
IN SEARCH FOR A WORD WITH SPECIAL COMBINATORIAL

PROPERTIES

ŠTĚPÁN HOLUB

Abstract. In Section 1, notion of canonical and principal solution of an equa-
tion in free monoid are discussed. In Section 2 it is proved that if a non-cyclic
solution α of the system of equations (x1 . . . xn)s = x

s

1
. . . x

s
n, s = 2, 3, exists,

no α(xi) is a power of a letter. It is also shown that in such a case the shortest
non-cyclic solution is principal and of rank two. In Section 3 some similar
results are presented without proof.

Introduction

The equality

(0.1) (u1 . . . un)s = us
1 . . . u

s
n

trivially holds for all integers s if every pair ui, uj commutes. In a free semigroup
it means that all words ui, 1 ≤ i ≤ n, are powers of a common word v. However,
for any k there exists an integer n and words u1, . . . , un such that (0.1) holds just
for s = k (and s = 1). Take for example n = 2k − 1 and

ui =







A i = 2j, 1 ≤ j ≤ k − 1

Ak−jBAj−1 i = 2j − 1, 1 ≤ j ≤ k

with some letters A, B.
The question is whether there exists an n-tuple u1, . . . , un such that (0.1) holds

for more that one integer s > 1 but does not hold for each s ∈ N. (It is not difficult
to see that if (0.1) holds for each s ∈ N, the u1, . . . , un are powers of a common
word.) It was shown (see [3]) that (0.1) holds for all s ∈ N as soon as it holds for
three integers greater than one. The question whether there exists an n-tuple of
words u1, . . . , un such that (0.1) holds for exactly two integers greater than one,
remains open. We shall show a condition that such an eventual n-tuple must satisfy.

1. Equations and their solutions

In this section we introduce some concepts regarding equations in free semigroups
and their solutions.

1.1. Basic notions. Let A be a finite alphabet. Elements of A are called letters
and sequences of letters are called words. The sequence of length zero is called
the empty word, denoted ε. The set of all words (all non-empty words resp.) is
denoted by A∗ (A+, resp.). It is a monoid (semigroup, resp.) under the operation
of concatenation. The length of a word u will be denoted by |u|. We say that a
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word u is a factor of a word v if and only if there exist words z, z′ ∈ A∗ such that
v = zuz′.

By a cyclic factor of v we shall understand every factor u of vv with |u| ≤ |v|. A
factor u of a word v can occur in v in different instances (each of those determined
by the length of the word preceding u in v).An instance of a cyclic factor will be
called a cyclic instance of u, and it corresponds to an instance of u in vv that starts
within the first copy of v. The set of all cyclic factors of v will be denoted by C(v).

Let X be a finite set of unknowns. Every

(e, e′) ∈ X+ ×X+

we shall call an equation in unknowns from X . We shall always suppose that X
contains only unknowns occuring in (e, e′). For a particular equation (e, e′) we shall
often use the suggestive notation e = e′.

We say that a morphism α : X+ → A+ is a solution of the system of equations
S ⊆ X+ ×X+ in the semigroup A+, if and only if for every (e, e′) ∈ S the equality
α(e) = α(e′) holds. By alph(α) we denote the set of letters occuring in α[X ] =
{α(x);x ∈ X}. We shall always suppose that alph(α) = A. Two systems of
equations S, S′ are called equivalent if and only if they have the same set of solutions.

We say that a solution α : X+ → A+ is cyclic if and only if there exists a word
v ∈ A+ such that α(x) is a power of v for every x ∈ X .

We say that two solutions α : X+ → A+ and β : X+ → B+ are isomorphic if
and only if there exists a bijection θ : A→ B such that β = θ ◦ α.

1.2. Ranks. A subset S of a free semigroup A+ closed under the operation of
concatenation is called subsemigroup of A+. Subsemigroup S is not necessarily
free. For example the subsemigroup of {a, b}+ generated by elements {a, ab, ba} is
not free as a(ba) = (ab)a. However, as the set of free subsemigroups is closed under
intersection (see [2], p.6), there exists the smallest free subsemigroup containing a
subset S ⊂ A+, called free hull of S. The cardinality of the basis of the free hull
is called the rank of S. The rank of a morphism α : X+ → A+ is the rank of
the set α[X ]. The basis of the free hull of the set α[X ] is called the basis of the
morphism α. Finally we say that the rank of an equation is the maximal rank of
its solutions. The rank of an equation is one if and only if the equation admits only
cyclic solutions.

1.3. Canonical solution. Let α : X+ → A+ be a solution of an equation (e, e′).
Suppose X = {x1, . . . , xn}. The n-tuple (d1, . . . , dn), with di = |α(xi)|, shall
be called the type of α. The solution α is called canonical solution of the type
(d1, . . . , dn)(or simply canonical) if and only if for every solution β : X+ → B+

of (e, e′) and every mapping θ : B → A, such that α = θ ◦ β, the mapping θ is a
bijection. In other words, α is canonical if and only if the cardinality of alph(α) is
maximal among all solutions of (e, e′) of the same type. All non-canonical solutions
of given type result from a canonical solution by identification of some letters. It
is easy to see that all canonical solutions are isomorphic.

The notion of canonical solution was introduced by Appel and Djorup in [1], for
the particular equation z1 . . . zn = yn. The definition they use is different from the
above presented and is more intuitive. In fact it describes the construction of the
canonical solution of given type and can be generalized as follows. Let (d1, . . . , dn)
be the type for which we wish to construct the canonical solution of an equation
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(e, e′) in unknowns {x1, . . . , xn}. We introduce alphabet Y consisting of new letters
ηi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ di and define morphism ψ : X+ → Y + by equalities

ψ(xi) = ηi,1 . . . ηi,di
, 1 ≤ i ≤ n.

Obviously we suppose that |ψ(e)| = |ψ(e′)|, otherwise the equation has no solution
of the type (d1, . . . , dn). We shall call the equation (ψ(e), ψ(e′)) the type equation
associated with (e, e′) and (d1, . . . , dn).

Let ∼ be the smallest equivalence relation on Y such that ηi,j ∼ ηk,l, as soon as
ψ(e) = vηi,jw and ψ(e′) = v′ηl,kw

′ for some v, v′, w, w′ ∈ Y ∗ such that |v| = |v′|,
|w| = |w′|. Let A be the set of equivalence classes of ∼ and π : Y + → A+ the
natural projection π(ηi,j) = [ηi,j ]∼. Then π ◦ ψ : X+ → A+ is a canonical solution
of the type (d1, . . . , dn).

Let α : X+ → A+ be a canonical solution. Denote by L the set of all left letters,
i.e. all letters a ∈ A such that α(x) = av, for some x ∈ X and v ∈ A+. Similarly
denote by R the set of all right letters. Denote by H the set of all words v ∈ A+,
such that v begins with a left letter, ends with a right letter and does not contain
any other left or right letter. (If a ∈ R

⋂

L, than a ∈ H). It can be proved (see [1])
that H is the basis of α.

1.4. Principal solution. On the set of all solutions of an equation (e, e′) we define
a partial ordering ≤. Given two solutions α : X+ → A+ and β : X+ → B+ we say
that α ≤ β if and only if there exists a morphism θ : A+ → B+ such that β = θ ◦α.
If θ is an isomorphism (i.e. it is generated by a bijection A→ B) then both α ≤ β

and β ≤ α, as α = θ−1 ◦β. Any minimal element of this ordering is called principal
solution of (e, e′). In other words a solution α is principal if and only if θ is an
isomorphism as soon as θ ◦ α is a solution of (e, e′). It results that every principal
solution is canonical, but not vice versa. All canonical solutions β : X+ → B+ can
be expressed like θ◦α, where α : X+ → A+ is a principal solution and θ : A+ → B+

is a morphism such that for a1,a2 ∈ A, a1 6= a2, the words θ(a1), θ(a2) have no
common letter.

The rank of a principal solution α : X+ → A+ is equal to the cardinality of A.
Indeed, if {v1, . . . , vm} is the basis of α, we can introduce an alphabet B, consisting
of new letters b1 . . . bn, and define a morphism θ : B+ → A+ by equalities θ(bi) = vi,
1 ≤ i ≤ n. Then α = θ ◦ β is a solution of (e, e′) and θ is an isomorphism.

One can see that a solution α : X+ → A+ is principal if and only if it is canonical
and A is the basis of α. In other words α is principal if and only if the following
condition is satisfied: Let β : X+ → B+ be a canonical solution of the same type
as α. Then every b ∈ B is both right and left letter.

2. Shortest counterexample

Consider now following system of equations

(x1 . . . xn)2 = x2
1 . . . x

2
n,

(x1 . . . xn)3 = x3
1 . . . x

3
n,

(2.1)

in unknowns X = {x1, . . . , xn}. Henceforward we shall suppose that there exists
a positive integer n such that the system (2.1) has a non-cyclic solution (i.e. its
rank is greater than one) and let n be the smallest one. Surely n > 2, because all
equations (e, e′) in two unknowns, such that e 6= e′, have only cyclic solutions in
free semigroups (see e.g. [2], p.164). We say that α is a shortest counterexample if
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and only if it is a non-cyclic solution of (2.1) and for every non-cyclic solution α′

the inequality

|α(x1 . . . xn)| ≤ |α′(x1 . . . xn)|

holds.

Lemma 2.1. Let α be a shortest counterexample. Then it is a principal solution
of rank two.

Proof. Note that ever every solution of the same type as α is a shortest counterex-
ample. First, suppose that α : X+ → A+ is a canonical solution and let C be
a basis of α. We can understand α like a morphism X+ → C+ and, thank to
the minimality of |α(x1 . . . xn)|, we have C = A = {a1, . . . , am}. Suppose that
rank(α) = card(A) = m is greater than two. Denote by A′ the set {a1, a2} and
define a morphism θ : A+ → (A′)∗ by

θ(ai) =







ai 1 ≤ i ≤ 2

ε 3 ≤ i ≤ m.

If we omit all xi such that θ ◦α(xi) = ε we get a solution α′ = θ ◦ α : X+ → (A′)+

of (2.1) with some n′ ≤ n. If α′ is not cyclic, we have a contradiction with the fact
that α is a shortest counterexample. Suppose that α′ is cyclic, and let v = b1 . . . bl,
l ≥ 2, bi ∈ A′, 1 ≤ i ≤ l, be the shortest word such that all α′(xi), 1 ≤ i ≤ n′, are
a power of v. It is not difficult to see that α′ is canonical (as α is) and therefore
bi 6= bj, 1 ≤ i < j ≤ l. It follows that b1 is not the final letter of any α(xi),
a contradiction with the fact that A is the basis of α. We have proved that if a
shortest counterexample is canonical, it is of rank two.

Suppose now, for a contradiction, that α : X+ → A+ is a general shortest
counterexample that is not a principal solution. Let β : X+ → B+ be a solution
of (2.1) and θ : B+ → A+ a morphism, such that α = θ ◦ β and θ is not an
isomorphism. Clearly

|α(x1 . . . xn)| ≥ |β(x1 . . . xn)|

and the equality must hold, because α is a shortest counterexample and β is not
cyclic. We deduce that θ maps B onto A. Suppose that θ is not injective. Then
the cardinality of B must be at least three. As the cardinality of the alphabet of
a canonical solution is maximal among all solutions of given type, the canonical
solution of the type (d1, . . . , dn), with di = |α(xi)| = |β(xi)|, is of a rank greater
then two and in the same time it is a shortest counterexample, a contradiction
with what we proved above. Therefore any shortest counterexample is principal, it
implies it is canonical it implies it is of rank two. �

Lemma 2.2. Let α : X+ → A+, A = {a, b}, be a shortest counterexample. Then
for all 1 ≤ i ≤ n, the word α(xi) contains both letter a and b.

Proof. First put

u1 = (x1 . . . xn)6, u2 = (x2
1 . . . x

2
n)3, u1 = (x3

1 . . . x
3
n)2,

and note that the system (2.1) is equivalent to the system

(u1, u2),

(u1, u3).
(2.2)
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Put di = |α(xi)|, 1 ≤ i ≤ n. Define Y and ψ : X+ → Y + in such a way that

(ψ(u1), ψ(u2)),

(ψ(u1), ψ(u3))
(2.3)

are the type equations associated with (2.2) and (d1 . . . dn). Denote

yi = ηi,1 . . . ηi,di
, 1 ≤ i ≤ n,

and

wi = ψ(ui), 1 ≤ i ≤ 3.

Denote by π : Y + → A+ the morphism satisfying π(yi) = α(xi). Such a morphism
is determined uniquely and π(η) ∈ A for all η ∈ Y . It implies that |π(w)| = |w|.
Denote F =

⋃

1≤i≤3
C(wi) the set of all factors that can be found in equations

(2.3). We will proceed by contradiction. Suppose (without lack of generality) that
for some i, 1 ≤ i ≤ n, α(xi) is a power of a. Let m be the biggest integer for which
there exists a word w ∈ F of length m such that π(w) = bamb, and y3

i is a factor of
w for some 1 ≤ i ≤ n. Let Z be the set of all words w ∈ F such that π(w) = bamb.
If w ∈ Z then

|w| = m+ 2 ≤ |y1 . . . yn| =

n
∑

i=1

di.

Now we shall define a disjoint factorization of Z, according to the complexity of
its elements. Let w ∈ Z. Denote by i(w) the number of different first indices of
letters occuring in w. It is the number of different words yi affected by w. Denote by
σ(w) the minimal exponent k such that w is a cyclic factor of yk

1 . . . y
k
n. Obviously

σ(w) ≤ 3 for w ∈ Z. Denote by W (i, j) , 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, the set of all words
w ∈ Z, such that i(w) = i and σ(w) = j. Also denote by W (3, j) the set of all
words w ∈ Z, such that i(w) ≥ 3 and σ(w) = j. It follows from definitions that
W (i, j) , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, is really a disjoint factorization of Z.

The definition of sets W (i, j) is motivated by the fact that w, w′ belong to the
same set if and only if, in all three words w1, w2, w3, the number of cyclic instances
of w is the same as the number of cyclic instances of w′. Indeed if we denote o(i, j, k)
the number of cyclic instances of a word w ∈W (i, j) in the word wk, we can easily
verify following values:

(1,2,1)=(1,3,1)=(1,3,2)=(2,2,1)=(2,3,1)=(2,3,2)=
(3,1,2)=(3,1,3)=(3,2,1)=(3,2,3)=(3,3,1)=(3,3,2) = 0
(1,3,3)=(2,1,3)=(2,2,3)=(2,3,3)=(3,3,3) = 2
(1,2,2)=(2,1,2)=(2,2,2)=(3,2,2) = 3
(1,2,3) = 4
(1,1,1)=(1,1,2)=(1,1,3)=(2,1,1)=(3,1,1) = 6.

Suppose that w ∈ W (3, 1). Then w has at least one factor ηi−1,di−1
yiηi+1,di+1

,
with 1 ≤ i ≤ n, and i − 1, i + 1 considered modulo n. For such an i we have
π(yi) = al, l ≥ 1. If we substitute in the word w all such words yi by y3

i , we get
a word w′ such that π(w′) = bapb, p > m, a contradiction with the maximality of
m. It follows that W (3, 1) is empty. Similarly we can see that W (3, 2), W (2, 2),
W (2, 3), W (1, 3) are also empty.

Denote by P the number of cyclic occurences of the word bamb in the word
u = α(u1) = α(u2) = α(u3). Looking at a word wk, 1 ≤ k ≤ 3, we can see that P
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is equal to the total number of cyclic instances of elements from Z in wk. Thank
to the disjoint factorization of Z, we can express P in three ways (for 1 ≤ k ≤ 3)
like a sum

∑

1≤i,j≤3

|W (i, j)|o(i, j, k).

Using all above knowledge we get equalities

P = 6|W (1, 1)|+ 6|W (2, 1)| =

= 6|W (1, 1)|+ 3|W (2, 1)| + 3|W (1, 2)| =

= 6|W (1, 1)|+ 2|W (2, 1)| + 4|W (1, 2)|+ 2|W (3, 3)|.

(2.4)

From these equalities easily results |W (3, 3)| = 0, a contradiction with the defi-
nition of the set Z. �

3. Further results and remarks

The method used to prove Lemma 2.2 is described in the most general form in
[3]. Thank to that method, some other results were achieved. First, the statement
of Lemma 2.2 is valid for all systems of equations

(x1 . . . xn)r = xr
1 . . . x

r
n,

(x1 . . . xn)s = x3
1 . . . x

s
n,

(3.1)

with r > s > 1.
In the proof of Lemma 2.2 the fact that α is a shortest counterexample was not

used. For a general solution the lemma can be reformulated as follows.

Theorem 3.1. Let α : X+ → A+ be a solution of (3.1) and v be an element of the
basis of α. Then v is a factor of each α(xi), 1 ≤ i ≤ n.

The proof of this theorem is mutatis mutandis the same as that of Lemma 2.2.
The proof of following lemma is a bit technical (see [4]).

Lemma 3.2. Let α : X+ → A+ be a solution of (3.1) with A = {a, b}. Let
v = bamb, m ≥ 1, be a cyclic factor of α(x1 . . . xn). Then v is a cyclic factor of
every α(xi), 1 ≤ i ≤ n.

Finally, the most important result (see [3]), mentioned in the Introduction, is
that the rank of the equational system

(xk1

1 . . . xk1

n )k2k3 = (xk2

1 . . . xk2

n )k1k3 = (xk3

1 . . . xk3

n )k1k2 ,

k1 > k2 > k3 > 1, is one.
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