
Lo
al and global 
y
li
ity in free semigroups�St�ep�an HolubDepartment of mathemati
s, Charles University, Sokolovsk�a 83, 186 75 PrahaAbstra
tIt is shown that the system of equations f(xr1 : : : xrn)s = (xs1 : : : xsn)r j r; s 2 Ngis equivalent to its two-element subset f(xa1 : : : xan)b = (xb1 : : :xbn)a; (xa1 : : :xan)
 =(x
1 : : : x
n)ag, whenever a; b; 
 are integers su
h that 1 < a < b < 
. The resultimplies that the language L = fxk1 : : :xkn j k 2 Ng has a three-element test setT = fxk1 : : : xkn j k = a; a+ 1; a+ 2g, with an integer a > 1.Introdu
tionEhrenfeu
ht's Conje
ture, proved in [2℄, states that every in�nite system ofequations in free monoids, with �nitely many unknowns, has an equivalent�nite subset. The most simple example is a system of non-trivial equations intwo unknowns, equivalent to any of its elements, a 
onsequen
e of the Defe
tTheorem (see e.g. [5℄).Clearly the system f(xr1 : : : xrn)s = (xs1 : : : xsn)r j r; s 2 Ng (1)is equivalent to its (in�nite) subsetf(x1 : : : xn)r = xr1 : : : xrn j r 2 Ng: (2)We 
onsider the system (1) to express our result in its most general form. Itis not diÆ
ult to see that both systems have only 
y
li
 solutions. Thereforea subset of (1) is equivalent to the whole system if and only if it for
es the1 Partially supported by the University Development Fund of Cze
h Republi
, grant1379/1998Preprint submitted to Elsevier Preprint 9 May 2000




y
li
ity of the solution. For every exponent k 2 N there exist a number ofunknowns n su
h that the equation(x1 : : : xn)k = xk1 : : : xknhas a non-
y
li
 solution. Put, for example, n = 2k � 1 andxi = 8>>>>><>>>>>: A i = 2j; 1 � j � k � 1Ak�jBAj�1 i = 2j � 1; 1 � j � k;with some letters A, B. There exists also a non-
y
li
 solution (see [8℄) of theequation (x21 : : : x2n)3 = (x31 : : : x3n)2:On the other hand, it was shown (see [1℄) that the equation yn = xn1 : : : xnn hasonly 
y
li
 solutions. Espe
ially the 
y
li
ity of the solution is for
ed by thesingle equation (x1 : : : xn)k = xk1 : : : xkn (3)from the system (2), if k � n.In [6℄ it is shown that the system (2) is equivalent to its subset where r =2; 3; : : : dn=2e+ 1. In the same paper it is shown that if n = 3; 4 or 5 then thesystem (3) with k = 2; 3 for
es 
y
li
ity, and if n = 7 then (3) with k = 2; 3; 4does so. Interesting results regarding more general equational systems 
an befound in [9℄.All above results 
ould suggest that the size and/or the maximal exponentof an equivalent subsystem of (2) depends on the number of unknowns. In
ontrast to the expe
tation we prove that already the pair of equations(x21 : : : x2n)3=(x31 : : : x3n)2(x21 : : : x2n)4=(x41 : : : x4n)2is good enough for arbitrary n.A 
onsequen
e of the result for the existen
e of a test set is proved in theSe
tion 4. 8



1 Fa
tors, instan
es and equationsLet � be a �nite alphabet. Elements of � are 
alled letters and sequen
es ofletters are 
alled words. The sequen
e of length zero is 
alled the empty word.The set of all words (all non-empty words, resp.) is denoted by �� (�+, resp.).It is a monoid (semigroup, resp.) under the operation of 
on
atenation. Thelength of a word u will be denoted by juj. We say that a word u is a fa
tor ofa word v if and only if there exist words z, z0 2 �� su
h that v = zuz0. The setof all non-empty fa
tors of a word v we shall denote by F (v). A fa
tor u of aword v 
an o

ur in v in di�erent instan
es (ea
h of those determined by thelength of the word pre
eding u in v). The number of instan
es of a non-emptyword u in v will be denoted by f(u; v).By a 
y
li
 fa
tor of v we shall understand every fa
tor u of vv with juj � jvj.An instan
e of a 
y
li
 fa
tor will be sometimes 
alled a 
y
li
 instan
e of u,and it 
orresponds to an instan
e of u in vv that starts within the �rst 
opyof v. The set of all non-empty 
y
li
 fa
tors of v will be denoted by C(v).The number of 
y
li
 instan
es of a non-empty word u in v will be denotedby 
(u; v). If u is not a fa
tor (a 
y
li
 fa
tor resp.) of v, set f(u; v) = 0(
(u; v) = 0 resp.).We shall say that the word v is p-
y
li
 if and only if it is power of a word u,juj = p. Note that every word v is jvj-
y
li
.Let T be a �nite set of unknowns. Ea
h pair(e; e0) 2 T+ � T+we shall 
all an equation in unknowns from T . For a parti
ular equation weoften use the suggestive notation e = e0.We shall say that a morphism ' : T+ ! �+ is a solution of the system ofequations S � T+�T+ in the semigroup �+ if and only if for every (e; e0) 2 Sthe equality '(e) = '(e0) holds. Two systems of equations S, S0 are 
alledequivalent if and only if they have the same set of solutions.We shall say that a morphism ' : T+! �+ is length-preserving if and only ifj'(t)j = 1 for ea
h t 2 T (i.e. '[T ℄ � �).We shall say that a solution ' : T+ ! �+ is 
y
li
 if and only if there existsa word v 2 �+ su
h that '(x) is a power of v for every x 2 T .Now we introdu
e two easy lemmas that allow to 
ount the number of 
y
li
instan
es of given word in another word.Lemma 1.1 Let u; v; w 2 �+ be words su
h that w 2 F (v) and v 2 C(u).9



Suppose that every 
y
li
 instan
e of w in u is 
ontained in exa
tly one 
y
li
instan
e of v in u. Then 
(w; u) = f(w; v) � 
(v; u).Proof. Let W be the set of all 
y
li
 instan
es of w in u, and V the set of all
y
li
 instan
es of v in u. By assumptions, there exists a mapping ' :W ! Vthat maps an instan
e of w to the instan
e of v that 
ontains the instan
e ofw as a fa
tor. Every element of V is an image of exa
tly f(w; v) instan
es ofw. 2Lemma 1.2 Let u; v; w 2 �+ be words and k � 1 an integer su
h that
(w; u) = 1, w 2 F (v) and v 2 C(uk). Then 
(v; uk) = k.Proof. Cy
li
 shifts by ijuj elements, 1 � i � k, give exa
tly k di�erent
y
li
 instan
es of v in uk. Let us suppose, for 
ontradi
tion, that we havek + 1 di�erent 
y
li
 instan
es of v in uk. Then there are two di�erent 
y
li
instan
es of v, and thus also of w, starting within the same 
opy of u, a
ontradi
tion with 
(w; u) = 1. 2The following lemma is highly intuitive and is 
ru
ial for the method des
ribedin Se
tion 2.Lemma 1.3 Let  : T+ ! �+ be a length-preserving morphism, and v 2 T+,u 2 �+ words su
h that  (v) = u. Then for ea
h � 2 �+,
(�; u) = Xw2 �1(�) 
(w; v) = Xw2 �1(�)TC(v) 
(w; v):Proof. Every 
y
li
 instan
e of � in u determines a unique 
y
li
 instan
eof some w 2  �1(�) in v. On the other hand, every 
y
li
 instan
e of aw 2  �1(�) in v determines a unique 
y
li
 instan
e of  (w) = � in u. If theword w 2  �1(�) is not in C(v) then, by the de�nition, 
(w; v) = 0 and it 
anbe omitted. 2An important result in the elementary theory of words is the periodi
ity lemmaof Fine and Wilf (see [3℄). We shall use the following formulation of the lemma:Lemma 1.4 Assume u, v 2 �+ and let some their powers up, vq have a
ommon fa
tor of length jvj+ juj � d (d being the greatest 
ommon divisor ofjuj and jvj). Then both u and v are d-
y
li
.Next lemma is a dire
t 
onsequen
e of the above mentioned Defe
t Theoremand it allows us to restri
t ourselves to the equations with at least threeunknowns.Lemma 1.5 Every equation (e; e0) in two unknowns and with e 6= e0, has only
y
li
 solutions. 10



2 Quantitative equalitiesIn this se
tion we introdu
e the method that will yield in Se
tion 3 the mainresult of this paper. LetR be a non-empty �nite set of positive integers. Denoteby P the produ
t of all integers in R. For ea
h r 2 R, let �r = P=r. We shall
onsider the system of equations(xr1 : : : xrn)s = (xs1 : : : xsn)r; r; s 2 R: (4)For our purposes, however, it will be more 
onvenient to study an equivalentequational system (xr1 : : : xrn)�r = (xs1 : : : xsn)�s; r; s 2 R; (5)in whi
h all equations have the same length.Suppose we have an arbitrary, but �xed solution ' : X+ ! �+, X =fx1; : : : ; xng, of (5). Denote the word '(xi) by ui and the length of it bydi. Note that the word '((xr1 : : : xrn)�r) is independent of the 
hoi
e of r 2 R.Denote that word by uP .We shall 
onstru
t quantitative equalities 
onne
ted to the system (5), bymeans of Lemma 1.3. To do this, 
hoose a word � 2 C(uP ) and tra
e ba
k allits preimages in words (xr1 : : : xrn)�r, r 2 R. In order to 
lassify these preimagesa

ording to their stru
ture, we introdu
e a new alphabet Y 
onsisting of newletters yi;j, with 1 � i � n, 1 � j � di. Denote by �j the word yj;1 : : : yj;dj forevery j, 1 � j � n, and by zr the word (�r1 : : : �rn)�r. The system of equationszr = zs; r; s 2 R (6)
an be obtained from (5) substituting xi by �i, but note that it is a system ind unknowns, with d = Pni=1 di.The most natural thing to do now is to de�ne a morphism  : Y + ! �+ bythe equality  (�1 : : : �n) = u1 : : : un:Clearly the de�nition is 
orre
t,'(xi) = (�i); 1 � i � n;uP = (zr); r 2 R 11



holds and the morphism  is a length-preserving solution of (6). We 
an now
lassify preimages of � in  rather than in '. Denote by W the setW = WR = [(C(zr) j r 2 R): (7)of all non-empty 
y
li
 fa
tors of words zr (and potential preimages of � in ).For elements of the set W we de�ne two parameters (N.B.: sums j + 1, j � 1will be further understood modulo n):For every w 2 W denote by J(w) the set of all integers j, 1 � j � n, for whi
hthere exists an integer i, 1 � i � dj, su
h that yj;i o

urs in w.The se
ond parameter of a word w 2 W we denote by �(w) . First note thatw belongs to just one C(zr); r 2 R, if jJ(w)j � 3. In su
h a 
ase put�(w) = r:If J(w) = fjg, then put �(w) = minfs j w 2 F (�sj )g:If jJ(w)j = 2, then 
learly J(w) = fj; j + 1g, for some 1 � j � n, and put�(w) = minfs j w 2 F (�sj�sj+1)g:Observe that 1 � �(w) � maxR holds for every w 2 W .We 
an summarize that jJ(w)j says how many di�erent words �j are "a�e
ted"by w, while �(w) says how many 
opies of the same �j are "a�e
ted" by w.Using the values jJ(w)j and �(w) we shall 
lassify the words from W . For kand s with 1 � k � 2 and 1 � s � maxR putW (k; s)= fw 2 W j jJ(w)j = k and �(w) = sg; andW (3; s)= fw 2 W j jJ(w)j � 3 and �(w) = sg:It is 
lear from the de�nition that the above 
lassi�
ation is 
orre
t, i.e. it isdisjoint fa
torization of W . The fa
t is expressed in the following lemma.Lemma 2.1 Assume 1 � ki � 3 and 1 � si � maxR, i 2 f1; 2g. ThenW (k1; s1)\W (k2; s2) 6= ; if and only if (k1; s1) = (k2; s2):12



Furthermore, W = [(W (k; s) j 1 � k � 3 and 1 � s � maxR):The main motivation of the 
lassi�
ation is that words from the same 
lasshave the same number of instan
es in words zr. The number of these instan
esis 
ounted in the following lemma.Lemma 2.2 Assume r 2 R and w 2 C(zr).(i) If w 2 W (1; s), then s � r and 
(w; zr) equals (r � s+ 1)�r.(ii) If w 2 W (2; s), then s � r and 
(w; zr) equals �r.(iii) If w 2 W (3; s), then s = r and 
(w; zr) equals �r.Proof. (i) Suppose J(w) = fjg and s > r. By the de�nition of W (1; s), theword w is not a fa
tor of �rj in 
ontradi
tion with w 2 C(zr). By Lemma 1.1,
(�sj ; zr) = f(�sj ; �rj )
(�rj ; zr) = (r � s+ 1)�rholds and 
(w; zr) = f(w; �sj )
(�sj ; zr) = 
(�sj ; zr);by Lemma 1.1 again.(ii) Suppose J(w) = fj; j + 1g and s > r. By the de�nition of W (2; s), theword w is not a fa
tor of �rj�rj+1 in 
ontradi
tion with w 2 C(zr). Using againLemma 1.1 we obtain
(w; zr) = f(w; �rj �rj+1)
(�rj�rj+1; zr) = 
(�rj�rj+1; zr) = �r:(iii) The equality s = r is 
lear. Furthermore there exists an integer j, 1 �j � n su
h that yj�1;dj�1�rjyj+1;1 2 F (w):We have 
(yj�1;dj�1�rjyj+1;1; �r1 : : : �rn) = 1;and hen
e 
(w; zr) = �r, by Lemma 1.2. 213



For ea
h 1 � k � 3, 1 � s � maxR and r 2 R de�ne
(k; s; r) = 
(w; zr); (8)with w 2 W (k; s). The de�nition is independent of the 
hoi
e of the word win W (k; s), a

ording to Lemma 2.2.Lemma 2.3 Let 1 � k � 3, 1 � s � maxR and r 2 R be integers. Then(i) 
(k,s,r)=0 if and only if C(zr)TW (k; s) is empty, i.e. if either s > r ork = 3 and s 6= r.(ii) If C(zr)TW (k; s) is not empty then W (k; s) � C(zr).Proof. It is a dire
t 
onsequen
e of the Lemma 2.2. 2The desired quantitative equalities are 
onstru
ted in the following lemma.Lemma 2.4 Assume � 2 C(uP ). For ea
h 1 � k � 3 and 1 � s � maxRdenote ~�(k; s) = 
ard( �1(�)\W (k; s)): (9)Then 
(�; uP ) = 3Xk=1 maxRXs=1 
(k; s; r)~�(k; s)for ea
h r 2 R.Proof. Fix r 2 R.
(�; uP ) Lemma1:3= Xw2 �1(�) 
(w; zr)(7)= Xw2 �1(�)TW 
(w; zr)Lemma2:1= 3Xk=1 maxRXs=1 Xw2 �1(�)TW (k;s) 
(w; zr)(8)= 3Xk=1 maxRXs=1 Xw2 �1(�)TW (k;s) 
(k; s; r)(9)= 3Xk=1 maxRXs=1 
(k; s; r)~�(k; s): 214



Every r 2 R gives another expression of 
(�; uP ) by means of 
oeÆ
ients
(k; s; r) and variables ~�(k; s). We thus obtain jRj di�erent quantitative equal-ities.3 The main theoremIn this se
tion we shall assume thatR = fa; b; 
g;where a; b; 
 are integers su
h that 1 < a < b < 
. A

ording to the notationused in Se
tion 2 we denote P = ab
, �a = b
, �b = a
, �
 = ab. Fix an integer nand de�ne X = fx1; : : : ; xng;a set of unknowns.We want to prove the following theorem:Theorem 3.1 The system of equations(xa1 : : : xan)b =(xb1 : : : xbn)a (10)(xa1 : : : xan)
 =(x
1 : : : x
n)a (11)in unknowns x1; : : : ; xn admits only 
y
li
 solutions.Proof. On
e more we will work with an equivalent system(xa1 : : : xan)b
 =(xb1 : : : xbn)a
 (12)(xa1 : : : xan)
b =(x
1 : : : x
n)ab (13)rather than with (10), (11).If n = 1, then the statement is trivial. Thank to Lemma 1.5, we 
an assumen � 3.Let now ' : X+ ! �+ be a solution of S. De�ne ui, di, �i, d, Y , W , za, zb, z
as in Se
tion 2. 15



The 
ru
ial point of the proof is the following de�nition of �.Denote by m the smallest integer for whi
h there exists i, 1 � i � n, su
h thatui is m-
y
li
. Denote by B � W the set of all � 2 C(z
) for whi
h there existsan integer i, 1 � i � n, with �
i 2 F (�), and, furthermore,  (�) is m-
y
li
.The set B is non-empty, as it 
ontains �
i , for any i with 1 � i � n, for whi
hui is m-
y
li
. Choose �max 2 B in su
h a way thatj�maxj = maxfj�j j � 2 Bg;and put � =  (�max):Now suppose that uP is m-
y
li
. By the de�nition, m � di and every u2i isa fa
tor of uP , for ea
h 1 � i � n. We dedu
e from Lemma 1.4 and from theminimality of m that every ui, 1 � i � n, is a power of a word of length m.As uP is, by the assumption, also a power of su
h a word, the solution ' is
y
li
.To prove that uP is m-
y
li
 we �rst prove a 
onsequen
e of Lemma 1.4.Lemma 3.2 Assume v 2 Y +,  (v) is m-
y
li
 and �2i 2 F (v) for some1 � i � n. Denote by v0 the word that results from v when the fa
tor �2i isrepla
ed by �ki , k � 1. Then  (v0) and ui are also m-
y
li
.Proof. Obviously the word u2i is a fa
tor of  (v). As 2juij � juij+m, by Lemma1.4, the word ui is g
d(m;di)-
y
li
. The minimality of m yields g
d(m;di) =m and from the 
onstru
tion of v0 we dedu
e that  (v0) is m-
y
li
. 2The proof of the Theorem 3.1 will be 
ompleted by following Lemma.Lemma 3.3 The word uP is m-
y
li
.Proof. As uP = (ua1 : : : uan)b
 is ad-
y
li
 and m < ad, Lemma 1.4 implies thatit is far enough to show j�maxj = j�j � 2ad. Assume, on the 
ontrary, thatj�j < 2ad.Consider v 2  �1(�)\W (3; t); with 2 � t < 
:By the de�nition of W (3; t), there exists an integer j, 1 � j � n, su
h that�tj 2 F (v) and v 2 C(zt). Denote by v0 the word that results from v whenevery fa
tor of the form �tj is repla
ed by �
j . The length of v0 is less than16



2
d < ab
d = jz
j and from its 
onstru
tion we dedu
e that it belongs toC(z
). However by Lemma 3.2, v0 belongs to B as well, and that 
ontradi
tsthe maximality of j�maxj. Thus the set  �1(�)TW (3; t) must be empty and~�(3; t) = 0, as soon as 2 � t < 
.Let us now 
onsiderv 2  �1(�)\W (2; t); with 3 � t < 
:We have v = vjvj+1 with vj 2 F (�tj) and vj+1 2 F (�tj+1). As t � 3, �2j 2 F (vj)or �2j+1 2 F (vj+1) holds. For symmetri
al reasons we 
an suppose �2j 2 F (vj).Put v0 = �
jvj+1. Then, as above, v0 2 C(z
), and  (v0) 2 B, a 
ontradi
tionto maximality of j�maxj again. Hen
e ~�(2; t) = 0, 3 � t < 
.Consider �nally v 2  �1(�)\W (1; t) with 4 � t < 
:As t � 4, there exists an integer j, 1 � j � n, su
h that �2j 2 F (v). Theword �
j 2 C(z
) is longer than v, as t � 
 � 1, and  (�
j) belongs to B.A 
ontradi
tion with the maximality of j�maxj yields ~�(1; t) = 0, 4 � t < 
.Using the above knowledge, Lemma 2.2 and Lemma 2.4 yield the followingquantitative equalities:
(�; uP ) ==P ~�(1; 1) + �a(a� 1)~�(1; 2) + �a(a� 2)~�(1; 3) + �a~�(2; 1) + �a~�(2; 2) (14)=P ~�(1; 1) + �b(b� 1)~�(1; 2) + �b(b� 2)~�(1; 3) + �b~�(2; 1) + �b~�(2; 2) (15)=P ~�(1; 1) + �
(
� 1)~�(1; 2) + �
(
� 2)~�(1; 3) + �
~�(2; 1) + �
~�(2; 2)+ �
~�(1; 
) + �
~�(2; 
) + �
~�(3; 
): (16)Substituted �a, �b and �
 with b
, a
 and ab respe
tively, equalities (14)=(15)and (15)=(16) yield~�(2; 1) + ~�(2; 2) = ~�(1; 2) + 2~�(1; 3); and~�(2; 1) + ~�(2; 2) = ~�(1; 2) + 2~�(1; 3) + b
�b (~�(1; 
) + ~�(2; 
)) + ~�(3; 
)):We obtain ~�(1; 
) + ~�(2; 
) + ~�(3; 
) = 0. However  �1(�)TW (k; 
) must benon-empty for at least one integer k, 1 � k � 3, sin
e �max 2  �1(�)TW andsome �
i , 1 � i � n is a fa
tor of �max.We have found a 
ontradi
tion to j�j < 2ad. 2Theorem 3.1 is now proved. 217



4 Test setsLet L be a set of words from �+. We say that T � L is a test set of L if andonly if any two morphisms g, h to a monoid agree on L, as soon as they agreeon T .Using Theorem 3.1 we 
an prove following theorem.Theorem 4.1 Denote L = fxi1 : : : xin j i 2 Ng, a subset of �+. If a > 1 is aninteger, then the set T = fxk1 : : : xkn j k = a; a+ 1; a+ 2g is a (three-element)test set of L.This is a spe
ial 
ase (n = m) of the following statement.Theorem 4.2 Let u1; : : : ; un, v1; : : : ; vm 2 A+ be words over an alphabet Aand a > 2 an integer su
h thatuk1 : : : ukn = vk1 : : : vkm (17)for k = a; a+ 1; a+ 2. Then (17) holds for all k 2 N.Proof. First, let n = 1 or m = 1. Then the statement follows from theTheorem 3.1. Indeed, if e.g. m = 1 then(ur1 : : : urn)s = (us1 : : : usn)r = vrs1for all r; s 2 fa; a+ 1; a+ 2g.Suppose m;n > 1 and pro
eed by indu
tion on m+ n.If there exist i, j 2 N su
h that ju1 : : : uij = jv1 : : : vjj, then the equation (17)splits into two shorter 
ases.Suppose �nally that no su
h i, j exist. For symmetri
al reasons, we 
an supposeju1j < jv1j. Let j > 1 be the integer for whi
hju1 : : : uj�1j < jv1j < ju1 : : : ujj:From (17) we dedu
e that there exist non-empty words z1; : : : ; za+2 of theuniform length jv1j � ju1 : : : uj�1j, su
h thatua1 : : : uaj�1z1 : : : za= va1 (18)ua+11 : : : ua+1j�1z1 : : : za+1= va+11 (19)18



ua+21 : : : ua+2j�1z1 : : : za+2= va+21 : (20)Furthermore z1 : : : za = z2 : : : za+1 = z3 : : : za+2;as all three words are a suÆx of va1. Thusz1 = z2 = : : : = za+2and we 
an write (18),(19),(20) asua1 : : : uaj�1za1 = va1 (21)ua+11 : : : ua+1j�1za+11 = va+11 (22)ua+21 : : : ua+2j�1za+21 = va+21 : (23)This is already dis
ussed 
ase m = 1 and the Theorem 3.1 implies that allwords u1; : : : ; uj, v1, z1; : : : ; za+2 are powers of a 
ommon word, say z. Letp; q 2 N be su
h that z1 = zp; u1 : : : uj+1 = zq; v1 = zp+q:Substituted in (17), we obtain that(zq)kukj : : : ukn = (zp+q)kvk2 : : : vkn; (24)and thus, 
an
elled zq, alsoukj : : : ukn = (zp)kvk2 : : : vkn (25)hold for k = a; a+1; a+2. By indu
tion, the equality (25), and therefore also(24), hold for all k 2 N. 25 Final observations and a
knowledgmentsThe proof of Theorem 3.1 does not work if a = 1, i.e. if R = f1; b; 
g, with1 < b < 
. The question whether the system of equations (3), k = b; 
 hasa non-
y
li
 solution remains open. However, the method des
ribed in thispaper puts some restri
tion on the eventual non-
y
li
 solution (see [7℄).19



The fa
t that the equation (x1 : : : xn)2 = x21 : : : x2nhas a non-
y
li
 solution was used in [4℄ to 
onstru
t an independent system ofequations over n variables of the size 
(n4). Theorem 3.1 implies that similarapproa
h 
annot furnish an independent system of equations of the size 
(n6),in parti
ular not an exponential one.The present paper was motivated by the question whether the equationalsystem(x1 : : : xn)2=x21 : : : x2n (26)(x1 : : : xn)3=x31 : : : x3n (27)has a non-
y
li
 solution in a free semigroup. This question was introdu
ed byAle�s Dr�apal in a Student algebrai
 seminar as a problem whi
h Juha Korte-lainen was interested in and whi
h has its roots as early as in [1℄. As we said,the original question turned out to be more diÆ
ult than expe
ted but han-dling it, author dis
overed the method des
ribed in this paper. Partial resultswere dis
ussed in the seminar and the remarks and suggestions of the seminarparti
ipants have been very helpful to progress of the work. Ale�s Dr�apal hasde
isively in
uen
ed the formulation and formalization of the presented ideas.While writing this paper, author was in dire
t 
onta
t with Juha Kortelainenwho helped to put the result in a wider 
ontext of word equations and to im-prove the exposition. Moreover, he pointed out the 
onsequen
e in the theoryof test sets. The 
ontent of this paper 
orresponds to the �rst part of author'sM.D. thesis ([7℄), the se
ond part of whi
h is dedi
ated to the partial resultsregarding the system (26),(27).Referen
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