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ien
e & Charles University, PragueDepartment of Information Pro
essing S
ien
e University of OuluAbstra
t. We prove that for ea
h positive integer n; the �nite 
ommutative languageEn = 
(a1a2 � � �an) possesses a test set of size at most 5n: Moreover, it is shown thatea
h test set for En has at least n � 1 elements. The result is then generalized to
ommutative languages L 
ontaining a word w su
h that (i) alph(w) = alph(L); and(ii) ea
h symbol a 2 alph(L) o

urs at least twi
e in w if it o

urs at least twi
e in someword of L : ea
h su
h L possesses a test set of size 11n , where n = Card(alph(L)) .The 
onsiderations rest on the analysis of some basi
 types of word equations.
0. Introdu
tionIn this note we shall study the test sets of some 
ommutative languages. By a test set fora language L we mean any subset L0 of L su
h that if any two morphisms agree onL0; then they agree also on L: By the famous Ehrenfeu
ht's Conje
ture, ea
h languagehas a �nite test set. Sin
e the proof of the 
onje
ture ([AlLa℄, see also [Sal℄), the sizeof test sets for di�erent types of languages has been under a
tive investigation. Thesize of the test set with respe
t to the 
onsidered language 
an be measured in di�erentways. We shall measure it by the 
ardinality of the language alphabet. The 
hoi
e isunderstandable: the stru
ture of a 
ommutative language is generally not determinedby an automaton or a grammar.The test sets for regular and 
ontext-free languages 
an be e�e
tively determined andthis subje
t has been studied in several papers. A survey of the results as well asa 
omprehensive list of referen
es 
an be found in [ChKa℄ and [HaKa℄. For 
ontext-sensitive languages, �nite test sets 
annot in general be e�e
tively 
onstru
ted. Thearti
les [Alb℄, [Hak℄, [Hol℄, [HaK1℄, [HaK2℄ and [Kor℄ 
ontain results on restri
ted typesof 
ontext-sensitive languages. By [EhKR℄, every language over a two-letter alphabethas a test set of size at most three. Test set resear
h on 
ommutative languages was1



started in [AlWo℄ and the work was 
ontinued in [HaK2℄ where it is shown that ea
h
ommutative language over an alphabet of n symbols possesses a test set of size O(n2):Finite sets have an important role as a sour
e of (
ounter)examples in test set 
on-siderations. Let � be an alphabet of n symbols. In [KaPl℄ it is proved that thereexists a �nite (and thus regular) language over � whose test set size is at least 
(n4):Furthermore, in [HaK2℄ the existen
e of a �nite 
ommutative language L � �� witha test set of size at least 
(n2) is veri�ed. Our 
entral resear
h subje
t 
an in termsof word equations be expressed as follows. For ea
h positive integer n; determine asmallest possible set Tn � Sn su
h that( � ) x�(1)x�(2) � � �x�(n) = y�(1)y�(2) � � � y�(n) for ea
h � 2 Tnimplies( �� ) x�(1)x�(2) � � �x�(n) = y�(1)y�(2) � � � y�(n) for ea
h � 2 Sn :Above Sn is the set of all permutations of 1; 2; : : : ; n and x1; x2; : : : ; xn; y1; y2; : : : ; ynare words. An equivalent expression of the same task is to �nd a test set for the languageEn = fa�(1)a�(2) � � �a�(n) j � 2 Sng:The paper at hand has the following 
ontents. In the �rst se
tion some basi
 results and
on
epts on formal language theory and 
ombinatori
s on words are given. In Se
tion2 a simple suÆ
ient 
ondition implying 
ommutation of a sequen
e of words is derived.In the third se
tion the new 
on
epts of permutation, weak permutation, 
onjuga
y andshu�e property are introdu
ed. Their power and interrelations are studied up to 
ertainextent. In Se
tion 4 using weak permutation, 
onjuga
y and shu�e we formulate twosuÆ
ient 
onditions that imply permutation of words. Applying the results obtainedin the previous se
tions, a linear size test set for the language 
(a1a2 � � �an) is 
on-stru
ted in the �fth se
tion. In other words, we build a set Tn of size O(n) su
h that(�) implies (��): In the seventh se
tion a linear size test set is found for languages
ontaining a word w; su
h that the alphabet of w is equal to the alphabet of L andea
h symbol a o

urs at least twi
e in w if it o

urs at least twi
e in some word ofL: Su
h are for example so 
alled CLIP-languages, i.e., 
ommutative languages whoseParikh-map is a linear set. The �nal se
tion 
ontains some 
on
luding remarks andfurther topi
s of resear
h. 1. PreliminariesWe assume that the reader is familiar with the basi
 notations and results of formallanguage theory and word 
ombinatori
s as presented in [Har℄ and [Lot℄.Let � be a (�nite) alphabet. As usual, �� ( �+; resp.) is the free monoid (freesemigroup, resp.) generated by �: The elements of �� are 
alled words. Let w 2 ��:2



For ea
h a 2 �; jwja is the number of o

urren
es of the symbol a in w: The lengthof w; denoted by jwj ; is the total number of symbols in w : jwj = Pa2� jwja :De�ne the powers of w indu
tively as follows: w0 = �; wk+1 = wk �w (k 2 N): Letw� = fwk j k 2 Ng and w+ = w� n f�g: Let b1; b2; : : : bm 2 � and w = b1b2 : : : bm .Denote
(w) = fb�(1)b�(2) : : : b�(m) j � 2 Smg = fu 2 �� j juja = jwja for ea
h a 2 �g:A fa
tor of w is any word z 2 �� su
h that w = xzy for some x; y 2 ��:The word w is primitive if w is nonempty and for ea
h word u and nonnegativeinteger n; the equality w = un implies w = u (and n = 1; of 
ourse). A basi
result in word 
ombinatori
s says that for ea
h nonempty word x there exists a uniqueprimitive word t; the primitive root of x; su
h that x 2 t+: The words u and w
ommute if uw = wu: It is again a well-known fa
t that two nonempty words 
ommuteif and only if they have the same primitive root.The words u and w are 
onjugate (words of ea
h other) if there exist x and y su
hthat u = xy and w = yx: Let R be the relation of �� de�ned by: uRw if u andw are 
onjugate. Then the relation R is 
ertainly an equivalen
e, and the 
on
ept of
onjuga
y 
an be generalized to more than two words.Let L � �� be a language. The set of all symbols of � o

urring in words of L is
alled alphabet of L; denoted by alph(L): Write alph(w) = alph(fwg) and 
all it thealphabet of the word w . The 
ommutative 
losure 
(L) of the language L is the set
(L) = fx j x 2 
(w) for some w 2 Lg:We say that L is 
ommutative if L = 
(L): In this paper we will study in parti
ularthe �nite 
ommutative language 
(a1a2 � � �an); whi
h we denote by En:We say that morphisms g and h agree on the word u if g(u) = h(u) holds. Mor-phisms agree on a language L if they agree on all u 2 L: We say that g and h arelength{equivalent on a language L if jg(w)j = jh(w)j for ea
h w 2 L:The symbol N indi
ates, as usually, the set of all natural numbers and N+ = N nf0g: For ea
h n 2 N+ ; let �n = fa1; a2; : : : ; ang be the alphabet 
onsisting of ndistin
t symbols a1; a2; : : : ; an: The traditional Parikh-map 	n from ��n onto Nnis de�ned by 	n(w) = (jwja1 ; jwja2 ; : : : ; jwjan): The 
ardinality of a set X is denotedby Card(X):Assume now that n 2 N+ and L � ��n: A basis of L is any �nite subset F of Lsu
h that(i) the set 	n(F ) 
onsists of exa
tly Card(F ) linearly independent elements (overQ ; the rational numbers);(ii) for ea
h w 2 L; the ve
tor 	n(w) is a linear 
ombination (over Q ) of someve
tors in 	n(F ): 3



The dimension of L , denoted by dimL , is 
ardinality of any basis of L:A set S � Nn is linear if there exist m 2 N and ve
tors �v; �v1; �v2; : : : ; �vm 2 Nn su
hthat S = f�v+k1�v1+k2�v2+ � � �+km�vm j k1; k2; : : : ; km 2 Ng: A 
ommutative languageL � ��n is a CLIP-language if 	n(L) is a linear set.For ea
h nonnegative rational number q; let dqe ( bq
; resp.) denote the smallest(the greatest, resp.) integer k su
h that q � k ( k � q; resp.).A permutation � 2 Sn is a bije
tive mapping f1; 2; : : : ; ng ! f1; 2; : : : ; ng and it
an be simply represented by the queue �(1)�(2) � � ��(n) or, in the 
ase of possible
onfusion, by (�(1); �(2); : : : ; �(n)):We have already noti
ed the natural 1�1 
orresponden
e between sets of permutationsand subsets of En: We say that the set R � Sn produ
es the setR = fa�(1) � � �a�(n) j � 2 Rg:The 
onstru
tion of a test set S for the language En is equivalent to the 
onstru
tionof the 
orresponding set of permutations Tn: Another equivalent 
hara
terisation ofthe sought-after set Tn is that (�) implies (��) for any pair of morphisms g; h;su
h that g(ai) = xi and h(ai) = yi ( i = 1; 2; : : : ; n ). These fa
ts are obviousbut quite important for the future exposition, sin
e they allow us to make use of bothword equation and morphisms agreement notation, as well as to swit
h, if 
onvenient,between languages and sets of permutations.We shall need some results from the rudiments of 
ombinatori
s on words. For theproofs of the �rst two see for instan
e [Lot℄. The �rst is the famous Periodi
ity Lemmaof Fine and Wilf.Theorem 1. If two powers um and vn of nonempty words u and v have a 
ommonfa
tor of length at least juj + jvj � d; where d is the greatest 
ommon divisor of jujand jvj ; then the primitive roots of u and v are 
onjugate.The 
onjuga
y, the se
ond important property between two words (
ommutativity isthe �rst) 
an be 
hara
terized as follows.Theorem 2. Let x and y be nonempty words. The following three 
onditions areequivalent.(i) The words x and y are 
onjugate;(ii) The words x and y are of equal length and there exist unique words t1; andt2; with t2 nonempty, su
h that t = t1t2 is primitive and x 2 (t1t2)+ andy 2 (t2t1)+;(iii) There exists a word z su
h that xz = zy:4



Furthermore, if (ii) holds, then for ea
h word w; we have xw = wy if and only ifw 2 (t1t2)�t1:By the next theorem and its 
orollary (for the easy proof, see [HaK2℄), given distin
twords x1; y1; the stru
ture of any solution �; � of the system of equationsx1� = y1�; �x1 = �y1is unique.Theorem 3. Let x1 and y1 be distin
t words. The following two 
onditions areequivalent.(i) There exist words x2 and y2 su
h thatx1x2 = y1y2 x2x1 = y2y1:(ii) There exist a unique word t1 and a unique nonempty word t2 su
h that t1t2is primitive and x1; y1 2 (t1t2)�t1:Furthermore, if (ii) holds, then for ea
h pair of words x3; y3 we havex1x3 = y1y3 x3x1 = y3y1if and only if jx1x3j = jy1y3j and x3; y3 2 (t2t1)�t2 [ f�g: Moreover x1x3 2 (t1t2)+and x3x1 2 (t2t1)+:We 
an write the following usableCorollary. Let x1; x2; x3; y1; y2; y3 be words su
h that jx1j 6= jy1j ; jx2j = jx3j and� x1x2 = y1y2 x1x3 = y1y3x2x1 = y2y1 x3x1 = y3y1 :Then x2 = x3 and y2 = y3:2. On Commutation of WordsLet us generalize the 
on
ept of 
ommutation to arbitrary many words. For ea
h n 2N+ we say that the words x1; x2; : : : ; xn 
ommute if( � ) x1x2 � � �xn = x�(1)x�(2) � � �x�(n)for ea
h permutation � 2 Sn: Certainly, if the words x1; x2; : : : ; xn are all nonempty,they 
ommute if and only if they have the same primitive root.5



Let n 2 N+ : For how many permutation � 2 Sn the equality ( � ) has to be valid toguarantee that the words x1; x2; : : : ; xn 
ommute? In the following we shall see thata number depending logarithmi
ally on n is suÆ
ient (Theorem 4), but, in general, a
onstant number is not (Theorem 5). All logarithms are of 
ourse to the base 2.For ea
h m 2 N , n 2 N+ de�ne the permutation Ænm of 1; 2; : : : ; n indu
tively asfollows. LetÆn0 = (1; 2; : : : ; n) ;Æ1m = (1) ; andÆn1 = (r + 1; r + 2; : : : ; n; 1; 2; : : : ; r); where r = dn=2e .Let now m 2 N+ ; n 2 f2; 3; : : :g and assume that Ækj is given for j = 0; 1; 2; : : : ;mand k = 1; 2; : : : ; n� 1 . Then (denoting again r = dn=2e ), de�neÆnm+1 = (Ærm(1); Ærm(2); : : : ; Ærm(r); r+ Æn�rm (1); r+ Æn�rm (2); : : : ; r+ Æn�rm (n� r)) .It should be 
lear that Ænm is the identity for ea
h m > dlogne . For ea
h n 2 N+ ,let �n = f Ænm j m = 1; 2; : : : ; dlogneg:The de�nition of Ænm is easy to understand when n = 2k for some k . For general n;some work with integer parts of fra
tions is inevitable. The reader, who wants to graspthe main idea of our 
onstru
tion and avoid the exer
ise in 
ounting with 
eilings and
oors, 
an simply forget them and 
on�ne oneself to the 
ase n = 2k:Example 1. For n = 4 , n = 8 and n = 11 we have�4 = f(3; 4; 1; 2); (2; 1; 4; 3)g�8 = f(5; 6; 7; 8; 1; 2; 3; 4); (3; 4; 1; 2; 7; 8; 5; 6); (2; 1; 4; 3; 6; 5; 8; 7)g , and�11 = f(7; 8; 9; 10; 11; 1; 2; 3; 4; 5; 6); (4; 5; 6; 1; 2; 3; 10; 11; 7; 8; 9);(3; 1; 2; 6; 4; 5; 9; 7; 8; 11; 10); (2; 1; 3; 5; 4; 6; 8; 7; 9; 10; 11)g .The following result is a slight modi�
ation of Theorem 9 in [HaK2℄.Theorem 4. Let n 2 N+ be a number and x1; x2; : : : ; xn be words. If(1) x1x2 � � �xn = xÆ(1)xÆ(2) � � �xÆ(n)for ea
h Æ 2 �n , then the words x1; x2; : : : ; xn 
ommute.Proof. By indu
tion on n: The 
ases n = 1 and n = 2 are not diÆ
ult.Let n � 3 and assume that the theorem holds for ea
h k 2 f1; 2; : : : ; n � 1g: Letr = dn=2e: By the equality (1) we havex1 : : : xrxr+1 : : : xn = xr+1 : : : xnx1 : : : xr;6



so the words x1x2 � � �xr and xr+1xr+2 � � �xn 
ommute. Also, by the remaining equal-ities in (1), we have x1x2 � � �xr = xÆ(1)xÆ(2) : : : xÆ(r)for all permutations Æ 2 �r andxr+1xr+2 : : : xn = xr+�(1)xr+�(2) � � �xr+�(n�r)for ea
h � 2 �n�r: By the indu
tion hypothesis, the words x1; x2; : : : ; xr 
ommute,as well as the words xr+1; xr+2; : : : ; xn: This extends the indu
tion. �Theorem 5. For ea
h m 2 N there exists n 2 N su
h that for any m permutations�1; �2; : : : ; �m 2 Sn we 
an �nd words x1; x2; : : : ; xn whi
h do not 
ommute and satisfy(2) x1x2 � � �xn = x�i(1)x�i(2) � � �x�i(n) (i = 1; 2; : : : ;m):Proof. Assume that m is in N and 
hoose n � 32m : Let �1; �2; : : : ; �m be anypermutations of 1; 2; : : : ; n: We show that there exist three distin
t elements p; q; r 2f1; 2; : : : ; ng whi
h in ea
h sequen
e �j(1); �j(2); : : : �j(n); j = 1; 2; : : : ;m; formeither an in
reasing or a de
reasing (i.e. monotone) subsequen
e.It is a well known fa
t (dating ba
k to [ErSz℄) that for ea
h s 2 N ; any sequen
e of s2distin
t real numbers 
ontains a subsequen
e of s numbers whi
h is either in
reasingor de
reasing. Thus there exist integers i1; i2; : : : ; i32m�1 in f1; 2; : : : ; ng whi
h in�1(1); �1(2); : : : ; �1(n) appear in a monotone order.Pro
eed by indu
tion. Let k 2 f1; 2; : : : ;m � 1g: Suppose that there exist integersj1; j2; : : : ; j32m�k in f1; 2; : : : ; ng su
h that these integers form a monotone subsequen
ein �s(1); �s(2); : : : ; �s(n) for ea
h s 2 f1; 2; : : : ; kg: Consider the permutation �k+1:By the fa
ts above, there exist integers s1; s2; : : : ; s32m�k�1 in j1; j2; : : : ; j32m�k whi
hin �s(1); �s(2); : : : ; �s(n); appear in either in
reasing or de
reasing order for ea
h s 2f1; 2; : : : ; k + 1g: This extends the indu
tion.Let p < q < r 2 f1; 2; : : : ; ng be integers whi
h in the sequen
e �j(1); �j(2); : : : ; �j(n)form a monotone subsequen
e for ea
h j = 1; 2; : : : ;m . Let a and b be distin
tsymbols. Choose xp = xr = a; xq = b and xi = � for ea
h i 2 f1; 2; ::; ng n fp; q; rg:For any j 2 f1; 2; : : : ;mg the equality (2) looks like aba = aba; but the wordsxp; xq; xr do not 
ommute and thus neither do the words x1; x2; : : : ; xn . �3. Permutation, Shuffle and Conjuga
yIn the rest of the paper g and h will be arbitrary morphisms de�ned on �n and weput( y ) xi = g(ai); yi = h(ai); for i = 1; : : : ; n:7



We now introdu
e four 
onditions on the basis of whi
h our vital test set and wordequation problem 
an be solved.De�nition. The morphisms g and h satisfy the permutation 
ondition if they agreeon En; i.e. if they agree on a�(1)a�(2) � � �a�(n)for ea
h � 2 Sn:We shall generalize the above de�nition to subsets of �n . Let I = fai1 ; ai2 ; : : : ; aik j 1 �i1 < i2 < � � � < ik � ng: The morphisms g and h satisfy the permutation 
onditionon the set I if they agree on ai�(1)ai�(2) � � �ai�(k)for ea
h � 2 Sk:The permutation 
ondition is very restri
tive. The �rst anti
ipation is that it, in thenontrivial 
ase, implies 
ommutativity. The next theorem says that exa
tly this is notthe 
ase.Theorem 6. Let g and h satisfy the permutation 
ondition. Then one of the follow-ing statements holds.(i) xi = yi for ea
h i 2 f1; 2; : : : ; ng:(ii) There exist p; q 2 f1; 2; : : : ; ng; p < q; su
h that xp 6= yp; xq 6= yq andxiyi = � for ea
h i 2 f1; 2; : : : ; ng n fp; qg: Then there exist unique word t1and a unique nonempty word t2 su
h that t = t1t2 is the primitive root ofx1x2 � � �xn; xp; yp 2 (t1t2)�t1 and xq; yq 2 (t2t1)�t2:(iii) There exist three indi
es p; q; r 2 f1; 2; : : : ; ng su
h that xp 6= yp; xq 6= yq andxryr 6= �: Then the words x1; x2; : : : ; xn; y1; y2; : : : ; yn 
ommute, i.e., if t isthe primitive root of x1x2 � � �xn; we have x1; x2; : : : ; xn; y1; y2; : : : ; yn 2 t�:Proof. Assume that (i) does not hold. There then exist at least two indi
es j 2f1; 2; : : : ; ng su
h that xj 6= yj : Let p; q 2 f1; 2; : : : ; ng; p < q; be su
h that xp 6= ypand xq 6= yq: Two possibilities arise. Either xiyi = � for ea
h i 2 f1; 2; : : : ; ngnfp; qgor there exist r 2 f1; 2; : : : ; ng n fp; qg su
h that xryr 6= �:1. Consider the �rst possibility. By Theorem 3, the 
ase (ii) holds.2. Assume that the se
ond possibility holds. Suppose without loss of generality, thatxr 6= �: Letzi = � xi; for i = 1; 2; : : : ; p� 1;xi+1 for i = p; p+ 1; : : : ; n� 1; ui = � yi; for i = 1; 2; : : : ; p� 1;yi+1 for i = p; p+ 1; : : : ; n� 1:Then xpz�(1)z�(2) � � � z�(n�1) = ypu�(1)u�(2) � � �u�(n�1)8



and z�(1)z�(2) � � � z�(n�1)xp = u�(1)u�(2) � � �u�(n�1)ypfor ea
h permutation � 2 Sn�1:Sin
e xp 6= yp; we dedu
e from the 
orollary of Theorem 3, thatz1z2 � � � zn�1 = z�(1)z�(2) � � � z�(n�1)for ea
h � 2 Sn�1: This 
ertainly means that the words x1; : : : ; xp�1; xp+1; : : : ; xn
ommute. Similarly it 
an be shown that the words x1; : : : ; xq�1; xq+1; : : : ; xn 
om-mute. Sin
e p; q; and r are all distin
t and xr 6= �; we dedu
e that the wordsx1; x2; : : : ; xn 
ommute, whi
h �nally implies that x1; x2; : : : ; xn; y1; y2; : : : ; yn 
om-mute. �Note that under the adopted assignment the permutation 
ondition is equivalent to( �� ). Let us re
all that we are interested in the smallest possible subsets of Sn thatprodu
e a test set for En: It is shown that there exist a test set of size O(n) and alsothat this order of magnitude is the best possible.Example 2. Consider the language E3: De�ne morphisms g; h byg(a1) = a g(a2) = ab g(a3) = babh(a1) = aba h(a2) = ab h(a3) = band verify that they agree on all elements of E3 ex
ept of a1a2a3: By the symmetryof letters, it shows that no proper subset of E3 is its test set.De�nition. The morphisms g and h satisfy the 
onjuga
y 
ondition if they agreeon ea
h 
onjugate word of a1a2 : : : an:Along our 
onventions g and h satisfy the 
onjuga
y 
ondition if the equalityxixi+1 � � �xnx1x2 � � �xi�1 = yiyi+1 � � � yny1y2 � � � yi�1holds for ea
h i 2 f1; 2; : : : ; ng:Denote by CONn the subset of Sn that produ
es the set of all 
onjugates of the worda1a2 � � �an:Words satisfying the 
onjuga
y 
ondition have some remarkable properties.Theorem 7. Let g and h be morphisms satisfying 
onjuga
y 
ondition and supposethat x1x2 � � �xn is nonempty. For ea
h i 2 f1; 2; : : : ; ng; let ti be the primitive root ofxixi+1 � � �xnx1x2 � � �xi�1 and di be the word su
h that either xi = diyi or yi = dixi:9



Then t1; t2; : : : ; tn are 
onjugate words of ea
h other and, for ea
h i 2 f1; 2; : : : ; ng;we have di 2 t�i :Proof. Sin
e x1x2 � � �xn; x2x3 � � �xnx1; : : : , xnx1x2 � � �xn�1 are 
onjugate, theirprimitive roots t1; t2; : : : ; tn are also 
onjugate, by the basi
 results in 
ombinatori
sof words. Let i 2 f1; 2; : : : ; ng: If di 6= �; Theorem 3 implies that both di andxixi+1 � � �xnx1x2 � � �xi�1 are 2 t+i : The 
ase di = � is 
lear. �De�nition. Let n � 2 be an integer and r = dn=2e: The morphisms g and hsatisfy the shu�e 
ondition if they agree on following n words :
( SH )

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
a1 a2 � � �ar�3 ar�2 ar�1 ar ar+1ar+1ar+1 ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar�2 ar�1 ar+1ar+1ar+1 ar ar+2ar+2ar+2 ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar�2 ar+1ar+1ar+1 ar�1 ar+2ar+2ar+2 ar ar+3ar+3ar+3 ar+4ar+4ar+4 � � �ananana1 a2 � � �ar�3 ar+1ar+1ar+1 ar�2 ar+2ar+2ar+2 ar�1 ar+3ar+3ar+3 ar ar+4ar+4ar+4 � � �ananan...ar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 a1 an�2an�2an�2 a2 an�1an�1an�1 a3 ananan a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 a1 an�1an�1an�1 a2 ananan a3 a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 an�1an�1an�1 a1 ananan a2 a3 a4 � � �arar+1ar+1ar+1 ar+2ar+2ar+2 � � �an�3an�3an�3 an�2an�2an�2 an�1an�1an�1 ananan a1 a2 a3 a4 � � �arThe bold typefa
e in the de�nition above helps to grasp the stru
ture of the set SHand has no semanti
 relevan
e.We give also a more formal de�nition of the set SH: For all integers i 2 Z de�newords 
i; di by
i = � ai; i = 1; : : : ; r�; otherwise; di = � ai; i = r + 1; : : : ; n�; otherwise.Then SH = fYi2Z
idi+k j k 2 Zg = fYi2Z
idi+k j k = 1; : : : ; ng:Again, denote by SHUn the set of n permutations that produ
es the words in SH:There is not mu
h to say about the stru
ture of morphisms satisfying the shu�e 
on-dition. It 
ertainly does not alone imply the permutation 
ondition. In fa
t Exampleshows that even together the shu�e and the 
onjuga
y 
onditions are not as strong asthe permutation 
ondition. We are going to introdu
e one more tool.10



De�nition. Let n � 2 be an integer and r = dn=2e: The morphisms g and hsatisfy the weak permutation 
ondition if they agree on words( WP ) 8>>><>>>: a1a2 � � �arar+Æ(1)ar+Æ(2) � � �ar+Æ(n�r)ar+Æ(1)ar+Æ(2) � � �ar+Æ(n�r)a1a2 � � �arar+1ar+2 � � �ana�(1)a�(2) � � �a�(r)a�(1)a�(2) � � �a�(r)ar+1ar+2 � � �anfor all Æ 2 �n�r and � 2 �r:Let WPEn be the subset of Sn produ
ing the words in WP : Certainly WPEn
ontains 2dlog re+ 2dlog(n� r)e permutations.4. Suffi
ient Conditions for the Permutation PropertyTheorem 8. Let n � 4 be an integer and r = dn=2e: Suppose that morphisms gand h satisfy both the 
onjuga
y and the weak permutation 
ondition and furthermorejx1x2 � � �xrj 6= jy1y2 � � �yrj : Then the morphisms satisfy the permutation 
ondition.Proof. By the 
orollary of Theorem 3,x1x2 � � �xr = xÆ(1)xÆ(2) � � �xÆ(r)y1y2 � � � yr = yÆ(1)yÆ(2) � � �yÆ(r)for ea
h Æ 2 �r; andxr+1xr+2 � � �xn = xr+�(1)xr+�(2) � � �xr+�(n�r)yr+1yr+2 � � � yn = yr+�(1)yr+�(2) � � �yr+�(n�r)for ea
h � 2 �n�r: Theorem 4 now implies that the words x1; x2; : : : ; xr 
ommuteand so do also the words y1; y2; : : : ; yr as well as xr+1; xr+2; : : : ; xn and the wordsyr+1; yr+2; : : : ; yn .We shall now show that the morphisms g and h satisfy the permutation property.1. If there are exa
tly two distin
t indi
es i; j 2 f1; 2; : : : ; ng su
h that xiyi andxjyj are nonempty, there is nothing to prove: the total system of equations 
ollapsesto xixj = yiyj , xjxi = yjyi .2. Assume thus, without loss of generality, that there exist indi
es p; q 2 f1; 2; : : : ; rg ,p < q , and s 2 fr+1; r+2; : : : ; ng su
h that xpyp , xqyq and xsys are all nonemptyand jx1 : : : xrj > jy1 : : : yrj . Let t , u and v be the primitive roots of x1x2 � � �xr ,y1y2 � � � yr , and x1x2 � � �xn , respe
tively. (If y1y2 � � �yr is empty, put u = v ). Cer-tainly xp; xq are in t� , yp; yq are in u� and, by Theorem 7, the di�eren
e of x1 � � �xr11



and y1 � � � yr is a 
onjugate of v .2.1. Now, if xp = yp (or xq = yq ), we have ne
essarily t = u = v sin
e x1 : : : xr 2 t+is a pre�x of x1 : : : xn 2 v+ . Then also xr+1xr+2 � � �xn and yr+1yr+2 � � � yn are inv� and we are through: all the words 
ommute.2.2. Assume thus that xp 6= yp and xq 6= yq .2.2.1. If any of the words xp; xq; yp; yq is empty, we again have, by Theorem 7,t = u = v .2.2.2. Let thus xp; xq; yp; yq all be nonempty. Then x1x2 � � �xr is longer than 2jvjand, by the Periodi
ity Lemma, t = v . Again we see that the words 
ommute. �Theorem 9. Assume n � 4 is an integer, r = dn=2e; and the morphisms g and hsatisfy the(i) 
onjuga
y and shu�e 
ondition;(ii) permutation 
ondition on the sets fa1; a2; : : : ; arg and far+1; ar+2; : : : ; ang:Then they satisfy the permutation 
ondition.Proof.1. If xi = yi for i = 1; 2; : : : ; n; we are through.2. Assume then, without loss of generality, that q is the greatest number i 2f1; 2; : : : ; rg su
h that xi 6= yi: By Theorem 7, the words x1x2 � � �xr and x1x2 � � �xnand therefore also xr+1xr+2 � � �xn are powers of the same primitive word t; say. ByTheorem 6, two 
ases appear. Either1Æ All the words x1; x2; : : : ; xr 2 t�or 2Æ There exist exa
tly two distin
t indi
es p and q in f1; 2; : : : ; rg su
h thatxpyp and xqyq are nonempty and xp and xq do not 
ommute.2.1. Consider �rst 
ase 2Æ: By the 
orollary of Theorem 3, there exist nonempty wordst1; t2 and integers r1; r2; s1; s2 2 N su
h that t = t1t2; r1 6= s1; r1 + r2 = s1 + s2;xp = tr1t1; yp = ts1t1; xq = t2tr2 ; and yq = t2ts2 :2.1.1. If xr+1 � � �xn = �; we are done.2.1.2. Let s be the smallest number i 2 fr + 1; r+ 2; : : : ; ng su
h that xiyi 6= �: ByTheorem 3, there exist words u1; u2 and integers r3; r4; s3; s4 2 N su
h that u1u2 =t = t1t2; xs = tr3u1; ys = ts3u1; xs+1xs+2 � � �xn = u2tr4 and ys+1ys+2 � � � yn =u2ts4 : By the shu�e 
ondition we have the following identity.(3) tr1t1tr3u1t2tr2u2tr4 = ts1t1ts3u1t2ts2u2ts4 :Assume without loss of generality that r1 > s1 (and thus s2 > 0 ). Certainly (3)implies(4) (t2t1)r1�s1tr3u1t2tr2u2tr4 = ts3u1t2ts2u2ts4 :2.1.2.1. If s3 > 0; then t = t1t2 = t2t1; a 
ontradi
tion, sin
e t is primitive and12



t1; t2 are both nonempty.2.1.2.2. Suppose that s3 = 0: Then r3 6= 0 and (t2t1)u1 = u1(t2t1); so u1 = �sin
e t2t1 is primitive. Now we have u2 = t and (4) yields t1t2 = t2t1; again a
ontradi
tion.2.2. Consider then the 
ase 1Æ: Apply Theorem 6 to the words xr+1; xr+2; : : : ; xn andyr+1; yr+2; : : : ; yn:2.2.1. If xr+1; xr+2; : : : ; xn 2 t�; the proposition obviously is true: all the words
ommute.2.2.2. The 
ase (ii) of Theorem 6 was studied above (2.1.).2.2.3. Suppose that xj = yj for j = r+1; r+2; : : : ; n: The shu�e 
ondition now leadsto equalities (x1x2 � � �xq�1)xr+1xq = (y1y2 � � � yq�1)yr+1yq: Sin
e x1; x2; : : : ; xq�1; xqas well as y1; y2; : : : ; yr; yq are all in t�; it is not diÆ
ult to see that the wordxr+1 = yr+1 is also in t�: Similarly, using further shu�e equalities, we prove that xjis in t� for all j = r + 1; : : : ; n: This 
ompletes the proof. �5. A Linear Size Test Set for the Language EnIn this se
tion we 
onstru
t re
ursively a sequen
e (Tn)n2N+ ; with Tn � Sn; whi
hwill determine our test sets. Let us �rst explain the idea of the re
ursiveness in our
onstru
tion.Let R be a subset of Sn: Put r = dn=2e and for any � 2 R de�ne mappings�� : f1; : : : ; rg ! f1; : : : ; ng by �� (i) = �(i);and �� : f1; : : : ; n� rg ! f1; : : : ; ng by �� (i) = �(r + i)� r:If f�(i) j i = 1; : : : ; rg = f1; : : : ; rg; then both �� ; �� are permutations and we saythat � is per partes. PutPLEFT(R) = f�� j � 2 R; � is per partesg;PRIGHT(R) = f�� j � 2 R; � is per partesg:We say that the set R � Sn is founded if(i) PLEFT(R) produ
es a test set for Er;(ii) PRIGHT(R) produ
es a test set for En�r:Our 
onstru
tion of the sequen
e (Tn)n2N+ is based on the followingTheorem 10. Let R be a subset of Sn su
h that(i) CON n [ SHUn [WPEn � R ; and(ii) R is founded. 13



Then the set R produ
ed by R is a test set for En:Proof. Suppose that the morphisms g and h agree on R: We want to show that gand h satisfy the permutation 
ondition.Let r = dn=2e and suppose �rst that jx1x2 � � �xrj 6= jy1y2 � � � yrj : By (i), the mor-phisms g and h satisfy both the 
onjuga
y and the weak permutation 
ondition andtherefore, by Theorem 8, we are through.Consider next the 
ase jx1x2 � � �xrj = jy1y2 � � � yrj : The fa
t that R is founded guar-antees that the equalitiesx�(1)x�(2) � � �x�(r) = y�(1)y�(2) � � � y�(r)hold for ea
h � 2 Sr; andxr+�(1)xr+�(2) � � �xr+�(n�r) = yr+�(1)yr+�(2) � � � yr+�(n�r)hold for ea
h � 2 Sn�r: Theorem 9 
ompletes the proof. �Now we are prepared to 
onstru
t the desired test sets. For n = 1; 2; 3 the set Tn hasto be equal to Sn: Consider the 
ase n = 4: We haveCON 4 8>>><>>>: 1 2 3 41 2 3 41 2 3 42 3 4 12 3 4 12 3 4 13 4 1 23 4 1 23 4 1 24 1 2 34 1 2 34 1 2 3 SHU4 8>>><>>>: (1 2 3 4)(1 2 3 4)(1 2 3 4)1 3 2 41 3 2 41 3 2 43 1 4 23 1 4 23 1 4 2(3 4 1 2)(3 4 1 2)(3 4 1 2) WPE4 8>>><>>>: 1 2 4 31 2 4 31 2 4 34 3 1 24 3 1 24 3 1 23 4 2 13 4 2 13 4 2 12 1 3 42 1 3 42 1 3 4The underlined elements show that CON 4 [ SHU4 [WPE4 is founded and repeatedelements are in bra
kets. By Theorem 10, the setT4 = f123412341234; 234123412341; 341234123412; 412341234123; 132413241324; 314231423142; 124312431243; 431243124312; 342134213421; 213421342134gprodu
es a test set for E4:Before we give the general 
onstru
tion formula, let us still 
onsider separately 
asesn = 5; 6: For n = 5 the de�nitions yield
CON 5 8>>>>><>>>>>:

1 2 3 4 51 2 3 4 51 2 3 4 52 3 4 5 12 3 4 5 12 3 4 5 13 4 5 1 23 4 5 1 23 4 5 1 24 5 1 2 34 5 1 2 34 5 1 2 35 1 2 3 45 1 2 3 45 1 2 3 4 SHU5 8>>>>><>>>>>:
(1 2 3 4 5)(1 2 3 4 5)(1 2 3 4 5)1 2 4 3 51 2 4 3 51 2 4 3 51 4 2 5 31 4 2 5 31 4 2 5 34 1 5 2 34 1 5 2 34 1 5 2 3(4 5 1 2 3)(4 5 1 2 3)(4 5 1 2 3) WPE5 8>>>>>>>><>>>>>>>>:

1 2 3 5 41 2 3 5 41 2 3 5 45 4 1 2 35 4 1 2 35 4 1 2 33 1 2 4 53 1 2 4 53 1 2 4 52 1 3 4 52 1 3 4 52 1 3 4 54 5 3 1 24 5 3 1 24 5 3 1 24 5 2 1 34 5 2 1 34 5 2 1 314



It is not diÆ
ult to verify that CON 5[SHU5[WPE5 is not founded. For any � 2 S3the set T5 has to 
ontain a permutation starting by �: The underlined elements showthat we have to add for example 132451324513245; 231452314523145; 321453214532145 and we getT5 = f123451234512345; 234512345123451; 345123451234512; 451234512345123; 512345123451234; 124351243512435; 142531425314253; 415234152341523; 123541235412354;541235412354123; 312453124531245; 213452134521345; 453124531245312; 452134521345213; 132451324513245; 231452314523145; 321453214532145g:Similarly for n = 6 we 
onstru
t
CON 6 8>>>>>>>><>>>>>>>>:

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 62 3 4 5 6 12 3 4 5 6 12 3 4 5 6 13 4 5 6 1 23 4 5 6 1 23 4 5 6 1 24 5 6 1 2 34 5 6 1 2 34 5 6 1 2 35 6 1 2 3 45 6 1 2 3 45 6 1 2 3 46 1 2 3 4 56 1 2 3 4 56 1 2 3 4 5 SHU6 8>>>>>>>><>>>>>>>>:
(1 2 3 4 5 6)(1 2 3 4 5 6)(1 2 3 4 5 6)1 2 4 3 5 61 2 4 3 5 61 2 4 3 5 61 4 2 5 3 61 4 2 5 3 61 4 2 5 3 64 1 5 2 6 34 1 5 2 6 34 1 5 2 6 34 5 1 6 2 34 5 1 6 2 34 5 1 6 2 3(4 5 6 1 2 3)(4 5 6 1 2 3)(4 5 6 1 2 3) WPE6

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
1 2 3 6 4 51 2 3 6 4 51 2 3 6 4 51 2 3 5 4 61 2 3 5 4 61 2 3 5 4 66 4 5 1 2 36 4 5 1 2 36 4 5 1 2 35 4 6 1 2 35 4 6 1 2 35 4 6 1 2 33 1 2 4 5 63 1 2 4 5 63 1 2 4 5 62 1 3 4 5 62 1 3 4 5 62 1 3 4 5 64 5 6 3 1 24 5 6 3 1 24 5 6 3 1 24 5 6 2 1 34 5 6 2 1 34 5 6 2 1 3

:
One 
an easily see that added elements 132132132 465465465; 231231231 564564564 and 321321321 654654654; we obtain afounded setT6 = f123456123456123456; 234561234561234561; 345612345612345612; 456123456123456123; 561234561234561234; 612345612345612345; 124356124356124356; 142536142536142536; 415263415263415263;451623451623451623; 123645123645123645; 123546123546123546; 645123645123645123; 546123546123546123; 312456312456312456; 213456213456213456; 456312456312456312; 456213456213456213;132465132465132465; 231564231564231564; 321654321654321654g:For n � 7 de�ne Tn = CONn [ SHUn [WPEn [ FUNnwhere FUNn is the re
ursive part of Tn; whi
h guarantees that Tn is founded. Theset FUN n is 
onstru
ted as follows. Assume that Tk is given for k = 2; 3; : : : ; n� 1:Let �1; �2; : : : ; �p be a sequen
e of all distin
t elements ofTdn=2e n PLEFT(CON n [ SHUn [WPEn);and similarly, let �1; �2; : : : ; �q be a sequen
e of all distin
t elements inTbn=2
 n PRIGHT(CON n [ SHUn [WPEn):Denote m = maxfp; qg and put �k = �q for all k = q + 1; : : : ;m; �k = �p for allk = p+ 1; : : : ;m: For ea
h i 2 f1; 2; : : : ;mg de�ne �i 2 Sn by�i(j) = � �i(j); for j = 1; 2; : : : ; dn=2edn=2e+ �i(j � dn=2e); for j = dn=2e+ 1; : : : ; n;and put FUN n = f�i j i = 1; : : : ;mg: 15



Theorem 11. For all n 2 N+ ; the set Tn produ
es a test set for En:Proof. The 
onstru
tion of Tn shows that it satis�es both 
onditions of Theorem 10.�In the following we investigate the size of our test sets. To avoid 
onfusion, write thepermutations temporarily in parentheses.Let r = dn=2e; s = n � r = bn=2
; r0 = dr=2e and s0 = ds=2e: For n � 7 oneeasily sees that(5) Card(CON n [ SHUn) = 2n� 2Card(WPEn) = 2 � dlogdn=2ee + 2 � dlogbn=2
e:Note that (1; 2; : : : ; r)(1; 2; : : : ; r)(1; 2; : : : ; r) 2 CON dn=2e \ PLEFT(CON n)and (r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1)(r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1)(r0; r0 + 1; : : : ; r; 1; 2; : : : ; r0 � 1) 2 CON dn=2e \ PLEFT(WPEn):Similarly (1; 2; : : : ; s)(1; 2; : : : ; s)(1; 2; : : : ; s) 2 CON bn=2
 \ PRIGHT(CONn)and (s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1)(s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1)(s0; s0 + 1; : : : ; s; 1; 2; : : : ; s0 � 1) 2 CON bn=2
 \ PRIGHT(WPEn):This implies that(6) Card(FUNn) � maxfCard(Tbn=2
);Card(Tdn=2e)g � 2:We estimate the size of Tn by a fun
tion F : N+ ! N+ : Let F (1) = 1; F (2) =2; F (3) = 6; F (4) = 10; F (5) = 17; F (6) = 21; and for n � 7 putF (n) = 2n� 2 + 2 � dlogdn=2ee+ 2 � dlogbn=2
e + maxf F (bn=2
); F (dn=2e)g � 2:From the 
onstru
tion of test sets for n � 6; and from (5) and (6) we dedu
e, byindu
tion on n; that Card(Tn) � F (n)and that F is stri
tly in
reasing:F (n) < F (n+ 1)for all n 2 N+ : The monotony of F impliesmaxf F (bn=2
); F (dn=2e)g = F (dn=2e):16



Let r(n) = 2 � dlogdn=2ee+ 2 � dlogbn=2
e � 4:Then we 
an write F (n) = 2 � n + r(n) + F (dn=2e)for n � 7:Let a > 4 be a real number. As a polynomial of n , the fun
tion given byf(n) = (a� 4) � n� a2grows faster than r(n); so there exist na 2 N ; na � 7; su
h that for ea
h n � na;we have f(n) � r(n): This implies that(7) F (n) � 2 � n+ f(n) + F (dn=2e) = a � (n� 1)2 + F (dn=2e)for ea
h n � na: Let now ba = F (na): We prove by indu
tion that F (n) � a �n+bafor ea
h n 2 N+ : The assertion 
ertainly holds if n � na: Suppose n > na: ThenF(n) � a � (n� 1)2 + F (dn=2e) � a � (n� 1)2 + a � dn2 e+ ba� a � (n� 1)2 + a � (n+ 1)2 + b = a � n+ ba :Also for any real number a0 su
h that 4 < a0 < a there is an integer ba0 , for whi
hF (n) � a0n + ba0 for all n 2 N+ : This implies the existen
e of a number ma 2 Nsu
h that F (n) � a � nfor all n � ma: We 
an summarize:Theorem 12. For any real number a > 4 there exist integers ba;ma 2 N su
h that(i) Card(Tn) � a n+ ba for ea
h n 2 N ;(ii) Card(Tn) � a n for ea
h integer n � ma:Let a = 5: It is not diÆ
ult to verify that in su
h a 
ase f(n) � r(n) for all n � 37and by (7) F (n) � 5 � (n� 1)2 + F (dn=2e)for n � 37: A dire
t 
omputation yields following list:F (1) =1 F (2) =2 F (3) =6 F (4) =10 F (5) =17F (6) =21 F (7) =28 F (8) =30 F (9) =41 F (10)=4517



F (11)=51 F (12)=53 F (13)=62 F (14)=64 F (15)=68F (16)=70 F (17)=85 F (18)=89 F (19)=95 F (20)=97F (21)=105 F (22)=107 F (23)=111 F (24)=113 F (25)=124F (26)=126 F (27)=130 F (28)=132 F (29)=138 F (30)=140F (31)=144 F (32)=146 F (33)=165 F (34)=169 F (35)=175F (36)=177 F (37)=185 F (38)=187 F (39)=191 F (40)=193so that F (n) � 5n; when n = 1; 2; : : : ; 36: For n � 37 pro
eed by indu
tion toobtain F (n) � 5 � (n� 1)2 + F (dn=2e) � 5 � (n� 1)2 + 5 � (n+ 1)2 = 5n:Observe that for n = 37; as well as for other underlined values, the estimate is sharp:F (n) = 5n: We 
an now answer a question stated in [HaK2℄.Theorem 13. For ea
h n 2 N+ ; the language En = 
(a1a2 � � �an) possesses a testset (produ
ed by Tn ) with the size at most 5 � n:The following result gives a lower bound for the size of a test set.Theorem 14. Ea
h test set for the language En = 
(a1a2 � � �an) 
ontains at leastn� 1 elements.Proof. The assertion is 
ertainly true for n = 1; 2; 3: Assume that n > 3: Let S =fw1; w2; � � � ; wn�2g be any subset of En with 
ardinality n � 2: Suppose, withoutloss of generality, that a1 is the last letter of w1: We 
onstru
t two (nonerasing)morphisms that agree on S; but not on En:For ea
h i 2 f1; 2; : : : ; n� 2g; letMi = fk j wi = xakya1z for some words x; y; z 2 ��ng:Thus Mi is the set of all numbers k 2 f2; 3; : : : ; ng su
h that ak pre
edes the symbola1 in the word wi: By assumption, M1 = f2; : : : ; ng: For ea
h i 2 f1; 2; : : : ; n� 2gand ea
h j 2 f2; 3; : : : ; ng; let rij = � 1; if j 2Mi0; otherwise:Let �vj = (r1j ; r2j; : : : ; rn�2;j)for ea
h j 2 f2; 3; : : : ; ng: The ve
tors �v2; �v3; : : : ; �vn; having only n� 2 
oordinates,are linearly dependent over Q ; the rationals. There thus exist integers d2; d3; : : : ; dn;not all zero, su
h that d2�v2 + d3�v3 + � � �+ dn�vn = �018



with �0 the zero ve
tor. Sin
e ea
h rij 2 f0; 1g; the equalityXj2Mi dj = 0holds for ea
h i 2 f1; 2; : : : ; n� 2g: For ea
h j 2 f2; 3; : : : ; ng; we state8><>: kj = dj + 1; lj = 1 if dj > 0kj = lj = 1 if dj = 0kj = 1; lj = �dj + 1 if dj < 0 :Then k2; k3; : : : ; kn; l2; l3; : : : ; ln are all stri
tly positive integers andXj2Mi(kj � lj) = 0for ea
h i 2 f1; 2; : : : ; n� 2g: In parti
ular, i = 1 implies thatk2 + k3 + � � �+ kn = l2 + l3 + � � �+ ln :Let a; b be distin
t symbols and g and h nonerasing morphisms: ��n ! fa; bg�de�ned by� g(a1) = bg(aj) = akj for j = 2; 3; : : : ; n; � h(a1) = Bh(aj) = Alj ; for j = 2; 3; : : : ; n :Let i 2 f1; 2; : : : ; n� 2g: We haveg(wi) = ar1bar2 ; h(wi) = as1bas2where r1 = Xj2Mi kj = Xj2Mi lj = s1and, sin
e k2 + k3 + � � �+ kn = l2 + l3 + � � �+ ln , alsor2 = Xj =2Mi kj = Xj =2Mi lj = s2 :Thus g(wi) = h(wi): On the other hand,g(aia1 � � �ai�1ai+1 � � �an) 6= h(aia1 � � �ai�1ai+1 � � �an)as soon as di 6= 0: This 
ompletes the proof. �19



6. General 
ommutative languagesWe �rst 
ontemplate the 
orrelation between two 
on
epts: "basis" and "test set" of alanguage.Lemma 15. Let P be any subset of L � ��n: Length-equivalen
e on P quaranteeslength{equivalen
e on L if and only if the set P 
ontains a basis of L:The suÆ
ien
y of the 
ondition is evident. That it is ne
essary is not diÆ
ult to verifyeither. For the proof we refer to [AlWo℄ (see also [HaKo2℄). The fa
t implies that ea
htest set for L 
ontains a basis of L .If the basis of 	(L) 
ontains the maximal possible number n of ve
tors, then, bysimple length 
onsideration, any two morphisms, whi
h agree lengthwise on the basis,agree at the same time lengthwise on every letter. Consequently, any basis of L isalso a test set. In general this 
ertainly is not true: the set fa1a2g is one basis ofE2 = 
(a1a2) (the other possibility is fa2a1g ), but the only test set for the languageE2 is E2 itself.In this se
tion we showTheorem 16. Let L � ��n be a language and w 2 L a word su
h that alph(w) =alph(L) and, for ea
h i , symbol ai o

urs at least twi
e in w if it o

urs at leasttwi
e in some word of L: Then 
(L) possesses a test set of the size at most 11 � n:Proof. The proof is given by the 
onstru
tion of the test set. Let	n(w) = (d1; d2; : : : ; dn);with d1; d2; : : : ; dn 2 N : For ea
h i 2 f1; 2; : : : ; ng we stateri = ddi=2e; and rn+i = di � ri:Let v = ar11 ar22 � � � arnn arn+1n+1 arn+2n+2 � � � ar2n2n 2 ��2nand de�ne a proje
tion � : ��2n ! ��n by�(ai) = �(an+i) = ai for i = 1; 2; : : : ; n :Note that �(
(v)) = 
(w) :Let B be a basis of L: Our test set will 
onsist of the set B and of proje
tion ofsome permutations of the word v: Namely, we 
laim thatTL = � (far�(1)�(1) ar�(2)�(2) � � � ar�(2n)�(2n) j � 2 T2ng) [ B20



is a test set for L: ObviouslyCard(TL) � Card(T2n) + Card(B) � 11 � n:To prove this assertion, let g and h be morphisms de�ned on ��n that agree on TL:De�ne another morphism � : ��2n ! ��n by�(ai) = �(ai)ri for i = 1; : : : ; 2nand morphisms g1 = g Æ �; h1 = h Æ �with the domain ��2n: Sin
e g and h agree on TL; the morphisms g1; h1 agree onT2n = fa�(1) a�(2) � � � a�(2n) j � 2 T2ng:From Theorem 11 we dedu
e that g1 and h1 agree on E2n; as T2n is a test set forE2n:Theorem 6 gives three possibilities to g1; h1:1. If g1(ai) = h1(ai) for ea
h i = 1; 2; : : : ; 2n; then also g(ai) = h(ai) for ea
hi = 1; 2; : : : ; n; and there remains nothing to prove.2. If g1(aj)h1(aj) 6= � for at least three indi
es, then, by Theorem 6, there exista primitive word t su
h that g1(ai); h1(ai) 2 t� for ea
h i = 1; 2; : : : ; 2n: Theng(ai); h(ai) 2 t� for j = 1; 2; : : : ; n; and we are through, sin
e g; h are length-equivalent on L; due to B � TL:3. Assume �nally that there are indi
es p; q 2 f1; 2; : : : ; 2ng; p < q su
h that g1(ap) 6=h1(ap); g1(aq) 6= h1(aq) and g1(ai)h1(ai) = � for ea
h i 2 f1; 2; : : : ; 2ng n fp; qg:3.1. If q = n+ p; then �(ap) = �(aq) = ap: For arbitrary u 2 E2n we haveg(ap)dp = g1(u) = h1(u) = h(ap)dpand g(ap) = h(ap); a 
ontradi
tion with g1(ap) 6= h1(ap):3.2. Therefore q 6= n + p and p; q � n: By de�nition of v; the letters ap and aqo

ur both exa
tly on
e in w and thus they have at most one o

urren
e in any wordfrom L: Consequently �(ap) = ap; �(aq) = aq andg(u) = g1(u) = h1(u) = h(u)for all u 2 L: �Assume in the following that ea
h CLIP-language 
(w0w�1w�2 � � �w�m) is e�e
tively given(for instan
e, either through the ve
tors of its Parikh-map, or by giving the sequen
eof words w0; w1; w2; : : :wn ). Next 
orollary is the solution of a problem left open in[HaK2℄: 21



Corollary. Ea
h CLIP-language over an alphabet of n symbols possesses a test set ofsize at most 11 n: The test set 
an be e�e
tively 
onstru
ted.Proof. Let L be a CLIP-language with alph(L) = �n; n 2 N+ : Thus L =w0w�1w�2 � � �w�m where m 2 N and w0; w1; : : : ; wm are in ��n: Now it suÆ
es to
hoose w = w0w21w22 � � �w2m and use Theorem 16. The e�e
tiveness is guaranteed bythe 
onstru
tion of the test set for En and by the fa
t that a subset offw0; w0w1; w0w2; : : : ; w0wmgis the basis of 
(L): �Given, for a language L0 , (i) a word w; whi
h is enough "representative" for thealphabet of L0 ; and (ii) a basis B of L0 , our result yields a straightforward althoughrough method to 
onstru
t a test set for the 
ommutative language 
(L0): The testset is in fa
t a subset of 
(w) augmented by a basis of L0: As we have seen, themethod 
an be applied to any CLIP-language L = 
(w0w�1w�2 � � �w�m): If, moreover,ea
h symbol of alph(L) appears in also w1w2 � � �wm; we 
an 
onstru
t a test set ofsize at most the dimension dimL of L: However, the small 
ardinality of the test setis re
ouped by the length of one of its elements.Theorem 17. Let L = 
(w0w�1w�2 � � �w�m) be a CLIP-language su
h that alph(L)= alph(w1w2 � � �wm) . Then L possesses an e�e
tively 
onstru
table test set of sizedimL:Proof. Assume, without loss of generality, that alph(L) = �n: By the 
orollary ofTheorem 16, the language L1 = 
(w�1w�2 � � �w�m) has a �nite (e�e
tively 
onstru
table)test set T1 = fu1; u2; : : : ; urg su
h that r � 11n . Let u = u1u2 � � �ur andU = fw0; w0u;w0w1; w0w2; : : :w0wmg :It should be 
lear that U is a subset of L and that from U we 
an e�e
tively forma basis T of L su
h that w0u 2 T .We now verify that T is a test set for L . Let g and h be morphisms that agreeon T: Sin
e T is a basis of L , the morphisms g and h are length-equivalent onL . This means that g and h agree on fw0; u1; u2; : : : ; urg and thereby also onT1: Sin
e T1 is a test set of L1 , we dedu
e that the morphisms agree on L1: Letx = w31w32 � � �w3m . The word x is an element of L1 and thus morphisms g andh agree on 
(x) . Note that jxjai � 3 for ea
h ai 2 �n . A slight modi�
ation ofTheorem 6 (not all letters in x are distin
t) now gives two possibilities: either(i) g(ai) = f(ai) for i = 1; 2; : : : ; n ; or(ii) there exists a primitive word t su
h that g(ai); f(ai) 2 t� for i = 1; 2; : : : ; n:Be
ause of the length-equivalen
e on L , the morphisms g and h agree on L: �22



7. Con
lusions and Topi
s of Further Resear
hHopefully the above 
onsiderations have given some information not only about testsets for �nite 
ommutative languages but also of the impa
t of 
onjuga
y- and shu�e-like quali�
ations to word equations. In general, the assumption that a language is
ommutative (or bounded) is very restri
tive; most of the languages are of neither type.One way to 
arry on the resear
h is to study test sets for language families generated bysome well-known set of 
ommutative languages. Let R the set of all regular languagesand 
(R) = f
(R) j R 2 Rg: Furthermore, denote by C(
(R)) the smallest triogenerated by the family 
(R): We end the dis
ussion to the followingResear
h Problem. Does there exist an e�e
tively 
onstru
table �nite test set for lan-guages in the family C(
(R)) ?It should be remembered that a trio is a family of languages 
losed under union, �-freemorphism image and interse
tion with regular sets. The intuition says that the answerto the problem is aÆrmative. The 
onstru
tion of the test set is probably diÆ
ult.Referen
es[Alb℄ J. Albert, On test sets, 
he
king sets, maximal extensions and their e�e
tive 
onstru
tions,Habilitationss
hirft, Fakult�at f�ur Wirts
haftswissens
haften der Universit�at Karlsruhe (1968).[AlLa℄ M. H. Albert and J. Lawren
e, A proof of Ehrenfeu
ht`s Conje
ture, Theoret. Comput. S
i.41 (1985), 121{123.[AlWo℄ J. Albert and D. Wood, Che
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losedlanguages, J. Comput. System S
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s on words in Handbook of Formal Languages(G. Rosenberg and A. Salomaa, eds.), vol. I, Springer-Verlag , Berlin, 1997, pp. 329{438.[EhKR℄ A. Ehrenfeu
ht, J. Karhum�aki and G. Rosenberg, On binary equality sets and a solution tothe test set 
onje
ture in the binary 
ase, J. Algebra 85 (1983), 76{85.[ErSz℄ P. Erd�os, G. Szekeres, A 
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ademi
 dissertation, Fa
ulty of S
ien
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