
LINEAR SIZE TEST SETS FORCERTAIN COMMUTATIVE LANGUAGES�St�ep�an Holub and Juha KortelainenTurku Centre for Computer Siene & Charles University, PragueDepartment of Information Proessing Siene University of OuluAbstrat. We prove that for eah positive integer n; the �nite ommutative languageEn = (a1a2 � � �an) possesses a test set of size at most 5n: Moreover, it is shown thateah test set for En has at least n � 1 elements. The result is then generalized toommutative languages L ontaining a word w suh that (i) alph(w) = alph(L); and(ii) eah symbol a 2 alph(L) ours at least twie in w if it ours at least twie in someword of L : eah suh L possesses a test set of size 11n , where n = Card(alph(L)) .The onsiderations rest on the analysis of some basi types of word equations.
0. IntrodutionIn this note we shall study the test sets of some ommutative languages. By a test set fora language L we mean any subset L0 of L suh that if any two morphisms agree onL0; then they agree also on L: By the famous Ehrenfeuht's Conjeture, eah languagehas a �nite test set. Sine the proof of the onjeture ([AlLa℄, see also [Sal℄), the sizeof test sets for di�erent types of languages has been under ative investigation. Thesize of the test set with respet to the onsidered language an be measured in di�erentways. We shall measure it by the ardinality of the language alphabet. The hoie isunderstandable: the struture of a ommutative language is generally not determinedby an automaton or a grammar.The test sets for regular and ontext-free languages an be e�etively determined andthis subjet has been studied in several papers. A survey of the results as well asa omprehensive list of referenes an be found in [ChKa℄ and [HaKa℄. For ontext-sensitive languages, �nite test sets annot in general be e�etively onstruted. Theartiles [Alb℄, [Hak℄, [Hol℄, [HaK1℄, [HaK2℄ and [Kor℄ ontain results on restrited typesof ontext-sensitive languages. By [EhKR℄, every language over a two-letter alphabethas a test set of size at most three. Test set researh on ommutative languages was1



started in [AlWo℄ and the work was ontinued in [HaK2℄ where it is shown that eahommutative language over an alphabet of n symbols possesses a test set of size O(n2):Finite sets have an important role as a soure of (ounter)examples in test set on-siderations. Let � be an alphabet of n symbols. In [KaPl℄ it is proved that thereexists a �nite (and thus regular) language over � whose test set size is at least 
(n4):Furthermore, in [HaK2℄ the existene of a �nite ommutative language L � �� witha test set of size at least 
(n2) is veri�ed. Our entral researh subjet an in termsof word equations be expressed as follows. For eah positive integer n; determine asmallest possible set Tn � Sn suh that( � ) x�(1)x�(2) � � �x�(n) = y�(1)y�(2) � � � y�(n) for eah � 2 Tnimplies( �� ) x�(1)x�(2) � � �x�(n) = y�(1)y�(2) � � � y�(n) for eah � 2 Sn :Above Sn is the set of all permutations of 1; 2; : : : ; n and x1; x2; : : : ; xn; y1; y2; : : : ; ynare words. An equivalent expression of the same task is to �nd a test set for the languageEn = fa�(1)a�(2) � � �a�(n) j � 2 Sng:The paper at hand has the following ontents. In the �rst setion some basi results andonepts on formal language theory and ombinatoris on words are given. In Setion2 a simple suÆient ondition implying ommutation of a sequene of words is derived.In the third setion the new onepts of permutation, weak permutation, onjugay andshu�e property are introdued. Their power and interrelations are studied up to ertainextent. In Setion 4 using weak permutation, onjugay and shu�e we formulate twosuÆient onditions that imply permutation of words. Applying the results obtainedin the previous setions, a linear size test set for the language (a1a2 � � �an) is on-struted in the �fth setion. In other words, we build a set Tn of size O(n) suh that(�) implies (��): In the seventh setion a linear size test set is found for languagesontaining a word w; suh that the alphabet of w is equal to the alphabet of L andeah symbol a ours at least twie in w if it ours at least twie in some word ofL: Suh are for example so alled CLIP-languages, i.e., ommutative languages whoseParikh-map is a linear set. The �nal setion ontains some onluding remarks andfurther topis of researh. 1. PreliminariesWe assume that the reader is familiar with the basi notations and results of formallanguage theory and word ombinatoris as presented in [Har℄ and [Lot℄.Let � be a (�nite) alphabet. As usual, �� ( �+; resp.) is the free monoid (freesemigroup, resp.) generated by �: The elements of �� are alled words. Let w 2 ��:2



For eah a 2 �; jwja is the number of ourrenes of the symbol a in w: The lengthof w; denoted by jwj ; is the total number of symbols in w : jwj = Pa2� jwja :De�ne the powers of w indutively as follows: w0 = �; wk+1 = wk �w (k 2 N): Letw� = fwk j k 2 Ng and w+ = w� n f�g: Let b1; b2; : : : bm 2 � and w = b1b2 : : : bm .Denote(w) = fb�(1)b�(2) : : : b�(m) j � 2 Smg = fu 2 �� j juja = jwja for eah a 2 �g:A fator of w is any word z 2 �� suh that w = xzy for some x; y 2 ��:The word w is primitive if w is nonempty and for eah word u and nonnegativeinteger n; the equality w = un implies w = u (and n = 1; of ourse). A basiresult in word ombinatoris says that for eah nonempty word x there exists a uniqueprimitive word t; the primitive root of x; suh that x 2 t+: The words u and wommute if uw = wu: It is again a well-known fat that two nonempty words ommuteif and only if they have the same primitive root.The words u and w are onjugate (words of eah other) if there exist x and y suhthat u = xy and w = yx: Let R be the relation of �� de�ned by: uRw if u andw are onjugate. Then the relation R is ertainly an equivalene, and the onept ofonjugay an be generalized to more than two words.Let L � �� be a language. The set of all symbols of � ourring in words of L isalled alphabet of L; denoted by alph(L): Write alph(w) = alph(fwg) and all it thealphabet of the word w . The ommutative losure (L) of the language L is the set(L) = fx j x 2 (w) for some w 2 Lg:We say that L is ommutative if L = (L): In this paper we will study in partiularthe �nite ommutative language (a1a2 � � �an); whih we denote by En:We say that morphisms g and h agree on the word u if g(u) = h(u) holds. Mor-phisms agree on a language L if they agree on all u 2 L: We say that g and h arelength{equivalent on a language L if jg(w)j = jh(w)j for eah w 2 L:The symbol N indiates, as usually, the set of all natural numbers and N+ = N nf0g: For eah n 2 N+ ; let �n = fa1; a2; : : : ; ang be the alphabet onsisting of ndistint symbols a1; a2; : : : ; an: The traditional Parikh-map 	n from ��n onto Nnis de�ned by 	n(w) = (jwja1 ; jwja2 ; : : : ; jwjan): The ardinality of a set X is denotedby Card(X):Assume now that n 2 N+ and L � ��n: A basis of L is any �nite subset F of Lsuh that(i) the set 	n(F ) onsists of exatly Card(F ) linearly independent elements (overQ ; the rational numbers);(ii) for eah w 2 L; the vetor 	n(w) is a linear ombination (over Q ) of somevetors in 	n(F ): 3



The dimension of L , denoted by dimL , is ardinality of any basis of L:A set S � Nn is linear if there exist m 2 N and vetors �v; �v1; �v2; : : : ; �vm 2 Nn suhthat S = f�v+k1�v1+k2�v2+ � � �+km�vm j k1; k2; : : : ; km 2 Ng: A ommutative languageL � ��n is a CLIP-language if 	n(L) is a linear set.For eah nonnegative rational number q; let dqe ( bq; resp.) denote the smallest(the greatest, resp.) integer k suh that q � k ( k � q; resp.).A permutation � 2 Sn is a bijetive mapping f1; 2; : : : ; ng ! f1; 2; : : : ; ng and itan be simply represented by the queue �(1)�(2) � � ��(n) or, in the ase of possibleonfusion, by (�(1); �(2); : : : ; �(n)):We have already notied the natural 1�1 orrespondene between sets of permutationsand subsets of En: We say that the set R � Sn produes the setR = fa�(1) � � �a�(n) j � 2 Rg:The onstrution of a test set S for the language En is equivalent to the onstrutionof the orresponding set of permutations Tn: Another equivalent haraterisation ofthe sought-after set Tn is that (�) implies (��) for any pair of morphisms g; h;suh that g(ai) = xi and h(ai) = yi ( i = 1; 2; : : : ; n ). These fats are obviousbut quite important for the future exposition, sine they allow us to make use of bothword equation and morphisms agreement notation, as well as to swith, if onvenient,between languages and sets of permutations.We shall need some results from the rudiments of ombinatoris on words. For theproofs of the �rst two see for instane [Lot℄. The �rst is the famous Periodiity Lemmaof Fine and Wilf.Theorem 1. If two powers um and vn of nonempty words u and v have a ommonfator of length at least juj + jvj � d; where d is the greatest ommon divisor of jujand jvj ; then the primitive roots of u and v are onjugate.The onjugay, the seond important property between two words (ommutativity isthe �rst) an be haraterized as follows.Theorem 2. Let x and y be nonempty words. The following three onditions areequivalent.(i) The words x and y are onjugate;(ii) The words x and y are of equal length and there exist unique words t1; andt2; with t2 nonempty, suh that t = t1t2 is primitive and x 2 (t1t2)+ andy 2 (t2t1)+;(iii) There exists a word z suh that xz = zy:4



Furthermore, if (ii) holds, then for eah word w; we have xw = wy if and only ifw 2 (t1t2)�t1:By the next theorem and its orollary (for the easy proof, see [HaK2℄), given distintwords x1; y1; the struture of any solution �; � of the system of equationsx1� = y1�; �x1 = �y1is unique.Theorem 3. Let x1 and y1 be distint words. The following two onditions areequivalent.(i) There exist words x2 and y2 suh thatx1x2 = y1y2 x2x1 = y2y1:(ii) There exist a unique word t1 and a unique nonempty word t2 suh that t1t2is primitive and x1; y1 2 (t1t2)�t1:Furthermore, if (ii) holds, then for eah pair of words x3; y3 we havex1x3 = y1y3 x3x1 = y3y1if and only if jx1x3j = jy1y3j and x3; y3 2 (t2t1)�t2 [ f�g: Moreover x1x3 2 (t1t2)+and x3x1 2 (t2t1)+:We an write the following usableCorollary. Let x1; x2; x3; y1; y2; y3 be words suh that jx1j 6= jy1j ; jx2j = jx3j and� x1x2 = y1y2 x1x3 = y1y3x2x1 = y2y1 x3x1 = y3y1 :Then x2 = x3 and y2 = y3:2. On Commutation of WordsLet us generalize the onept of ommutation to arbitrary many words. For eah n 2N+ we say that the words x1; x2; : : : ; xn ommute if( � ) x1x2 � � �xn = x�(1)x�(2) � � �x�(n)for eah permutation � 2 Sn: Certainly, if the words x1; x2; : : : ; xn are all nonempty,they ommute if and only if they have the same primitive root.5



Let n 2 N+ : For how many permutation � 2 Sn the equality ( � ) has to be valid toguarantee that the words x1; x2; : : : ; xn ommute? In the following we shall see thata number depending logarithmially on n is suÆient (Theorem 4), but, in general, aonstant number is not (Theorem 5). All logarithms are of ourse to the base 2.For eah m 2 N , n 2 N+ de�ne the permutation Ænm of 1; 2; : : : ; n indutively asfollows. LetÆn0 = (1; 2; : : : ; n) ;Æ1m = (1) ; andÆn1 = (r + 1; r + 2; : : : ; n; 1; 2; : : : ; r); where r = dn=2e .Let now m 2 N+ ; n 2 f2; 3; : : :g and assume that Ækj is given for j = 0; 1; 2; : : : ;mand k = 1; 2; : : : ; n� 1 . Then (denoting again r = dn=2e ), de�neÆnm+1 = (Ærm(1); Ærm(2); : : : ; Ærm(r); r+ Æn�rm (1); r+ Æn�rm (2); : : : ; r+ Æn�rm (n� r)) .It should be lear that Ænm is the identity for eah m > dlogne . For eah n 2 N+ ,let �n = f Ænm j m = 1; 2; : : : ; dlogneg:The de�nition of Ænm is easy to understand when n = 2k for some k . For general n;some work with integer parts of frations is inevitable. The reader, who wants to graspthe main idea of our onstrution and avoid the exerise in ounting with eilings andoors, an simply forget them and on�ne oneself to the ase n = 2k:Example 1. For n = 4 , n = 8 and n = 11 we have�4 = f(3; 4; 1; 2); (2; 1; 4; 3)g�8 = f(5; 6; 7; 8; 1; 2; 3; 4); (3; 4; 1; 2; 7; 8; 5; 6); (2; 1; 4; 3; 6; 5; 8; 7)g , and�11 = f(7; 8; 9; 10; 11; 1; 2; 3; 4; 5; 6); (4; 5; 6; 1; 2; 3; 10; 11; 7; 8; 9);(3; 1; 2; 6; 4; 5; 9; 7; 8; 11; 10); (2; 1; 3; 5; 4; 6; 8; 7; 9; 10; 11)g .The following result is a slight modi�ation of Theorem 9 in [HaK2℄.Theorem 4. Let n 2 N+ be a number and x1; x2; : : : ; xn be words. If(1) x1x2 � � �xn = xÆ(1)xÆ(2) � � �xÆ(n)for eah Æ 2 �n , then the words x1; x2; : : : ; xn ommute.Proof. By indution on n: The ases n = 1 and n = 2 are not diÆult.Let n � 3 and assume that the theorem holds for eah k 2 f1; 2; : : : ; n � 1g: Letr = dn=2e: By the equality (1) we havex1 : : : xrxr+1 : : : xn = xr+1 : : : xnx1 : : : xr;6



so the words x1x2 � � �xr and xr+1xr+2 � � �xn ommute. Also, by the remaining equal-ities in (1), we have x1x2 � � �xr = xÆ(1)xÆ(2) : : : xÆ(r)for all permutations Æ 2 �r andxr+1xr+2 : : : xn = xr+�(1)xr+�(2) � � �xr+�(n�r)for eah � 2 �n�r: By the indution hypothesis, the words x1; x2; : : : ; xr ommute,as well as the words xr+1; xr+2; : : : ; xn: This extends the indution. �Theorem 5. For eah m 2 N there exists n 2 N suh that for any m permutations�1; �2; : : : ; �m 2 Sn we an �nd words x1; x2; : : : ; xn whih do not ommute and satisfy(2) x1x2 � � �xn = x�i(1)x�i(2) � � �x�i(n) (i = 1; 2; : : : ;m):Proof. Assume that m is in N and hoose n � 32m : Let �1; �2; : : : ; �m be anypermutations of 1; 2; : : : ; n: We show that there exist three distint elements p; q; r 2f1; 2; : : : ; ng whih in eah sequene �j(1); �j(2); : : : �j(n); j = 1; 2; : : : ;m; formeither an inreasing or a dereasing (i.e. monotone) subsequene.It is a well known fat (dating bak to [ErSz℄) that for eah s 2 N ; any sequene of s2distint real numbers ontains a subsequene of s numbers whih is either inreasingor dereasing. Thus there exist integers i1; i2; : : : ; i32m�1 in f1; 2; : : : ; ng whih in�1(1); �1(2); : : : ; �1(n) appear in a monotone order.Proeed by indution. Let k 2 f1; 2; : : : ;m � 1g: Suppose that there exist integersj1; j2; : : : ; j32m�k in f1; 2; : : : ; ng suh that these integers form a monotone subsequenein �s(1); �s(2); : : : ; �s(n) for eah s 2 f1; 2; : : : ; kg: Consider the permutation �k+1:By the fats above, there exist integers s1; s2; : : : ; s32m�k�1 in j1; j2; : : : ; j32m�k whihin �s(1); �s(2); : : : ; �s(n); appear in either inreasing or dereasing order for eah s 2f1; 2; : : : ; k + 1g: This extends the indution.Let p < q < r 2 f1; 2; : : : ; ng be integers whih in the sequene �j(1); �j(2); : : : ; �j(n)form a monotone subsequene for eah j = 1; 2; : : : ;m . Let a and b be distintsymbols. Choose xp = xr = a; xq = b and xi = � for eah i 2 f1; 2; ::; ng n fp; q; rg:For any j 2 f1; 2; : : : ;mg the equality (2) looks like aba = aba; but the wordsxp; xq; xr do not ommute and thus neither do the words x1; x2; : : : ; xn . �3. Permutation, Shuffle and ConjugayIn the rest of the paper g and h will be arbitrary morphisms de�ned on �n and weput( y ) xi = g(ai); yi = h(ai); for i = 1; : : : ; n:7



We now introdue four onditions on the basis of whih our vital test set and wordequation problem an be solved.De�nition. The morphisms g and h satisfy the permutation ondition if they agreeon En; i.e. if they agree on a�(1)a�(2) � � �a�(n)for eah � 2 Sn:We shall generalize the above de�nition to subsets of �n . Let I = fai1 ; ai2 ; : : : ; aik j 1 �i1 < i2 < � � � < ik � ng: The morphisms g and h satisfy the permutation onditionon the set I if they agree on ai�(1)ai�(2) � � �ai�(k)for eah � 2 Sk:The permutation ondition is very restritive. The �rst antiipation is that it, in thenontrivial ase, implies ommutativity. The next theorem says that exatly this is notthe ase.Theorem 6. Let g and h satisfy the permutation ondition. Then one of the follow-ing statements holds.(i) xi = yi for eah i 2 f1; 2; : : : ; ng:(ii) There exist p; q 2 f1; 2; : : : ; ng; p < q; suh that xp 6= yp; xq 6= yq andxiyi = � for eah i 2 f1; 2; : : : ; ng n fp; qg: Then there exist unique word t1and a unique nonempty word t2 suh that t = t1t2 is the primitive root ofx1x2 � � �xn; xp; yp 2 (t1t2)�t1 and xq; yq 2 (t2t1)�t2:(iii) There exist three indies p; q; r 2 f1; 2; : : : ; ng suh that xp 6= yp; xq 6= yq andxryr 6= �: Then the words x1; x2; : : : ; xn; y1; y2; : : : ; yn ommute, i.e., if t isthe primitive root of x1x2 � � �xn; we have x1; x2; : : : ; xn; y1; y2; : : : ; yn 2 t�:Proof. Assume that (i) does not hold. There then exist at least two indies j 2f1; 2; : : : ; ng suh that xj 6= yj : Let p; q 2 f1; 2; : : : ; ng; p < q; be suh that xp 6= ypand xq 6= yq: Two possibilities arise. Either xiyi = � for eah i 2 f1; 2; : : : ; ngnfp; qgor there exist r 2 f1; 2; : : : ; ng n fp; qg suh that xryr 6= �:1. Consider the �rst possibility. By Theorem 3, the ase (ii) holds.2. Assume that the seond possibility holds. Suppose without loss of generality, thatxr 6= �: Letzi = � xi; for i = 1; 2; : : : ; p� 1;xi+1 for i = p; p+ 1; : : : ; n� 1; ui = � yi; for i = 1; 2; : : : ; p� 1;yi+1 for i = p; p+ 1; : : : ; n� 1:Then xpz�(1)z�(2) � � � z�(n�1) = ypu�(1)u�(2) � � �u�(n�1)8



and z�(1)z�(2) � � � z�(n�1)xp = u�(1)u�(2) � � �u�(n�1)ypfor eah permutation � 2 Sn�1:Sine xp 6= yp; we dedue from the orollary of Theorem 3, thatz1z2 � � � zn�1 = z�(1)z�(2) � � � z�(n�1)for eah � 2 Sn�1: This ertainly means that the words x1; : : : ; xp�1; xp+1; : : : ; xnommute. Similarly it an be shown that the words x1; : : : ; xq�1; xq+1; : : : ; xn om-mute. Sine p; q; and r are all distint and xr 6= �; we dedue that the wordsx1; x2; : : : ; xn ommute, whih �nally implies that x1; x2; : : : ; xn; y1; y2; : : : ; yn om-mute. �Note that under the adopted assignment the permutation ondition is equivalent to( �� ). Let us reall that we are interested in the smallest possible subsets of Sn thatprodue a test set for En: It is shown that there exist a test set of size O(n) and alsothat this order of magnitude is the best possible.Example 2. Consider the language E3: De�ne morphisms g; h byg(a1) = a g(a2) = ab g(a3) = babh(a1) = aba h(a2) = ab h(a3) = band verify that they agree on all elements of E3 exept of a1a2a3: By the symmetryof letters, it shows that no proper subset of E3 is its test set.De�nition. The morphisms g and h satisfy the onjugay ondition if they agreeon eah onjugate word of a1a2 : : : an:Along our onventions g and h satisfy the onjugay ondition if the equalityxixi+1 � � �xnx1x2 � � �xi�1 = yiyi+1 � � � yny1y2 � � � yi�1holds for eah i 2 f1; 2; : : : ; ng:Denote by CONn the subset of Sn that produes the set of all onjugates of the worda1a2 � � �an:Words satisfying the onjugay ondition have some remarkable properties.Theorem 7. Let g and h be morphisms satisfying onjugay ondition and supposethat x1x2 � � �xn is nonempty. For eah i 2 f1; 2; : : : ; ng; let ti be the primitive root ofxixi+1 � � �xnx1x2 � � �xi�1 and di be the word suh that either xi = diyi or yi = dixi:9



Then t1; t2; : : : ; tn are onjugate words of eah other and, for eah i 2 f1; 2; : : : ; ng;we have di 2 t�i :Proof. Sine x1x2 � � �xn; x2x3 � � �xnx1; : : : , xnx1x2 � � �xn�1 are onjugate, theirprimitive roots t1; t2; : : : ; tn are also onjugate, by the basi results in ombinatorisof words. Let i 2 f1; 2; : : : ; ng: If di 6= �; Theorem 3 implies that both di andxixi+1 � � �xnx1x2 � � �xi�1 are 2 t+i : The ase di = � is lear. �De�nition. Let n � 2 be an integer and r = dn=2e: The morphisms g and hsatisfy the shu�e ondition if they agree on following n words :
( SH )

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
a1 a2 � � �ar�3 ar�2 ar�1 ar ar+1ar+1ar+1 ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar�2 ar�1 ar+1ar+1ar+1 ar ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar�2 ar+1ar+1ar+1 ar�1 ar+2ar+2ar+2 ar ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar+1ar+1ar+1 ar�2 ar+2ar+2ar+2 ar�1 ar+3ar+3ar+3 ar ar+4ar+4ar+4 � � �ananan...ar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 a1 an�2an�2an�2 a2 an�1an�1an�1 a3 ananan a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 a1 an�1an�1an�1 a2 ananan a3 a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 an�1an�1an�1 a1 ananan a2 a3 a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 an�1an�1an�1 ananan a1 a2 a3 a4 � � �arThe bold typefae in the de�nition above helps to grasp the struture of the set SHand has no semanti relevane.We give also a more formal de�nition of the set SH: For all integers i 2 Z de�newords i; di byi = � ai; i = 1; : : : ; r�; otherwise; di = � ai; i = r + 1; : : : ; n�; otherwise.Then SH = fYi2Zidi+k j k 2 Zg = fYi2Zidi+k j k = 1; : : : ; ng:Again, denote by SHUn the set of n permutations that produes the words in SH:There is not muh to say about the struture of morphisms satisfying the shu�e on-dition. It ertainly does not alone imply the permutation ondition. In fat Exampleshows that even together the shu�e and the onjugay onditions are not as strong asthe permutation ondition. We are going to introdue one more tool.10



De�nition. Let n � 2 be an integer and r = dn=2e: The morphisms g and hsatisfy the weak permutation ondition if they agree on words( WP ) 8>>><>>>: a1a2 � � �arar+Æ(1)ar+Æ(2) � � �ar+Æ(n�r)ar+Æ(1)ar+Æ(2) � � �ar+Æ(n�r)a1a2 � � �arar+1ar+2 � � �ana�(1)a�(2) � � �a�(r)a�(1)a�(2) � � �a�(r)ar+1ar+2 � � �anfor all Æ 2 �n�r and � 2 �r:Let WPEn be the subset of Sn produing the words in WP : Certainly WPEnontains 2dlog re+ 2dlog(n� r)e permutations.4. Suffiient Conditions for the Permutation PropertyTheorem 8. Let n � 4 be an integer and r = dn=2e: Suppose that morphisms gand h satisfy both the onjugay and the weak permutation ondition and furthermorejx1x2 � � �xrj 6= jy1y2 � � �yrj : Then the morphisms satisfy the permutation ondition.Proof. By the orollary of Theorem 3,x1x2 � � �xr = xÆ(1)xÆ(2) � � �xÆ(r)y1y2 � � � yr = yÆ(1)yÆ(2) � � �yÆ(r)for eah Æ 2 �r; andxr+1xr+2 � � �xn = xr+�(1)xr+�(2) � � �xr+�(n�r)yr+1yr+2 � � � yn = yr+�(1)yr+�(2) � � �yr+�(n�r)for eah � 2 �n�r: Theorem 4 now implies that the words x1; x2; : : : ; xr ommuteand so do also the words y1; y2; : : : ; yr as well as xr+1; xr+2; : : : ; xn and the wordsyr+1; yr+2; : : : ; yn .We shall now show that the morphisms g and h satisfy the permutation property.1. If there are exatly two distint indies i; j 2 f1; 2; : : : ; ng suh that xiyi andxjyj are nonempty, there is nothing to prove: the total system of equations ollapsesto xixj = yiyj , xjxi = yjyi .2. Assume thus, without loss of generality, that there exist indies p; q 2 f1; 2; : : : ; rg ,p < q , and s 2 fr+1; r+2; : : : ; ng suh that xpyp , xqyq and xsys are all nonemptyand jx1 : : : xrj > jy1 : : : yrj . Let t , u and v be the primitive roots of x1x2 � � �xr ,y1y2 � � � yr , and x1x2 � � �xn , respetively. (If y1y2 � � �yr is empty, put u = v ). Cer-tainly xp; xq are in t� , yp; yq are in u� and, by Theorem 7, the di�erene of x1 � � �xr11



and y1 � � � yr is a onjugate of v .2.1. Now, if xp = yp (or xq = yq ), we have neessarily t = u = v sine x1 : : : xr 2 t+is a pre�x of x1 : : : xn 2 v+ . Then also xr+1xr+2 � � �xn and yr+1yr+2 � � � yn are inv� and we are through: all the words ommute.2.2. Assume thus that xp 6= yp and xq 6= yq .2.2.1. If any of the words xp; xq; yp; yq is empty, we again have, by Theorem 7,t = u = v .2.2.2. Let thus xp; xq; yp; yq all be nonempty. Then x1x2 � � �xr is longer than 2jvjand, by the Periodiity Lemma, t = v . Again we see that the words ommute. �Theorem 9. Assume n � 4 is an integer, r = dn=2e; and the morphisms g and hsatisfy the(i) onjugay and shu�e ondition;(ii) permutation ondition on the sets fa1; a2; : : : ; arg and far+1; ar+2; : : : ; ang:Then they satisfy the permutation ondition.Proof.1. If xi = yi for i = 1; 2; : : : ; n; we are through.2. Assume then, without loss of generality, that q is the greatest number i 2f1; 2; : : : ; rg suh that xi 6= yi: By Theorem 7, the words x1x2 � � �xr and x1x2 � � �xnand therefore also xr+1xr+2 � � �xn are powers of the same primitive word t; say. ByTheorem 6, two ases appear. Either1Æ All the words x1; x2; : : : ; xr 2 t�or 2Æ There exist exatly two distint indies p and q in f1; 2; : : : ; rg suh thatxpyp and xqyq are nonempty and xp and xq do not ommute.2.1. Consider �rst ase 2Æ: By the orollary of Theorem 3, there exist nonempty wordst1; t2 and integers r1; r2; s1; s2 2 N suh that t = t1t2; r1 6= s1; r1 + r2 = s1 + s2;xp = tr1t1; yp = ts1t1; xq = t2tr2 ; and yq = t2ts2 :2.1.1. If xr+1 � � �xn = �; we are done.2.1.2. Let s be the smallest number i 2 fr + 1; r+ 2; : : : ; ng suh that xiyi 6= �: ByTheorem 3, there exist words u1; u2 and integers r3; r4; s3; s4 2 N suh that u1u2 =t = t1t2; xs = tr3u1; ys = ts3u1; xs+1xs+2 � � �xn = u2tr4 and ys+1ys+2 � � � yn =u2ts4 : By the shu�e ondition we have the following identity.(3) tr1t1tr3u1t2tr2u2tr4 = ts1t1ts3u1t2ts2u2ts4 :Assume without loss of generality that r1 > s1 (and thus s2 > 0 ). Certainly (3)implies(4) (t2t1)r1�s1tr3u1t2tr2u2tr4 = ts3u1t2ts2u2ts4 :2.1.2.1. If s3 > 0; then t = t1t2 = t2t1; a ontradition, sine t is primitive and12



t1; t2 are both nonempty.2.1.2.2. Suppose that s3 = 0: Then r3 6= 0 and (t2t1)u1 = u1(t2t1); so u1 = �sine t2t1 is primitive. Now we have u2 = t and (4) yields t1t2 = t2t1; again aontradition.2.2. Consider then the ase 1Æ: Apply Theorem 6 to the words xr+1; xr+2; : : : ; xn andyr+1; yr+2; : : : ; yn:2.2.1. If xr+1; xr+2; : : : ; xn 2 t�; the proposition obviously is true: all the wordsommute.2.2.2. The ase (ii) of Theorem 6 was studied above (2.1.).2.2.3. Suppose that xj = yj for j = r+1; r+2; : : : ; n: The shu�e ondition now leadsto equalities (x1x2 � � �xq�1)xr+1xq = (y1y2 � � � yq�1)yr+1yq: Sine x1; x2; : : : ; xq�1; xqas well as y1; y2; : : : ; yr; yq are all in t�; it is not diÆult to see that the wordxr+1 = yr+1 is also in t�: Similarly, using further shu�e equalities, we prove that xjis in t� for all j = r + 1; : : : ; n: This ompletes the proof. �5. A Linear Size Test Set for the Language EnIn this setion we onstrut reursively a sequene (Tn)n2N+ ; with Tn � Sn; whihwill determine our test sets. Let us �rst explain the idea of the reursiveness in ouronstrution.Let R be a subset of Sn: Put r = dn=2e and for any � 2 R de�ne mappings�� : f1; : : : ; rg ! f1; : : : ; ng by �� (i) = �(i);and �� : f1; : : : ; n� rg ! f1; : : : ; ng by �� (i) = �(r + i)� r:If f�(i) j i = 1; : : : ; rg = f1; : : : ; rg; then both �� ; �� are permutations and we saythat � is per partes. PutPLEFT(R) = f�� j � 2 R; � is per partesg;PRIGHT(R) = f�� j � 2 R; � is per partesg:We say that the set R � Sn is founded if(i) PLEFT(R) produes a test set for Er;(ii) PRIGHT(R) produes a test set for En�r:Our onstrution of the sequene (Tn)n2N+ is based on the followingTheorem 10. Let R be a subset of Sn suh that(i) CON n [ SHUn [WPEn � R ; and(ii) R is founded. 13



Then the set R produed by R is a test set for En:Proof. Suppose that the morphisms g and h agree on R: We want to show that gand h satisfy the permutation ondition.Let r = dn=2e and suppose �rst that jx1x2 � � �xrj 6= jy1y2 � � � yrj : By (i), the mor-phisms g and h satisfy both the onjugay and the weak permutation ondition andtherefore, by Theorem 8, we are through.Consider next the ase jx1x2 � � �xrj = jy1y2 � � � yrj : The fat that R is founded guar-antees that the equalitiesx�(1)x�(2) � � �x�(r) = y�(1)y�(2) � � � y�(r)hold for eah � 2 Sr; andxr+�(1)xr+�(2) � � �xr+�(n�r) = yr+�(1)yr+�(2) � � � yr+�(n�r)hold for eah � 2 Sn�r: Theorem 9 ompletes the proof. �Now we are prepared to onstrut the desired test sets. For n = 1; 2; 3 the set Tn hasto be equal to Sn: Consider the ase n = 4: We haveCON 4 8>>><>>>: 1 2 3 41 2 3 41 2 3 42 3 4 12 3 4 12 3 4 13 4 1 23 4 1 23 4 1 24 1 2 34 1 2 34 1 2 3 SHU4 8>>><>>>: (1 2 3 4)(1 2 3 4)(1 2 3 4)1 3 2 41 3 2 41 3 2 43 1 4 23 1 4 23 1 4 2(3 4 1 2)(3 4 1 2)(3 4 1 2) WPE4 8>>><>>>: 1 2 4 31 2 4 31 2 4 34 3 1 24 3 1 24 3 1 23 4 2 13 4 2 13 4 2 12 1 3 42 1 3 42 1 3 4The underlined elements show that CON 4 [ SHU4 [WPE4 is founded and repeatedelements are in brakets. By Theorem 10, the setT4 = f123412341234; 234123412341; 341234123412; 412341234123; 132413241324; 314231423142; 124312431243; 431243124312; 342134213421; 213421342134gprodues a test set for E4:Before we give the general onstrution formula, let us still onsider separately asesn = 5; 6: For n = 5 the de�nitions yield
CON 5 8>>>>><>>>>>:

1 2 3 4 51 2 3 4 51 2 3 4 52 3 4 5 12 3 4 5 12 3 4 5 13 4 5 1 23 4 5 1 23 4 5 1 24 5 1 2 34 5 1 2 34 5 1 2 35 1 2 3 45 1 2 3 45 1 2 3 4 SHU5 8>>>>><>>>>>:
(1 2 3 4 5)(1 2 3 4 5)(1 2 3 4 5)1 2 4 3 51 2 4 3 51 2 4 3 51 4 2 5 31 4 2 5 31 4 2 5 34 1 5 2 34 1 5 2 34 1 5 2 3(4 5 1 2 3)(4 5 1 2 3)(4 5 1 2 3) WPE5 8>>>>>>>><>>>>>>>>:

1 2 3 5 41 2 3 5 41 2 3 5 45 4 1 2 35 4 1 2 35 4 1 2 33 1 2 4 53 1 2 4 53 1 2 4 52 1 3 4 52 1 3 4 52 1 3 4 54 5 3 1 24 5 3 1 24 5 3 1 24 5 2 1 34 5 2 1 34 5 2 1 314



It is not diÆult to verify that CON 5[SHU5[WPE5 is not founded. For any � 2 S3the set T5 has to ontain a permutation starting by �: The underlined elements showthat we have to add for example 132451324513245; 231452314523145; 321453214532145 and we getT5 = f123451234512345; 234512345123451; 345123451234512; 451234512345123; 512345123451234; 124351243512435; 142531425314253; 415234152341523; 123541235412354;541235412354123; 312453124531245; 213452134521345; 453124531245312; 452134521345213; 132451324513245; 231452314523145; 321453214532145g:Similarly for n = 6 we onstrut
CON 6 8>>>>>>>><>>>>>>>>:

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 62 3 4 5 6 12 3 4 5 6 12 3 4 5 6 13 4 5 6 1 23 4 5 6 1 23 4 5 6 1 24 5 6 1 2 34 5 6 1 2 34 5 6 1 2 35 6 1 2 3 45 6 1 2 3 45 6 1 2 3 46 1 2 3 4 56 1 2 3 4 56 1 2 3 4 5 SHU6 8>>>>>>>><>>>>>>>>:
(1 2 3 4 5 6)(1 2 3 4 5 6)(1 2 3 4 5 6)1 2 4 3 5 61 2 4 3 5 61 2 4 3 5 61 4 2 5 3 61 4 2 5 3 61 4 2 5 3 64 1 5 2 6 34 1 5 2 6 34 1 5 2 6 34 5 1 6 2 34 5 1 6 2 34 5 1 6 2 3(4 5 6 1 2 3)(4 5 6 1 2 3)(4 5 6 1 2 3) WPE6

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
1 2 3 6 4 51 2 3 6 4 51 2 3 6 4 51 2 3 5 4 61 2 3 5 4 61 2 3 5 4 66 4 5 1 2 36 4 5 1 2 36 4 5 1 2 35 4 6 1 2 35 4 6 1 2 35 4 6 1 2 33 1 2 4 5 63 1 2 4 5 63 1 2 4 5 62 1 3 4 5 62 1 3 4 5 62 1 3 4 5 64 5 6 3 1 24 5 6 3 1 24 5 6 3 1 24 5 6 2 1 34 5 6 2 1 34 5 6 2 1 3

:
One an easily see that added elements 132132132 465465465; 231231231 564564564 and 321321321 654654654; we obtain afounded setT6 = f123456123456123456; 234561234561234561; 345612345612345612; 456123456123456123; 561234561234561234; 612345612345612345; 124356124356124356; 142536142536142536; 415263415263415263;451623451623451623; 123645123645123645; 123546123546123546; 645123645123645123; 546123546123546123; 312456312456312456; 213456213456213456; 456312456312456312; 456213456213456213;132465132465132465; 231564231564231564; 321654321654321654g:For n � 7 de�ne Tn = CONn [ SHUn [WPEn [ FUNnwhere FUNn is the reursive part of Tn; whih guarantees that Tn is founded. Theset FUN n is onstruted as follows. Assume that Tk is given for k = 2; 3; : : : ; n� 1:Let �1; �2; : : : ; �p be a sequene of all distint elements ofTdn=2e n PLEFT(CON n [ SHUn [WPEn);and similarly, let �1; �2; : : : ; �q be a sequene of all distint elements inTbn=2 n PRIGHT(CON n [ SHUn [WPEn):Denote m = maxfp; qg and put �k = �q for all k = q + 1; : : : ;m; �k = �p for allk = p+ 1; : : : ;m: For eah i 2 f1; 2; : : : ;mg de�ne �i 2 Sn by�i(j) = � �i(j); for j = 1; 2; : : : ; dn=2edn=2e+ �i(j � dn=2e); for j = dn=2e+ 1; : : : ; n;and put FUN n = f�i j i = 1; : : : ;mg: 15



Theorem 11. For all n 2 N+ ; the set Tn produes a test set for En:Proof. The onstrution of Tn shows that it satis�es both onditions of Theorem 10.�In the following we investigate the size of our test sets. To avoid onfusion, write thepermutations temporarily in parentheses.Let r = dn=2e; s = n � r = bn=2; r0 = dr=2e and s0 = ds=2e: For n � 7 oneeasily sees that(5) Card(CON n [ SHUn) = 2n� 2Card(WPEn) = 2 � dlogdn=2ee + 2 � dlogbn=2e:Note that (1; 2; : : : ; r)(1; 2; : : : ; r)(1; 2; : : : ; r) 2 CON dn=2e \ PLEFT(CON n)and (r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1)(r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1)(r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1) 2 CON dn=2e \ PLEFT(WPEn):Similarly (1; 2; : : : ; s)(1; 2; : : : ; s)(1; 2; : : : ; s) 2 CON bn=2 \ PRIGHT(CONn)and (s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1)(s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1)(s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1) 2 CON bn=2 \ PRIGHT(WPEn):This implies that(6) Card(FUNn) � maxfCard(Tbn=2);Card(Tdn=2e)g � 2:We estimate the size of Tn by a funtion F : N+ ! N+ : Let F (1) = 1; F (2) =2; F (3) = 6; F (4) = 10; F (5) = 17; F (6) = 21; and for n � 7 putF (n) = 2n� 2 + 2 � dlogdn=2ee+ 2 � dlogbn=2e + maxf F (bn=2); F (dn=2e)g � 2:From the onstrution of test sets for n � 6; and from (5) and (6) we dedue, byindution on n; that Card(Tn) � F (n)and that F is stritly inreasing:F (n) < F (n+ 1)for all n 2 N+ : The monotony of F impliesmaxf F (bn=2); F (dn=2e)g = F (dn=2e):16



Let r(n) = 2 � dlogdn=2ee+ 2 � dlogbn=2e � 4:Then we an write F (n) = 2 � n + r(n) + F (dn=2e)for n � 7:Let a > 4 be a real number. As a polynomial of n , the funtion given byf(n) = (a� 4) � n� a2grows faster than r(n); so there exist na 2 N ; na � 7; suh that for eah n � na;we have f(n) � r(n): This implies that(7) F (n) � 2 � n+ f(n) + F (dn=2e) = a � (n� 1)2 + F (dn=2e)for eah n � na: Let now ba = F (na): We prove by indution that F (n) � a �n+bafor eah n 2 N+ : The assertion ertainly holds if n � na: Suppose n > na: ThenF(n) � a � (n� 1)2 + F (dn=2e) � a � (n� 1)2 + a � dn2 e+ ba� a � (n� 1)2 + a � (n+ 1)2 + b = a � n+ ba :Also for any real number a0 suh that 4 < a0 < a there is an integer ba0 , for whihF (n) � a0n + ba0 for all n 2 N+ : This implies the existene of a number ma 2 Nsuh that F (n) � a � nfor all n � ma: We an summarize:Theorem 12. For any real number a > 4 there exist integers ba;ma 2 N suh that(i) Card(Tn) � a n+ ba for eah n 2 N ;(ii) Card(Tn) � a n for eah integer n � ma:Let a = 5: It is not diÆult to verify that in suh a ase f(n) � r(n) for all n � 37and by (7) F (n) � 5 � (n� 1)2 + F (dn=2e)for n � 37: A diret omputation yields following list:F (1) =1 F (2) =2 F (3) =6 F (4) =10 F (5) =17F (6) =21 F (7) =28 F (8) =30 F (9) =41 F (10)=4517



F (11)=51 F (12)=53 F (13)=62 F (14)=64 F (15)=68F (16)=70 F (17)=85 F (18)=89 F (19)=95 F (20)=97F (21)=105 F (22)=107 F (23)=111 F (24)=113 F (25)=124F (26)=126 F (27)=130 F (28)=132 F (29)=138 F (30)=140F (31)=144 F (32)=146 F (33)=165 F (34)=169 F (35)=175F (36)=177 F (37)=185 F (38)=187 F (39)=191 F (40)=193so that F (n) � 5n; when n = 1; 2; : : : ; 36: For n � 37 proeed by indution toobtain F (n) � 5 � (n� 1)2 + F (dn=2e) � 5 � (n� 1)2 + 5 � (n+ 1)2 = 5n:Observe that for n = 37; as well as for other underlined values, the estimate is sharp:F (n) = 5n: We an now answer a question stated in [HaK2℄.Theorem 13. For eah n 2 N+ ; the language En = (a1a2 � � �an) possesses a testset (produed by Tn ) with the size at most 5 � n:The following result gives a lower bound for the size of a test set.Theorem 14. Eah test set for the language En = (a1a2 � � �an) ontains at leastn� 1 elements.Proof. The assertion is ertainly true for n = 1; 2; 3: Assume that n > 3: Let S =fw1; w2; � � � ; wn�2g be any subset of En with ardinality n � 2: Suppose, withoutloss of generality, that a1 is the last letter of w1: We onstrut two (nonerasing)morphisms that agree on S; but not on En:For eah i 2 f1; 2; : : : ; n� 2g; letMi = fk j wi = xakya1z for some words x; y; z 2 ��ng:Thus Mi is the set of all numbers k 2 f2; 3; : : : ; ng suh that ak preedes the symbola1 in the word wi: By assumption, M1 = f2; : : : ; ng: For eah i 2 f1; 2; : : : ; n� 2gand eah j 2 f2; 3; : : : ; ng; let rij = � 1; if j 2Mi0; otherwise:Let �vj = (r1j ; r2j; : : : ; rn�2;j)for eah j 2 f2; 3; : : : ; ng: The vetors �v2; �v3; : : : ; �vn; having only n� 2 oordinates,are linearly dependent over Q ; the rationals. There thus exist integers d2; d3; : : : ; dn;not all zero, suh that d2�v2 + d3�v3 + � � �+ dn�vn = �018



with �0 the zero vetor. Sine eah rij 2 f0; 1g; the equalityXj2Mi dj = 0holds for eah i 2 f1; 2; : : : ; n� 2g: For eah j 2 f2; 3; : : : ; ng; we state8><>: kj = dj + 1; lj = 1 if dj > 0kj = lj = 1 if dj = 0kj = 1; lj = �dj + 1 if dj < 0 :Then k2; k3; : : : ; kn; l2; l3; : : : ; ln are all stritly positive integers andXj2Mi(kj � lj) = 0for eah i 2 f1; 2; : : : ; n� 2g: In partiular, i = 1 implies thatk2 + k3 + � � �+ kn = l2 + l3 + � � �+ ln :Let a; b be distint symbols and g and h nonerasing morphisms: ��n ! fa; bg�de�ned by� g(a1) = bg(aj) = akj for j = 2; 3; : : : ; n; � h(a1) = Bh(aj) = Alj ; for j = 2; 3; : : : ; n :Let i 2 f1; 2; : : : ; n� 2g: We haveg(wi) = ar1bar2 ; h(wi) = as1bas2where r1 = Xj2Mi kj = Xj2Mi lj = s1and, sine k2 + k3 + � � �+ kn = l2 + l3 + � � �+ ln , alsor2 = Xj =2Mi kj = Xj =2Mi lj = s2 :Thus g(wi) = h(wi): On the other hand,g(aia1 � � �ai�1ai+1 � � �an) 6= h(aia1 � � �ai�1ai+1 � � �an)as soon as di 6= 0: This ompletes the proof. �19



6. General ommutative languagesWe �rst ontemplate the orrelation between two onepts: "basis" and "test set" of alanguage.Lemma 15. Let P be any subset of L � ��n: Length-equivalene on P quaranteeslength{equivalene on L if and only if the set P ontains a basis of L:The suÆieny of the ondition is evident. That it is neessary is not diÆult to verifyeither. For the proof we refer to [AlWo℄ (see also [HaKo2℄). The fat implies that eahtest set for L ontains a basis of L .If the basis of 	(L) ontains the maximal possible number n of vetors, then, bysimple length onsideration, any two morphisms, whih agree lengthwise on the basis,agree at the same time lengthwise on every letter. Consequently, any basis of L isalso a test set. In general this ertainly is not true: the set fa1a2g is one basis ofE2 = (a1a2) (the other possibility is fa2a1g ), but the only test set for the languageE2 is E2 itself.In this setion we showTheorem 16. Let L � ��n be a language and w 2 L a word suh that alph(w) =alph(L) and, for eah i , symbol ai ours at least twie in w if it ours at leasttwie in some word of L: Then (L) possesses a test set of the size at most 11 � n:Proof. The proof is given by the onstrution of the test set. Let	n(w) = (d1; d2; : : : ; dn);with d1; d2; : : : ; dn 2 N : For eah i 2 f1; 2; : : : ; ng we stateri = ddi=2e; and rn+i = di � ri:Let v = ar11 ar22 � � � arnn arn+1n+1 arn+2n+2 � � � ar2n2n 2 ��2nand de�ne a projetion � : ��2n ! ��n by�(ai) = �(an+i) = ai for i = 1; 2; : : : ; n :Note that �((v)) = (w) :Let B be a basis of L: Our test set will onsist of the set B and of projetion ofsome permutations of the word v: Namely, we laim thatTL = � (far�(1)�(1) ar�(2)�(2) � � � ar�(2n)�(2n) j � 2 T2ng) [ B20



is a test set for L: ObviouslyCard(TL) � Card(T2n) + Card(B) � 11 � n:To prove this assertion, let g and h be morphisms de�ned on ��n that agree on TL:De�ne another morphism � : ��2n ! ��n by�(ai) = �(ai)ri for i = 1; : : : ; 2nand morphisms g1 = g Æ �; h1 = h Æ �with the domain ��2n: Sine g and h agree on TL; the morphisms g1; h1 agree onT2n = fa�(1) a�(2) � � � a�(2n) j � 2 T2ng:From Theorem 11 we dedue that g1 and h1 agree on E2n; as T2n is a test set forE2n:Theorem 6 gives three possibilities to g1; h1:1. If g1(ai) = h1(ai) for eah i = 1; 2; : : : ; 2n; then also g(ai) = h(ai) for eahi = 1; 2; : : : ; n; and there remains nothing to prove.2. If g1(aj)h1(aj) 6= � for at least three indies, then, by Theorem 6, there exista primitive word t suh that g1(ai); h1(ai) 2 t� for eah i = 1; 2; : : : ; 2n: Theng(ai); h(ai) 2 t� for j = 1; 2; : : : ; n; and we are through, sine g; h are length-equivalent on L; due to B � TL:3. Assume �nally that there are indies p; q 2 f1; 2; : : : ; 2ng; p < q suh that g1(ap) 6=h1(ap); g1(aq) 6= h1(aq) and g1(ai)h1(ai) = � for eah i 2 f1; 2; : : : ; 2ng n fp; qg:3.1. If q = n+ p; then �(ap) = �(aq) = ap: For arbitrary u 2 E2n we haveg(ap)dp = g1(u) = h1(u) = h(ap)dpand g(ap) = h(ap); a ontradition with g1(ap) 6= h1(ap):3.2. Therefore q 6= n + p and p; q � n: By de�nition of v; the letters ap and aqour both exatly one in w and thus they have at most one ourrene in any wordfrom L: Consequently �(ap) = ap; �(aq) = aq andg(u) = g1(u) = h1(u) = h(u)for all u 2 L: �Assume in the following that eah CLIP-language (w0w�1w�2 � � �w�m) is e�etively given(for instane, either through the vetors of its Parikh-map, or by giving the sequeneof words w0; w1; w2; : : :wn ). Next orollary is the solution of a problem left open in[HaK2℄: 21



Corollary. Eah CLIP-language over an alphabet of n symbols possesses a test set ofsize at most 11 n: The test set an be e�etively onstruted.Proof. Let L be a CLIP-language with alph(L) = �n; n 2 N+ : Thus L =w0w�1w�2 � � �w�m where m 2 N and w0; w1; : : : ; wm are in ��n: Now it suÆes tohoose w = w0w21w22 � � �w2m and use Theorem 16. The e�etiveness is guaranteed bythe onstrution of the test set for En and by the fat that a subset offw0; w0w1; w0w2; : : : ; w0wmgis the basis of (L): �Given, for a language L0 , (i) a word w; whih is enough "representative" for thealphabet of L0 ; and (ii) a basis B of L0 , our result yields a straightforward althoughrough method to onstrut a test set for the ommutative language (L0): The testset is in fat a subset of (w) augmented by a basis of L0: As we have seen, themethod an be applied to any CLIP-language L = (w0w�1w�2 � � �w�m): If, moreover,eah symbol of alph(L) appears in also w1w2 � � �wm; we an onstrut a test set ofsize at most the dimension dimL of L: However, the small ardinality of the test setis reouped by the length of one of its elements.Theorem 17. Let L = (w0w�1w�2 � � �w�m) be a CLIP-language suh that alph(L)= alph(w1w2 � � �wm) . Then L possesses an e�etively onstrutable test set of sizedimL:Proof. Assume, without loss of generality, that alph(L) = �n: By the orollary ofTheorem 16, the language L1 = (w�1w�2 � � �w�m) has a �nite (e�etively onstrutable)test set T1 = fu1; u2; : : : ; urg suh that r � 11n . Let u = u1u2 � � �ur andU = fw0; w0u;w0w1; w0w2; : : :w0wmg :It should be lear that U is a subset of L and that from U we an e�etively forma basis T of L suh that w0u 2 T .We now verify that T is a test set for L . Let g and h be morphisms that agreeon T: Sine T is a basis of L , the morphisms g and h are length-equivalent onL . This means that g and h agree on fw0; u1; u2; : : : ; urg and thereby also onT1: Sine T1 is a test set of L1 , we dedue that the morphisms agree on L1: Letx = w31w32 � � �w3m . The word x is an element of L1 and thus morphisms g andh agree on (x) . Note that jxjai � 3 for eah ai 2 �n . A slight modi�ation ofTheorem 6 (not all letters in x are distint) now gives two possibilities: either(i) g(ai) = f(ai) for i = 1; 2; : : : ; n ; or(ii) there exists a primitive word t suh that g(ai); f(ai) 2 t� for i = 1; 2; : : : ; n:Beause of the length-equivalene on L , the morphisms g and h agree on L: �22



7. Conlusions and Topis of Further ResearhHopefully the above onsiderations have given some information not only about testsets for �nite ommutative languages but also of the impat of onjugay- and shu�e-like quali�ations to word equations. In general, the assumption that a language isommutative (or bounded) is very restritive; most of the languages are of neither type.One way to arry on the researh is to study test sets for language families generated bysome well-known set of ommutative languages. Let R the set of all regular languagesand (R) = f(R) j R 2 Rg: Furthermore, denote by C((R)) the smallest triogenerated by the family (R): We end the disussion to the followingResearh Problem. Does there exist an e�etively onstrutable �nite test set for lan-guages in the family C((R)) ?It should be remembered that a trio is a family of languages losed under union, �-freemorphism image and intersetion with regular sets. The intuition says that the answerto the problem is aÆrmative. The onstrution of the test set is probably diÆult.Referenes[Alb℄ J. Albert, On test sets, heking sets, maximal extensions and their e�etive onstrutions,Habilitationsshirft, Fakult�at f�ur Wirtshaftswissenshaften der Universit�at Karlsruhe (1968).[AlLa℄ M. H. Albert and J. Lawrene, A proof of Ehrenfeuht`s Conjeture, Theoret. Comput. Si.41 (1985), 121{123.[AlWo℄ J. Albert and D. Wood, Cheking sets, test sets, rih languages and ommutatively losedlanguages, J. Comput. System Si. 26 (1983), 82{91.[ChKa℄ C. Cho�rut and J. Karhum�aki, Combinatoris on words in Handbook of Formal Languages(G. Rosenberg and A. Salomaa, eds.), vol. I, Springer-Verlag , Berlin, 1997, pp. 329{438.[EhKR℄ A. Ehrenfeuht, J. Karhum�aki and G. Rosenberg, On binary equality sets and a solution tothe test set onjeture in the binary ase, J. Algebra 85 (1983), 76{85.[ErSz℄ P. Erd�os, G. Szekeres, A ombinatorial problem in geometry, Compositio Math. 2 (1935),464{470.[Hak℄ I. Hakala, On word equations and the morphism equivqalene problem for loop languages,Aademi dissertation, Faulty of Siene, University of Oulu (1997).[HaK1℄ I. Hakala and J. Kortelainen, On the system of word equations x0ui1x1ui2x2ui3x3 =y0vi1yi1vi2y2vi3y3 (i = 0; 1; 2; : : : ) in a free monoid, Theoret. Comput. Si. 225 (1999),149{161.[HaK2℄ I. Hakala and J. Kortelainen, Linear size test sets for ommutative languages, RAIRO, Inform.Th�eor. Appl. 31 (1997), 291{304. 23
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