

algorithm will e�ciently �nd the fractions

a

1

r

1

=

k

1

r

and

a

2

r

2

=

k

2

r

. We still might not

know r since the integers k

1

; k

2

and r might not be coprime. Taking the lowest

common multiple of the denominators yields t =

r

gcd(k

1

;k

2

;r)

. Since k

1

and k

2

are

selected uniformly at random between 1 and r, they are coprime with probability

at least 1 �

P

prime p

1

p

2

>

1

2

. Thus this procedure will successfully �nd r with

probability greater than

32

�

4

.

The �nal test that a

t

= 1 guarantees that the algorithm only outputs FAIL or

multiples of r.

Note that j 1i could have been replaced by any mixture of j a

j

i states.

2.5. FINDING ORDERS 55

We are now ready to solve Problem 11. We will assume the worst case, that is

that we have no good bounds on r.

Algorithm 15. (Find Order(a))

Input:

� An element a 2 G.

Output:

� A positive integer t.

Complexity:

� Expected O(T log r) elementary operations where a group operation requires

O(T) elementary operations.

� Expected O(log

2

r) other elementary operations.

Procedure:

1. Set M = 2.

2. Apply Algorithm 13 three times.

3. If all three outputs are FAIL, double M and go to step 2. Otherwise let t be

the minimum value of the non-FAIL outputs.

4. Test if a

t

= 1. If so, output t. Otherwise double M and to go step 2.

Theorem 16. Algorithm 15 (Find Order(a)) �nds a multiple of r (the order

of a). With probability at least

2

3

the multiple is indeed r. The expected complexity

is O(log r) group multiplications and O(log

2

r) other elementary operations.

Proof. WhileM � 2r

2

, step 3 of Algorithm 13 guarantees that we will obtain

FAIL (the outputted t > 0 satis�es t <

q

M

2

� r and thus cannot satisfy a

t

= 1).

Once M � 2r

2

, then Proposition 14 tells us that we will �nd the correct r with

2.6. DISCRETE LOGARITHMS 56

probability at least 1 � (1 �

32

�

4

)

3

>

2

3

at each iteration. To bound the expected

running time, note that once M � 2r

2

, the algorithm will output an answer with

probability at least

2

3

. This means the expected running time is O(log r) group

multiplications and O(log

2

r) elementary operations. The �nal test guarantees any

output is a multiple of r.

We can modify this algorithm so that it always outputs the correct r, by factor-

ing the output t (with the factoring algorithm described in [Buh96]) and removing

unnecessary factors.

2.6. Discrete Logarithms

Not all public key cryptosystems in use today rely on the di�culty of factoring.

Breaking many cryptosystems in use today can be reduced to �nding discrete

logarithms in groups such as the multiplicative group of �nite �elds or the additive

group of points on certain elliptic curves (see appendix A.6 and [MvOV97]). Shor

[Sho94] also shows how to �nd discrete logarithms in GF (p)

�

, and the algorithm

easily extends to other groups.

The discrete logarithm problem in a group G is the following. Let G be any

�nite group for which we have a unique binary representation for every element

and an algorithm for computing the group operation. We represent the group

multiplicatively.

Problem 17. Given elements a and b = a

s

, 0 � s < r (r is the order of a)

from the group G, �nd s, also referred to as the discrete logarithm of b with respect

to the base a.

We can translate this discrete logarithm problem into a discrete logarithm

problem in the group of unitary operators on the vector space spanned by the

2.6. DISCRETE LOGARITHMS 57

elements of G. Namely, letting U

a

: jxi ! j axi and U

b

: jxi ! j bxi, we wish to

�nd the logarithm r of U

b

to the base U

a

. We can also assume that we know a

�1

,

b

�1

and r, the order of a, due to the order-�nding or period-�nding algorithms

discussed in the previous section. As mentioned in the previous section, given a

�1

and b

�1

we can easily construct a reversible network for implementing U

a

and U

b

.

Since we can factor r, we can further assume that r is prime (see section 4.2.1, for

details and other advantages).

The operators U

a

and U

b

share the same eigenvectors j	

c

k

i de�ned in the pre-

vious section, with respective eigenvalues e

2�ik

r

and e

2�iks

r

. The idea is to apply

the eigenvalue estimation algorithm to estimate these two eigenvalues accurately

enough to determine both

k

r

and

ks mod r

r

. Since we know r, we only need to

estimate these eigenvalues with an error of at most

1

2r

in order to �nd the correct

numerator. If k 6= 0 we can simply compute s = k

�1

ks mod r. The eigenvalue

estimation algorithm thus gives us the following algorithm for �nding discrete log-

arithms.

Algorithm 18. (Discrete Log(b; a))

Input:

� Elements a and b 2 G, where b is a power of a.

� The order r of a.

Output:

� An integer t or FAIL.

Complexity:

� O(log r) group operations.

� O(log

2

r) other elementary operations.

2.6. DISCRETE LOGARITHMS 58

Procedure:

1. Prepare three registers in the state

j 00 : : : 0i j 00 : : : 0i j 1i :

2. Let n = dlog

2

2re+1. Apply QFT (2

n

)
QFT (2

n

) to the two control registers.

3. Apply �

2

n

(U

a

) using the �rst control register and the target register.

4. Apply �

2

n

(U

b

) using the second control register and the target register.

5. Apply QFT

�1

(2

n

)
QFT

�1

(2

n

) to the two control registers.

6. Measure the �rst two registers and denote the outcome jx

1

i j x

2

i. Compute

s

1

=

�

x

1

r

2

n

�

and s

2

=

�

x

2

r

2

n

�

.

7. If s

1

= 0, output FAIL. Otherwise let s = s

�1

1

s

2

mod r. Output s.

Note that this algorithm also works in non-Abelian groups G, since it su�ces

that the subgroup generated by a and b is Abelian, and this of course is true.

Corollary 19. Let a and b = a

s

be elements from a group G. Algorithm 18

(Discrete Log(b; a)) outputs s with probability at least

�

r�1

r

�

(

8

�

2

)

2

. This algorithm

has expected running time O(log r) group operations and O(log

2

r) other elementary

operations.

Proof. After step 5 we have the state

r�1

X

k=0

�

�

�

�

�

e

k

r

+

�

�

�

�

�

f

ks

r

+

j	

k

i :

With probability at least (

8

�

2

)

2

the integers s

1

and s

2

will correspond to integers

j and js, where j is chosen uniformly at random from the integers 0; 1; : : : r �

1. In this case s

1

= j 6= 0 with probability

r�1

r

and we can easily compute

j

�1

js = s mod r. The result follows. The running time follows by noting that the

O(log r) bit arithmetic described can be done with O(log

2

r) elementary (classical)

operations.

2.7. AMPLITUDE ESTIMATION 59

2.7. Amplitude Estimation

In the previous sections we detailed and used a simple algorithm for estimating

a phase shift induced by a unitary operator U . Now suppose we wish to estimate a

di�erent parameter, namely the probability with which the operator U produces a

good output jxi. More speci�cally, let U = A be a quantum algorithm that starts

with the state j 00 : : : 0i and the aim is to output states jxi that satisfy f(x) = 1.

The function f : f0; 1; : : : ; N � 1g ! f0; 1g characterises the good states. We

denote by X

1

the set of good states jxi, namely those satisfying f(x) = 1. The set

X

0

denotes the bad states, which satisfy f(x) = 0. Denote by p

1

the probability of

obtaining a good state when we measure j�i. As discussed earlier, we can assume

that we can implement the operator U

f

: jxi ! (�1)

f(x)

jxi. In other words we

wish to determine

p

1

=

X

x2X

1

jh xj�ij

2

where

j�i = A j 00 : : : 0i :(18)

When 0 < p

1

< 1, we can assume that

A j 00 : : : 0i =

p

p

0

jX

0

i+

p

p

1

jX

1

i

where p

0

= 1� p

1

,

jX

0

i =

1

p

p

0

X

x2X

0

jxi hxj�i

and

jX

1

i =

1

p

p

1

X

x2X

1

j xi h xj�i:

2.7. AMPLITUDE ESTIMATION 60

We will start by reviewing the algorithm for amplitude ampli�cation

[BBHT98, BH97, BHT98, Gro98, BHMT99], based on the quantum search-

ing algorithm by Grover [Gro96], and then show how the main iterate of this

algorithm can be used to solve the amplitude estimation problem mentioned above.

2.7.1. Amplitude Ampli�cation. It is helpful to work in a basis containing

the states jX

0

i and jX

1

i (a full basis contains another 2

n

� 2 states). We have

at our disposal the operator U

f

which sends jX

j

i ! (�1)

j

jX

j

i, the unitary

operators A and A

�1

, and the operator U

0

which maps j 0i to � j 0i and leaves

the other basis states alone. By conjugating U

0

with the operator A, we have the

operator U

�

= AU

0

A

�1

which sends j�i = A j 00 : : : 0i to � j�i and leaves all the

other orthogonal basis states alone (it is convenient to describe this operator in a

basis containing j�i). Let us consider the action of the operator �U

�

U

f

in the

space spanned by jX

0

i and jX

1

i. Given any state

j	i = cos(�) jX

0

i+ sin(�) jX

1

i ;

applying U

f

gives us

cos(�) jX

0

i � sin(�) jX

1

i :(19)

Let ! be the real number between 0 and

1

2

that satis�es p

1

= sin

2

(�!) and p

0

=

cos

2

(�!). Representing the state (19) in a basis containing j�i = cos(�!) jX

0

i+

sin(�!) jX

1

i and j�i = sin(�!) jX

0

i � cos(�!) jX

1

i gives us

cos(�) jX

0

i � sin(�) jX

1

i = cos(�+ �!) j�i+ sin(�+ �!)j�i:

Since j�i is orthogonal to j�i, applying �U

�

gives us

cos(�+ �!) j�i� sin(�+ �!)j�i

= cos(�+ 2�!) jX

0

i+ sin(�+ 2�!) jX

1

i :

2.7. AMPLITUDE ESTIMATION 61

The two re
ections U

f

and �U

�

thus give us a rotation of 2�! in the plane spanned

by jX

0

i and jX

1

i (see �gure 2.5 for an illustration with � = �!).

Figure 2.5. A) We start o� in the state j�i = A j 00 : : : 0i =

sin(�!) jX

1

i+ cos(�!) jX

0

i. B) The U

f

operation changes the sign

in front of the jX

1

i component. C) The �U

�

(which is equal to a

U

�

) changes the sign in front of the

�

�

�

�

component. The net e�ect

of applying G = �U

�

U

f

can be described as a rotation of 2� = 2�!

in the plane spanned by jX

0

i and jX

1

i. D) Repeating G a total of

k times e�ects a rotation of 2k� = 2�k!.

2.7. AMPLITUDE ESTIMATION 62

Such a rotation G = �U

�

U

f

will have eigenvalues e

�2�i!

in the subspace gen-

erated by jX

0

i and jX

1

i. In fact, we can explicitly describe the eigenvectors (as

de�ned in [Mos98]):

j	

+

i =

1

p

2

jX

0

i+

i

p

2

jX

1

i(20)

j	

�

i =

1

p

2

jX

0

i �

i

p

2

jX

1

i(21)

with respective eigenvalues e

2�i!

and e

�2�i!

.

The state

j�i = cos(�!) jX

0

i+ sin(�!) jX

1

i

is expressed in this eigenbasis as

e

�i!

p

2

j	

+

i+

e

��i!

p

2

j	

�

i :

Since G j	

+

i = e

2�i!

j	

+

i and G j	

�

i = e

�2�i!

j	

�

i, then applying the operator

G

k

to the state j�i = A j 00 : : : 0i gives us

e

�i(2k+1)!

p

2

j	

+

i+

e

��i(2k+1)!

p

2

j	

�

i(22)

= cos(�(2k + 1)!) jX

0

i+ sin(�(2k + 1)!) jX

1

i :(23)

The probability of measuring an element ofX

1

is sin

2

(�(2k+1)!) and assuming

p

1

> 0 then to measure an element of X

1

with probability close to 1 we should

apply G roughly k =

�

1

4!

�

1

2

�

2 �(

�

4

p

p

1

) times.

Having summarised the use of the Grover iterateG for amplifying the amplitude

p

p

1

of jX

1

i in j�i = A j 00 : : : 0i, we move on to describe its use for estimating

p

1

.

2.7. AMPLITUDE ESTIMATION 63

2.7.2. Amplitude Estimation. The strategy for estimating p

1

= sin

2

(�!)

is simple. We will just estimate one of the eigenvalues e

�2�i!

of G using the

eigenvalue estimation algorithm. Note that when p

1

= 0 or 1, j�i = A j 00 : : : 0i is

an eigenvector ofG with eigenvalue e

2�i!

equal to 1 = e

�0

or�1 = e

�i�

respectively,

and so we still have p

1

= sin

2

(�!).

Algorithm 20. (Amp Est(A; f;M))

Input:

� An integer M (a precision parameter).

� An integer N .

� A quantum network for implementing the operator (algorithm) A acting on

a vector space H

N

of dimension N .

� A unitary operator which marks elements of a good set X

1

by mapping

jxi ! (�1)

f(x)

jxi, where f(x) = 1 i� x 2 X

1

.

Output:

� A description of a real number ~p (i.e. an integer x such that ~p = sin

2

(

�x

M

)).

Complexity:

� O(M) applications of U

f

� O(M) applications of A and A

�1

� O(M log

2

N) other elementary operations

Procedure:

1. Prepare the input state j 00 : : : 0iA j 00 : : : 0i 2 H

M

 H

N

.

2. Apply QFT (M) to the �rst register.

3. Apply �

M

(G).

4. Apply QFT (M)

�1

to the �rst register.

2.7. AMPLITUDE ESTIMATION 64

5. Measure the �rst register to obtain a state jxi, x 2 f0; 1; : : : ;M � 1g and

output ~p = sin

2

(�

x

M

).

Theorem 21. For any positive integer M , the algorithm Amp Est(A; f;M)

outputs ~p such that

� with probability at least

8

�

2

we have

jp

1

� ~pj � 2�

p

p

1

(1� p

1

)

M

+

�

2

M

2

� for any integer k > 1, with probability at least 1�

1

2(k�1)

we have

jp

1

� ~pj � 2�k

p

p

1

(1� p

1

)

M

+

k

2

�

2

M

2

and uses M applications of U

f

.

Proof. After step 3 we have the state

1

p

2M

M�1

X

j=0

j ji (e

�i(2j+1)!

j	

+

i+ e

��i(2j+1)!

j	

�

i)

=

e

�i!

p

2M

M�1

X

j=0

e

2�ij!

j ji j	

+

i+

e

��i!

p

2M

M�1

X

j=0

e

�2�ij!

j ji j	

�

i

and after step 4 we have the state

e

�i!

p

2M

g

j!i

M

j	

+

i+

e

��i!

p

2M

]

j �!i

M

j	

�

i :

In step 5, with probability

1

2

we get an estimate e! of ! with the properties given

in corollary 6. In this case, letting � = d(e!; !), and applying some standard

2.7. AMPLITUDE ESTIMATION 65

trigonometric identities, we have

jep

1

� p

1

j =

�

�

sin

2

(�e!)� sin

2

(�!)

�

�

=

�

�

sin

2

(�! � ��)� sin

2

(�!)

�

�

=

�

�

(sin(�!) cos(��)� sin(��) cos(�!))

2

� sin

2

(�!)

�

�

=

�

�

�

�

sin

2

(��) cos(2�!)�

sin(2�!)

2

sin(2��)

�

�

�

�

� 2��

p

p

1

(1� p

1

) + �

2

�

2

The result in the case that we e�ectively measure j e!i now follows by corollary

6. Otherwise, we e�ectively measure

�

�

f

�!

�

, but since sin

2

(�!) = sin

2

(��!), the

same result holds, and the theorem follows.

2.7.3. Application to counting. We give three applications of the ampli-

tude estimation algorithm to counting. Suppose we wish to estimate or determine

the cardinality of X

1

. Let A be any transformation, such as the Fourier transform

F

N

, that maps the state j 00 : : : 0i to a uniformly weighted superposition of ele-

ments in f0; 1; : : : ; N � 1g. Then p

1

=

jX

1

j

N

and estimates of p

1

translate directly

to estimates of t = jX

1

j = Np

1

.

Algorithm 22. (Count(f;M))

Input:

� An integer N .

� A quantum network for U

f

: jxi ! (�1)

f(x)

j xi.

� An integer M .

Output:

� A description of a real number

~

t (i.e. an integer x such that

~

t = N sin

2

(

�x

M

).

Complexity:

2.7. AMPLITUDE ESTIMATION 66

� O(M) applications of U

f

.

� O(M log

2

N) other operations.

Procedure:

1. Output N � Amp Est(F

N

; f;M)

In [BHMT99] are given the following algorithms and theorems (based on

results in [BBHT98, BHT98, Mos98, Mos99]) related to counting t.

The following theorem and corollary follow easily from Theorem 21.

Theorem 23. For any integer M > 0, Count(f;M) outputs a real number

~

t

satisfying

� with probability at least

8

�

2

we have

�

�

t�

~

t

�

�

� 2�

p

t(N � t)

M

+

N�

2

M

2

� for any integer k > 1, with probability at least 1�

1

2(k�1)

we have

�

�

t�

~

t

�

�

� 2�k

p

t(N � t)

M

+

Nk

2

�

2

M

2

and uses M applications of U

f

.

Corollary 24. Let

~

t = Count(f; dc

p

Ne). Then

�

�

~

t� t

�

�

�

2�

c

r

t (N � t)

N

+

�

�

c

�

2

with probability at least

8

�

2

.

Note that Count(f;M) outputs a real number. In the following applications

we will be rounding o� Count(f;M) to an integer. We do not simply round o�

Count(f;M) to a nearest integer, since in general this requires arbitrary precision.

We will instead round o� Count(f;M) to an integer that is within

2

3

of it. The

2.7. AMPLITUDE ESTIMATION 67

number

2

3

is arbitrary and can be replaced by any constant fraction strictly between

1

2

and 1.

We next describe an algorithm for approximately counting t with accuracy �

(see [MR95]), that is outputting an estimate

~

t such that with probability at least

2

3

we have

�

�

~

t� t

�

�

� �t.

Algorithm 25. (Approx Count(f; �))

Input:

� An integer N .

� A quantum network for the operator U

f

: jxi ! (�1)

f(x)

jxi.

� An accuracy parameter �, 0 < � � 1 (given, say, as two integers a; b > 0,

� =

a

b

).

Output:

� An integer

~

t.

Complexity:

� O

�

1

�

q

N

t+1

�

applications of U

f

.

� O

��

log

2

N

�

�
q

N

t+1

�

other elementary operations.

Procedure:

1. Set l = 2.

2. Apply Count(f; 2

l

).

3. If

~

t = 0 and 2

l

< 2

p

N then increment l by 1 and go to step 2.

4. Set M = d

20�

2

�

2

l

e.

5. Apply Count(f;M) to obtain t

0

. Output an integer

~

t satisfying

�

�

~

t� t

0

�

�

�

2

3

.

Theorem 26. Approx Count(f; �) outputs an integer

~

t satisfying

�

�

t�

~

t

�

�

� �t

2.7. AMPLITUDE ESTIMATION 68

with probability at least

2

3

(t is the number of solutions to f(x) = 1). If t > 0 it

uses an expected number of O

�

1

�

q

N

t

�

applications of U

f

. If t = 0, the algorithm

outputs

~

t = t = 0 with certainty and U

f

is evaluated �(

p

N) times.

Proof. The case t = 0 is easy. For t > 0, let e

2�i!

be the eigenvalue of j	

+

i,

so sin

2

(�!) =

t

N

, 0 � ! �

1

2

. Let m = blog

2

�

1

5�!

�

c. From Lemma 4 we have that

the probability that in step 2 Count(f; 2

l

) = 0 for l = 1; 2; : : : ; m is

m

Y

l=1

sin

2

(2

l

�!)

2

2l

sin

2

(�!)

�

m

Y

l=1

cos

2

(2

l

�!) =

sin

2

(2

m+1

�!)

2

2m

sin

2

(2�!)

� cos

2

�

2

5

�

:

The previous inequalities are obtained by using the fact that sin(x�!) �

x sin(�!) cos(x�!) for any x � 0 and 0 � !x <

1

2

, which can be seen by looking

at the Taylor expansion of tan(x) at x =M�!.

Now assuming step 2 was repeated at least m times (note that 2

m+1

�

2

5

p

N

), after step 4 we have M �

4�

�!

and since �! �

�

2

sin(�!) =

�

2

q

t

N

, then by

Theorem 23, the probability that Count(f;M) outputs a number t

0

satisfying

jt

0

� tj �

�

4

t +

�

2

64

t is at least

8

�

2

. If �t < 1, then when we round o� t

0

to get

~

t we

will get the correct t and thus the �nal error is 0 � �t. If t� � 1, then rounding

o� t

0

to

~

t can introduce an error of at most

2

3

�

2

3

�t, which increases the error to

something less than

�t

3

+

2

3

� �t. The overall probability of obtaining this estimate

is at least

8

�

2

cos

2

(

2

5

) >

2

3

.

Lastly, we describe an algorithm for exactly counting t.

Algorithm 27. (Exact Count(f))

Input:

� The integer N .

� A quantum network for U

f

.

Output:

2.7. AMPLITUDE ESTIMATION 69

� An integer

~

t.

Complexity:

� O(

p

(t+ 1)(N � t+ 1)) applications of U

f

.

� O(log

2

N

p

(t + 1)(N � t + 1)) other elementary operations.

Procedure:

1. Set

~

t

1

= Count(f; d9

p

Ne) and

~

t

2

= Count(f; d9

p

Ne).

2. Set M

1

= d30

p

~

t

1

(N �

~

t)e, M

2

= d30

p

~

t

2

(N �

~

t

2

)e,

~

M = min(M

1

;M

2

).

3. Apply Count(f;M) to obtain output t

0

. Output an integer

~

t satisfying

�

�

~

t� t

0

�

�

�

2

3

.

Theorem 28. Algorithm Exact Count(f) outputs an integer

~

t which equals t,

the number of solutions to f(x) = 1, with probability at least

2

3

. It uses an expected

�(

p

(t + 1)(N � t+ 1)) applications of U

f

.

Proof. By Theorem 21, setting k = 7, we see that with probability greater

than

11

12

,

~

t

1

satis�es

�

�

~

t

1

� t

�

�

�

p

t(N�t)

N

+

1

4

, and similarly for

~

t

2

. This inequality

implies that

p

t(N � t) �

p

2M

j

, for j = 1; 2. Thus with probability at least

�

11

12

�

2

we have

p

t(N � t)

M

�

p

2

30

:

When this is the case, then Theorem 23 tells us that with probability

8

�

2

we have

�

�

~

t� t

�

�

�

p

2�

15

+

�

2

30

2

<

1

3

(so when we round o� in step 3 we will get

~

t = t). Therefore with probability at

least

8

�

2

�

11

12

�

2

>

2

3

we have

~

t = t.

The following table summarises the complexities of these algorithms, along

with their classical counterparts for comparison. The complexity measure we use

2.7. AMPLITUDE ESTIMATION 70

Problem Quantum Complexity Classical Complexity

Decision �(

q

N

t+1

) �(

N

t+1

)

Searching �(

q

N

t+1

) �(

N

t+1

)

Count with error

p

t �(

p

N) O(N)

Count with accuracy � O((

1

�

)

q

N

t+1

) O((

1

�

2

)

N

t+1

)

Exact counting �(

p

(t+ 1)(N � t+ 1)) �(N)

Table 2.5. This table compares quantum and classical counting

complexities. The lower bounds are in the black-box model of com-

putation.

here is the number of applications of U

f

(that is evaluations of f) used in order to

solve the problem with probability

2

3

of being correct. The lower bounds are lower

bounds for solving these problems in the black-box model of computation which

we describe in the next section.

For �xed �, or for all t � N(1 � �), the upper bound for quantumly counting

with accuracy epsilon is tight up to a constant factor since Nayak and Wu [NW99]

show a lower bound of

s

N

d�(t + 1)e

+

p

t(N � t)

d�(t+ 1)e

!

:

We believe it is possible to match the upper and lower bounds into a tight bound

for all � and t (Nayak and Wu conjecture their lower bound is tight). I am not

aware of a tight lower bound for the classical complexity (some related results

appear in [CEG95] and [Gol99]), but I conjecture that the classical lower bound

is simply the square of the quantum lower bound.

2.8. FINDING HIDDEN SUBGROUPS 71

2.8. Finding Hidden Subgroups

Let us now return to the problem of �nding orders and discrete logarithms and

explore the natural generalisations. Both can be described as special cases of the

following problem as illustrated in �gure 2.6.

Problem 29. Let f be a function from a �nitely generated group G to a �nite

set X such that f is constant on the cosets of a subgroup K (of �nite index, since

X is �nite), and distinct on each coset. Given a quantum network for evaluating

f , namely U

f

: jxi j yi ! jxi j y � f(x)i, �nd a generating set for K.

Generalisations of this form have been known since shortly after Shor presented

his factoring and discrete logarithm algorithms (for example, [Vaz97] presents

the hidden subgroup problem for a large class of �nite Abelian groups, or more

generally in [H�y97] for �nite Abelian groups presented as a product of �nite cyclic

groups. In [ME99] the natural Abelian hidden subgroup algorithm is related to

eigenvalue estimation.)

Other algorithms which can be formulated in this way include:

Deutsch's Problem: Consider a function f mapping Z

2

= f0; 1g to f0; 1g.

Then f(x) = f(y) if and only if x� y 2 K, where K is either f0g or Z

2

= f0; 1g.

If K = f0g then f is 1 � 1 or `balanced' and if K = Z

2

then f is constant.

[Deu85, CEMM98].

Simon's Problem: Consider a function f from Z

l

2

to some set X with the

property that f(x) = f(y) if and only if x� y 2 f0; sg for some s 2 Z

l

2

. Here K =

f0; sg is the hidden subgroup of Z

l

2

. Simon [Sim94] presents an e�cient algorithm

for solving this problem, and the solution to the hidden subgroup problem in the

Abelian case is a generalisation.

2.8. FINDING HIDDEN SUBGROUPS 72

Finding Orders (Factoring): Let a be an element of a group H. Consider

the function f from Z to the group H where f(x) = a

x

for some element a of H.

Then f(x) = f(y) if and only if x� y 2 rZ. The hidden subgroup is K = rZ and

a generator for K gives us the order r of a.

Discrete Logarithms: Let a be an element of a group H, with a

r

= 1,

and suppose b = a

k

from some unknown k. The integer k is called the discrete

logarithm of b to the base a. Consider the function f from Z

r

�Z

r

to H satisfying

f(x

1

; x

2

) = a

x

1

b

x

2

. Then f(x

1

; x

2

) = f(y

1

; y

2

) if and only if (x

1

; x

2

) � (y

1

; y

2

) 2

f(t;�tk); t = 0; 1; : : : ; r � 1g which is the subgroup h(1;�k)i of Z

r

� Z

r

. Thus

�nding a generator for the hidden subgroup K will solve the discrete logarithm k.

Hidden Linear Functions: Let g be some permutation of Z

N

for some integer

N . Let h be a function from Z�Z to Z

N

, h(x; y) = x+ay mod N . Let f = g �h.

The hidden subgroup of f is h(�a; 1)i. Boneh and Lipton [BL95] show that even

if the linear structure of h is hidden, we can recover the parameter a.

Self-Shift-Equivalent Polynomials: Given a polynomial P in l variables

X

1

; X

2

; : : : ; X

l

over F

q

, the function f which maps (a

1

; a

2

; : : : ; a

l

) 2 F

l

q

to P (X

1

�

a

1

; X

2

�a

2

; : : : ; X

l

�a

l

) is constant on cosets of a subgroup K of F

l

q

. This subgroup

K is the set of shift-self-equivalences of the polynomial P . Grigoriev [Gri97] shows

how to compute this subgroup.

Abelian Stabiliser Problem: Let G be any group acting on a �nite set X.

That is each element of G acts as a map from X to X in such a way that for

any two elements a; b 2 G, a(b(x)) = (ab)(x) for all x 2 X. For a particular

element x 2 X, the set of elements which �x x (that is the elements a 2 G such

that a(x) = x) form a subgroup. This subgroup is called the stabiliser of x in G,

denoted St

G

(x). Let f

x

denote the function from G to X which maps g 2 G to

g(x). The hidden subgroup corresponding to f

x

is St

G

(x). The �nitely generated

2.8. FINDING HIDDEN SUBGROUPS 73

Abelian case of this problem was solved by Kitaev [Kit95], and includes �nding

orders and discrete logarithms as special cases.

When K is normal in G, we could in fact decompose f as g � h, where h is a

homomorphism from G to some �nite group H, and g is some 1-1 mapping from

H to a set X which `hides' the homomorphism structure of h. In this case, K

corresponds to the kernel of h and H is isomorphic to G=K.

Figure 2.6. The function f is constant on cosets of K and distinct

on each coset.

We give the complexity in terms of n = dlog

2

[G : K]e which is a lower bound

on log

2

jXj (note that underestimating the input size results in an overestimated

complexity, so any upper bound is still valid).

Let us start with a simple example, namely G = Z. This special case is almost

identical to the order-�nding algorithm, and will be useful for reducing the case of

�nitely generated G to �nite G. This algorithm is needed for �nding the order of

a 2 G when a

�1

is not known.

2.8. FINDING HIDDEN SUBGROUPS 74

2.8.1. Finding a period. Let us suppose we have a function f : Z ! X,

where jXj � N < 1, and f has the property that f(x) = f(y) if and only if

x� y 2 rZ. Thus the sequence f(0); f(1); : : : is periodic with period r. The case

where f is not 1 � 1 in this range is addressed in [BL95] and in the appendix of

[ME99]. Consider the `eigenstates'

j	

k

i =

r�1

X

j=0

e

�2�ij

k

r

j f(j)i :

Why do I call these `eigenstates'? Eigenstates of what? They are eigenstates of

the shift operation j f(x)i ! j f(x+ y)i. The respective eigenvalues are e

2�iy

k

r

,

analogous to the eigenvalues of the j	

k

i from equation (15).

The period-�nding algorithm goes as follows.

Algorithm 30.

Input:

� An integer N ,

� An integer M .

� A unitary operator U

f

which acts on H

M

� H

N

and maps jxi j 0i !

jxi j f(x)i.

Output:

� A positive integer t.

Complexity:

� 1 application of U

f

on inputs of size dlog

2

Me.

� O(log

2

M) other elementary operations.

Procedure:

2.8. FINDING HIDDEN SUBGROUPS 75

The procedure is the same as in Algorithm 13 except that instead of using

Algorithm Eig Est we use the following (almost identical) procedure:

1a: Start in the state j 00 : : : 0i j 00 : : : 0i.

1b: Apply QFT (M) to the �rst register.

1c: Apply U

f

.

1d: Apply QFT (M)

�1

to the �rst register.

1e: Measure the �rst register and output the measured integer y.

Theorem 31. If M > 2r

2

, then Algorithm 30 �nds the correct period r of f

with probability at least

32

�

4

. If it does not output FAIL, then it outputs a multiple

of r.

Proof. After step 1c we have the state

M�1

P

x=0

j xi j f(x)i

=

r�1

P

k=0

�

M�1

P

x=0

e

2�ixk

r

jxi

�

j	

k

i :

Thus after step 1d, measuring the �rst register produces the same distribution as

Algorithm 7 (Eig Est(U

a

; �;M)), as described in Proposition 14, and the result

follows similarly.

Algorithm 32. (Find Period(f))

Input:

� A uniform algorithm which outputs for any integer M a quantum network

U

f

which acts on H

M

� H

N

and maps jxi j 0i ! jxi j f(x)i.

Output:

� A positive integer t.

Complexity:

2.8. FINDING HIDDEN SUBGROUPS 76

� Expected O(log

2

r) applications of U

f

.

� Expected O(n

2

) other elementary operations where n = dlog

2

[G : K]e =

dlog

2

re.

Procedure:

Same as Algorithm 15 (Find Order(a)) except using Algorithm 30) instead of

Algorithm 13.

Corollary 33. Algorithm 30 �nds a multiple of r. With probability at least

2

3

this multiple is r. The expected complexity is O(log r) applications of U

f

and

O(log

2

r) other elementary operations.

Having thus described the one-dimensional in�nite order case, we are ready to

reduce the general �nitely generated Abelian case to the �nite Abelian case.

2.8.2. The general case. Let us assume that we have a set of generators

for G. Since f has �nite index, K must contain some power of each of these

generators. We can use the period-�nding algorithm to �nd the period of f on

each of these generators. We can then assume each of the generators has �nite

order. The algorithm described here is for G identi�ed with a product of cyclic

groups, namely Z

N

1

�Z

N

2

�� � ��Z

N

2

. Although all Abelian groups are isomorphic

to such a product of cyclic groups, �nding such a product and the isomorphism

can be very di�cult (at least as hard as factoring integers when G = Z

�

N

). In the

next section, we show how a reasonable representation of a �nite Abelian group G

can be decomposed in this way by using this quantum algorithm.

With the factoring algorithm of Shor, we can factor eachN

j

into its prime power

factors, and then e�ciently �nd the isomorphism between the additive group Z

N

j

and a product of cyclic groups of prime power order. For example, ifN = pq, where

p and q are coprime, and hai is identi�ed with Z

N

, then Z

N

� hai = ha

p

i � ha

q

i �

2.8. FINDING HIDDEN SUBGROUPS 77

Z

q

� Z

p

. We can thus restrict our attention to such products of groups where the

N

j

are prime powers.

Furthermore, any subgroup K of an Abelian G = G

p

1

�G

p

2

� � � � �G

p

k

where

G

p

j

is the p

j

-subgroup (the p

j

are distinct primes) of G, is of the form K

p

1

�K

p

2

�

� � ��K

p

k

where K

p

j

� G

p

j

. We can thus �nd the hidden subgroup K of f piecewise

in the following way. For j = 1; 2; : : : ; k, we �nd the hidden subgroup K

p

j

of the

function f

p

j

: G

p

j

! X, where f

p

j

(x) = f(0; 0; : : : ; 0; x; 0; : : : ; 0) (x appears in the

jth entry), and then set K = K

p

1

�K

p

2

� � � � �K

p

k

.

So we restrict attention to the case of �nite groups G equal to G

p

� Z

p

a

1

�

Z

p

a

2

� � � � � Z

p

a

k

for some prime p and positive integers a

j

. Let a = maxfa

j

g.

Let us de�ne more general `eigenstates'. Let T be the set of tuples

(t

1

; t

2

; : : : ; t

k

) 2 Z

p

a

1

� Z

p

a

2

� � � � � Z

p

a

k

that satisfy

p

a

k

X

j=1

h

j

t

j

p

a

j

= 0 mod p

a

for all h 2 K:(24)

For each such t 2 T , de�ne

�

�

	

(t

1

;t

2

;::: ;t

k

)

�

=

X

s2G=K

e

�2�i

k

P

j=1

t

j

s

j

p

a

j

j f(s)i :

The sum is over a set s of coset representatives for K in G. Since the t satisfy

equation (24), the j	

t

i are well-de�ned. Again these are eigenvectors of the shift

operations j f(x)i ! j f(x+ y)i with respective eigenvalue

e

2�i

k

P

j=1

y

j

t

j

p

a

j

:

From these eigenvalues the following algorithm determines a uniformly random

t 2 T , and by equation (24), we can use enough random t to determine K using

linear algebra. For simplicity, we assume here that we can perform QFT (p

a

)

2.8. FINDING HIDDEN SUBGROUPS 78

perfectly. In practice, we could use QFT (2

n

) where n is in O(a log p), or other

approximate versions of it, and succeed with probability close to 1.

Algorithm 34. (Find Hidden Subgroup(f))

Input:

� Integers p; a

1

; a

2

; : : : ; a

k

.

� A quantum network for implementing U

f

.

Output:

� A k-tuple t 2 Z

p

a

1

� Z

p

a

2

� � � � � Z

p

a

k

.

Procedure:

1. Start with the state j 0i j 0i � � � j 0i j 00 : : : 0i 2 H

p

a

1

� H

p

a

2

� � � � � H

p

a

k

� H .

2. Apply QFT (p

a

1

)
QFT (p

a

2

)
 � � �
QFT (p

a

k

)
 I.

3. Apply U

f

.

4. Apply QFT (p

a

1

)

�1

QFT (p

a

2

)

�1

 � � �
QFT (p

a

k

)

�1

 I.

5. Measure the control registers and output the measured values t

1

; t

2

; : : : ; t

k

.

Proposition 35. Algorithm 34 (Find Hidden Subgroup(f)) outputs an ele-

ment t satisfying

p

a

k

X

j=1

h

j

t

j

p

a

j

= 0 mod p

a

for all h 2 K:

Proof. After step 3 we have the state

X

x2Z

p

a

1

�Z

p

a

2

�����Z

p

a

k

j xi j f(x)i ;

which can be reexpressed in a di�erent basis (in the same way as we did in the

proof of Theorem 31) as

=

X

t2T

p

a

1

�1

X

x

1

=0

e

2�i

x

1

t

1

p

a

1

j x

1

i

!

� � �

p

a

k

�1

X

x

k

=0

e

2�i

x

k

t

k

p

a

k

j x

k

i

!

j	

t

i :

2.8. FINDING HIDDEN SUBGROUPS 79

It is then clear that after step 4 we will have

X

t2T

j t

1

i j t

2

i � � � j t

k

i j	

t

i :

2.8.3. Decomposing Abelian Groups. The hidden subgroup algorithm

described above requires that the �nite Abelian group G be identi�ed with

Z

N

1

� � � � � Z

N

k

and not just isomorphic to such a group with no e�ciently com-

putable isomorphism available.

Here we show that using the Hidden Subgroup Algorithm itself, we can �nd this

isomorphism with high probability for some `reasonably' presented �nite groups

G. We will assume the following about the presentation of G.

1. We have a unique binary representation for each element of G and we can

e�ciently recognise if a binary string represents an element of G or not.

2. Using the binary representation, for any a 2 G, we can e�ciently construct

a quantum network for implementing U

a

: j yi ! j ayi. This might seem like

a strong assumption, since this means we can compute a

�1

. But in light of

the quantum period-�nding algorithm, which allows us to �nd the order r

of a and then easily compute a

�1

= a

r�1

, this becomes a fair assumption.

3. We can e�ciently �nd a generating set for G.

The last assumption might seem strong, but for �nite groups G note that it

su�ces that we have an upper bound 2

k

on the size of G and that we can e�ciently

select elements of G uniformly at random. It is easy to show that O(k) randomly

selected elements of G will span G with probability 1� o(1).

We can again assume the orders of the generators are of prime power order.

Further, we can �rst �nd generators for each of the p-subgroups of G, and then

take their product to obtain G. Thus we restrict attention to p-groups G.

2.8. FINDING HIDDEN SUBGROUPS 80

Algorithm 36. (Decompose Group(a

1

; a

2

; : : : ; a

k

))

Input:

� Generators a

1

; a

2

; : : : ; a

k

of the p-group G.

� The maximum order q = p

r

of the elements a

1

; : : : ; a

k

.

Output:

� A set of elements g

1

; g

2

; : : : ; g

l

, l � k, from the group G.

Complexity:

� O(k log q) quantum group multiplications.

� O(k

2

log q) classical group multiplications.

� O(k

3

log

2

q) other elementary operations.

Procedure:

1. De�ne g : Z

k

q

! G by mapping (x

1

; x

2

; : : : ; x

k

)! g(x) = a

x

1

1

a

x

2

2

� � �a

x

k

k

. Use

Find Hidden Subgroup(g) to �nd generators for the hidden subgroup K of

Z

k

q

as de�ned by the function g.

2. Compute a set y

1

;y

2

; : : : ;y

l

2 Z

k

q

=K of generators for Z

k

q

=K (for example,

see Section 2.4.4 and Algorithm 2.4.14 of [Coh93]).

3. Output fg(y

1

); g(y

2

); : : : ; g(y

l

)g.

Theorem 37. The group G is equal to hg

1

i � hg

2

i � : : :� hg

l

i and Algorithm

Decompose Group(a

1

; a

2

; : : : ; a

k

) �nds the generators g

1

; g

2

; : : : ; g

l

using

O(k log q) quantum group multiplications, O(k

2

log q) classical group multiplica-

tions, and O(k

3

log

2

q) other elementary operations.

Proof. Evaluating the function g requires at most k exponentiations with

exponents of size at most p

a

(these require O(a log p) group operations each),

plus k � 1 multiplications to multiply the results together. This accounts for

the O(k log q) (quantum) group operations.

2.8. FINDING HIDDEN SUBGROUPS 81

Standard matrix reductions over the integers will �nd the elements

y

1

;y

2

; : : : ;y

k

at a cost of O(k

3

) arithmetic operations with integers of size at

most q, which accounts for the O(k

3

log

2

q) other operations. From these we can

compute each g

j

= g(y

j

) using at most O(k log q) group operations.

The function g is a surjective homomorphism from Z

k

q

to G with kernel K, and

thus the First Isomorphism Theorem implies that Z

k

q

=K is isomorphic to G, and

we can identify the generators y

j

+ K of Z

k

q

=K with generators g

j

of G via the

equation g(y

j

) = g

j

.

2.8.4. Discussion: What about non-Abelian groups? If the group

G is not Abelian, then it is not a product of cyclic groups. Algorithm

Find Hidden Subgroup(f) does not apply and it is not clear how to proceed.

For example, suppose G is S

n

, the group of permutations of n points and X is

the set of n-vertex graphs. Let f(�) = �(A), where � is a permutation and �(A)

is the graph obtained from A by relabelling vertex j with �(j). The function f is

constant on left cosets of the automorphism group Aut(A) of A. Beals [Bea97]

showed how to implement a quantum version of the Fourier transform for S

n

, but

this has not lead to an algorithm for �nding the automorphisms of graphs.

Ettinger [Ett98] showed how to �nd a hidden subgroup of a di-hedral group G

if K is normal in G using only a polynomial number of applications of f . For K

not necessarily normal, Ettinger and H�yer [EH98] show that with a polynomial

number of applications of f they have enough information to �nd K, however, no

e�cient way of performing the post-processing is known.

R�otteler and Beth [RB98] show how to �nd hidden subgroups of certain wreath

product groups. Zalka [Zal99] showed how to reduce this problem to several

instances of an Abelian hidden subgroup problem.

2.9. EQUIVALENCE OF SHOR AND KITAEV APPROACHES 82

Question 38. Can other non-Abelian hidden subgroup problems be e�ciently

unravelled into a polynomial number of instances of the Abelian hidden subgroup

algorithm?

2.9. Equivalence of Shor and Kitaev approaches

I will �rst show the equivalence between Shor's factoring algorithm and our ver-

sion of the factoring algorithm following Kitaev's eigenvalue estimation approach.

I will then generalise the equivalence to the hidden subgroup algorithm.

This section starts with a review of the quantum part of Shor's algorithm (with

some trivial modi�cations to highlight the similarities).

Algorithm 39. (Shor Factor(N))

Input:

� An integer N .

� An element a 2 Z

�

N

.

Output:

� An integer t which approximates

kN

r

for a uniformly random integer k from

f1; 2; : : : ; rg, where r is the order of a.

Complexity:

� One application of �

M

(U

a

), M = 2N

2

.

� O(log

2

M) other operations.

Procedure

1. Start with two registers j 00 : : : 0i j 1i.

2. Apply QFT (M) to the �rst register.

3. Evaluate the function f(x) = a

x

using the operator U

a

: jxi j yi ! jxi j a

x

yi.

2.9. EQUIVALENCE OF SHOR AND KITAEV APPROACHES 83

4. Apply QFT (M)

�1

to the �rst register.

1

After step 4, we have the state

M�1

X

j=0

j xi j a

x

i :(25)

Shor describes this in the computational basis as

r�1

X

k=0

0

@

b

M�1�k

r

c

X

j=0

j rj + ki

1

A

�

�

a

k

�

:

He then mentions a measurement of the second register to `collapse' the �rst

register into a periodic superposition

0

@

b

M�1�k

r

c

X

j=0

j rj + ki

1

A

for some random k. Since we never make use of the measured value a

k

,

this `measurement' was only an illustrative tool. We ignore it.

The �nal QFT (M)

�1

maps the periodic superposition to a superposition where

the amplitudes are concentrated near values of x where

x

M

is close to

j

r

for some

integer j between 0 and r � 1. The information about k is encoded primarily in

the phases:

r�1

X

k=0

QFT (M)

�1

0

@

b

M�1�k

r

c

X

j=0

j rj + ki

1

A

�

�

a

k

�

=

r�1

X

k=0

e

�2�i

k

M

QFT (M)

�1

0

@

b

M�1�k

r

c

X

j=0

j rji

1

A

�

�

a

k

�

:

(26)

1

Shor actually uses QFT (M). The net result is the same.

2.9. EQUIVALENCE OF SHOR AND KITAEV APPROACHES 84

Figure 2.7. Shor analysed the above state in the computational

basis, whereas we analysed it in the eigenvector basis.

Since we ignore (or \trace out") the second register, the �rst state is in a mixture

of states of the form

QFT (M)

�1

0

@

b

M�1�k

r

c

X

j=0

j rji

1

A

�

�

a

k

�

which each have most of the probability amplitude near states j yi such that

y

M

is

close to

k

r

for some integer k, as shown by Shor [Sho95b].

Using our eigenvalue estimation approach, we also have the state (25), and we

also apply QFT (M)

�1

to the �rst register to produce the same state as in equation

(26) but we described it in a di�erent basis as

r

X

k=0

�

�

�

�

�

e

k

r

+

j	

k

i

as illustrated in �gure 2.7.

We can similarly compare the common analysis of the hidden subgroup algo-

rithm in the computational basis, where after applying the QFT

�1

to the �rst

register in the state

X

(x

1

;x

2

;::: ;x

l

)

jxi j f(x)i =

X

y2G=K

X

s2K

j s + yi

!

j f(y)i ;

2.10. FINDING HIDDEN AFFINE FUNCTIONS 85

Figure 2.8. One common approach is to analysis the above state

in the computational basis, but analysing the second register in the

`eigenvector' basis produces a convenient description of the �nal

state.

we get

X

y2G=K

X

t2T

e

�2�i

P

t

j

y

j

p

a

j

j ti

!

j f(y)i

(the �rst summation is over a set of coset representatives y of G=K) whereas in

our analysis we write this in the `eigenvector' basis as

X

t2T

j ti j	

t

i

as illustrated in �gure 2.8.

2.10. Finding Hidden A�ne Functions

As pointed out in the previous section, Deutsch's problem (section 2.1) is a

very special instance of the hidden subgroup problem. It can also be rephrased as

follows.

Problem 40. Given an integer N and a function f : x ! mx + b, where

x;m; b 2 Z

2

, �nd m.

We can partially generalise this problem as follows.

2.10. FINDING HIDDEN AFFINE FUNCTIONS 86

Problem 41. Given an integer N function f : x ! mx + b, where x;m; b 2

Z

N

, �nd m.

Since b could be any integer from Z

N

, one classical evaluation of f gives no

information about m. The next algorithm, however solves Problem 41 with just

one application of U

f

.

Algorithm 42.

Input:

� An integer N .

� A black-box that implements U

f

: j xi j yi ! jxi j y + f(x)i.

Output:

� An integer m 2 Z

N

.

Complexity:

� 1 application of U

f

� 1 application of QFT (N) and 2 applications of QFT (N)

�1

.

Procedure:

1. Start with two registers in the state j 00 : : : 0i j	

1

i 2 H

N

�H

N

where j	

1

i =

QFT (N)

�1

j 1i.

2. Apply QFT (N) to the �rst register.

3. Apply U

f

.

4. Apply QFT (N)

�1

to the �rst register.

5. Measure the �rst register and output the measured value.

Proposition 43. Algorithm 42 solves Problem 41.

2.10. FINDING HIDDEN AFFINE FUNCTIONS 87

Proof. The second register is in the state

j	

1

i =

N�1

X

j=0

e

�2�

j

N

j ji

which is an eigenstate of the operation j yi ! j y + f(x)i with eigenvalue e

2�i

f(x)

N

.

After step 3 we will have the state

N�1

X

x=0

e

2�i

f(x)

N

j xi j	

1

i

= e

2�i

b

N

N�1

X

x=0

e

2�i

mx

N

jxi

!

j	

1

i

Thus after applying QFT (N)

�1

to the �rst register we get e

2�i

b

N

jmi j	

1

i.

As with the hidden subgroup algorithm, we are measuring the eigenvalues of

shift functions j f(x)i ! j f(x+ y)i, except in this case we know the eigenvectors

and can e�ciently construct one, and the respective eigenvalue directly gives us the

desired solution (in contrast, the hidden subgroup algorithms only output elements

`orthogonal' to the solution, from which the solution is derived by linear algebra).

Bernstein and Vazirani [BV97] generalised the Deutsch problem another way

that we describe here.

Problem 44. Given a function f : x!m

T

� x+ b, where x;m 2 Z

n

2

, b 2 Z

2

,

�nd m.

This following algorithm is a re�nement of the one proposed in [BV97] for

solving Problem 44.

Algorithm 45.

Input:

2.10. FINDING HIDDEN AFFINE FUNCTIONS 88

� An integer N .

� A black-box that implements U

f

: jxi j yi ! jxi j y + f(x)i.

Output:

� A tuple m 2 Z

n

2

.

Complexity:

� 1 application of U

f

.

� 2n+ 1 applications of H = QFT (2) = QFT (2)

�1

.

Procedure:

1. Prepare the state j 00 : : : 0i (j 0i � j 1i).

2. Apply QFT (2)�QFT (2)� � � � �QFT (2) to the �rst register.

3. Evaluate U

f

.

4. Apply QFT (2)

�1

�QFT (2)

�1

� � � � �QFT (2)

�1

to the �rst register.

5. Measure the �rst register and output the measured values.

Proposition 46. Algorithm 45 solves Problem 44.

Proof. After step 2 we have the state

1

p

2

n+1

X

x2f0;1g

n

jxi (j 0i � j 1i)

and after step 3 we have

1

p

2

n+1

X

x2f0;1g

n

(�1)

f(x)

jxi (j 0i � j 1i)

=

(�1)

b

p

2

n+1

X

x2f0;1g

n

(�1)

m�x

jxi (j 0i � j 1i)

=

(�1)

b

p

2

n+1

(j 0i+ (�1)

m

1

j 1i) (j 0i+ (�1)

m

2

j 1i) � � � (j 0i+ (�1)

m

n

j 1i) (j 0i � j 1i) :

Thus after applying a Hadamard transform H = QFT (2)

�1

on each of the �rst n

qubits we get

(�1)

b

p

2

jm

1

i jm

2

i : : : jm

n

i (j 0i � j 1i).

2.10. FINDING HIDDEN AFFINE FUNCTIONS 89

We now combine problems 41 and 44 and get the following.

Problem 47. Given a function f : x!m

T

�x+ b, where x;m 2 Z

n

N

, b 2 Z

N

,

�nd m.

Algorithm 45, replacing QFT (2) with QFT (N), and replacing (j 0i � j 1i) =

QFT (2)

�1

j 1i with j	

1

i = QFT (N)

�1

j 1i will solve this problem. The proof

follows similarly, so it is omitted.

Problem 48. Given a function f : x ! Mx + b, where M 2 M

m�n

(N),

x;b 2 Z

n

N

, �nd M.

Let us denote by r

1

; r

2

; : : : ; r

m

the rows of M and c

1

; c

2

; : : : ; c

n

the columns.

So

M =

0

B

B

B

B

B

B

@

r

1

r

2

: : :

r

m

1

C

C

C

C

C

C

A

=

�

c

1

c

2

: : : c

n

�

:

We describe an algorithm (illustrated in �gure 2.9) for determining d

T

�M for any

d 2 Z

n

N

.

Algorithm 49.

Input:

� The integers N ,n, and m.

� A black-box that implements U

f

: jxi jyi ! jxi jy + f(x)i.

� A tuple d 2 Z

m

N

.

Output:

� A tuple t 2 Z

n

N

.

2.10. FINDING HIDDEN AFFINE FUNCTIONS 90

Figure 2.9. The values d

T

� c

j

are encoded in the control register

and deciphered by the �nal F

�1

transformations. A global phase of

e

d

T

�b

is also present, but not illustrated in the diagram.

Complexity:

� 1 application of U

f

.

� n applications of QFT (N) and n +m applications of QFT (N)

�1

.

Procedure:

1. Prepare n +m registers in the state

j 0i j 0i : : : j 0i j	

d

1

i j	

d

2

i : : : j	

d

m

i

2. Apply QFT (N)�QFT (N)� � � � �QFT (N) to the control registers.

3. Apply U

f

.

4. Apply QFT (N)

�1

�QFT (N)

�1

� � � � �QFT (N)

�1

to the control registers.

5. Measure the �rst n registers and output the value.

2.10. FINDING HIDDEN AFFINE FUNCTIONS 91

Proposition 50. Algorithm 49 outputs t = d

T

�M. With m iterations with

d = (1; 0; 0; : : : ; 0); (0; 1; 0; 0; : : : ; 0); : : : ; (0; 0; : : : ; 0; 1), we can determine M.

Proof. Step 1 requires preparing m registers in the states j c

i

i and then ap-

plying QFT (N)

�1

to them. The remaining registers are initialised to j 0i. The

second register is in an eigenstate of the operator jyi ! jy + zi with eigenvalue

e

2�id

T

�z

. Thus after step 3, which applies the operator jyi ! jy + f(x)i when the

�rst register is in the state j xi, the �rst register is then in the state

X

x2Z

n

N

e

2�i

d

T

�f(x)

N

jxi

= e

2�i

d

T

�b

N

X

x2Z

n

N

e

2�i

d

T

�Mx

N

jxi

= e

2�i

d

T

�b

N

X

x

1

2Z

N

e

2�i

d

T

�c

1

x

1

N

jx

1

i

!

� � �

X

x

n

2Z

N

e

2�i

d

T

�c

n

x

n

N

jx

n

i

!

and thus after step 4 we have

e

2�i

d

T

�b

N

�

�

d

T

� c

1

�

�

�

d

T

� c

2

�

� � �

�

�

d

T

� c

n

�

= e

2�id

T

�b

N

j t

1

i j t

2

i : : : j t

n

i

where t = d

T

�M. If d = e

j

then d

T

�M = c

j

, so we can clearly determine M

using only n applications of U

f

.

Algorithm 49 appears in [CEMM98] for N = 2, and a similar algorithm was

noted independently in [H�y97] but for homomorphisms acting on Z

N

1

� : : :�Z

N

k

for arbitrary N

j

(that is without the shift component b).

However, unlike the case with the hidden subgroup problem, I can think of

no practical examples where we have an e�cient way of computing f but do not

already know M .

2.10. FINDING HIDDEN AFFINE FUNCTIONS 92

Problem 51. Find an example where we know how to evaluate a function of

the form f : x ! Mx + b but do not already e�ectively possess a description of

M .

[HR90]

CHAPTER 3

Limitations of Quantum Computers

What can quantum computers not do? Like any `classical' computer, they

are subject to the laws of physics. With a computational task expressed in more

physical terms, it might become easier to determine the limitations of any computer

in performing the task.

We start this chapter by de�ning some complexity classes and other relevant

notions, like the classical classes P , BPP and NP , the quantum class BQP ,

and notions like NP -complete and NP -hard. By classical computer we mean

any device which is polynomially equivalent to a universal Turing machine, and a

classical algorithm is one that runs on a classical computer.

Finding non-trivial lower bounds on the computational complexity of computa-

tional tasks have proved very di�cult. We hope that this more general framework

provided by quantum computation will help �nd non-trivial lower bounds and

some new relationships between computational complexity classes. For example,

suppose our physical intuition inspires a proof that a quantum computer cannot

solve an NP -complete problem. This will not only prove that NP does not contain

BQP , but will have corollaries like P 6= NP . This is a rather ambitious task of

course. It seems quite di�cult to prove non-trivial lower bounds in the quantum

setting as well.

Section 3.2 describes the black-box model of computation, in which we have

proved some lower bounds and relationships between various complexity measures

93

3.1. WHAT IS A COMPLEXITY CLASS? 94

(sections 3.4, 3.5). The main ingredient is the relationship between the amplitudes

of states in a quantum network and polynomials (section 3.3).

3.1. What is a complexity class?

As we discussed in the introduction, complexity refers to some measure of the re-

sources required to solve a problem, and we will restrict attention to decision prob-

lems. Decision problems can be treated as the problem of recognising elements of a

language. To de�ne a language, we �rst �x an alphabet, say � = f0; 1g. A language

L � �

�

(the set of �nite strings over the alphabet �) is a collection of strings. An

algorithm solves the language recognition problem for L if it accepts (by outputting

1) any string x 2 L and rejects (by outputting 0) any string x =2 L. For example,

let the string x represent an integer, and consider the language COMPOSITE

which contains all representations of composite integers. The number x has non-

trivial factors if and only if x 2 COMPOSITE. So 7 =2 COMPOSITE and

6 2 COMPOSITE. For another example, let the string x represent a graph,

and we have x 2 3-COLOURABLE if and only if there is a way of assigning one

of three colours to the vertices of x so that no adjacent vertices are coloured the

same. Note that both of these language recognition problems have the property

that if x 2 L, then I can prove it to you e�ciently (though �nding the proof

might be very hard). For example, as illustrated in �gure 3.1, we know 110111 2

3-COLOURABLE since CHECK 3 COLOURING(110111; RBRG) = 1, where

CHECK 3 COLOURING(x; y) is an algorithm which veri�es that y is a proper

colouring of x. It is easy to implement CHECK 3 COLOURING to run in poly-

nomial time. This property of being checkable in polynomial time on a classical

computer de�nes a whole class of problems. More speci�cally, following [MR95],

3.1. WHAT IS A COMPLEXITY CLASS? 95

Definition 52. The class NP (non-deterministic polynomial time) consists

of all languages L that have a polynomial time classical algorithm A such that for

any input x 2 �

�

� x 2 L) there exists a y 2 �

�

such that A(x; y) accepts, (jyj is bounded by

a polynomial in jxj).

Figure 3.1. There are 2

6

four-vertex graphs, in a 1-1 correspon-

dence with 6-bit strings that tell us which of the pairs of vertices

f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4g are connected. The graph

(101111) is illustrated here, with the colouring RBRG, one of the

proper colourings (that is, a colouring were no connected vertices are

coloured by the same colour).

3.1. WHAT IS A COMPLEXITY CLASS? 96

� x =2 L) for all y 2 �

�

, A(x; y) rejects.

We can similarly de�ne the complementary class to NP , namely co-NP , to be

all the languages L such that �

�

nL 2 NP .

Therefore 3-COLOURABLE and COMPOSITE are in NP while NOT -

3-COLOURABLE and PRIME are in co-NP . In fact COMPOSITE and

PRIME are in both NP and co-NP , denoted NP \ co-NP (proved in [Pra75]).

One of the biggest open problems in theoretical computer science is whether or

not every problem in NP can be solved in polynomial time.

Definition 53. The class P consists of all languages L that have a polynomial

time classical algorithm A such that for any input x 2 �

�

,

� x 2 L, A(x) accepts.

Most people believe that P 6= NP . Furthermore, most people believe that even

probabilistic algorithms with some chance of error will not be able to decide all

NP problems in polynomial time. The class of languages that can be solved with

a classical computer in polynomial time with a small probability of error is called

BPP .

Definition 54. The class BPP (bounded-error probabilistic polynomial time)

consists of all languages L that have a randomised classical algorithm A running

in worst-case polynomial time such that for any input x 2 �

�

,

� x 2 L) Pr[A(x) accepts] �

2

3

.

� x =2 L) Pr[A(x) accepts] �

1

3

.

By repeating this algorithm n times and taking the majority answer, we get

the correct result with probability at least 1 � �

n

for some �, 0 < � < 1 (by the

Cherno� bound; e.g. [MR95]). The problems in BPP are held to be the tractable

3.1. WHAT IS A COMPLEXITY CLASS? 97

ones on a classical computer. Similarly, the problems in the quantum class BQP

are widely held to be the tractable ones on a quantum computer.

Definition 55. The class BQP (bounded-error quantum polynomial time)

consists of all languages L that have a quantum algorithm A running in worst-

case polynomial time such that for any input x 2 �

�

,

� x 2 L) Pr[A(x) accepts] �

2

3

.

� x =2 L) Pr[A(x) accepts] �

1

3

.

Two important notions are those of being \NP -complete" and \NP -hard".

Consider the problem where the inputs x encode (classical) acyclic circuits with

one output bit.

Definition 56. The language CIRCUIT SAT consists of all strings x which

encode classical acyclic circuits (using some reasonable encoding as discussed in

[Wel88, MR95]) for which there exists an input string y to the circuit x for

which the circuit outputs a 1.

The problem CIRCUIT SAT is in NP since there is an algorithm that runs

in time polynomial in jxj that implements the circuit to verify that the circuit

described by x outputs 1 on input y. Further, it can be shown [Coo71, Lev73,

GJ79] that for any language L in NP , we can e�ciently transform the polynomial

time algorithm A(x; y) that certi�es membership in L into an acyclic circuit x

0

(of

size polynomial in jxj) with the property that there exists a y such that A(x; y) = 1

if and only if there exists a y

0

such that x

0

outputs 1 on input y

0

. In other words,

if we can solve CIRCUIT SAT in polynomial time, then we can solve any NP

decision problem in polynomial time. Such a language is called NP -complete.

3.2. BLACK-BOXES 98

Definition 57. A language L is NP -hard if for any language L

0

2 NP there

is a polynomial time algorithm that for any input x 2 �

�

outputs y satisfying

y 2 L, x 2 L

0

.

Definition 58. A language L is NP -complete if L is NP -hard and L is in

NP .

In general, a problem (perhaps not even a decision problem) is called NP -hard

if a polynomial time algorithm for solving that problem implies the existence of a

polynomial time algorithm for deciding some NP -hard language L.

It has been shown that 3-COLOURABLE is NP -complete [GJS76], and thus

being able to solve this problem in polynomial time means we can solve every NP

problem in polynomial time. See [GJ79] for many other examples of NP -complete

problems. Note that FACTOR (which decides if an integer x has a non-trivial

factor less than y), COMPOSITE, and PRIME are not believed to be NP -

complete.

If P 6= NP , then for any NP -complete language L with corresponding poly-

nomial time classical algorithm A(x; y) and a polynomial time classical algorithm

B(x) that seeks to �nd y such that A(x; y) = 1, there must be some x 2 L for

which B(x) does not succeed. No proof is known however. In the next section, we

discuss a related problem in the black-box model of computation.

3.2. Black-boxes

In the previous chapter, section 2.7.1, we discussed the problem of �nding, for

a given function f : f1; 2:::; Ng ! f0; 1g a solution to f(y) = 1. For speci�c f it

is usually quite hard to �nd a lower bound on the di�culty of this problem. For

example, in the previous section we de�ned the class NP . Consider any L 2 NP

with the polynomial-time checking algorithm A(x; y) satisfying A(x; y) = 1 if and

3.2. BLACK-BOXES 99

only if x 2 L. If we let f

x

(y) = A(x; y), then the problem of deciding L is equivalent

to deciding if there exists a y satisfying f

x

(y) = 1. We mentioned earlier, that for

this family of functions f it is widely believed that this problem cannot be solved

in time polynomial in jxj.

For any NP -complete language L, say 3-COLOURABLE, for worst case input

x, there is no known algorithm which works more than polynomially better than

simply trying the colourings y = c

1

c

2

: : : c

n

in order to see if they are proper

colourings, that is if CHECK 3 COLOURING(x; y) = 1. In this case we are

only using f

x

, where f

x

(c) is the output of CHECK 3 COLOURING(x; c), as a

black-box in order to decide if there exists a c such that f

x

(c) = 1.

When we use f = f

x

as a black-box and ignore any information we have about

it (other than the fact that it maps f1; 2; : : : ; Ng ! f0; 1g), we could just as well

de�ne X

j

= f(j) and rephrase the problem as follows. There is a binary string

X = X

1

; X

2

; :::; X

N

and we are given a black-box which takes as input an index

j and outputs X

j

. In the quantum setting, we will assume that we have a black-

box operator O

X

which maps j ji j bi ! j ji j b�X

j

i. The question addressed by

Grover [Gro96] was to �nd an index j where X

j

= 1. We can also consider the

decision problem: does there exist a j such that X

j

= 1?

It was �rst shown in [BBBV97] that any quantum algorithm using the function

O

X

: j ji j bi ! j ji j b�X

j

i as a black-box requires
(

p

N) applications of O

X

in

order to �nd a solution with probability at least

2

3

for worst case X.

Another way to phrase this decision problem is to evaluate the OR function

on the string X, where OR(X) = X

1

_X

2

_ � � � _X

N

. In general, we can consider

any f0; 1g-valued function F of the variables X

1

; X

2

; : : : ; X

N

. Recall that f is

a function f1; 2; : : : ; Ng ! f0; 1g satisfying f(j) = X

j

, and X

1

; X

2

; : : : ; X

N

are

inputs to the function F : f0; 1g

N

! f0; 1g.

3.2. BLACK-BOXES 100

In the following sections, we will study the limitations of quantum computers

in determining properties of a binary string X = X

1

X

2

: : :X

N

. For example, the

numbers 0; 1; : : : ; N�1 could represent the 3-colourings of a graph G (so N = 3

n

),

and X

j

= 1 if and only if j is a proper 3-colouring of G. We will only consider the

limitations in the black-box model of computation.

This restriction might seem rather convenient and raises the question of how

relevant these lower bounds are to a `real' problem, where we do have some in-

formation about how X is evaluated. If we consider an X corresponding to an

NP problem, then X

j

= f(j) for some function f which we usually know how

to compute. So what is the relevance? These black-box lower bounds tell us the

limitations of certain algorithmic approaches as we now illustrate.

Definition 59. The deterministic query complexity D(F) of F is the mini-

mum number of queries of bits of X required by a deterministic classical strategy

for computing F (X) (the jth index to be queried can depend on the outcome of the

previous j � 1 queries).

The quantum equivalent of D(F) is the exact quantum query complexity Q

E

(F)

of F .

Definition 60. The exact quantum query complexity Q

E

(F) of F is the min-

imum number of black-box O

X

queries required by a quantum algorithm which cor-

rectly �nds F (X) with probability 1 for every string X.

A more practical quantity is the 2-sided error quantum query complexity Q

2

(F)

of F .

Definition 61. The 2-sided error quantum query complexity Q

2

(F) of F is

the minimum number of black-box queries required by a quantum algorithm which,

3.3. RELATION BETWEEN QUANTUM NETWORKS, BLACK-BOXES AND POLYNOMIALS101

on any input X, outputs a f0; 1g value that has probability at least

2

3

of being equal

to F (X).

In [BBC

+

98] we prove the following relationship.

Theorem 62. If F is a Boolean function, then D(F)

1

6

� 4Q

2

(F).

What does Theorem 62 mean for the quantum complexity of computing F given

an algorithm for computing X

j

= f(j)? Suppose the best deterministic classical

strategy for evaluating F (X) requires in the worst case T = D(F) queries of the

bits of X. Theorem 62 tells us that for any quantum algorithm to evaluate F using

less that

T

1

6

4

steps, it must exploit additional properties of X. Further, even any

non-constructive proof that such an algorithm does or does not exist must make

use of the additional properties of X = f(1)f(2) : : : f(N), other than that it is a

binary string of length N .

3.3. Relation between quantum networks, black-boxes and polynomials

In this section we will show how a quantum gate array which queries the string

X a total of T times will have amplitudes that are polynomials of degree T in the

variables X

1

; X

2

; : : : ; X

N

. In the subsequent section we describe several applica-

tions of this fact.

Lemma 63. Let N be a quantum network that uses a total of m qubits and

makes T queries to a black-box O

X

. Then there exist complex-valued N-variate

multi-linear polynomials p

1

; p

2

; : : : ; p

2

m

, each of degree at most T , such that the

�nal state of the network is the superposition

2

m

�1

X

y=1

p

y

(X) j yi

for any black-box X.

3.3. RELATION BETWEEN QUANTUM NETWORKS, BLACK-BOXES AND POLYNOMIALS102

Proof. We can assume that N = 2

n

. We can assume that the black-boxes

are used sequentially. Let U

j

denote the unitary transformation which we apply

between the jth and (j + 1)th black-box query. We can assume that we always

apply O

X

to the �rst n+1 qubits (incorporate any permutations of the qubits into

the U

j

operations). We thus have the network illustrated in �gure 3.2. For the

proof, it will help to consider the register in three parts: the �rst n qubits, the 1

output bit, and the remaining l = m� n� 1 ancilla bits.

Figure 3.2. Without loss of generality, any network which makes

T black-box queries is equivalent to a network which starts with the

state j 00 : : : 0i, applies a unitary operator U

0

, followed by a black-

box query on the �rst n+1 qubits, followed by a unitary operation U

1

and so on, with a �nal unitary operation U

T

after the last black-box

call.

3.3. RELATION BETWEEN QUANTUM NETWORKS, BLACK-BOXES AND POLYNOMIALS103

Just before the �rst black-box application the m-qubits will be in some state

X

j;k

�

j0k

j j0ki+ �

j1k

j j1ki ;

where 0 � j < 2

n

, 0 � k < 2

l

, and the �

j;b;k

, b 2 f0; 1g are independent of the

string X. In other words the �

j

are polynomials of degree 0 in X

1

; X

2

; : : : ; X

N

.

For b 2 f0; 1g we also use the notation b = NOT (b) = 1 � b. After the �rst

black-box call, we have the state

X

j;k

�

j0k

j jX

j

ki+ �

j1k

�

�

jX

j

k

�

=

X

j;k

[(1�X

j

)�

j0k

+X

j

�

j1k

] j j0ki+ [(1�X

j

)�

j1k

+X

j

�

j0k

] j j1ki :

Therefore the amplitudes are polynomials in the X

j

of degree at most 1. The

unitary operation U

1

is linear, and thus the amplitudes just after U

1

is applied are

still polynomials of degree at most 1. We can easily see that, for j � 0, if just

after U

j�1

is applied the amplitudes are polynomials of degree at most j � 1, then

the jth black-box call adds at most 1 to the degree of the amplitude polynomials

so they are of degree at most j. The U

j

replaces the amplitude polynomials with

linear combinations of amplitude polynomials and thus the degrees remain at most

j. Since x

2

= x for x 2 f0; 1g, we can assume the polynomials are multi-linear.

The proof follows by a simple induction.

We get the following corollary [BBC

+

98].

Corollary 64. Let N be a quantum network that makes T queries to a black-

box X, and B be a set of basis states. Then there exists a real-valued multi-linear

polynomial P of degree at most 2T , which equals the probability of observing a state

from the set B after applying the network N using black-box O

X

.

3.4. APPLICATIONS TO LOWER BOUNDS 104

3.4. Applications to lower bounds

Let us start by de�ning three quantities, deg(F),

g

deg(F), and bs(F), related

to the N -variate function F . Although the function F is only de�ned on values of

0 and 1 it is useful to extend this function to the reals.

Definition 65. An N-variate polynomial p : R

N

! R represents F if p(X) =

F (X) for all X 2 f0; 1g

N

.

Lemma 66. Every N-variate function F : fX

1

; : : : ; X

N

g ! f0; 1g, has a

unique multi-linear polynomial p : R

N

! R which represents it.

Proof. The existence of a representing polynomial is easy: let

p(X) =

X

Y 2f0;1g

N

F (Y)

N

Y

k=1

[1� (Y

k

�X

k

)

2

]:

To prove uniqueness, let us assume that p

1

(X) = p

2

(X) for all X 2 f0; 1g

N

.

Then p(X) = p

1

(X) � p

2

(X) is a polynomial that represents the zero function.

Assume that p(X) is not the zero polynomial and without loss of generality, let

�X

1

X

2

: : :X

k

be a term of minimum degree, for some � 6= 0. Then the string X

with X

1

= X

2

= : : : = X

k

= 1 and the remaining X

j

all 0 has p(X) = � 6= 0. This

contradiction implies that p(X) is indeed the zero polynomial and p

1

= p

2

.

The degree of such a p is a useful measure of the complexity of F .

Definition 67. The degree of the polynomial p which represents F is denoted

deg(F).

For example, the OR function is represented by the polynomial 1�

N

Q

j=1

(1�X

j

)

which has degree N . Thus deg(OR) = N .

In practice, it would su�ce to have a polynomial p which approximates F at

every X 2 f0; 1g

N

. For example OR(X

1

; X

2

) �

2

3

(X

1

+X

2

).

3.4. APPLICATIONS TO LOWER BOUNDS 105

Definition 68. An N-variate polynomial p : R

N

! R approximates F if

jp(X)� F (X)j �

1

3

for all X 2 f0; 1g

N

.

Again, the minimum degree of such a polynomial p is a useful measure of the

complexity of F .

Definition 69. The minimum degree of a p approximating F is denoted

g

deg(F).

Lastly, intuitively it seems obvious that functions which are very sensitive to

changes of the values of almost any of the bits in the string X will require us

to probe more bits of X than functions which are relatively indi�erent to such

changes. One way of rigorously capturing this concept of sensitivity is by the

notion of the block sensitivity of F .

Definition 70. Let F : f0; 1g

N

! f0; 1g be a function, X 2 f0; 1g

N

, and

B � f1; 2; : : : ; Ng be a set of indices.

Let X

B

denote the vector obtained from X by
ipping the variables in B.

The function F is sensitive to B on X if f(X) 6= f(X

B

).

The block sensitivity bs

X

(F) of F on X is the maximum number t for which

there exist t disjoint sets of indices B

1

; : : : ; B

t

, such that F is sensitive to each B

i

on X.

The block sensitivity bs(F) of F is the maximum of bs

X

(F) over all X 2

f0; 1g

N

.

We get the following three theorems relating the quantum query complexities

Q

E

(F) and Q

2

(F) to deg(F);

g

deg(F), and bs(F).

Theorem 71. If F is a Boolean function, then Q

E

(F) �

deg(F)

2

.

3.4. APPLICATIONS TO LOWER BOUNDS 106

Proof. Consider the result of a quantum algorithm for evaluating F exactly

using Q

E

(F) queries. By corollary 64, the probability of observing 1 is p

1

(X), a

polynomial of degree at most 2Q

E

(F). We will observe 1 if and only if F (X) = 1.

In other words p

1

(X) = F (X) for all X 2 f0; 1g

N

. This implies that 2Q

E

(F) �

deg(F).

Theorem 72. If F is a Boolean function, then Q

2

(F) �

g

deg(F)

2

.

Proof. Consider the result of a quantum algorithm for evaluating F ap-

proximately using Q

2

(F) queries. By corollary 64, the probability of observ-

ing 1 is p

1

(X), a polynomial of degree at most 2Q

E

(F). If F (X) = 1, then

p

1

(X) �

2

3

. Similarly if F (X) = 0 then 1 � p

1

(X) �

2

3

. In other words

jp

1

(X)� F (X)j �

1

3

for all X 2 f0; 1g

N

, which means p

1

approximates F . This

implies that 2Q

E

(F) �

g

deg(F).

This last theorem is less obvious.

Theorem 73. If F is a Boolean function, then Q

E

(F) �

q

bs(F)

8

and Q

2

(F) �

q

bs(F)

16

.

The proof [BBC

+

98] makes clever use of the following theorem (from [EZ64,

RC66]).

Theorem 74. Let p : R ! R be a polynomial such that b

1

� p(i) � b

2

for

every integer i from 0 to N , and jp

0

(x)j � c for some real x, 0 � x � N . Then

deg(p) �

q

cN

c+b

2

+b

1

.

The notion of block sensitivity extends nicely to the study of partial Boolean

functions. The functions F we have considered so far are called total functions

since they are de�ned on all of f0; 1g

N

. Partial functions are only de�ned on a

3.5. RELATING QUANTUM AND DETERMINISTIC QUERY COMPLEXITY 107

subset S � f0; 1g

N

. For example in [DJ92] Deutsch and Jozsa restricted the

domain to the set S of strings which were either all 0 or all 1 or which had an

equal number of 0s and 1s. They de�ned the function F to be 1 if and only if

X

1

= X

2

= : : : = X

N

(i.e. if X is constant) and 0 otherwise (i.e. if X is balanced).

The block sensitivity of a partial function is simply the minimum bs

X

(F) over all

X 2 S and Theorem 73 holds for partial functions as well. The Deutsch-Jozsa

function has block sensitivity 2 giving a lower bound of 1, which is tight since the

algorithm in [CEMM98] solves the problem with only one query (see Algorithm

45).

3.5. Relating quantum and deterministic query complexity

Using the relationship between the quantum query complexityQ

2

(F) and bs(F)

and the result D(F) � bs(F)

3

(before this the best known result was D(F) �

bs(F)

4

[Nis91]), we are able to prove the relationship 2

12

Q

2

(F)

6

� D(F) (Theorem

62). The proof requires the introduction of another property of a function F ,

namely its certi�cate complexity.

Definition 75. Let F : f0; 1g

N

! f0; 1g be a function. A 1-certi�cate is an

assignment C : S ! f0; 1g of values to some subset S of the N variables, such that

f(X) = 1 whenever X is consistent with C. The size of C is jSj. We similarly

de�ne a 0-certi�cate. The certi�cate complexity C

X

(F) of F on X is the size of a

smallest f(X)-certi�cate that agrees with X. The certi�cate complexity C(F) of

F is the maximum over all X of C

X

(F). The 1-certi�cate complexity C

(1)

(F) of

F is the maximum of C

X

(F) over all X with f(X) = 1.

Roughly speaking, a 0- or 1-certi�cate is a subset of the string which guarantees

or certi�es the value of the function on the whole string.

3.6. SOME EXAMPLES AND APPLICATIONS 108

Example 76. Consider the OR function, which satis�es OR(X) = 0 if and

only if X

j

= 0 for all j. Any substring X

j

= 1 is enough to guarantee that

OR(X) = 1. Thus the certi�cate complexity C

X

(OR) for any non-zero string X is

1. However the certi�cate complexity of the all-zero string is N , since every single

bit of a string X must be 0 for OR(X) = 1 to hold. Thus the certi�cate complexity

C

(0)

(OR) = N . The maximum of all the C

X

(OR) gives us the certi�cate complexity

of (OR), namely, C(OR) = N . The 1-certi�cate complexity is C

(1)

(OR) = 1 and

the 0-certi�cate complexity is C

(0)

(OR) = N .

The following lemma is a result of Nisan [Nis91].

Lemma 77. C

(1)

(F) � C(F) � bs(F)

2

.

The next lemma is proved in [BBC

+

98].

Lemma 78. D(F) � C

(1)

(F)bs(F).

Combining these two lemmas gives D(F) � bs(F)

3

, and adding in Theorem 73

gives Theorem 62.

3.6. Some examples and applications

We have relatedQ

2

(F) andQ

E

(F) to the quantities deg(F);

g

deg(F), and bs(F).

How do we evaluate deg(F),

g

deg(F) and bs(F)? By Lemma 66 we can �nd deg(F)

by �nding a representing polynomial. We can lower bound block sensitivity bs(F)

by �nding particular strings that have high block sensitivity. Bounding

^

deg(F)

requires a little more work.

Let us restrict attention to symmetric polynomials, that is those for which

permuting the variablesX

j

does not a�ect the value of the function. Such functions

F are thus reducible to functions q : f0; 1; : : : ; Ng ! R of the Hamming weight

3.6. SOME EXAMPLES AND APPLICATIONS 109

of X. Thus any such symmetric function F e�ectively partitions the integers

f0; 1; 2; : : : ; Ng, into two disjoint sets, and the task at hand in determining F (X)

is to decide which set the Hamming weight of X lies in. A related quantity is the

function �(F) = minfj2k�N+1j : q(k) 6= q(k+1) and 0 � k � N�1g. The value

of �(F) is small if q(k) changes for k close to

N

2

. We make use of the following

theorem of Paturi [Pat92].

Theorem 79. (Paturi) If F is a non-constant symmetric Boolean function on

f0; 1g

N

, then

g

deg(F) 2 �(

p

N(N � �(F))).

Some examples:

� OR

The OR function maps all non-zero strings to 1 and the all-zero string

to 0. As a polynomial we have OR(X) = 1� (1�X

1

)(1�X

2

) : : : (1�X

N

),

and thus deg(OR) = N .

Thus by Theorem 71 Q

E

(OR) �

N

2

. This can in fact be tightened to

Q

E

(OR) = N [BBC

+

98].

It is easy to see that the block sensitivity of the OR function is N , thus

Theorem 73 gives us Q

2

(OR) �

1

4

p

N . Another way to prove an
(

p

N)

lower bound is to make use of Theorems 79 and 72, and of the fact that

�(OR) = N � 1.

Note that Grover's algorithm or the quantum counting algorithms will

evaluate the OR function with probability at least

2

3

of being correct using

O(

p

N) queries, so our lower bound is tight up to a constant factor. Such a

lower bound was �rst given in [BBBV97]. Several subsequent proofs have

also been given.

� PARITY

3.6. SOME EXAMPLES AND APPLICATIONS 110

The PARITY function maps all strings with an even number of 1s to 0

and all strings with an odd number of 1s to 1. The PARITY function can be

compactly described as

1��

N

j=1

(�1)

X

j

2

. By substituting (�1)

X

j

= (1�2X

j

) we

see that deg(PARITY) = N , and thus Q

E

(PARITY) �

N

2

. This fact was

shown independently in [FGGS98] and [BBC

+

98]. This is in fact tight due

to the following algorithm (we assume N is even, otherwise set X

N+1

= 0

and apply this algorithm).

Algorithm 80.

Input:

{ A black-box which evaluates U

f

.

Output:

{ PARITY (X)

Complexity:

{

N

2

applications of U

f

{ O(N) other elementary operations.

Procedure:

1. Use the Deutsch algorithm (section 2.1) to compute X

2j�1

�X

2j

for

j = 1; 2; : : : ; N=2. This uses N=2 queries.

2. Compute PARITY (X) = (X

1

�X

2

)�(X

3

�X

4

)�� � ��(X

N�1

�X

N

).

Approximating the PARITY function however is not much easier than

determining it exactly, since

g

deg(PARITY) 2 �(N). This follows from

Theorem 79 and the fact that �(OR) � 1. However we will now show

that

g

deg(PARITY) = N [MP95, BBC

+

98]. We will need the following

de�nition.

3.6. SOME EXAMPLES AND APPLICATIONS 111

Definition 81. Let p : R

N

! R be a polynomial. For any � 2 S

N

, let

�(X) = �(X

1

)�(X

2

) : : : �(X

N

) and de�ne the polynomial

p

sym

(X) =

P

�2S

N

p(�(X))

N !

:

Theorem 82.

g

deg(PARITY) = N

Proof. Note that if p represents or approximates a function F then so

does p

sym

. Since p

sym

is symmetric, it can be written as

a

0

+ a

1

V

1

+ a

2

V

2

+ : : :+ a

d

V

d

where d is the degree of p and V

j

is the sum of all multi-linear polynomials

of degree j in X

1

; X

2

; : : : ; X

N

. Note that when we plug in values for the

variables X

i

, the value of V

j

will be

�

jXj

j

�

, where jXj is the Hamming weight

of the string X. Therefore the value

p

sym

(X) = a

0

+ a

1

�

jXj

1

�

+ a

2

�

jXj

2

�

+ : : : a

n

�

jXj

d

�

:

De�ne the polynomial q : R ! R by q(x) = a

0

+ a

1

�

x

1

�

+ a

2

�

x

2

�

+ : : : a

d

�

x

d

�

.

Note that p

sym

(X) = q(jXj) and the degree of q in x is at most the degree

of p

sym

in X

1

; X

2

; : : : ; X

N

. Therefore if p approximates F , the deg(q) �

deg(p

sym

) =

g

deg(F).

Note that for the PARITY function, q(x) = 0 for x = 0; 2; 4; : : : and

q(x) = 1 for x = 1; 3; : : : . So the function q(x) �

1

2

has N roots and thus

N � deg(q) �

g

deg(F). Therefore

g

deg(PARITY) = deg(PARITY) =

N .

Corollary 83. Q

2

(PARITY) = Q

E

(PARITY) = d

N

2

e.

� THRESHOLD

M

3.7. CONTROLLED-O

X

AND SOME OPEN PROBLEMS 112

The THRESHOLD

M

function maps strings X with at least M 1s to

1 and the others to 0. The MAJORITY function is a special case with

M = d

N

2

e, OR is a special case with M = 1 and AND is a special case

with M = N . For non-trivial M , we have deg(THRESHOLD

M

) = N

and thus Q

E

(THRESHOLD

M

) � d

N

2

e. We know that for special cases

M = 1 and M = N , Q

E

(THRESHOLD

M

) = N and for M = d

N

2

e,

algorithms [HKM98] have been found which use at most N + 1 � e(N)

queries, where e(N) is the number of 1s in the binary expansion of N .

Since �(THRESHOLD

M

) = j2M �N + 1j, by theorem 79 we know that

for M > 0, Q

2

(THRESHOLD

M

) 2
(

p

N(N � �(THRESHOLD

M

))) =

(

p

M(N �M + 1)). We rewrote the lower bound in a way to coincide

with the upper bound shown in section 2.7 (since exact counting will solve

the THRESHOLD problem). Thus we have a tight (up to a constant fac-

tor) algorithm for the THRESHOLD

M

function, Q

2

(THRESHOLD

M

) 2

�(

p

M(N �M + 1)) (this also holds for M = 0).

In [Dam98] van Dam shows that we can determine the entire string X with

probability greater than

2

3

using only

N

2

+

p

N queries, in which case we can

correctly evaluate any function F (X).

The following table summarises the complexities of evaluating certain functions

in terms of the number of black-box calls O

X

.

3.7. Controlled-O

X

and some open problems

The type of algorithms we considered applied our black-box O

X

exactly T times

in our quantum network. What if we wish only to conditionally apply the O

X

?

How can we implement a controlled-O

X

if we are not given a break-down of O

X

into elementary gates?

3.7. CONTROLLED-O

X

AND SOME OPEN PROBLEMS 113

Q

2

(F) Q

E

(F)

OR;AND �(

p

N) N

PARITY N=2 N=2

THRESHOLD

M

�(

p

M(N �M + 1) �(N)

Table 3.2. This table gives some bounded-error and exact quantum

query complexities.

Note that if the target qubit of O

X

is in the state j 0i + j 1i, the O

X

has no

e�ect. We can thus implement a controlled-O

X

by implementing a 0-controlled-

SWAP (i.e. SWAP the qubits when the control bit is in state j 0i) between the

target qubit and an auxiliary qubit set to the state j 0i + j 1i. The qubits should

be swapped back immediately after then O

X

is applied (see �gure 3.3).

Figure 3.3. A network for implementing a controlled black-box operation.

I list a few open problems.

We know that Q

E

(F) 2
(deg(F)) (Theorem 71). Conversely, given a multi-

linear polynomial P of degree T , which satis�es p(X) 2 f0; 1g for all X 2 f0; 1g

N

,

3.7. CONTROLLED-O

X

AND SOME OPEN PROBLEMS 114

is there a quantum algorithm which makes O(T) black-box queries and outputs

j 1i with probability P (X)?

Question 84. Is Q

E

(F) 2 �(deg(F))?

Question 85. Is Q

2

(F) 2 �(

g

deg(F))?

Nisan and Szegedy [NS94] have shown that

bs(F) � 6

g

deg(F)

2

:

It thus follows (Corollary 5.5 of [BBC

+

98]) that

Q

2

(F) � D(F) � bs(F)

3

� 216

g

deg(F)

6

:

So question 85 is rather ambitious and an answer to the following question would

already be interesting.

Question 86. Is Q

2

(F) 2 O(

g

deg(F)

k

) for any k < 6.

The di�culty with proving these claims by a simple recursion is related to

the di�culty of computing functions cleanly (a term borrowed from Buhrman and

de Wolf). For example, early attempts at using the Deutsch algorithm, which

computes X

0

� X

1

using only one query su�ered the fatal
aw that the state

created is not just jX

0

�X

1

i but (�1)

X

0

jX

0

�X

1

i. That is, the extra phase

information (�1)

X

0

complicates any recursive use of this method. It seems very

tricky indeed to compute the value of the desired function and nothing else without

cumbersome `uncomputing'. For example, try to compute the AND of two bits X

0

and X

1

using only two queries. The best I know of is an algorithm which uses 3

queries.

Algorithm 87.

3.7. CONTROLLED-O

X

AND SOME OPEN PROBLEMS 115

� Start with the state j 0i j 0i j 0i.

� Apply a query using the �rst two qubits. This produces j 0i jX

0

i j 0i.

� Apply a query using the last two qubits. This produces the state

j 0i jX

0

i jX

X

0

i.

� Again apply a query using the �rst two qubits. This uncomputes the value

of X

0

to produce j 0i j 0i jX

X

0

i.

Observe that X

X

0

= 1 if and only if X

0

= X

1

= 1. This algorithm can be easily

generalised to cleanly compute the AND of N variables using 2N�1 queries. Note

that this algorithm is also a reversible classical one. I know of no better way that

does so classically reversibly or quantumly cleanly.

Question 88. What is the black-box complexity of cleanly computing the AND

of N variables?

At present we only have an example of at most a quadratic separation between

D(F) and Q

2

(F), so it is natural to ask the following.

Question 89. Show that D(F) 2 O(Q

2

(F)

k

) for any k satisfying 2 � k < 6.

Alternatively, �nd a function F where Q

2

(F)

k

2 o(D(F)), 2 � k < 6

CHAPTER 4

Implementations

In section 4.1 we brie
y describe why it is di�cult to realise a large scale

quantum computation and ways we hope to deal with errors once our quantum

components are su�ciently reliable. In section 4.2 we describe some methods

for maximising what we can do with a limited amount of quantum resources. In

section 4.3 we describe how current NMR technology is used to implement quantum

algorithms. Finally, in section 4.4 we describe some interesting algorithms that are

suitable for implementations on small quantum computers and describe some of

the �rst implementations of quantum algorithms.

4.1. Dealing with errors and faults

Quantum computers, like classical computers, su�er from errors and faults.

Quantum information is especially susceptible to corruption by interacting with the

environment. This corruption is called decoherence. For example, suppose we have

a superposition j 0i+ j 1i independent of the environment in the state jEi. If the

environment in any way interacts with the qubit and obtains enough information

to distinguish the state j 0i from the state j 1i, it will evolve into orthogonal states

jE

0

i and jE

1

i and the joint system is described by j 0i jE

0

i+ j 1i jE

1

i. If we trace

out the environment we see that our qubit is in the state

0

@

1

2

0

0

1

2

1

A

:

116

4.1. DEALING WITH ERRORS AND FAULTS 117

If we apply a Hadamard transform to this state we still have the state

1

2

j 0i h 0j+

1

2

j 1i h 1j =

0

@

1

2

0

0

1

2

1

A

whereas applying the Hadamard transform to the original state

0

@

1

2

1

2

1

2

1

2

1

A

gives us the state

j 0i h 0j =

0

@

1 0

0 0

1

A

:

In the classical case, we have codes, in particular, linear codes (see e.g. [Wel88]

for an introduction) that help us detect and correct errors.

A small example is the 3-qubit code which encodes 0 as 000 and 1 as 111.

One-bit errors can be corrected by resetting the three bits to the value that occurs

most often. If the bit
ip errors occur independently at random with probability

p then we get more than one error with probability 3p

2

� 2p

3

. Thus this scheme

will reduce the probability that an uncorrected error corrupts our computation,

provided p is small enough that 3p

2

� 2p

3

< p (which is true if 0 � p <

1

2

).

Note that the error can be detected and corrected without probing all of the bits

individually. It su�ces to learn the XOR of bits 1 and 2 and of bits 1 and 3. This

2-bit string is called the error syndrome and has the property that for all strings

in the code, 000 and 111, the syndrome is 00. Corrupted strings 001 and 110 both

have the same syndrome 01 which tells us that the most likely error was a bit
ip

in the rightmost bit, corresponding to the error vector 001. Corrupted strings 010

and 101 have syndrome 10 which identi�es error vector 010 as the most likely one,

and similarly strings 100 and 011 have syndrome 11 to identify the error vector

4.1. DEALING WITH ERRORS AND FAULTS 118

100. From the syndrome we can easily identify the most likely error and correct

for that error by
ipping the appropriate bit.

In general, linear codes embed the computation in a subspace of a larger space.

The subspace is carefully chosen to have several properties:

� legitimate computations keep the state of the computer in the subspace

� unwanted operations (errors, the net e�ect between an imprecise operation

and the desired operation) are likely to map the computer outside the sub-

space

� we can e�ciently compute the most likely way a state has deviated from the

computational subspace (this is done by looking at the error syndrome)

� we can e�ciently \uncompute" these errors.

A quantum version of the 3-bit repetition code could consist of three parallel

copies of the quantum register, initialised to the same state. The computation

would be carried out on all three registers in parallel. An error-free computa-

tion would leave the state of the three quantum registers in the subspace that is

symmetric under permutations of the three registers. This encoding, along with

the corresponding error-detection (in order to suppress, but not correct, errors) is

described in [BBD

+

97]. A quantum version of linear codes with error-correction

soon followed [Sho95a, CS96, Ste96]. There is also the problem of introducing

and propagating errors during the process of error-correction. John von Neumann

addressed this in the classical case [Neu56], and a quantum version has been

developed [Sho96, Ste97].

The current state of the art in quantum error-correction and fault tolerant

computing holds that under reasonable models of decoherence, once the quality

of our elementary operations is above some threshold, we have e�cient families of

4.2. MAXIMISING EXPLOITATION OF QUANTUM RESOURCES 119

fault-tolerant error correcting codes that allow us to reliably perform computations

requiring T steps using Tpolylog(T) operations [Got98, KLZ97, ABO97].

4.2. Maximising exploitation of quantum resources

Classical computers store information in various media, including
oppy

diskettes, the RAM and the hard-drive. Good algorithms try to store informa-

tion that is accessed very often in the RAM, since this information is most quickly

accessed. Di�erent bits of information are stored in di�erent media at di�erent

times depending on their role in the computation. Quantum registers are expen-

sive, fragile, and really useful only for certain tasks. Therefore they should be used

with prudence. Let us assume that we have a quantum computer with n qubits,

and we wish to maximise what we can do with these n qubits. We should not

use these qubits to store information that could be encoded quantumly much later

on in the computation, or to perform classical calculations that could have been

carried out classically \on the side". We can often modify quantum algorithms to

reduce the amount of quantum memory required to carry it out. In section 4.2.1 I

will describe how the discrete logarithm problem can be reduced to several smaller

instances reducing the necessary size of the control register. If the implementation

permits, when performing eigenvalue estimation, we can reduce the control register

down to a single reusable control qubit (section 4.2.2). The last `trick' I mention

is to not bother preparing qubits in a speci�c starting state if the algorithm does

not really require it. In liquid state NMR, preparing a qubit in the state j 0i turns

out to be very di�cult, and thus we can avoid this for many of the qubits in the

factoring algorithm for example.

4.2.1. Classical reductions to several smaller instances: Discrete Log-

arithms. Suppose we have a bounded amount of quantum memory, or a bounded

4.2. MAXIMISING EXPLOITATION OF QUANTUM RESOURCES 120

number of operations before decoherence reduces the probability of success to an

unacceptable level. In this case, it will be useful, if possible, to break up large

quantum algorithms into several instances of smaller quantum algorithms that can

be run separately and then combined later on a classical computer.

For example, suppose we wish to �nd the discrete logarithm of b to the base

a 2 G where a is of order M and M is composite. Let us �rst assume M = pq,

where p < q are coprime. If we directly apply Algorithm 18 (Discrete Log(b; a))

to �nd the discrete log of b to base a, we need dlog

2

2Me + 1 control qubits and

dlog

2

2Me + 1 group multiplications. We can however �nd a logarithm modulo p

and another modulo q and combine the answers classically to �nd the logarithm

moduloM . We �nd the logarithm s

1

mod p of b

q

to the base a

q

, and the logarithm

s

2

mod q of b

p

to the base a

p

. We then use the Chinese Remainder theorem to

�nd s mod pq satisfying s � s

1

mod p and s � s

2

mod q.

If we remove the restriction that p and q are coprime, say M is a prime power

p

2

, we cannot apply this technique. We can apply a di�erent one however. The

logarithm s has a decomposition s = ps

1

+ s

2

where s

1

and s

2

are between 0 and

p� 1. We �rst �nd the logarithm s

1

mod p of b

p

to the base a

p

. We then �nd the

logarithm s

2

mod p of ba

�ps

1

= a

s

2

to the base a. The logarithm of b to the base

a is then s = ps

1

+ s

2

.

Combining these two simple methods allows us to reduce �nding logarithms

in a group of composite order to �nding logarithms in subgroups of prime order.

The quantum memory requirements for the control register thus gets reduced to

dlog

2

2pe+1 qubits, where p is the largest prime dividing N . Suppose M =

n

Q

j=1

p

a

j

j

,

then the total number of group multiplications is in

O

n

X

j=1

a

j

(log p

j

+ 1)

!

= O(logM):

4.2. MAXIMISING EXPLOITATION OF QUANTUM RESOURCES 121

The cost of combining all the answers to �nd the answer modulo M is O(log

2

M)

elementary classical operations.

4.2.2. Replacing the control register with a reusable control qubit.

In section 2.4 it was shown how to obtain an n-bit estimate of an eigenvalue of

a unitary operator U using a control register containing n qubits and using the

inverse quantum Fourier transform QFT (2

n

)

�1

which was illustrated in �gure 2.3.

If we take a closer look at that �gure, we notice that we could in fact have observed

the �rst qubit immediately before we used it as a control bit for the rotations later

(see �gure 4.1). This observation was illustrated in [GN96] and they call this part-

Figure 4.1. A \Semi-classical" Fourier transform. The �rst qubit

could be observed �rst and the result used to classically control the

rotation on the next qubits. The same could be done with the second

qubit.

classical part-quantum version of the QFT a \semi-classical" Fourier transform.

This does not require any 2-qubit quantum gates. However, the advantages go

further if the experimental realisation of our quantum computer permits. Note

that the preparation of the second qubit could occur after the �rst qubit has been

measured. In fact, if we could reset our �rst qubit to j 0i, we could then reuse this

4.2. MAXIMISING EXPLOITATION OF QUANTUM RESOURCES 122

qubit instead of requiring an additional one in our system. The same goes for the

third qubit and so on. Alternatively, we could throw away each qubit once it is

measured, and then introduce the subsequent control qubit. This lends itself to a

system which has
ying qubits [THL

+

96]. The advantage is that we do not need

to maintain a coherent superposition of more than one-qubit in a control register.

In other words, the physical requirements of the control qubits are di�erent from

those in the target register (as emphasised to me by David DiVincenzo). That

is the control register needs to be some system that can be quickly and reliably

prepared, measured and reset. The target register can take lots of time to prepare,

but should not decohere much over time (as is typical with systems that can be

easily measured), and it does not need to be easily measured (since we never

measure it).

Remark 90. Algorithm 7 (Eig Est) can be implemented using only one
ying

control qubit at a time.

This has consequences on the memory demands of a system used to implement

the factoring algorithm for example. This observation was made independently by

E. Knill as noted in [Zal98] (where he also discusses the e�ects of this technique

on the factoring algorithm).

4.2.3. Cool only if necessary. For most current attempts at implementing

quantum computers, cooling the starting state down to the all-zero state is quite

a challenging task. Some algorithms do not require this.

For example, the order-�nding algorithm in Z

�

N

will work almost as well if the

target register is in the maximally mixed state or some natural equilibrium states

(we describe one in the next section). It is therefore not worth any signi�cant e�ort

to cool the target register down to the j 00 : : : 0i state and then set it to the state

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 123

j 1i. In fact, the only state one must intentionally avoid with high probability is the

state j 0i, since this is the only trivial eigenvector of multiplication by a modulo N .

The other states that might pose some problem have non-trivial greatest common

factors with N - but if these occur with signi�cant amplitude we can e�ciently

factor N without the order-�nding algorithm!

4.3. Quantum Computation using Nuclear Magnetic Resonance

Unlike the ideal two-spin computer described earlier, modern liquid state NMR

computer does not manipulate just two spins. Firstly, the two spins are usually

part of a larger molecule. For example, they could be two hydrogen atoms in

a cytosine molecule (see �gure 4.2). Further, they do not work with just one

molecule, since the spin state of a single proton is not reliably detectable with

existing apparatus. They use an ensemble of roughly 10

17

� 10

20

molecules and

perform measurements on this ensemble. These molecule-sized computers are in a

solution, often with water (H

2

O) or heavy water (D

2

O) as a solvent. To distinguish

our qubits from other spins in the sample, the frequencies of the qubit spins need

to be di�erent from the frequencies of the other spins in the molecule and in

the solvent. For this reason we use deuterated cytosine, where we use D

2

O as

our solvent and the hydrogens of the cytosine, apart from our two qubits, are

replaced with deuterium. We can still distinguish the two di�erent hydrogens from

each other since their energy eigenvalues (and therefore frequencies) are shifted

according to their chemical neighbourhoods in slightly di�erent ways.

The size of the output signal from a particular spin (ignoring noise and other

errors) is proportional to the sum of the signals of that spin from each molecule.

Let us consider a molecule with just one spin. We can assume that j 1i gives a

signal of size �1 and j 0i gives a signal of size 1, where the minus sign means the

signal is in the opposite direction. Ideally, when we have two molecules, j 1i
 j 1i

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 124

(we keep the
 to remind us that these spins are on di�erent molecules, and not

just di�erent spins on the same molecule) gives a signal of size �2, j 1i
 j 0i and

Figure 4.2. This picture illustrates a cytosine molecule. The green

arrows point at the two hydrogen atoms we used in our computation.

The remaining white atoms are deuterium. The grey atoms are

carbon, blue atoms are nitrogen, and the red one is oxygen.

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 125

j 0i
j 1i give signals of size 0 and j 0i
j 0i gives a signal of size +2. In general when

we have n molecules the ideal signal size varies from n to �n, and is proportional

to the di�erence between the number of j 0i states and the number of j 1i states.

Let us for a moment treat the output signal quantumly and note that if we observe

the state

1

p

2

j 0i+

1

p

2

j 1i with the measuring apparatus initialised to the state j 0i,

after measuring we would have

1

p

2

j 0i j+1i+

1

p

2

j 1i j�1i :

If we start with the state

1

2

j 0i
 j 0i+

1

2

j 0i
 j 1i+

1

2

j 1i
 j 0i+

1

2

j 1i
 j 1i and

measure we would get

1

2

(j 0i
 j 0i) j+2i+

1

p

2

�

1

p

2

j 0i
 j 1i+

1

p

2

j 1i
 j 0i

�

j 0i+

1

2

(j 1i
 j 1i) j �2i :

This means, for example, that if we observe the apparatus, then with probability

1

2

, we observe an output of j 0i and are left with the state

1

p

2

j 0i
j 1i+

1

p

2

j 1i
j 0i.

If we have N copies of the spin, then the output signal for the state jx

1

i
 jx

2

i

: : :
 j x

N

i is proportional to

N

P

j=1

(�1)

x

j

= N � 2H(x), where H(x) is the number

of 1s in the string x = x

1

x

2

: : : x

N

. If we observe a single qubit in the state

� =

0

@

�

00

�

01

�

10

�

11

1

A

, then the expected size of the output signal is

�

00

� �

11

= Tr(��

z

)

where

�

z

=

0

@

1 0

0 �1

1

A

When we have N copies of this spin, the expected size of the output signal is

N(�

00

� �

11

) = NTr(��

z

):

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 126

The expected size of the output signal is relevant since the law of large numbers

implies that as N gets large then the size of the output signal we see tends to this

expected size, NTr(��

z

). Since our N are roughly between 10

17

and 10

20

, this is

an extremely accurate approximation and we will simply say that the signal size

is proportional to NTr(��

z

).

The measurements do not distinguish di�erent molecules, which we assume are

independent of each other, so we can describe the system as being in the state

�
 �
 � � �
 � where � describes the state of one molecule, which in general can

have more than one spin. If we have N molecules, each with n distinguishable

spins in the n-qubit state �, the output signal when probing the jth spin will be

proportional to NTr(��

j

z

) = 2NTr(�I

j

z

) (where �

j

z

= I
 � � �
 I
 �

z

 I
 � � �
 I

with the �

z

on the jth spin).

So what is the natural starting state �? We will assume the initial distribution

is the natural equilibrium point eventually reached by the sample after it has been

placed in the magnetic �eld oriented in the z direction. This natural equilibrium

point is a function of the Hamiltonian of the molecules. For the purpose of esti-

mating the equilibrium distribution, we can ignore the coupling constants J (since

they are much less than any of the ! terms). Let us suppose that all the spins

have roughly the same frequency

!

2�

. The natural equilibrium point for that spin is

p

0

j 0i h 0j+p

1

j 1i h 1j where p

0

is proportional to e

~!

kT

and p

1

is proportional to e

�

~!

kT

(k is Boltzmann's constant and T is the temperature). Since ! is proportional to

the strength of the magnetic �eld, we could make p

0

close to 1 by increasing the

�eld strength and lowering the temperature. However there are practical reasons

why we cannot increase the �eld strength to a point where p

0

is close to 1. Further,

we cannot lower the temperature arbitrarily close to 0 since the sample will freeze

well before that point, and this poses problems, in particular the molecules can no

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 127

longer be treated as independent computers. In current NMR quantum computa-

tion, the term

~!

kT

is quite small, roughly 10

�5

, and thus we can approximate p

0

and p

1

by

1

2

+ � and

1

2

� � where � �

~!

2kT

.

The natural equilibrium distribution for the whole system is then roughly a

binomial distribution. In other words, we get the term we really want j 0000i h 0000j

with probability roughly

�

1

2

+ �

�

n

�

1

2

n

+

n�

2

n�1

.

Ideally, we would like to somehow prepare some qubits that are almost entirely

in the state j 00 : : : 0i h 00 : : : 0j.

One way of better approximating the state j 00 : : : 0i h 00 : : : 0j [Tap98] is to

apply a transformation that sorts our n qubit strings according to their Hamming

weights. This way the more likely strings have a longer string of leading 0s in

their binary representation. This encoding means that with probability 1 � o(1),

the leftmost O(�

2

n) bits are all 0. We could use these �rst O(�

2

n) qubits for our

computation.

However the straightforward ways of sorting by Hamming weight require an

ancilla initialised to j 0i states, which brings us back to our original problem!

Schulman and Vazirani found a clever method of permuting the computational ba-

sis states that produces roughly the same result, and this method does not require

an ancilla [SV98]. In current experiments � is roughly 10

�5

, thus to get even 100

qubits mostly in the j 0i state requires molecules with about 10

12

spins, which is not

practical. Further, the algorithm assumes the operations are performed perfectly.

As far as I am aware, no careful treatment of this technique in the presence of errors

and imprecise operations has been done. We cannot simply use error-correcting

codes since they require ancilla bits initialised to j 0i! However this algorithm gives

hope that there is nothing in principle stopping us from initialising a register to

the desired starting state.

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 128

It su�ces however to produce a starting n-qubit state of the form

� j 00 : : : 0i h 00 : : : 0j+(1� �)

1

2

n

I, where � is large enough to produce an observable

signal. The reason is that when we apply our algorithm A on this state, we will

get

�A j 00 : : : 0i h 00 : : : 0jA

�

+ (1� �)

1

2

n

I:

Let j	i = A j 00 : : : 0i be the output of the algorithm. When we measure spin j,

we get an output signal proportional to �NTr(j	i h	j�

j

z

) (note that Tr(I�

j

z

= 0).

This equals �N(p

0

� p

1

) where p

0

is the probability of measuring j 0i and p

1

is the

probability of measuring j 1i if we measure the jth qubit of j	i.

No unitary transformation can transform n independent qubits in the state �

into

� j 00 : : : 0i h 00 : : : 0j+ (1� �)

1

2

n

I

(see e.g. [HSTC98]), so we must somehow use an ancilla and trace it out.

Let me now describe the methods that have been used in practice and work for

small systems.

Ignoring terms of second order in �, the natural equilibrium state of two spins

is

�

1

4

+ �

�

j 00i h 00j+

1

4

j 01i h 01j+

1

4

j 10i h 10j+

�

1

4

� �

�

j 11i h 11j(27)

=

1

4

I+ � j 00i h 00j � � j 11i h 11j :(28)

Note that

� j 00i h 00j+ (1� �)

1

4

I=

1

3

�

1

4

I+

3

4

� j 00i h 00j �

3

4

� j 11i h 11j

�

+

1

3

�

1

4

I+

3

4

� j 00i h 00j �

3

4

� j 10i h 10j

�

+

1

3

�

1

4

I+

3

4

� j 00i h 00j �

3

4

� j 01i h 01j

�

:

4.3. QUANTUM COMPUTATION USING NUCLEAR MAGNETIC RESONANCE 129

This equation suggests the following strategy. Leave the top third of the sample

alone (call this operation U

0

), map the middle third (using a controlled-NOT) from

�

1

4

I+ � j 00i h 00j � � j 11i h 11j

�

!

�

1

4

I+ � j 00i h 00j � � j 01i h 01j

�

(call this U

1

) and the bottom third from

�

1

4

I+ � j 00i h 00j � � j 11i h 11j

�

!

�

1

4

I+ � j 00i h 00j � � j 10i h 10j

�

(call this U

2

), and then average over all the molecules again. This gives us the

state

4

3

� j 00i h 00j+ (1�

4

3

�)

1

4

I:

One way of looking at this is as adding a virtual two-qubit register to each

molecule, a location register, preparing the state

1

3

j 0i h 0j+

1

3

j 1i h 1j+

1

3

j 2i h 2j ;

applying a controlled-U

j

on the two systems, and then tracing out the location

qubits giving us the desired state. In practice we can spatially address di�erent

parts of the sample, so that one third of them (say the top third of the test

tube) are designated to be in region j 0i h 0j, the middle third are in region j 1i h 1j

and the bottom third are in region j 2i h 2j. We can thus apply U

0

to the top

third, U

1

to the middle third, and U

2

to the bottom third. Cory et. al [CFH96]

describe such a method (�eld gradients). Knill et. al [KCL98] designed a similar

scheme where instead of averaging over spatial con�gurations they would run U

0

,

U

1

and U

2

at three separate times and combine up the output signals afterwards

(temporal averaging). Gershenfeld and Chuang [GC97] have also described an

elegant method called logical labelling that uses additional spins in the molecule

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 130

as the additional control bits. Each of these methods allows us to prepare pseudo-

pure states.

Unfortunately, the simple generalisations of these methods to large systems

only produce states with � roughly

n�

2

n

. To have any hope of observing a signal

we need the number of copies N of the molecule to be of size on the order of

1

�

,

which implies that N must be exponential in n, the number of qubits we wish to

have. This means that these techniques alone will not su�ce in providing e�ciently

scalable quantum computation, but must be combined with other methods, such

as those in [SV98]. We are still seeking a method that is both practical and whose

complexity scales at most polynomially in the number of qubits we wish to have.

4.4. Interesting algorithms for implementation with few qubits

4.4.1. Deutsch algorithm. As an example of the hidden subgroup problem,

this problem is the most interesting two-qubit algorithm to implement and can also

be implemented on ensemble computers using only 2 qubits. This algorithm was

implemented by Jones and myself using [JM98] two hydrogen nuclei in deuterated

cytosine (see �gure 4.2). More speci�cally, we used a 50 mM solution of cytosine

in D

2

O. We worked at room temperature, 20

�

C with a magnetic �eld of frequency

500MHz and a J-coupling term of 7:2Hz between the two

1

H atoms. This J-

coupling corresponds to the term 14:4�~I

z

 I

z

in the Hamiltonian. The resonant

frequencies of the two hydrogen atoms di�ered by 763Hz, which allowed us to

di�erentiate the two.

We used the gradient techniques of Cory et al. to prepare (approximately) the

pseudo-pure state

�

01

= � j 01i h 01j+ (1� �)

1

4

I:

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 131

We applied a 90

�

y

pulse to both spins to e�ect the pseudo-Hadamard operator and

thus produced a pseudo-pure state corresponding to the pure state

(j 0i+ j 1i) (j 0i � j 1i) :

We then implemented one of the four functions f : f0; 1g ! f0; 1g. For example,

to implement f

01

(0) = 0; f

10

(1) = 1, via the operator

U

01

: jxi j yi ! j xi j y � f(x)i

we could apply the following sequence (based on the one in [JM98]; see appendix

A.7 for details):

90

�

I

2

y

�

1

4J

12

� 180

�

x

�

1

4J

12

� 180

�

x

� 90

�

I

1

z

� 90

�

I

2

z

� (�90

�

)I

2

y

(29)

where

1

4J

12

indicates simply waiting for a period of time

1

4J

12

and 180

�

x

indicates a

180

�

I

x

on all spins (when the frequencies of the two spins are close together, these

hard pulses are easier to implement than selective pulses, that is pulses that only

target one of the spins). In general a pulse sequence for U

f

produces a pseudo-pure

state corresponding to the pure state

�

(�1)

f(0)

j 0i+ (�1)

f(1)

j 1i

�

(j 0i � j 1i) ;

as described in section 2.1.

A pseudo-Hadamard gate applied to both qubits would give us a pseudo-pure

state corresponding to the pure state

j f(0)� f(1)i j 1i

and a subsequent measurement of the �rst qubit would give us a signal proportional

to Tr(j bi h bj �

z

) = (�1)

b

where b = f(0) � f(1) and measuring the second qubit

would give us a signal proportional to �1. We implemented similar pulse sequences

for all four possible functions f : f0; 1g ! f0; 1g. We �rst implemented each U

f

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 132

twice, once with a pseudo-pure starting state corresponding to j 0i j 0i and again

with a pseudo-pure state corresponding to j 1i j 0i in order to simply compute f(x)

on every possible classical input. The output signals for the `classical' computations

appear in �gure 4.3. We then implemented the Deutsch algorithm to �nd the

value of f(0) � f(1) with only one application of U

f

. The output signals from

these experiments are shown in �gure 4.4. More details are provided in [JM98].

A similar implementation with a chloroform molecule was announced shortly after

[CVLL98].

4.4.2. Quantum searching. Quantum searching in a space of size N = 4 can

also be implemented with only two qubits. On an ensemble computer, it is useful

to promise that there is only one solution to f(x) = 1. Otherwise, if there is more

than one solution, we observe an average of the corresponding signals, which does

not necessarily give useful information. It also convenient when exactly one fourth

of the inputs are solutions, since in that case one iteration of the searching iterate

will produce exactly a superposition of the satisfying assignments (see section 2.7.

When N = 4 and we have only one solution, we enjoy both of these advantages.

This algorithm was implemented in [GCK98] and [JMH98].

4.4.3. Quantum counting. Quantum counting can also be done with as few

as 2 qubits. One qubit is used for the \semi-classical" phase estimation and the

other is the input to a function f . It gets more interesting of course as the domain

of f increases. The averaging in NMR that we describe in section 4.3 turns out to

be an advantage! This implementation is described in [JM99].

The quantum counting, or more generally, amplitude estimation algorithm,

seeks to estimate an eigenvalue of the unitary operator G = �AU

0

A

�1

U

f

de-

�ned in section 2.7. We adapted this algorithm to work with one control bit

by implementing, for increasing r, a controlled-G

r

. We know that G has two

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 133

Figure 4.3. An upward peak corresponds to the state j 0i and a

downward peak corresponds to the state j 1i. The starting state has

both peaks pointing up. The left qubit stores the input to f and the

answer is added to the right qubit. All four functions were evaluated

on both possible input values.

eigenvectors j	

+

i and j	

�

i with eigenvalues e

2�i!

and e

�2�i!

where A j 0i =

sin(�!) jX

1

i + cos(�!) jX

0

i and U

f

jX

1

i = � jX

1

i and U

f

jX

0

i = jX

0

i. If we

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 134

Figure 4.4. The four output signals correspond to the result of

applying the Deutsch algorithm with the four functions f : f0; 1g !

f0; 1g. The left qubit stored the value of f(0) � f(1). The right

qubit is in the state j 1i.

start with the state (j 0i � j 1i) j	

+

i and apply a controlled-G

r

, we get the state

(j 0i � e

2�ir!

j 1i) j	

+

i. An inverse pseudo-Hadamard transform on the �rst qubit

gives us

�

1 + e

2�ir!

2

j 0i+

1� e

2�ir!

2

j 1i

�

j	

+

i :

Tracing out the target register we see that the �rst qubit is in the state

0

@

1 + cos(2�r!) i sin(2�r!)

�i sin(2�r!) 1� cos(2�r!)

1

A

:

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 135

The same result is obtained if we replace j	

+

i with j	

�

i, except that the two o�-

diagonal elements are negated. Thus the same diagonal elements are also obtained

from any superposition or statistical mixture of the two, such as A j 0i. Starting

with A j 0i = e

i�!

j	

+

i+e

�i�!

j	

�

i in the target register, applying the controlled-

G

r

, and then tracing out the target register gives the state

� =

1

2

0

@

1 + cos(2�r!) 0

0 1� cos(2�r!)

1

A

;

and measuring will produce an output signal of size proportional to Tr(��

z

) =

cos(�r!). The averaging e�ects actually help provide a more precise estimate of

cos(�r!)! Running this experiment for exponentially increasing r and classically

post-processing (similar to the methods in [Kit95, Bhi98]) gives us counting algo-

rithms similar to those described in section 2.7. The details of this implementation

appear in [JM99].

4.4.4. Order-�nding. Pick any group whose operation can be realised with

few qubits, add one control bit, and you can �nd the order of that operation using

the order-�nding algorithm and the modi�ed phase estimation method described

in section 4.2.2 and in [Bhi98]. For example, multiplication by 2 mod 2

k

� 1

corresponds to a cyclic permutation of the k bits, which can be implemented using

only k qubits. The order-�nding algorithm can �nd this period.

It is not worth implementing this algorithm on very small NMR quantum

computers (or other ensemble computers) because the average of the signals from

the eigenvalue estimations

�

�

�

e

k

r

E

does not provide useful information. We could in

principle perform the post-processing that computes the order r quantumly (so

that we observe an average signal over states of the form j ri

�

�

�

e

k

r

E

), but in practice

this greatly increases the required amount of quantum memory.

4.4. INTERESTING ALGORITHMS FOR IMPLEMENTATION WITH FEW QUBITS 136

4.4.5. Simulating Quantum Chaotic Maps. Schack and Brun [Sch98,

BS99] have suggested using small quantum computers to implement quantum

chaotic maps and to observe and study the predicted chaotic features. Once the

number of qubits is above a few dozen, we are out of the range of what classical

computers can simulate. This is not the case for the factoring problem, where it

would take several hundred working logical qubits to outperform classical algo-

rithms.

APPENDIX A

Appendix

A.1. Computing a controlled-U

Given a quantum gate array for computing U , we wish to create a network for

computing the controlled-U which maps j 0i j yi ! j 0i j yi and j 1i j yi ! j 1iU j yi.

It is important to remember that we do not measure the control bit, and then

apply U if the outcome is 1 (in some circumstances, such as when the control

qubit never used again, or as described in section 4.2.2, this is possible, but not in

general).

In [BBC

+

95], they show the essential ingredients for performing this task.

Firstly, for each gate G in the available family of gates G , we should decompose

the controlled-G (at least approximately) into a network of gates from G. For

example, the controlled-controlled-NOT can be decomposed as shown in �gure

A.1.

Creating a network for the controlled-U is now simple. Just replace every gate

G in U with a gate array for computing the controlled-G, always using the same

control bit, as illustrated in �gure A.2. With our universal set of gates G we can,

for any �, e�ciently approximate every controlled-G with error at most � using

poly(

1

�

) gates from G. Suppose we have a network N with T gates not necessarily

from our universal set. We wish to approximate N with a network N

0

such that

their respective outputs j	i = N j 00 : : : 0i and j	

0

i = N

0

j 00 : : : 0i are `close',

that is jj	

0

i � j	ij < � for some small �. It su�ces to approximate each gate G

137

A.1. COMPUTING A CONTROLLED-U 138

in N with an error in O(

�

T

). We can e�ciently do this using poly(

T

�

) gates from

our universal set.

Although it su�ces to approximate every controlled-G, it is an interesting

mathematical question if it is possible to do so exactly.

Figure A.1. A network for computing the controlled-controlled-

NOT using only two-qubit gates. Here N denotes the NOT gate

and A denotes the

p

NOT gate.

Figure A.2. A quantum network for computing the controlled-U

given a network for U .

A.2. COMPUTING �

M

(U) 139

Problem 91. Does there exist a �nite universal family of quantum gates G ,

such that for each gate G 2 G , the controlled-G can be decomposed exactly as a

�nite concatenation of elements in G .

A.2. Computing �

M

(U)

Given a means for computing U , for any positive integer M , we wish to create

a gate array for computing �

M

(U) : j xi j yi ! jxiU

x

j yi. Note that this is a

generalisation of the controlled-U .

We will consider two cases. The �rst case is where we are simply given a

quantum network for computing U . For a �xed positive integer k, a controlled-

U

2

k

can easily be created by concatenating 2

k

consecutive controlled-U arrays.

If the quantum network for U has T gates, then the quantum network for the

controlled-U

2

k

has O(2

k

T) gates.

The second case is where it is possible to compute U

2

k

more e�ciently than

by just iterating 2

k

times the operator U . For example, if U corresponds to mul-

tiplication by a in some group G, we can �rst compute a

2

by squaring a, then

compute a

4

by squaring a

2

, and continue squaring a total of k times to compute

a

2

k

. This requires k group operations, and we then directly implement the opera-

tion U

a

2

k = U

2

k

a

.

In either case, once we know how to implement the controlled-U , controlled-

U

2

, controlled-U

4

, : : : , controlled-U

2

l

, we are ready to implement �

M

(U) using the

well-known `square and multiply' algorithm (see for example, Algorithms 2.143 and

2.227 in [MvOV97]). Using a qubit in the state jx

j

i as the control bit for U

2

j

, we

will apply the operator U exactly x

0

2

0

+x

1

2

1

+ : : :+x

l�1

2

l�1

times. In other words,

U is applied x times where x equals x

l�1

: : : x

1

x

0

represented in binary. Therefore,

such a gate array, as illustrated in �gure A.3, will realise the operator �

M

(U).

A.3. REVERSIBLE COMPUTING WITHOUT KEEPING THE INPUT 140

Figure A.3. A network for implementing �

2

3

(U) : j xi j	i !

jxiU

x

j	i, where x = x

1

+ 2x

2

+ 4x

3

.

Lemma 92. Given a quantum network with T elementary gates for implement-

ing U , we can implement �

M

(U) using O(MT) gates. If U = U

a

, the operator that

multiplies by a in a group G where a group multiplication requires O(T) gates, then

we can implement �

M

(U

a

) using O(logMT) elementary gates.

A.3. Reversible Computing without keeping the input

If the function f is logically reversible, and we have a means of comput-

ing f

�1

, then we can implement the operation jxi ! j f(x)i (versus imple-

menting jxi j yi ! jxi j y + f(x)i). More speci�cally, given a quantum network

for implementing j xi j yi ! jxi j y + f(x)i and one for implementing j xi j yi !

jx� f

�1

(y)i j yi, we can implement jxi ! j f(x)i as illustrated in �gure A.4.

A.4. FOURIER TRANSFORMS 141

A.4. Fourier Transforms

When we have a non-trivial factorisation for M , say M = AB, there are two

ways of combining QFT (A) and QFT (B) to produce QFT (M). If A and B

are coprime, we can make use of the Chinese remainder theorem, and represent

Figure A.4. When f is invertible, we can compute f(x) without

keeping the input. First compute jxi j f(x)i, and then uncompute

the input using f

�1

.

A.4. FOURIER TRANSFORMS 142

integers k 2 f0; 1; :::;M � 1g as elements in f0; 1; :::; A� 1g � f0; 1; :::; B � 1g via

the isomorphism k mod M ! (k mod A; k mod B). Using this representation,

it is easy to verify that QFT (M) = (U

B

 U

A

)(QFT (A)
QFT (B)), where U

B

:

jx mod Ai ! jxB mod Ai, and U

A

: j x mod Bi ! jxA mod Bi.

Figure A.5. This network realises the QFT (AB)

�1

when a

mod AB is represented as j a mod Ai j b mod Bi. Apply QFT (A)

on the �rst register followed by a multiplication by B mod A, and

apply QFT (B) on the second register followed by a multiplication

by A mod B.

In general, for any A and B, say A = 2 and B = 2

n�1

, we can generalise the

technique described in section 2.3. We represent a 2 f0; 1; :::;M � 1g as elements

in f0; 1; :::; A � 1g � f0; 1; :::; B � 1g via the isomorphism a

1

B + a

2

mod M !

(a

1

mod A; a

2

mod B), where a

2

2 f0; 1; :::; B � 1g, and a

1

2 f0; 1; :::; A� 1g. In

the following equations, we will decompose the indices k 2 f0; 1; : : : ; AB � 1g as

fk

2

; k

1

g where k = k

2

A + k

1

, k

2

2 f0; 1; : : : ; B � 1g and k

1

2 f0; 1; : : : ; A � 1g.

A.4. FOURIER TRANSFORMS 143

Suppose we are given the state

QFT (AB) j ai =

AB�1

X

k=0

e

2�i

ka

AB

j ki =

AB�1

X

k=0

e

2�i

k(a

1

B+a

2

)

AB

j ki

=

X

0�k

2

<B;0�k

1

<A

e

2�i

k

1

a

1

B+k

2

a

2

A+k

1

a

2

AB

j k

2

; k

1

i

=

X

0�k

2

<B

e

2�i

k

2

a

2

B

j k

2

i

!

X

0�k

1

<A

e

2�i

k

1

(a

1

B+a

2

)

AB

j k

1

i

!

.

Applying QFT (B)

�1

to the left register will give us

j a

2

i

X

0�k

1

<B

e

2�i

k

1

(a

1

B+a

2

)

AB

j k

1

i

!

.

Extend the de�nition of R

w

to H

B

by mapping jxi ! e

�2�ixw

jxi, x 2

f0; 1; : : : ; B � 1g. A multi-qubit controlled-R

1

AB

(i.e. a �

A

(R

2�

AB

)) will give us

j a

2

i

X

0�k

1

<A

e

2�i

k

1

a

1

B

AB

j k

1

i

!

= j a

2

i

X

0�k

1

<A

e

2�i

k

1

a

1

A

j k

1

i

!

.

and applying QFT (A)

�1

gives us j a

2

i j a

1

i.

Note that whereas in the input register jxi j yi corresponded to xB + y, in the

output register it corresponds to yA + x. This accounts for the reversal of the

qubits at the end of the QFT (2

n

), but it is not quite so simple when a mixed radix

representation is used. We will not worry about transforming the outputs back to

the same representation as the inputs.

We can recursively apply this technique for any N = A

1

A

2

: : : A

n

and map, for

any a 2 f0; 1; : : : ; N � 1g, a = a

1

A

2

A

3

: : : A

n

+ a

2

A

3

A

4

: : : A

n

+ : : :+ a

n�1

A

n

+ a

n

,

0 � a

j

< A

j

. The result is a network which maps, with indices k represented as

A.5. PUBLIC KEY CRYPTOGRAPHY AND QUANTUM COMPUTING 144

j k

n

i j k

n�1

i : : : j k

1

i, k = k

n

A

n�1

A

n�2

: : : A

1

+ k

n�1

A

n�2

: : : A

1

+ : : :+ k

2

A

1

+ k

1

,

N�1

X

k=0

e

2�i

ka

N

j ki ! j a

n

i j a

n�1

i : : : j a

1

i :

Again, the numbers are encoded di�erently in the output and input registers.

Figure A.6. This �gure illustrates a network for QFT

�1

(ABC)

where A,B and C are not necessarily coprime. Note that jxi j yi j zi

represents 6x + 2y + z at the input, and 15z + 5y + x at the out-

put. This corresponds to the necessary reordering of qubits in the

QFT (2

n

) network described earlier.

A.5. Public Key Cryptography and Quantum Computing

A.5.1. Public Key Cryptography. Up until 1976, most publicly used cryp-

tography was private or symmetric key cryptography. In private key schemes (such

as DES or the one-time pad), the encryption and decryption keys are e�ectively

A.5. PUBLIC KEY CRYPTOGRAPHY AND QUANTUM COMPUTING 145

the same and must somehow be secretly exchanged between participants, say Alice

and Bob. In public key cryptography, �rst described publicly by Di�e and Hell-

man [DH76b] (see also [Ell70, Ell87]) the encryption and decryption keys are

quite di�erent, since it should be infeasible for one to compute the decryption key

given the encryption key.

A reliable copy of everyone's encryption key should be publicly available. If

Alice wishes to send a message M to Bob, she encrypts M using Bob's public key

E

Bob

to produce a ciphertext C. Only Bob possesses the decryption key D

Bob

that

allows him to compute P from C. Note than anyone can use the same public key

E

Bob

to send encrypted messages to Bob.

A.5.2. RSA. In 1977, Rivest, Shamir, and Adleman devised a public key

scheme now known as RSA [RSA78] (similar to that of [Coc73]). Alice's public

key E

Alice

is a pair of integers (N; e). The integer N is a product of two distinct

large primes p; q known only to Alice. The multiplicative group of integers modulo

N , Z

�

N

is the set of �(N) = (p � 1)(q � 1) integers between 1 and N � 1 that

are coprime to N . From the encryption key e Alice computes a decryption key

D

Alice

= d which satis�es ed � 1 mod �(N). Fermat's theorem implies that for

any integer M between 0 and N � 1, and any integer k, M

k�(N)+1

�M mod N .

Bob encryptsM by computingC =M

e

modN . Alice decrypts C by computing

C

d

mod N . Note that C

d

� P

ed

� P

k�(N)+1

� P mod N .

The security of this cryptosystem requires that it is di�cult to compute the

decryption key D

Alice

= d given E

Alice

= (N; e). If we know the factors p and q

of N , we could easily compute d. Thus being able to factor su�ces to compute P

from C. It is not known if it is necessary.

A.5.3. Using Algorithm 13 to crack RSA. As we show in the next section,

we can crack RSA by using Algorithm 15 (Find Order) to factor N . We can

A.5. PUBLIC KEY CRYPTOGRAPHY AND QUANTUM COMPUTING 146

however directly compute P from C without factoring N (we could factor N if we

wish by solving this problem for several random C).

Algorithm 93. (Find RSA Plaintext(C;N))

Input:

� Integers N and C.

Output:

� An integer P .

Complexity:

� O(logN) multiplications modulo N .

Procedure:

1. Use Algorithm 15 (Find Order(C)) to �nd an integer r such that C

r

� 1

mod N .

2. Use the extended Euclidean algorithm to compute an integer d satisfying

de � 1modr.

3. Output P � C

d

mod N .

Theorem 94. Algorithm 93 (Find RSA Plaintext(C;N)) �nds C such that

P

e

� CmodN .

Proof. Note that ed � 1 mod r means ed = kr + 1 for some integer k. Thus

C

d

� P

ed

� P

kr+1

� (P

r

)

k

P � P mod N .

A.5.4. Using Algorithm 13 to factor. As mentioned earlier, we could use

Algorithm 15 to factor any composite integer N . It of course su�ces to split any

composite integer N into two non-trivial factors. We assume N is odd, since it is

easy to recognise and divide out any power of 2. Further, we can assume N is not

A.5. PUBLIC KEY CRYPTOGRAPHY AND QUANTUM COMPUTING 147

a perfect power, since we can easily check to see if it is a perfect rth power for

r = 2; 3; : : : log

2

N .

Algorithm 95. (Split(N))

Input:

� An odd composite integer N that is not a prime power.

Output:

� A integer t.

Procedure:

1. Pick an integer a 2 f1; 2; 3; : : : ; N � 1g uniformly at random.

2. Use the Euclidean algorithm to �nd d = gcd(a;N). If d > 1, output d (i.e.

if d is not coprime to N , this is NOT a problem!)

3. Use Algorithm 13 three times with M = 2N

2

> 2r

2

. If the three results are

FAIL, go to step 1. Otherwise take r to be the minimum non-FAIL output.

If r is odd go to step 1. If r is even, let d = gcd(a

r

2

� 1; N). If d = 1, go to

step 1.

4. Output d.

Theorem 96. Algorithm Split(N) outputs a non-trivial factor of N and runs

with expected running time of O(log

3

N) multiplications mod N and O(log

2

N)

other elementary operations.

Proof. We will prove it for N = pq, where p < q are distinct primes. It is

easy to generalise. Let a

1

be a generator of Z

�

p

and a

2

be a generator of Z

�

q

. By

the Chinese Remainder theorem, the (p� 1)(q � 1) integers in Z

�

N

are in a 1 � 1

correspondence with the pairs of integer (x

1

; x

2

) 2 f1; 2; : : : ; p�1g�f1; 2; : : : ; q�

1g via the mapping a mod N ! (a

x

1

1

; a

x

2

2

) with a � a

x

1

1

mod p and a � a

x

2

2

mod q. Selecting an integer a uniformly at random from Z

�

N

is equivalent to

A.6. FINDING LOGARITHMS, DSA, AND DIFFIE-HELLMAN 148

selecting x

1

uniformly at random from f1; 2; : : : ; p�1g and independently selecting

x

2

uniformly at random from f1; 2; : : : ; q � 1g.

The order of such an a mod p is

r

1

=

p� 1

gcd(x

1

; p� 1)

and modulo q is

r

2

=

q � 1

gcd(x

2

; q � 1)

:

The order of a modulo pq is r = lcm(r

1

; r

2

).

Computing gcd(a

r

2

�1; N) will split N if and only if r

1

and r

2

contain the factor

2 with di�erent multiplicities. Since x

1

and x

2

are chosen uniformly at random,

the probability that r

1

and r

2

contain the factor two with di�erent multiplicities

is at least

1

2

.

Recursive application of this splitting algorithm gives us a factoring algorithm.

By �nding certi�cates for the primes (which can be done since we can now factor),

we can make this a zero-error algorithm [Buh96].

A.6. Finding logarithms, DSA, and Di�e-Hellman

Di�e and Hellman [DH76a, DH76b] devised the following key exchange pro-

tocol (which can easily be turned into a public key scheme, such as the El-Gamal

protocol; see sections 12.6 and 8.4 of [MvOV97]).

There is some publicly known group G and an element � 2 G.

Alice possesses a secret integer a, and makes public the element �

a

. Bob

possesses a secret integer b and makes public the element �

b

.

Alice takes Bob's public �

b

and computes (�

b

)

a

= �

ab

. Bob takes Alice's public

�

a

and computes (�

a

)

b

= �

ab

.

They now share the key �

ab

. Any adversary knows �, �

a

and �

b

.

A.7. IMPLEMENTING A FUNCTION WITH A PULSE SEQUENCE 149

Problem 97. (Di�e-Hellman Problem) Given �; �

a

; �

b

2 G, �nd �

ab

.

Note that multiplying �

a

and �

b

only gives �

a+b

. It is clear that being able to

compute discrete logarithms will allows us to solve the Di�e-Hellman problem and

crack any cryptosystems which rely on di�culty of the Di�e-Hellman problem. For

example the U.S. Digital Signature Algorithm which is a U.S. Federal Information

Processing Standard (see section 11.5.1 of [MvOV97]) relies on the di�culty of

the Di�e-Hellman problem in GF (p) where p is a 512-bit prime number.

A.7. Implementing a function with a pulse sequence

In I stated that the pulse sequence

90

�

I

2

y

�

1

4J

12

� 180

�

x

�

1

4J

12

� 180

�

x

� 90

�

I

1

z

� (�90

�

)I

2

z

� (�90

�

)I

2

y

(30)

(applied from left to right) would implement U

f

01

which corresponds to the matrix

0

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

C

C

C

C

C

C

A

:(31)

Here I will detail the action of this pulse sequence. The 90

�

I

2

y

e�ects the 90

�

I

y

pulse (see equation (7)) on the second qubit, corresponding to the matrix

1

p

2

0

B

B

B

B

B

B

@

1 �1 0 0

1 1 0 0

0 0 1 �1

0 0 1 1

1

C

C

C

C

C

C

A

:

The point of the sequence

1

4J

12

�180

�

x

�

1

4J

12

�180

�

x

is to e�ect just the coupling

term 2~�J

12

I

z

 I

z

in the Hamiltonian for a period of time

1

2J

12

in order to e�ect

A.7. IMPLEMENTING A FUNCTION WITH A PULSE SEQUENCE 150

the operation e

�i�I

z

I

z

, which (apart from a global phase of e

�i

�

4

) has matrix

0

B

B

B

B

B

B

@

1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1

1

C

C

C

C

C

C

A

:

The problem with just waiting for a period of time

1

2J

12

is that the entire Hamil-

tonian also has the terms ~!

1

I

z

 I and ~!

2

I
 I

z

. The 180

�

x

operation, which

corresponds to the matrix

0

B

B

B

B

B

B

@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1

C

C

C

C

C

C

A

;

applied after each of two intervals of time

1

4J

12

, leaves the coupling term to evolve

for a period of time

1

2J

12

, and causes the e�ect of the other two terms to cancel out

over the two periods.

The 90

�

I

1

z

is the operation e

�i

�

2

I

z

on the �rst qubit, which corresponds to the

matrix (with a global phase of e

�i

�

4

)

0

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 i 0

0 0 0 i

1

C

C

C

C

C

C

A

:

A.7. IMPLEMENTING A FUNCTION WITH A PULSE SEQUENCE 151

The (�90

�

)I

2

z

corresponds to the operation e

i

�

2

I

z

on the second qubit, which has

matrix (with a global phase of e

i

�

4

)

0

B

B

B

B

B

B

@

1 0 0 0

0 �i 0 0

0 0 1 0

0 0 0 �i

1

C

C

C

C

C

C

A

:

The (�90

�

)I

2

y

pulse has matrix

0

B

B

B

B

B

B

@

1 1 0 0

�1 1 0 0

0 0 1 1

0 0 �1 1

1

C

C

C

C

C

C

A

:

If we multiply these matrices we will get the operation U

01

(apart from a global

phase factor).

Bibliography

[ABO97] D. Aharonov and M. Ben-Or. Fault tolerant quantum computation with constant er-

ror. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computing

(STOC '97), 1997. Also available at quant-ph/9611025.

[ADH97] L. Adleman, J. Demarrais, and M.D. Huang. Quantum computability. SIAM Journal

on Computing, 26(5):1524{1540, 1997.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[AL98] Daniel S. Abrams and Seth Lloyd. A quantum algorithm providing exponential speed

increase for �nding eigenvalues and eigenvectors. Technical report, 1998. Also avail-

able at quant-ph/9807070.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.

Strengths and weaknesses of quantum computing. SIAM Journal on Computing,

26:1510{1523, 1997.

[BBC

+

95] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman

Margolus, Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter. Elemen-

tary gates for quantum computation. Physical Review A, 52(5):3457{3467, 1995. On

the quant-ph archive, report no. 9503016.

[BBC

+

98] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.

Quantum lower bounds by polynomials. In Proceedings of the 39th Annual Sympo-

sium on Foundations of Computer Science (FOCS'98), pages 352{361, Los Alamitos,

California, November 1998. IEEE. On the quant-ph archive, report no. 9802049.

[BBD

+

97] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello.

Stabilization of quantum computations by symmetrization. SIAM Journal on Com-

puting, 26(5):1541{1557, 1997.

152

BIBLIOGRAPHY 153

[BBHT98] Michel Boyer, Gilles Brassard, Peter H�yer, and Alain Tapp. Tight bounds on quan-

tum searching. Fortschritte der Physik, 46(4{5):493{505, 1998. On the quant-ph

archive, report no. 9605034.

[BDEJ95] Adriano Barenco, David Deutsch, Artur Ekert, and Richard Jozsa. Conditional quan-

tum dynamics and quantum gates. Physical Review Letters, 74:4083{4086, 1995.

[Bea97] Robert Beals. Quantum computation of fourier transforms over symmetric groups.

In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC

'97), pages 48{53, 1997.

[Ben73] Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research

and Development, 17:525{532, November 1973.

[Ben89] Charles H. Bennett. Time/space trade-o�s for reversible computing. SIAM Journal

on Computing, 18(4):766{776, 1989.

[BEST96] Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Paivi Torma. Approxi-

mate quantum fourier transform and decoherence. Physical Review A, 54(1):139{146,

1996.

[BH97] Gilles Brassard and Peter H�yer. An exact quantum polynomial-time algorithm for

simon's problem. In Proceedings of Fifth Israeli Symposium on Theory of Computing

and Systems, pages 12{23. IEEE Computer Society Press, June 1997.

[Bhi98] Wahid Bhimji. Approximate quantum fourier transforms and phase estimations,

1998. M.Phys. dissertation.

[BHMT99] Gilles Brassard, Peter H�yer, Michele Mosca, and Alain Tapp. Quantum amplitude

ampli�cation and estimation, 1999.

[BHT98] Gilles Brassard, Peter H�yer, and Alain Tapp. Quantum counting. In Proceedings of

25th International Colloquium on Automata, Languages, and Programming (ICALP

'98), volume 1443 of Lecture Notes in Computer Science, pages 820{831. Springer-

Verlag, 1998.

[BL95] D. Boneh and R. J. Lipton. Quantum cryptanalysis of hidden linear functions (ex-

tended abstract). volume 963 of Lecture Notes on Computer Science, pages 424{437,

1995.

[BS99] T. A. Brun and R. Schack. Realizing the quantum baker's map on a nmr quantum

computer. Physical Review A, 59:2649{2658, 1999.

BIBLIOGRAPHY 154

[Buh96] H. Buhrman. A short note on shor's factoring algorithm. SIGACT News, 27(1):89{

90, 1996.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal

on Computing, 26(5):1411{1473, October 1997.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms

for estimating the average. Information Processing Letters, 53:17{25, 1995.

[CEH

+

99] Richard Cleve, Artur Ekert, Leah Henderson, Chiara Macchiavello, and Michele

Mosca. On quantum algorithms. Complexity, 4:33{, 1999.

[CEMM98] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum

algorithms revisited. Proceedings of the Royal Society of London A, 454:339{354,

1998. quant-ph report no. 9708016.

[CFH96] D. G. Cory, A. F. Fahmy, and T. F. Havel. Nuclear magnetic resonance spectroscopy:

An experimentally accessible paradigm for quantum. In Proceedings of the 4th Work-

shop on Physics and Computation, 1996. New England Complex Systems Institute.

[Cle94] Richard Cleve. A note on computing fourier transforms by quantum programs. Avail-

able at www.cpsc.ucalgary.ca/ cleve/pubs/fourier transform.ps, 1994.

[Cle99] Richard Cleve. An introduction to quantum complexity theory. In C.Macchiavello,

G.M.Palma, and A.Zeilinger, editors, Collected Papers on Quantum Computation

and Quantum Information Theory. World Scienti�c, 1999. To appear.

[Coc73] C. Cocks. A note on non-secret encryption. Technical report,

Communications-Electronics Security Group, U.K., 1973. Available at

http://www.cesg.gov.uk/downlds/nsecret/notense.pdf.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. 1993.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of the 3rd

Annual ACM Symposium on the Theory of Computing (STOC'71), pages 151{158,

1971.

[Cop94] Don Coppersmith. An approximate fourier transform useful in quantum factoring.

Research report, IBM, 1994.

[CS96] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys-

ical Review A, 54:1098{1105, 1996.

BIBLIOGRAPHY 155

[CTDL77] Claude Cohen-Tannoudji, Bernard Diu, and Franck Lalo�e. Quantum Mechanics,

volume 1. John Wiley & Sons, 1977.

[CVLL98] I. L. Chuang, L. M. K. Vandersypen, X. Zhou D. W. Leung, and S. Lloyd. Experi-

mental realization of quantum algorithm. Nature, 393:143{146, 1998.

[Dam98] Wim van Dam. Quantum oracle interrogation: Getting all information for almost

half the price. In Proceedings of the 39th Annual IEEE Symposium on Foundations

of Computer Science (FOCS'98), pages 362{367, 1998. Also available at quant-

ph/9805006.

[Dav82] Martin Davis. Computability and Unsolvability. Dover Publications Inc., New York,

1982.

[Deu85] David Deutsch. Quantum theory, the Church{Turing principle and the universal

quantum computer. Proceedings of the Royal Society of London A, 400:97{117, 1985.

[Deu89] David Deutsch. Quantum computational networks. Proceedings of the Royal Society

of London A, 425:73{90, 1989.

[DH76a] W. Di�e and M. E. Hellman. Multiuser cryptographic techniques. In Proceedings of

AFIPS National Computer Conference, pages 109{112, 1976.

[DH76b] W. Di�e and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22:644{654, 1976.

[Dir58] Paul A.M. Dirac. The Principles of Quantum Mechanics. Clarendon Press, Oxford,

fourth edition, 1958.

[DiV95] David P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical

Review A, 51(2):1015{1022, 1995. On the cond-mat archive, report no. 9407022.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum compu-

tation. Proceedings of the Royal Society of London A, 439:553{558, 1992.

[EH98] Mark Ettinger and Peter H�yer. On quantum algorithms for noncommutative hidden

subgroups. quant-ph report 9807029, Los Alamos archive, 1998.

[Ell70] J. H. Ellis. The possibility of non-secret encryption. Technical report,

Communications-Electronics Security Group, U.K., 1970. Available at

http://www.cesg.gov.uk/downlds/nsecret/possnse.pdf.

BIBLIOGRAPHY 156

[Ell87] J. H. Ellis. The story of non-secret encryption. Technical report,

Communications-Electronics Security Group, U.K., 1987. Available at

http://www.cesg.gov.uk/downlds/nsecret/ellis.pdf.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum mechanical description of

physical reality be considered complete? Physical Review, 47:777{780, 1935.

[Ett98] J. M. Ettinger. On noncommutative hidden subgroups, 1998. A lecture at AQIP '98.

[EZ64] H. Ehlich and K. Zeller. Schwankung von polynomen zwischen gitterpunkten. Math-

ematische Zeitschrift, 86:41{44, 1964.

[Fey65] Richard P. Feynman. The Feynman lectures on physics, volume III: Quantum Me-

chanics. Addison-Wesley, 1965.

[Fey82] Richard P. Feynman. Simulating physics with computers. International Journal of

Theoretical Physics, 21(6,7):467{488, 1982.

[FGGS98] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum

computation in determining parity. Technical Report 9802045, Los Alamos archive,

1998.

[GC97] N. A. Gershenfeld and I. L. Chuang. Bulk spin-resonance quantum computation.

Science, 275:350{356, 1997.

[GCK98] N. A. Gershenfeld, I. L. Chuang, and M. Kubinec. Physical Review Letters, 80:3408,

1998.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability (A guide to

the theory of NP-completeness). W.H. Freeman and Company, New York, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simpli�ed np-complete graph

problems. Theoretical Computer Science, 1:237{267, 1976.

[GN96] R. B. Gri�ths and C. S. Niu. Semi-classical fourier transform for quantum compu-

tation. Physical Review Letters, pages 3228{3231, 1996.

[Gol99] Oded Goldreich. A sample of samplers { a computational perspective on sampling

(survey). Technical report, Electronic Colloquium on Computational Complexity,

199. Available at http://www.eccc.uni-trier.de/eccc/.

[Got98] Daniel Gottesman. A theory of fault-tolerant quantum computation. Physical Review

A, 57:127{137, 1998. Also available at quant-ph/9702029.

BIBLIOGRAPHY 157

[Gri97] D.Y. Grigoriev. Testing the shift-equivalence of polynomials by deterministic, prob-

abilistic and quantum machines. Theoretical Computer Science, 180:217{228, 1997.

[Gro96] Lov K. Grover. A fast quantummechanical algorithm for database search. In Proceed-

ings of the 28th Annual ACM Symposium on the Theory of Computing (STOC'96),

pages 212{219, Philadelphia, Pennsylvania, May 1996. ACM. On the quant-ph

archive, report no. 9605043.

[Gro98] Lov K. Grover. Quantum computers can search rapidly by using almost any trans-

formation. Physical Review Letters, 80:4329{4332, May 1998.

[HKM98] T. Hayes, S. Kutin, and D. van Melkebeek. On the quantum complexity of majority.

Technical Report TR-98-11, University of Chicago, Computer Science Department,

1998.

[H�y97] Peter H�yer. Conjugated operators in quantum algorithms. IMADA preprint, 1997.

[HR90] Torben Hagerup and Christine R�ub. Guided tour of Cherno� bounds. Information

Processing Letters, 33(6):305{308, 1990.

[HSTC98] T. F. Havel, S. S. Somaroo, C.-H. Tseng, and D. G. Cory. Principles and demon-

strations of quantum information processing by nmr spectroscopy. Technical report,

1998. Available at quant-ph/9812086.

[HW79] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford

University Press, Oxford, �fth edition, 1979.

[JM98] J. A. Jones and M. Mosca. Implementation of a quantum algorithm on a nuclear

magnetic resonance quantum computer. Journal of Chemical Physics, 109:1648{

1653, 1998. Also available at Los Alamos archive quant-ph/9801027.

[JM99] J. A. Jones and M. Mosca. Approximate quantum counting on an nmr ensemble

quantum computer. Physical Review Letters, 83:1050{1053, 1999. Also available at

Los Alamos archive quant-ph/98008056.

[JMH98] J. A. Jones, M. Mosca, and R. H. Hansen. Implementation of a quantum search

algorithm on a quantum computer. Nature, 393:344{346, 1998. Also available at Los

Alamos archive quant-ph/9805069.

[KCL98] E. Knill, I. Chuang, and R. La
amme. E�ective pure states for bulk quantum com-

putation. Physical Review A, 57:3348{3363, 1998.

BIBLIOGRAPHY 158

[Kit95] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem. Available

at Los Alamos e-Print achive (http://xxx.lanl.gov) as quant-ph/9511026, 1995.

[Kit97] A. Yu. Kitaev. Quantum computations: algorithms and error correction. Russian

Math. Surveys, 52(6):1191{1249, 1997. Uspekhi Mat. Nauk 52:6 53-112.

[KLZ97] Emanuel Knill, Raymond La
amme, and Wojciech Zurek. Resilient quantum com-

putation: Error models and thresholds. Technical report, 1997. Available at quant-

ph/9702058.

[Knu98] Donald E. Knuth. Seminumerical Algorithms, volume 2. Addison-Wesley, third edi-

tion, 1998.

[Kob94] Neal Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, New

York, second edition, 1994.

[Koc96] Paul C. Kocher. Timing attacks on implementations of di�e-hellman, rsa, dss, and

other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO '96, 16th

Annual International Cryptology Conference, Santa Barbara, CA, volume 1109 of

Lecture Notes in Computer Science. Springer, 1996.

[Lev73] L. A. Levin. Universal sorting problems. Problems of Information Transmission,

9:265{266, 1973.

[Llo95] Seth Lloyd. Almost any quantum logic gate is universal. Physical Review Letters,

75:346{349, 1995.

[LTV98] M. Li, J. Tromp, and P. Vitanyi. Reversible simulation of irreversible computation.

Physica D, 120:168{176, 1998.

[ME99] Michele Mosca and Artur Ekert. The hidden subgroup problem and eigenvalue esti-

mation on a quantum computer. volume 1509 of Lecture Notes in Computer Science,

1999. Also available at Los Alamos archive, quant-ph/9903071.

[Mos98] Michele Mosca. Quantum searching and counting by eigenvector analysis. In Pro-

ceedings of Randomized Algorithms, A satellite workshop of 23rd International

Symposium on Mathematical Foundations of Computer Science, 1998. Available at

http://www.eccc.uni-trier.de/eccc-local/ECCC-LectureNotes/randalg/index.html.

[Mos99] Michele Mosca. Counting by quantum eigenvalue estimation. Theoretical Computer

Science, 1999. to appear.

[MP95] M. Minsky and S. Papert. Perceptrons. MIT Press, second edition, 1995.

BIBLIOGRAPHY 159

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-

versity Press, 1995.

[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Ap-

plied Cryptography. discrete mathematics and its applications. CRC Press, London,

1997.

[Neu56] John von Neumann. Probabilistic logics and synthesis of reliable organisms from un-

reliable components. In C. E. Shannon and J. McCarthy, editors, Automata Studies.

Princeton University Press, 1956.

[Nis91] N. Nisan. Crew prams and decision trees. SIAM Journal of Computing, 20(6):999{

1007, 1991.

[NS94] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials.

Computational Complexity, 4(4):301{313, 1994.

[NW99] Ashwin Nayak and Felix Wu. On the quantum black-box complexity of approximat-

ing the mean and related statistics. In Proceedings of the 21th Annual ACM Sym-

posium on Theory of Computing (STOC 99), 1999. Also available at Los Alamos

archive, quant-ph/9804066.

[Pap94] C. H. Papadimitriou. Complexity theory, 1994.

[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric boolean func-

tions (preliminary version). In Proceedings of the 24th Annual ACM Symposium on

Theory of Computing, pages 468{474, 1992.

[Pra75] Vaughan R. Pratt. Every prime has a succinct certi�cate. SIAM Journal on Com-

puting, 4(3):214{220, 1975.

[RB98] Martin R�otteler and Thomas Beth. Polynomial-time solution to the hidden subgroup

problem for a class of non-abelian groups. quant-ph 9812070, 1998.

[RC66] T. J. Rivlin and E. W. Cheney. A comparison of uniform approximations on an

interval and a �nite subset thereof. SIAM Journal of Numerical Analysis, 3(2):311{

320, 1966.

[Rog87] Hartley Rogers. Theory of Recursive Functions and E�ective Computability. MIT

Press, 1987.

BIBLIOGRAPHY 160

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Communications of the ACM, 21:120{126,

1978.

[Sch98] R. Schack. Using a quantum computer to investigate quantum chaos. Physical Review

A, 57:1634{1635, 1998.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-

toring. In Sha� Goldwasser, editor, Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, pages 124{134. IEEE Computer Society Press,

November 1994. available at feynman.stanford.edu/qcomp/shor/index.html.

[Sho95a] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical

Review A, 52, 1995.

[Sho95b] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. On the quant-ph archive, report no. 9508027.,

August 1995. Expanded version of [Sho94].

[Sho96] P. W. Shor. Fault tolerant quantum computation. In Proceedings of the 37th Annual

Symposium on Foundations of Computer Science, pages 56{65, Los Alamositos, CA,

1996. IEEE Computer Society Press.

[Sim94] Daniel R. Simon. On the power of quantum computation. In Sha� Goldwasser, ed-

itor, Proceedings of the 35th Annual Symposium on Foundations of Computer Sci-

ence, pages 116{123. IEEE Computer Society Press, November 1994. available at

feynman.stanford.edu/qcomp/simon/index.html.

[Sol99] R. Solovay. Lie groups and quantum circuits, 1999. preprint.

[Ste96] A. M. Steane. Error correcting codes in quantum theory. Physical Review Letters,

77:793{797, 1996.

[Ste97] A. M. Steane. Active stabilisation, quantum computation, and quantum state syn-

thesis. Physical Review Letters, 78:2252{2255, 1997.

[SV98] Leonard J. Schulman and Umesh Vazirani. Scalable nmr quantum computation.

Technical Report 9804060, Los Alamos archive, 1998.

[Tap98] Alain Tapp, 1998. Personal communication.

[THL

+

96] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement

of conditional phase shifts for quantum logic. Physical Review Letters, 76:3108, 1996.

BIBLIOGRAPHY 161

[Vaz97] Umesh Vazirani, 1997. UC Berkeley Course CS294-2 Quantum Computation Fall

1997.

[vDDE

+

99] Wim van Dam, Mauro D'Ariano, Artur Ekert, Chiara Macchiavello, and Michele

Mosca. Estimation of local phase shifts on a quantum computer, 1999. in preparation.

[Wel88] Dominic Welsh. Codes and Cryptography. Oxford University Press, Oxford, 1988.

[Yao93] Andrew Chi-Chih Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE

Symposium on Foundations of Computer Science, pages 352{361, Los Alamitos,

California, 1993. Institute of Electrical and Electronic Engineers Computer Society

Press. available at feynman.stanford.edu/qcomp/yao/index.html.

[Zal98] Christof Zalka. Fast versions of shor's quantum factoring algorithm. Technical Report

9806084, Los Alamos archive, 1998.

[Zal99] Christof Zalka. preprint, 1999.

