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Abstract. Finite words and their overlap properties are considered in
this paper. Let w be a finite word of length n with period p and where
the maximal length of its unbordered factors equals k. A word is called
unbordered if it possesses no nonempty proper prefix which is also a
suffix of that word. Suppose k < p in w. It is known that n ≤ 2k − 2 if
w has an unbordered prefix u of length k. We show that if n = 2k − 2,
then u ends in abi, with two different letters a and b and i ≥ 1, and bi

occurs exactly once in w. This answers a conjecture by Harju and the
second author of this paper about a structural property of maximal Duval
extensions. Moreover, we show here that i < k/3, which in turn leads us
to the solution of a special case of a problem raised by Ehrenfeucht and
Silberger in 1979.

1 Introduction

Overlaps are one of the central combinatorial properties of words. Despite the
simplicity of this concept, its nature is very complex. For example, the problem
raised by Ehrenfeucht and Silberger [5] in 1979 on the relation between the period
of a word, measuring the self-overlap of a word, and the lengths of its unbordered
factors, representing the absence of overlaps, has been solved only recently in [11].
The focus of this paper is on the investigation of such questions. In particular,
we consider so called Duval extensions by solving a conjecture [6, 4] about the
structure of maximum Duval extensions.

When repetitions in words are considered then two notions are central: the
period, which gives the least amount by which a word has to be shifted in order to
overlap with itself, and the shortest border, which denotes the least (nonempty)
overlap of a word with itself. Both notions are related in several ways, for example,
the length of the shortest border of a word w is not larger than the period of w;
it follows that the period of an unbordered word is its length since the shortest
border of an unbordered word is the word itself; moreover, a shortest border is
always unbordered, since its border is also a border of the original word. Deeper
dependencies between the period of a word and its unbordered factors have been
investigated for decades; see also the references to related work below.



Let a word w be called a Duval extension of u if w = uv such that u is
unbordered and for every unbordered factor x of w the inequality |x| ≤ |u| holds,
where | · | denotes the length of the word. Let π(w) denote the smallest period of
a word w. A Duval extension is called nontrivial if |u| < π(w). It is known that
|v| ≤ |u| − 2 for any nontrivial Duval extension uv [8–10]. This bound is tight,
that is, Duval extensions with |v| = |u| − 2 exist. Let those be called maximal
Duval extensions. An example of maximal Duval extension yield the words

u = baababaaa, v = babaaba.

The following conjecture has been raised in [6]; see also [4].

Conjecture 1. Let uv be a maximal Duval extension of u = u′abi where i ≥ 1
and a and b are different letters. Then bi occurs only once in uv.

This conjecture is answered positively by Theorem 4 in this paper. Moreover, we
show that i < |u|/3 in Theorem 5 which leads us to the result that a word z with
unbordered factors of length at most k and π(z) > k that contains a maximal
Duval extension uv with |u| = k is of length at most 7k/3 − 2. This gives an
alternative proof for a special case of a conjecture in [5, 1], proved recently in
[11].

Previous Work. In 1979 Ehrenfeucht and Silberger [5] raised the problem about
the maximal length of a word w, w.r.t. the length k of its longest unbordered
factor, such that k is shorter than the period π(w) of w. They conjectured that
|w| ≥ 2k implies k = π(w) where |w| denotes the length of w. That conjecture
was falsified shortly thereafter by Assous and Pouzet [1] by the following example:

w = anban+1banban+2banban+1ban

where n ≥ 1 and k = 3n + 6 and π(w) = 4n + 7 and |w| = 7n + 10, that is,
k < π(w) and |w| = 7k/3 − 4 > 2k. Assous and Pouzet in turn conjectured
that 3k is the bound on the length of w for establishing k = π(w). Duval [3]
did the next step towards solving the problem. He established that |w| ≥ 4k − 6
implies k = π(w) and conjectures that, if w possesses an unbordered prefix of
length k, then |w| ≥ 2k implies k = π(w). Note that a positive answer to Duval’s
conjecture yields the bound 3k for the general question. Despite some partial
results [12, 4, 7] towards a solution, Duval’s conjecture was only solved in 2004 [8,
9] with a new proof given in [10]. The proof of (the extended version of) Duval’s
conjecture lowered the bound for Ehrenfeucht and Silberger’s problem to 3k−2 as
conjectured by Assous and Pouzet [1]. As already mentioned above, the optimal
bound of 7k/3 has been recently proved in [11].

2 Notation and Basic Facts

Let us fix a finite set A, called alphabet, of letters. Let A∗ denote the monoid
of all finite words over A including the empty word denoted by ε. In general, we



denote variables over A by a, b, c, d and e and variables over A∗ are ususally
denoted by f , g, h, r through z, and α, β, and γ including their subscripted and
primed versions. The letters i through q are to range over the set of nonnegative
integers.

Let w = a1a2 · · · an. The word anan−1 · · · a1 is called the reversal of w denoted
by w. We denote the length n of w by |w|, in particular |ε| = 0. If w is not empty,
then let •w = a2 · · · an−1an and w• = a1a2 · · · an−1. We define •ε = ε• = ε. Let
0 ≤ i ≤ n. Then u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w, and
v = ai+1ai+2 · · · an is called a suffix of w, denoted by v ≤s w. A prefix or suffix
is called proper when 0 < i < n. Any word u such that w = sur is called a factor
of w. We shall also say, less formally, that u occurs in w, or that w contains u.
An integer 1 ≤ p ≤ n is a period of w if ai = ai+p for all 1 ≤ i ≤ n − p. The
smallest period of w is called the period of w, denoted by π(w). A nonempty
word u is called a border of a word w, if w = uy = zu for some words y and z.
We call w bordered, if it has a border that is shorter than w, otherwise w is called
unbordered.

Example 1. Consider the word u = ababbababbabab. One of its borders is y =
ababbabab, which is longer than |u|/2. This means that the prefix y and the suffix
y overlap in u. The overlap z = abab is therefore a border of y, and consequently
also of u. Finally, ab is a border of z. It is already unbordered, whence it is the
shortest border of u (as well as of y, of z, and of itself).

a b a b b a b a b b a b a b

z zz

y y

Using the previous example it is not difficult to note that every bordered word w
has a minimal border u such that w = uvu, where u is unbordered.

Let C be a total order on A. Then C extends to a lexicographic order, also
denoted by C, on A∗ with u C v if either u ≤p v or xa ≤p u and xb ≤p v and
a C b. Let C denote a lexicographic order on the reversals, that is, u C v if u C v.
Let Ca and Cb and Ca

b denote lexicographic orders where the maximal letter or
the minimal letter or both are fixed in the respective orders on A. We establish
the following convention for the rest of this paper: in the context of a given order
C on A, we denote the inverse order of C by J. A C-maximal prefix (suffix ) α
of a word w is defined as a prefix (suffix) of w such that v C α (v C α) for all
v ≤p w (v ≤s w). When it causes no confusion, especially when we consider an
arbitrary order, we shall simply speak about maximal suffix or maximal prefix.

The notions of maximal pre- and suffix are symmetric. It is general practice
that facts involving the maximal ends of words are mostly formulated for maximal
suffixes. The analogue version involving maximal prefixes is tacitly assumed.

Remark 1. Any maximal suffix of a word w is longer than |w| − π(w) and occurs
only once in w.



Indeed, if u = xαy, then y = ε since otherwise α C αy yields a contradiction
with the maximality of α. Therefore α occurs only once in w. If |α| ≤ |w| − π(w),
then we can write w = uvα with |v| = π(w). Then α is a proper prefix of vα and
w = uαv′ gives a contradiction again.

Let an integer q with 0 ≤ q < |w| be called point in w. A nonempty word
x is called a repetition word at point q if w = uv with |u| = q and there exist
words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length
of the shortest repetition word at point q in w. We call π(w, q) the local period
at point q in w. Note that the repetition word of length π(w, q) at point q is
necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with u, v 6= ε
and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then q is called
a critical point.

Let C be an order on A. Then the shorter of the C-maximal suffix and the
J-maximal suffix of some word w is called a critical suffix of w (with respect to
C). Similarly, we define a critical prefix of w by the shorter of the two maximal
prefixes resulting from some order and its inverse. This notation is justified by
the following formulation of the so called critical factorization theorem (CFT) [2]
which relates maximal suffixes and critical points.

Theorem 1 (CFT). Let w ∈ A∗ be a nonempty word and γ be a critical suffix
of w. Then |w| − |γ| is a critical point.

Example 2. Consider the word w = ababbababa We have π(w) = 7. The Ca-
maximal suffix of w is α = ababa, and its Cb-maximal suffix is β = bbababa. By
CFT, the critical point is |w| − |α| = 5. Indeed, we have the following list of local
periods:

q 0 1 2 3 4 5 6 7 8 9

π(w, q) 1 2 2 5 1 7 2 2 2 2

For example, the repetition word at point 3 is bbaba, and at the critical point 5
it is abababb.

a b a b b a b a b a

Let uv be a Duval extension of u if u is an unbordered word and every factor
in uv longer than |u| is bordered. A Duval extension uv of u is called trivial if
v ≤p u. The following fact was conjectured in [3] and proven in [8–10].

Theorem 2. Let uv be a nontrivial Duval extension of u. Then |v| ≤ |u| − 2.

Following Theorem 2 let a maximal Duval extension of u be a nontrivial Duval
extension uv with |v| = |u| − 2. This length constraint on v will often tacitly be
used in the rest of this paper.

Let wuv be an Ehrenfeucht-Silberger extension of u if both uv and wu are
Duval extensions of u and u, respectively. It is called trivial if both extensions



are trivial, that is, if π(wuv) = |u|. The words uv and wu are called the Duval
extensions corresponding to the Ehrenfeucht-Silberger extension of u.

Ehrenfeucht and Silberger were the first to investigate the bound on the
length of a word w, w.r.t. the length k of its longest unbordered factors, such
that k < π(w). The asymptotically precise bound has been given recently in [11],
where the following theorem is proven.

Theorem 3. Let wuv be a nontrivial Ehrenfeucht-Silberger extension of u. Then
|wv| ≤ 4/3 |u| − 7/3.

3 Periods and Maximal Suffixes

Note the following simple but noteworthy fact.

Lemma 1. Let u be an unbordered word, and let v be such that u does not occur
in v. Let α be a maximal suffix of u. Then any prefix wα of uv is unbordered.

Proof. Note that u occurs only once in uv since it is unbordered and not oc-
curring in v. Suppose that wα has the shortest border h 6= w. Then |h| < |u|,
otherwise u ≤p h, and u occurs twice in w. If |h| < |α|, then |h| is a border
of u, a contradiction. If, on the other hand, |h| ≥ |α|, then α occurs twice in u,
a contradiction with Remark 1. ut

This implies immediately the following version of Lemma 1 for Duval extensions
which will be used frequently further below.

Lemma 2. Let uv be a nontrivial Duval extension of u, and let α be the C-
maximal suffix of u. Then uv contains just one occurrence of α.

The next lemma highlights an interesting fact about borders involving maximal
suffixes. It will mostly be used on maximal prefixes of words, the dual to maximal
suffixes, in later proofs. However, it is general practice to reason about ordered
factors of words by formulating facts about suffixes rather than prefixes. Both
ways are of course equivalent. We have chosen to follow general practice here
despite its use on prefixes later in this paper.

Lemma 3. Let αa be the C-maximal suffix of a word wa where a is a letter.
Let u be a word such that αa is a prefix of u and wb is a suffix of u, with b 6= a
and b C a. Then u is either unbordered or its shortest border has length at least
|w|+ 2.

Proof. Suppose that u has a shortest border hb. If |h| < |α| then hb ≤p α and
h ≤s α and hb C ha contradict the maximality of αa. Note that |h| 6= |α| since
a 6= b. If |α| < |h| ≤ |w| then αa ≤p h, and hence, αa occurs in w contradicting
the maximality of αa again; see Remark 1. Hence, |hb| ≥ |w|+ 2. ut

The next lemma is taken from a result in [7] about so called minimal Duval
extensions. However, the shorter argument given here (including the use of
Lemma 3) gives a more concise proof than the one in [7].



Lemma 4. Let uv be a nontrivial Duval extension of u where u = xazb and
xc ≤p v and a 6= c. Then bxc occurs in u.

Proof. Let ya be the Ca-maximal suffix of xa. Consider the factor yazbxc of uv
which is longer than u and therefore bordered with a shortest border r. Lemma 3
implies that |r| > |xc|, and hence, bxc ≤s r occurs in u. ut

4 Some Facts about Certain Suffixes of a Word

This section is devoted to the foundational proof technique used in the remainder
of this paper. The main idea is highlighted in Lemma 5 which identifies a certain
unbordered factor of a word.

Lemma 5. Let α be the C-maximal suffix and β be the J-maximal suffix of
a word u, and let v be such that neither α nor β occur in uv more than once.
Let a be the last letter of v and b be the first letter of x where x ≤s αv

• and
|x| = π(αv•).

If π(αv) > π(αv•), then αv is unbordered, in case a C b, and βv is unbordered,
in case b C a.

Proof. Let αv• = γx. Since |x| = π(αv•), we have γ ≤s γx. From the assumption
that α occurs in αv• just once now follows the inequality |γ| < |α|. We have
α = γbα′ and αv = v′γa. Note that the inequality π(αv) > π(αv•) means a 6= b.

Suppose that a C b. We claim that αv is unbordered in this case. Suppose
the contrary, and let αv have a shortest border ha. Then |h| < |γ| otherwise
either a = b, if |h| = |γ|, or |x| is not the smallest period of αv•, if |h| > |γ|;
a contradiction in both cases. But now α C hbα′ since ha ≤p α and a C b
contradicting the maximality of α because hbα′ ≤s α.

Suppose that b C a. In this case the word βv is unbordered. To see this
suppose that βv has a shortest border ha. The assumption that uv contains
just one occurrence of the maximal suffixes implies that ha is a proper prefix
of β. If |h| ≥ |γ| then γa occurs in u contradicting the maximality of α since
γb ≤p α C γa. But now ha ≤p β J hbα′ (since b C a) contradicting the
maximality of β. ut

Proposition 1. Let uv be a nontrivial Duval extension of u, and let α be a crit-
ical suffix w.r.t. an order C. Then |v| < π(αv) ≤ |u|.

Proof. If |v| ≥ π(αv) then α occurs twice in αv contradicting Lemma 2. Sup-
pose that π(αv) > |u|, and let z be the shortest prefix of v such that already
π(αz) > |u|. Then π(αz) > π(αz•), and Lemma 5 implies that either αz or βz is
unbordered, where β is the J-maximal suffix of u. This contradicts the assump-
tion that uv is a Duval extension, since both the candidates are longer than u,
which follows from |βz| > |αz| ≥ π(αz) > |u|. ut



5 About Maximal Duval Extensions

In this section we consider the general results of the previous section for the
special case of Duval extensions which leads to the main results, Theorem 4
and 5. Theorem 4 confirms a conjecture in [6].

The following definition is justified by the intuition that unbordered factors
are somehow connected to places where the period changes.

Definition 1. Let uv be a Duval extension of u. The suffix s of uv is called a
trivial suffix if π(s) = |u| and s is of maximal length.

Note that s = uv, if uv is a trivial Duval extension, and as ≤s uv with π(as) > |u|,
if uv is a nontrivial Duval extension. Moreover, Proposition 1 implies that
|s| ≥ |αv| where α is any critical suffix of u.

Let us first illustrate the main technique we shall use. Let uv be an extension
of u. There is a standard way how to detect a factor suspicious of being long
and unbordered. Let u = u′awx and v = v′bw, where |xv′bw| = |u|. Observe that
the factorizations are chosen in order to indicate the trivial suffix of uv, namely
wxv′bw. Let bt be the C-maximal prefix of bw, where a C b. The suspicious word
is now awxv′bt. It can be bordered but its shortest border has to be relatively
long. We give the following example.

Example 3. Let u = abaabababb and v = aabababa. Then uv is a maximal
Duval extension of u. Our technique detects the factor aabababbaababab, which
is bordered and its shortest border is aababab.

a b a a b a b a b b a a b a b a b aa b

w w

btawxv′bt

|u|

We can begin with considerations about the periods of suffixes of maximal
Duval extensions.

Lemma 6. Let uv be a maximal Duval extension of u, and let C be an order
such that the C-maximal suffix α is critical. Then π(αv) = |u|.

Proof. It follows from Proposition 1 that |u| − 1 ≤ π(αv) ≤ |u| since |v| = |u| − 2.
Suppose π(αv) = |u| − 1. Let wα be the longest suffix of u such that π(wαv) =
|u| − 1. We have wα 6= u since u is unbordered. We can write wαv = wαv′wα•,
where v′ is a prefix of v such that |wαv′| = |u|− 1. The maximality of wα implies
that awα is a suffix of u, and bwα• is a suffix of αv, with a 6= b.

Choose a letter c in wα• such that c 6= a. Such a letter exists for otherwise
awα• ∈ a+ and α is just a letter, different from a. But this implies u ∈ a+α and
v 6∈ a+ for uv to be nontrivial, that is, v′d ≤p v with d 6= a; a contradiction since
uv′d is unbordered in this case.



Consider the Cc
-maximal prefix of bwα• denoted by bt. Note that |t| ≥ 1.

We claim that awαv′t is unbordered. Suppose the contrary, and let r be the
shortest border of awαv′t. By Lemma 3 applied to the reversal of awαv′t, the
border r is longer than bwα•. Hence, r contains α contradicting Lemma 2. Since
|wαv′| = |u| − 1 and |t| ≥ 1, the unbordered factor awαv′t is longer than u;
a contradiction. ut

Lemma 7. Let uv be a maximal Duval extension of u, let a be the last letter
of u, and let xv be the trivial suffix of uv. Then |α| ≤ |x| for the Ca-maximal
suffix α of any order Ca.

Proof. Suppose on the contrary that |α| > |x| which implies that the Ja-maximal
suffix β is critical and β ≤s x by Lemma 6. Since uv is nontrivial, we can write
u = u′cwba and v = v′dw where wba = x, where a and b are letters, not
necessarily distinct.

Consider the maximal prefix t of dw with respect to any order Cd
. Note that

d ≤s t. The word cwbav′t is longer than u, therefore it is bordered. Let r be its
shortest border. By Lemma 3, we have |cw| < |r|. Lemma 2 implies that r = cwb,
and we have d = b since d ≤s t. We deduce that |t| < |bw| since otherwise t =
bw = wb which implies |u| = π(xv) = π(wbav′bw) = π(bwav′bw) ≤ |v|+ 1 < |u|;
a contradiction. Hence, te ≤p bw for some letter e 6= b. Moreover, e 6= a since
β• ≤s r and β does occur only once in βv by Lemma 2.

Consider the factor αv′te which is longer than u, and hence, bordered. Let s
be the shortest border of αv′te. The word s is a proper suffix of α by Lemma 2.
Then also |s| < |β| otherwise β•e ≤s s contradicting the maximality of β since
β = β•a Ja β•e. Let s = β′e where β′ ≤s β

•. But then β′e ≤p α Ca β′a and
β′a ≤s u contradicting the maximality of α. ut

Lemma 8. Let uv be a maximal Duval extension of u = u′ab where a and b are
letters. Then a occurs in u′.

Proof. Suppose on the contrary that a does not occur in u′. The letter b occurs
in u′ by Lemma 4. We can therefore assume that a 6= b. Let c be the first letter
of u. Clearly, c is different from both a and b.

Let γ be the critical suffix of u with respect ot some order Cb
c. It is easy to

see that |γ| > 2.
Lemma 6 implies π(γv) = |u|. Let wγv be the trivial suffix of uv. We have

that u 6= wγ since uv is a nontrivial Duval extension of u. Therefore, we can write
u = u′dwγ and v = v′ewγ•• where d and e are different letters and |wγv′e| = |u|.
We deduce that e occurs in u•• = u′ since otherwise uv′e is unbordered. Consider
an order Ce and let t be the Ce

-maximal prefix of ewγ••.
The word dwγv′t is longer than u, therefore it is bordered. Let r be its shortest

border. By Lemma 3, we have |dwγ|−2 < |r|. Lemma 2 implies that |r| is exactly
|dwγ| − 1, whence r = dwγ•. Clearly, the letter e is a suffix of t, and thus also
of r, which implies that e = a. This is a contradiction since e occurs in u′. ut

The following example shows that the requirement of a maximal Duval
extension cannot be omitted in Lemma 8.



Example 4. Let a, b, and c be different letters, and consider u = cibci+jbab and
v = ci+jbci−1 with i, j ≥ 1. Then u · v = cibci+jbab · ci+jbci is a nontrivial Duval
extension of length 2|u| − 4 such that a occurs only in the second last position
of u.

The next lemma highlights a relation between the trivial suffix of a maximal
Duval extension uv and the set alph(u) of all letters occuring in u.

Lemma 9. Let uv be a maximal Duval extension of u and wxw be the trivial
suffix of uv where |wx| = |u|. Then either alph(w) = alph(u) or there exists
a letter b such that alph(w) = alph(u) \ {b} and u = u′bb and bb does not occur
in u′.

Proof. Suppose that |alph(w)| < |alph(u)| and b ∈ alph(u) \ alph(w).
Let btwac ≤s u where a, b, c ∈ alph(u) and b does not occur in tw. Consider

btwxw which is longer than u and therefore has to be bordered. Let r be the
shortest border of btwxw. Certainly, |w| < |r| since b ≤p r and b 6∈ alph(w).
Moreover, btw ≤p r implies π(btwxw) ≤ |u| contradicting the maximality of
wxw. We conclude that |w| < |r| < |btw|.

Suppose a 6= b. Let v = v′r and consider the factor twacv′b which has to be
bordered since |twacv′b| = |twacv| − |r|+ 1 > |acv| = |u|. Let s be the shortest
border of twacv′b. We have |s| > |twa| because b is a suffix of s and does not
occur in tw and a 6= b by assumption. But now, twac ≤p s contradicting Lemma 2
since wac contains a maximal suffix of u by Lemma 6.

Suppose next that a = b and c 6= b. Consider an order Cb
c and let β be the

Cb
c-maximal suffix of u. We deduce that |β| > |wbc| since w does not contain b

and bc Cb
c btwac. By Lemma 6, the Jb

c-maximal suffix α of u is a suffix of wbc.
Moreover, |α| > 2 since c occurs in u• by Lemma 4. We have that α•• ≤s w ≤s r.
From |r| < |btw| and r ≤p btw follows that α••d occurs in btw, where d is a letter
in tw, and therefore d 6= b. But this contradicts the maximality of α since b Jb

c d
implies α = α••bc Jb

c α
••d.

Hence bb is a suffix of u. Suppose that bb occurs in u and consider an order
Cb. Certainly, the Cb-maximal suffix of u is longer than wbb and therefore the
Jb-maximal suffix α of u is critical. By Lemma 6, the word α is a suffix of wbb
and |α| > 2. As above, we deduce that α••d is a factor of btw, with b Jb d; a
contradiction with the maximality of α. ut

The next two results, Lemma 10 and 11, constitute a case split of the proof
of Theorem 4. Namely, the cases when exactly two or more than two letters occur
in a maximal Duval extension.

Lemma 10. Let uv be a maximal Duval extension of u = u′abi where i ≥ 1 and
|alph(u)| > 2 and a 6= b. Then u′ does not contain the factor bi.

Proof. Suppose, contrary to the claim, that bi occurs in u′. Consider the trivial
suffix wcbv′dw of uv where |cbv′dw| = |u| and c ∈ {a, b}. Since |u| > |wcb|, we
can write u = u′ewcb, where d 6= e. Lemma 9 yields alph(w) = alph(u). Choose a

letter f in dw such that f 6= e and f 6= c. Let dt be the Cf
e -maximal prefix of dw



for some order Cf
e . The word ewcbv′dt is longer than u, therefore it is bordered.

Let r be its shortest border. By Lemma 3, we have |dw| < |r|. Lemma 2 implies
that |r| is exactly |dwc|, and hence, r = ewc. Clearly, the letter f is a suffix of t,
and thus also of r, which implies that f = c; a contradiction. ut

Lemma 11. Let uv be a maximal Duval extension of u = u′abi over a binary
alphabet where i ≥ 1 and a 6= b. Then u′ does not contain the factor bi and
awbb ≤s u and v = v′bw where wbbv is the trivial suffix of uv.

Proof. Let s be the trivial suffix of uv, and let u = u0cwdb and v = v′ew where
wdbv′ew = s and c 6= e. Let C be the order defined by a C b.

Suppose c = b and e = a. Let at be the J-maximal prefix of aw. Consider
the factor bwdbv′at which is longer than |u| and hence bordered. Let r be its
shortest border. Lema 3 implies that |bw| < |r|. Lemma 2 implies that r = bwd,
in fact, r = bwa since a ≤s t. We deduce |t| < |w|, otherwise t = w and
r = bwa = baw = ba|w|+1 contradicting Lemma 9. Therefore atb ≤p aw by the
maximality of at. But now rb = bwab is a sufix of v′atb, and hence, the critical
suffix of u occurs in v by Lemma 6 contradicting Lemma 2.

It remains that c = a and e = b. Consider the C-maximal suffix β of u.
Suppose contrary to the claim that bi occurs in u′. Then bja ≤p β for some j ≥ i.

Let bt be the C-maximal prefix of bw. Similarly to the reasoning above, we
consider the factor awdbv′bt and conlude that it has the border r = awb and
d = b and bta ≤p bw. Lemma 7 implies that β ≤s wbb. Note that bj is a power of
b in u of maximal length and occurs in w by assumption, and hence, bj ≤s t. But
now, bj ≤s r and bj+1 ≤s u; a contradiction. ut

The main result follows directly from the previous two lemmas.

Theorem 4. Let uv be a maximal Duval extension of u = u′abi where i ≥ 1 and
a 6= b. Then bi occurs only once in uv.

Indeed, bi does not occur in u′ by Lemma 10 and 11. If bi occurs in bi−1v, that
is, bi−1v = v′′biv′, then u′abv′′bi is unbordered; a contradiction.

In the rest of the paper we investigate relation between our result and
Ehrenfeucht-Silberger extensions.

Theorem 5. Let uv be a maximal Duval extension of u = u′abi where i ≥ 1 and
a 6= b. Then 3i ≤ |u|.

Proof. It is an exercise to show that unbordered words of length at most 5 have
no maximal Duval extensions. The shortest possible maximal Duval extension of
a word u is of the form uv with u = abaabb and v = aaba. This proves the claim
for i ≤ 2. Assume i > 2 in the following.

Let cbk ≤s v with c 6= b. First, note that i− 2 ≤ k ≤ i− 1; the first inequality
follows from Lemma 2, the second from Lemma 6. Consider the shortest border
h of uv. Then |h| < |u| − 2 since u is unbordered and uv is a nontrivial extension.



Let h = gbk, and let j be the maximal integer such that gbj ≤p u. Clearly,
i− 2 ≤ j ≤ i− 1 since bi occurs only as a suffix of u. Let u = gbjfbi. Note that

b 6∈ {pref1(g),pref1(f), suff1(g), suff1(f)} . (1)

We show that bk occurs in g or f . Suppose the contrary, that is, neither g nor f
contains bk. Consider the shortest border x of fbiv. We have |x| < |fbi|, since bi

does not occur in v. Property (1) and the assumption that bk does not occur in
f imply that x = fbk. Let v = v′fbk. Consider the shortest border y of bjfbiv′f .
Again, we have |y| < |bjfbi| since bi does not occur in v, and property (1) implies
that y = bjf . Since |bjfbk| ≤ |gbjfbi| − 2, we can write v = v′′bjfbk. Finally,
consider the shortest border z of uv′′bj . Property (1) and the assumption that
bk does not occur in g or f impliy that either z = gbj or z = gbjfbj . The former
implies that uv = gbjfbigbjfbk is a trivial Duval extension, and the latter implies
that |u| < |v|; a contradiction in both cases.

We conclude that bk occurs in g or f . Let u = u1b
mu2b

nu3b
i where u1, u2, and

u3 are not empty and neither begin nor end with b and i− 2 ≤ k ≤ m,n ≤ i− 1.
The claim is proven if |u1u2u3| > 3 or m = i − 1 or n = i − 1. Suppose the
contrary, that is, let u = c1b

i−2c2b
i−2c3b

i, where c1, c2 and c3 are letters. From
i− 2 ≤ k ≤ j ≤ m we deduce k = i− 2.

Let us now consider the shape of v. Let v′cb`d be a prefix of v where c 6= b and
d 6= b. Since the factor bi−2c2b

i−2c3b
iv′cb`d of uv has to be bordered, we conclude

that ` ≥ i− 2, in particular ` 6= 0. Lemma 2 implies ` ≤ i− 1. From |v| = |u| − 2
we now deduce that v = d1b

i−2d2b
i−2d3b

i−2 for some letters d1, d2 and d3 distinct
from b. Since c1b

i−2c2b
i−2c3b

id1 has to be bordered, we obtain c1 = d1. Similarly,
from c3b

id1b
i−2d2b

i−2d3 we deduce c3 = d3. Since uv is a nontrivial extension, we
have c2 6= d2. Considering possible borders of the word c1b

i−2c2b
i−2c3b

id1b
i−2d2

we obtain c1 = d2, and similarly, from c2b
i−2c3b

id1b
i−2di−22 d3 we deduce c2 = d3.

The word c2b
i−2c3b

id1b
i−2d2 is now unbordered; the final contradiction. ut

Corollary 1. Let w be a nontrivial Ehrenfeucht-Silberger extension of u such
that one of its corresponding Duval extensions is of maximal length. Then |w| <
7/3 |u| − 2.

Proof. Let w = xuv and suppose, by symmetry, that uv is a maximal Duval
extension of u. Suppose that |w| ≥ 7/3 |u|−2, which is equivalent to |x| ≥ |u|/3 ≥
i, where abi ≤s u with a 6= b.

If ebj ≤s x with j < i and e 6= b, then ebju is unbordered; a contradiction.
Therefore bi ≤s x, and Theorem 4 implies that the word biub−i is unbordered.
Since w is an Ehrenfeucht-Silberger extension of u, the word biuv is a Duval
extension of biub−i. The extension must be trivial, since it is too long.

If i = 1, then u = a|u|−1b, by Theorem 4, and it is an easy exercise to show
that such a word has only trivial Ehrenfeucht-Silberger extensions.

Let i ≥ 2. By Theorem 4, the word bi is a critical suffix of u, which implies
that z = bivb−i+2 is unborderd. The word z · xub−1 is a Duval extension of z,
and it must be trivial, again because it is too long.

Therefore xuv has period |u| and it is a trivial Ehrenfeucht-Silberger extension
of u. ut



We conclude with the following example, taken from [1].

Example 5. Consider the following word xuv where we separate the factors x, u,
and v for better readability

x · u · v = bi−2 · abi−1abi−2abi · abi−2abi−1abi−2

where i > 2. The largest unbordered factors of xuv are of length 3i, namely
the factors u = abi−1abi−2abi and biabi−2abi−1a, and π(xuv) = 4i − 1, and
hence, xuv is a nontrivial Ehrenfeucht-Silberger extension of u. Note that uv is
a maximal Duval extension. We have |xuv| = 7i− 4 = 7/3 |u| − 4.

6 Conclusions

At the outset, the goal of our investigations was to find the solution of Conjec-
ture 1. On the way of getting there we had to investigate a number of properties
of unbordered factors which, we think, are of interest on their own. Although the
Ehrenfeucht-Silberger problem has been solved in full generality in [11], the in-
sights gained on the work on Conjecture 1 yield an alternative and straightforward
proof for an interesting subcase.

Since all apparent conjectures around unbordered factors and their relation to
periodicity have been solved, there are no clear questions left for now. However,
that does not diminish the importance of and the interest in the investigation
of the word structure of large Duval and Ehrenfeucht-Silberger extensions. Sub-
stantial progress in this field would certainly lead to new insights in periodicity
questions of words in general.
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10. Š. Holub. A proof of the extended Duval’s conjecture. Theoret. Comput. Sci.,
339(1):61–67, 2005.
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