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yliity of the solution. For every exponent k 2 N there exist a number ofunknowns n suh that the equation(x1 : : : xn)k = xk1 : : : xknhas a non-yli solution. Put, for example, n = 2k � 1 andxi = 8>>>>><>>>>>: A i = 2j; 1 � j � k � 1Ak�jBAj�1 i = 2j � 1; 1 � j � k;with some letters A, B. There exists also a non-yli solution (see [8℄) of theequation (x21 : : : x2n)3 = (x31 : : : x3n)2:On the other hand, it was shown (see [1℄) that the equation yn = xn1 : : : xnn hasonly yli solutions. Espeially the yliity of the solution is fored by thesingle equation (x1 : : : xn)k = xk1 : : : xkn (3)from the system (2), if k � n.In [6℄ it is shown that the system (2) is equivalent to its subset where r =2; 3; : : : dn=2e+ 1. In the same paper it is shown that if n = 3; 4 or 5 then thesystem (3) with k = 2; 3 fores yliity, and if n = 7 then (3) with k = 2; 3; 4does so. Interesting results regarding more general equational systems an befound in [9℄.All above results ould suggest that the size and/or the maximal exponentof an equivalent subsystem of (2) depends on the number of unknowns. Inontrast to the expetation we prove that already the pair of equations(x21 : : : x2n)3=(x31 : : : x3n)2(x21 : : : x2n)4=(x41 : : : x4n)2is good enough for arbitrary n.A onsequene of the result for the existene of a test set is proved in theSetion 4. 8



1 Fators, instanes and equationsLet � be a �nite alphabet. Elements of � are alled letters and sequenes ofletters are alled words. The sequene of length zero is alled the empty word.The set of all words (all non-empty words, resp.) is denoted by �� (�+, resp.).It is a monoid (semigroup, resp.) under the operation of onatenation. Thelength of a word u will be denoted by juj. We say that a word u is a fator ofa word v if and only if there exist words z, z0 2 �� suh that v = zuz0. The setof all non-empty fators of a word v we shall denote by F (v). A fator u of aword v an our in v in di�erent instanes (eah of those determined by thelength of the word preeding u in v). The number of instanes of a non-emptyword u in v will be denoted by f(u; v).By a yli fator of v we shall understand every fator u of vv with juj � jvj.An instane of a yli fator will be sometimes alled a yli instane of u,and it orresponds to an instane of u in vv that starts within the �rst opyof v. The set of all non-empty yli fators of v will be denoted by C(v).The number of yli instanes of a non-empty word u in v will be denotedby (u; v). If u is not a fator (a yli fator resp.) of v, set f(u; v) = 0((u; v) = 0 resp.).We shall say that the word v is p-yli if and only if it is power of a word u,juj = p. Note that every word v is jvj-yli.Let T be a �nite set of unknowns. Eah pair(e; e0) 2 T+ � T+we shall all an equation in unknowns from T . For a partiular equation weoften use the suggestive notation e = e0.We shall say that a morphism ' : T+ ! �+ is a solution of the system ofequations S � T+�T+ in the semigroup �+ if and only if for every (e; e0) 2 Sthe equality '(e) = '(e0) holds. Two systems of equations S, S0 are alledequivalent if and only if they have the same set of solutions.We shall say that a morphism ' : T+! �+ is length-preserving if and only ifj'(t)j = 1 for eah t 2 T (i.e. '[T ℄ � �).We shall say that a solution ' : T+ ! �+ is yli if and only if there existsa word v 2 �+ suh that '(x) is a power of v for every x 2 T .Now we introdue two easy lemmas that allow to ount the number of yliinstanes of given word in another word.Lemma 1.1 Let u; v; w 2 �+ be words suh that w 2 F (v) and v 2 C(u).9



Suppose that every yli instane of w in u is ontained in exatly one yliinstane of v in u. Then (w; u) = f(w; v) � (v; u).Proof. Let W be the set of all yli instanes of w in u, and V the set of allyli instanes of v in u. By assumptions, there exists a mapping ' :W ! Vthat maps an instane of w to the instane of v that ontains the instane ofw as a fator. Every element of V is an image of exatly f(w; v) instanes ofw. 2Lemma 1.2 Let u; v; w 2 �+ be words and k � 1 an integer suh that(w; u) = 1, w 2 F (v) and v 2 C(uk). Then (v; uk) = k.Proof. Cyli shifts by ijuj elements, 1 � i � k, give exatly k di�erentyli instanes of v in uk. Let us suppose, for ontradition, that we havek + 1 di�erent yli instanes of v in uk. Then there are two di�erent yliinstanes of v, and thus also of w, starting within the same opy of u, aontradition with (w; u) = 1. 2The following lemma is highly intuitive and is ruial for the method desribedin Setion 2.Lemma 1.3 Let  : T+ ! �+ be a length-preserving morphism, and v 2 T+,u 2 �+ words suh that  (v) = u. Then for eah � 2 �+,(�; u) = Xw2 �1(�) (w; v) = Xw2 �1(�)TC(v) (w; v):Proof. Every yli instane of � in u determines a unique yli instaneof some w 2  �1(�) in v. On the other hand, every yli instane of aw 2  �1(�) in v determines a unique yli instane of  (w) = � in u. If theword w 2  �1(�) is not in C(v) then, by the de�nition, (w; v) = 0 and it anbe omitted. 2An important result in the elementary theory of words is the periodiity lemmaof Fine and Wilf (see [3℄). We shall use the following formulation of the lemma:Lemma 1.4 Assume u, v 2 �+ and let some their powers up, vq have aommon fator of length jvj+ juj � d (d being the greatest ommon divisor ofjuj and jvj). Then both u and v are d-yli.Next lemma is a diret onsequene of the above mentioned Defet Theoremand it allows us to restrit ourselves to the equations with at least threeunknowns.Lemma 1.5 Every equation (e; e0) in two unknowns and with e 6= e0, has onlyyli solutions. 10



2 Quantitative equalitiesIn this setion we introdue the method that will yield in Setion 3 the mainresult of this paper. LetR be a non-empty �nite set of positive integers. Denoteby P the produt of all integers in R. For eah r 2 R, let �r = P=r. We shallonsider the system of equations(xr1 : : : xrn)s = (xs1 : : : xsn)r; r; s 2 R: (4)For our purposes, however, it will be more onvenient to study an equivalentequational system (xr1 : : : xrn)�r = (xs1 : : : xsn)�s; r; s 2 R; (5)in whih all equations have the same length.Suppose we have an arbitrary, but �xed solution ' : X+ ! �+, X =fx1; : : : ; xng, of (5). Denote the word '(xi) by ui and the length of it bydi. Note that the word '((xr1 : : : xrn)�r) is independent of the hoie of r 2 R.Denote that word by uP .We shall onstrut quantitative equalities onneted to the system (5), bymeans of Lemma 1.3. To do this, hoose a word � 2 C(uP ) and trae bak allits preimages in words (xr1 : : : xrn)�r, r 2 R. In order to lassify these preimagesaording to their struture, we introdue a new alphabet Y onsisting of newletters yi;j, with 1 � i � n, 1 � j � di. Denote by �j the word yj;1 : : : yj;dj forevery j, 1 � j � n, and by zr the word (�r1 : : : �rn)�r. The system of equationszr = zs; r; s 2 R (6)an be obtained from (5) substituting xi by �i, but note that it is a system ind unknowns, with d = Pni=1 di.The most natural thing to do now is to de�ne a morphism  : Y + ! �+ bythe equality  (�1 : : : �n) = u1 : : : un:Clearly the de�nition is orret,'(xi) = (�i); 1 � i � n;uP = (zr); r 2 R 11



holds and the morphism  is a length-preserving solution of (6). We an nowlassify preimages of � in  rather than in '. Denote by W the setW = WR = [(C(zr) j r 2 R): (7)of all non-empty yli fators of words zr (and potential preimages of � in ).For elements of the set W we de�ne two parameters (N.B.: sums j + 1, j � 1will be further understood modulo n):For every w 2 W denote by J(w) the set of all integers j, 1 � j � n, for whihthere exists an integer i, 1 � i � dj, suh that yj;i ours in w.The seond parameter of a word w 2 W we denote by �(w) . First note thatw belongs to just one C(zr); r 2 R, if jJ(w)j � 3. In suh a ase put�(w) = r:If J(w) = fjg, then put �(w) = minfs j w 2 F (�sj )g:If jJ(w)j = 2, then learly J(w) = fj; j + 1g, for some 1 � j � n, and put�(w) = minfs j w 2 F (�sj�sj+1)g:Observe that 1 � �(w) � maxR holds for every w 2 W .We an summarize that jJ(w)j says how many di�erent words �j are "a�eted"by w, while �(w) says how many opies of the same �j are "a�eted" by w.Using the values jJ(w)j and �(w) we shall lassify the words from W . For kand s with 1 � k � 2 and 1 � s � maxR putW (k; s)= fw 2 W j jJ(w)j = k and �(w) = sg; andW (3; s)= fw 2 W j jJ(w)j � 3 and �(w) = sg:It is lear from the de�nition that the above lassi�ation is orret, i.e. it isdisjoint fatorization of W . The fat is expressed in the following lemma.Lemma 2.1 Assume 1 � ki � 3 and 1 � si � maxR, i 2 f1; 2g. ThenW (k1; s1)\W (k2; s2) 6= ; if and only if (k1; s1) = (k2; s2):12



Furthermore, W = [(W (k; s) j 1 � k � 3 and 1 � s � maxR):The main motivation of the lassi�ation is that words from the same lasshave the same number of instanes in words zr. The number of these instanesis ounted in the following lemma.Lemma 2.2 Assume r 2 R and w 2 C(zr).(i) If w 2 W (1; s), then s � r and (w; zr) equals (r � s+ 1)�r.(ii) If w 2 W (2; s), then s � r and (w; zr) equals �r.(iii) If w 2 W (3; s), then s = r and (w; zr) equals �r.Proof. (i) Suppose J(w) = fjg and s > r. By the de�nition of W (1; s), theword w is not a fator of �rj in ontradition with w 2 C(zr). By Lemma 1.1,(�sj ; zr) = f(�sj ; �rj )(�rj ; zr) = (r � s+ 1)�rholds and (w; zr) = f(w; �sj )(�sj ; zr) = (�sj ; zr);by Lemma 1.1 again.(ii) Suppose J(w) = fj; j + 1g and s > r. By the de�nition of W (2; s), theword w is not a fator of �rj�rj+1 in ontradition with w 2 C(zr). Using againLemma 1.1 we obtain(w; zr) = f(w; �rj �rj+1)(�rj�rj+1; zr) = (�rj�rj+1; zr) = �r:(iii) The equality s = r is lear. Furthermore there exists an integer j, 1 �j � n suh that yj�1;dj�1�rjyj+1;1 2 F (w):We have (yj�1;dj�1�rjyj+1;1; �r1 : : : �rn) = 1;and hene (w; zr) = �r, by Lemma 1.2. 213



For eah 1 � k � 3, 1 � s � maxR and r 2 R de�ne(k; s; r) = (w; zr); (8)with w 2 W (k; s). The de�nition is independent of the hoie of the word win W (k; s), aording to Lemma 2.2.Lemma 2.3 Let 1 � k � 3, 1 � s � maxR and r 2 R be integers. Then(i) (k,s,r)=0 if and only if C(zr)TW (k; s) is empty, i.e. if either s > r ork = 3 and s 6= r.(ii) If C(zr)TW (k; s) is not empty then W (k; s) � C(zr).Proof. It is a diret onsequene of the Lemma 2.2. 2The desired quantitative equalities are onstruted in the following lemma.Lemma 2.4 Assume � 2 C(uP ). For eah 1 � k � 3 and 1 � s � maxRdenote ~�(k; s) = ard( �1(�)\W (k; s)): (9)Then (�; uP ) = 3Xk=1 maxRXs=1 (k; s; r)~�(k; s)for eah r 2 R.Proof. Fix r 2 R.(�; uP ) Lemma1:3= Xw2 �1(�) (w; zr)(7)= Xw2 �1(�)TW (w; zr)Lemma2:1= 3Xk=1 maxRXs=1 Xw2 �1(�)TW (k;s) (w; zr)(8)= 3Xk=1 maxRXs=1 Xw2 �1(�)TW (k;s) (k; s; r)(9)= 3Xk=1 maxRXs=1 (k; s; r)~�(k; s): 214



Every r 2 R gives another expression of (�; uP ) by means of oeÆients(k; s; r) and variables ~�(k; s). We thus obtain jRj di�erent quantitative equal-ities.3 The main theoremIn this setion we shall assume thatR = fa; b; g;where a; b;  are integers suh that 1 < a < b < . Aording to the notationused in Setion 2 we denote P = ab, �a = b, �b = a, � = ab. Fix an integer nand de�ne X = fx1; : : : ; xng;a set of unknowns.We want to prove the following theorem:Theorem 3.1 The system of equations(xa1 : : : xan)b =(xb1 : : : xbn)a (10)(xa1 : : : xan) =(x1 : : : xn)a (11)in unknowns x1; : : : ; xn admits only yli solutions.Proof. One more we will work with an equivalent system(xa1 : : : xan)b =(xb1 : : : xbn)a (12)(xa1 : : : xan)b =(x1 : : : xn)ab (13)rather than with (10), (11).If n = 1, then the statement is trivial. Thank to Lemma 1.5, we an assumen � 3.Let now ' : X+ ! �+ be a solution of S. De�ne ui, di, �i, d, Y , W , za, zb, zas in Setion 2. 15



The ruial point of the proof is the following de�nition of �.Denote by m the smallest integer for whih there exists i, 1 � i � n, suh thatui is m-yli. Denote by B � W the set of all � 2 C(z) for whih there existsan integer i, 1 � i � n, with �i 2 F (�), and, furthermore,  (�) is m-yli.The set B is non-empty, as it ontains �i , for any i with 1 � i � n, for whihui is m-yli. Choose �max 2 B in suh a way thatj�maxj = maxfj�j j � 2 Bg;and put � =  (�max):Now suppose that uP is m-yli. By the de�nition, m � di and every u2i isa fator of uP , for eah 1 � i � n. We dedue from Lemma 1.4 and from theminimality of m that every ui, 1 � i � n, is a power of a word of length m.As uP is, by the assumption, also a power of suh a word, the solution ' isyli.To prove that uP is m-yli we �rst prove a onsequene of Lemma 1.4.Lemma 3.2 Assume v 2 Y +,  (v) is m-yli and �2i 2 F (v) for some1 � i � n. Denote by v0 the word that results from v when the fator �2i isreplaed by �ki , k � 1. Then  (v0) and ui are also m-yli.Proof. Obviously the word u2i is a fator of  (v). As 2juij � juij+m, by Lemma1.4, the word ui is gd(m;di)-yli. The minimality of m yields gd(m;di) =m and from the onstrution of v0 we dedue that  (v0) is m-yli. 2The proof of the Theorem 3.1 will be ompleted by following Lemma.Lemma 3.3 The word uP is m-yli.Proof. As uP = (ua1 : : : uan)b is ad-yli and m < ad, Lemma 1.4 implies thatit is far enough to show j�maxj = j�j � 2ad. Assume, on the ontrary, thatj�j < 2ad.Consider v 2  �1(�)\W (3; t); with 2 � t < :By the de�nition of W (3; t), there exists an integer j, 1 � j � n, suh that�tj 2 F (v) and v 2 C(zt). Denote by v0 the word that results from v whenevery fator of the form �tj is replaed by �j . The length of v0 is less than16



2d < abd = jzj and from its onstrution we dedue that it belongs toC(z). However by Lemma 3.2, v0 belongs to B as well, and that ontraditsthe maximality of j�maxj. Thus the set  �1(�)TW (3; t) must be empty and~�(3; t) = 0, as soon as 2 � t < .Let us now onsiderv 2  �1(�)\W (2; t); with 3 � t < :We have v = vjvj+1 with vj 2 F (�tj) and vj+1 2 F (�tj+1). As t � 3, �2j 2 F (vj)or �2j+1 2 F (vj+1) holds. For symmetrial reasons we an suppose �2j 2 F (vj).Put v0 = �jvj+1. Then, as above, v0 2 C(z), and  (v0) 2 B, a ontraditionto maximality of j�maxj again. Hene ~�(2; t) = 0, 3 � t < .Consider �nally v 2  �1(�)\W (1; t) with 4 � t < :As t � 4, there exists an integer j, 1 � j � n, suh that �2j 2 F (v). Theword �j 2 C(z) is longer than v, as t �  � 1, and  (�j) belongs to B.A ontradition with the maximality of j�maxj yields ~�(1; t) = 0, 4 � t < .Using the above knowledge, Lemma 2.2 and Lemma 2.4 yield the followingquantitative equalities:(�; uP ) ==P ~�(1; 1) + �a(a� 1)~�(1; 2) + �a(a� 2)~�(1; 3) + �a~�(2; 1) + �a~�(2; 2) (14)=P ~�(1; 1) + �b(b� 1)~�(1; 2) + �b(b� 2)~�(1; 3) + �b~�(2; 1) + �b~�(2; 2) (15)=P ~�(1; 1) + �(� 1)~�(1; 2) + �(� 2)~�(1; 3) + �~�(2; 1) + �~�(2; 2)+ �~�(1; ) + �~�(2; ) + �~�(3; ): (16)Substituted �a, �b and � with b, a and ab respetively, equalities (14)=(15)and (15)=(16) yield~�(2; 1) + ~�(2; 2) = ~�(1; 2) + 2~�(1; 3); and~�(2; 1) + ~�(2; 2) = ~�(1; 2) + 2~�(1; 3) + b�b (~�(1; ) + ~�(2; )) + ~�(3; )):We obtain ~�(1; ) + ~�(2; ) + ~�(3; ) = 0. However  �1(�)TW (k; ) must benon-empty for at least one integer k, 1 � k � 3, sine �max 2  �1(�)TW andsome �i , 1 � i � n is a fator of �max.We have found a ontradition to j�j < 2ad. 2Theorem 3.1 is now proved. 217



4 Test setsLet L be a set of words from �+. We say that T � L is a test set of L if andonly if any two morphisms g, h to a monoid agree on L, as soon as they agreeon T .Using Theorem 3.1 we an prove following theorem.Theorem 4.1 Denote L = fxi1 : : : xin j i 2 Ng, a subset of �+. If a > 1 is aninteger, then the set T = fxk1 : : : xkn j k = a; a+ 1; a+ 2g is a (three-element)test set of L.This is a speial ase (n = m) of the following statement.Theorem 4.2 Let u1; : : : ; un, v1; : : : ; vm 2 A+ be words over an alphabet Aand a > 2 an integer suh thatuk1 : : : ukn = vk1 : : : vkm (17)for k = a; a+ 1; a+ 2. Then (17) holds for all k 2 N.Proof. First, let n = 1 or m = 1. Then the statement follows from theTheorem 3.1. Indeed, if e.g. m = 1 then(ur1 : : : urn)s = (us1 : : : usn)r = vrs1for all r; s 2 fa; a+ 1; a+ 2g.Suppose m;n > 1 and proeed by indution on m+ n.If there exist i, j 2 N suh that ju1 : : : uij = jv1 : : : vjj, then the equation (17)splits into two shorter ases.Suppose �nally that no suh i, j exist. For symmetrial reasons, we an supposeju1j < jv1j. Let j > 1 be the integer for whihju1 : : : uj�1j < jv1j < ju1 : : : ujj:From (17) we dedue that there exist non-empty words z1; : : : ; za+2 of theuniform length jv1j � ju1 : : : uj�1j, suh thatua1 : : : uaj�1z1 : : : za= va1 (18)ua+11 : : : ua+1j�1z1 : : : za+1= va+11 (19)18



ua+21 : : : ua+2j�1z1 : : : za+2= va+21 : (20)Furthermore z1 : : : za = z2 : : : za+1 = z3 : : : za+2;as all three words are a suÆx of va1. Thusz1 = z2 = : : : = za+2and we an write (18),(19),(20) asua1 : : : uaj�1za1 = va1 (21)ua+11 : : : ua+1j�1za+11 = va+11 (22)ua+21 : : : ua+2j�1za+21 = va+21 : (23)This is already disussed ase m = 1 and the Theorem 3.1 implies that allwords u1; : : : ; uj, v1, z1; : : : ; za+2 are powers of a ommon word, say z. Letp; q 2 N be suh that z1 = zp; u1 : : : uj+1 = zq; v1 = zp+q:Substituted in (17), we obtain that(zq)kukj : : : ukn = (zp+q)kvk2 : : : vkn; (24)and thus, anelled zq, alsoukj : : : ukn = (zp)kvk2 : : : vkn (25)hold for k = a; a+1; a+2. By indution, the equality (25), and therefore also(24), hold for all k 2 N. 25 Final observations and aknowledgmentsThe proof of Theorem 3.1 does not work if a = 1, i.e. if R = f1; b; g, with1 < b < . The question whether the system of equations (3), k = b;  hasa non-yli solution remains open. However, the method desribed in thispaper puts some restrition on the eventual non-yli solution (see [7℄).19



The fat that the equation (x1 : : : xn)2 = x21 : : : x2nhas a non-yli solution was used in [4℄ to onstrut an independent system ofequations over n variables of the size 
(n4). Theorem 3.1 implies that similarapproah annot furnish an independent system of equations of the size 
(n6),in partiular not an exponential one.The present paper was motivated by the question whether the equationalsystem(x1 : : : xn)2=x21 : : : x2n (26)(x1 : : : xn)3=x31 : : : x3n (27)has a non-yli solution in a free semigroup. This question was introdued byAle�s Dr�apal in a Student algebrai seminar as a problem whih Juha Korte-lainen was interested in and whih has its roots as early as in [1℄. As we said,the original question turned out to be more diÆult than expeted but han-dling it, author disovered the method desribed in this paper. Partial resultswere disussed in the seminar and the remarks and suggestions of the seminarpartiipants have been very helpful to progress of the work. Ale�s Dr�apal hasdeisively inuened the formulation and formalization of the presented ideas.While writing this paper, author was in diret ontat with Juha Kortelainenwho helped to put the result in a wider ontext of word equations and to im-prove the exposition. Moreover, he pointed out the onsequene in the theoryof test sets. The ontent of this paper orresponds to the �rst part of author'sM.D. thesis ([7℄), the seond part of whih is dediated to the partial resultsregarding the system (26),(27).Referenes[1℄ K. I. Appel, F. M. Djorup, On the equation zn1 zn2 : : :znk = yn in a free semigroup,Trans. Am. Math. So. 134 (1968) 461{470.[2℄ M. H. Albert, J. Lawrene, A proof of Ehrenfeuht's onjeture, Theoret.Comput. Si. 41 (1985) 121{123.[3℄ N. J. Fine, H. S. Wilf, Uniqueness theorem for periodi funtions, Pro. Am.Math. So. 16 (1965) 109{114.[4℄ J. Karhum�aki, Plandowski W., On the size of independent systems of equationsin semigroups, in: Pro. MFCS'94, Leture Notes in Computer Siene, Vol. 841(Springer, Berlin, 1994) 443{452. 20
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