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ABsTRACT. We prove that for each positive integer n, the finite commutative language
E,, = c(aia2---apn) possesses a test set of size at most 5n. Moreover, it is shown that
each test set for FE, has at least n — 1 elements. The result is then generalized to
commutative languages L containing a word w such that (i) alph(w) = alph(L); and
(ii) each symbol a € alph(L) occurs at least twice in w if it occurs at least twice in some
word of L : each such L possesses a test set of size 11n , where n = Card(alph(L)) .
The considerations rest on the analysis of some basic types of word equations.

0. INTRODUCTION

In this note we shall study the test sets of some commutative languages. By a test set for
a language L we mean any subset L’ of L such that if any two morphisms agree on
L', then they agree also on L. By the famous Ehrenfeucht’s Conjecture, each language
has a finite test set. Since the proof of the conjecture ([AlLa], see also [Sal]), the size
of test sets for different types of languages has been under active investigation. The
size of the test set with respect to the considered language can be measured in different
ways. We shall measure it by the cardinality of the language alphabet. The choice is
understandable: the structure of a commutative language is generally not determined

by an automaton or a grammar.

The test sets for regular and context-free languages can be effectively determined and
this subject has been studied in several papers. A survey of the results as well as
a comprehensive list of references can be found in [ChKa] and [HaKa]. For context-
sensitive languages, finite test sets cannot in general be effectively constructed. The
articles [Alb], [Hak], [Hol], [HaK1], [HaK2] and [Kor| contain results on restricted types

of context-sensitive languages. By [EhKR/], every language over a two-letter alphabet

?

has a test set of size at most three. Test set research on commutative languages was



started in [AlWo] and the work was continued in [HaK2] where it is shown that each
commutative language over an alphabet of n symbols possesses a test set of size O(n?).

Finite sets have an important role as a source of (counter)examples in test set con-
siderations. Let 3 be an alphabet of n symbols. In [KaPl] it is proved that there
exists a finite (and thus regular) language over ¥ whose test set size is at least Q(n?).
Furthermore, in [HaK2] the existence of a finite commutative language L C ¥* with
a test set of size at least Q(n?) is verified. Our central research subject can in terms
of word equations be expressed as follows. For each positive integer n, determine a
smallest possible set 7, C S,, such that

(%) ToW)Tp(2) " Tpn) = Yp(1)¥p2) " Ypn) foreach p €T,

implies

(%) To(1)To(2) " To(n) = Yo(1)Yo(2) " Yo(n) IOreach o €S, .

Above §,, is the set of all permutations of 1,2,...,n and x1,Zo,...,%Tp, Y1,Y2,...,Yn

are words. An equivalent expression of the same task is to find a test set for the language

En ={05(1)05(2) " o(n) | 0 € Sn}.

The paper at hand has the following contents. In the first section some basic results and
concepts on formal language theory and combinatorics on words are given. In Section
2 a simple sufficient condition implying commutation of a sequence of words is derived.
In the third section the new concepts of permutation, weak permutation, conjugacy and
shuffle property are introduced. Their power and interrelations are studied up to certain
extent. In Section 4 using weak permutation, conjugacy and shuffle we formulate two
sufficient conditions that imply permutation of words. Applying the results obtained
in the previous sections, a linear size test set for the language c(ajas---a,) is con-
structed in the fifth section. In other words, we build a set 7, of size O(n) such that
() implies (**). In the seventh section a linear size test set is found for languages
containing a word w, such that the alphabet of w is equal to the alphabet of L and
each symbol a occurs at least twice in w if it occurs at least twice in some word of
L. Such are for example so called CLIP-languages, i.e., commutative languages whose
Parikh-map is a linear set. The final section contains some concluding remarks and
further topics of research.

1. PRELIMINARIES

We assume that the reader is familiar with the basic notations and results of formal
language theory and word combinatorics as presented in [Har| and [Lot].

Let ¥ be a (finite) alphabet. As usual, ¥* (XT, resp.) is the free monoid (free
semigroup, resp.) generated by Y. The elements of ¥* are called words. Let w € ¥*.
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For each a € ¥, |w|, is the number of occurrences of the symbol a in w. The length
of w, denoted by |w|, is the total number of symbols in w: [w| = > .5 |wl,.

Define the powers of w inductively as follows: w® =€, wFt!=wF.w (k€ N). Let

w* = {w” | k € N} and wt =w*\ {€}. Let by, by,...b,, € X and w = biby...by, .
Denote

c(w) = {bs1)bo2) -+ - bo(m) | 0 € S} = {u € ¥* | |u|, = |w|, for each a € X}.
A factor of w is any word z € ¥* such that w = zzy for some z,y € ¥*.

The word w is primitive if w is nonempty and for each word u and nonnegative
integer n, the equality w = u™ implies w = u (and n = 1, of course). A basic
result in word combinatorics says that for each nonempty word x there exists a unique
primitive word ¢, the primitive root of z, such that x € t*. The words v and w
commute if uw = wu. It is again a well-known fact that two nonempty words commute
if and only if they have the same primitive root.

The words u and w are conjugate (words of each other) if there exist = and y such
that v = ry and w = yx. Let R be the relation of ¥* defined by: uRw if u and
w are conjugate. Then the relation R is certainly an equivalence, and the concept of
conjugacy can be generalized to more than two words.

Let L C ¥* be a language. The set of all symbols of ¥ occurring in words of L is
called alphabet of L, denoted by alph(L). Write alph(w) = alph({w}) and call it the
alphabet of the word w . The commutative closure c(L) of the language L is the set

(L) ={z | z € ¢(w) for some w € L}.

We say that L is commutative if L = ¢(L). In this paper we will study in particular
the finite commutative language c(aias---a,), which we denote by FE,.

?

We say that morphisms ¢ and h agree on the word u if g(u) = h(u) holds. Mor-
phisms agree on a language L if they agree on all u € L. We say that ¢ and h are
length—equivalent on a language L if |g(w)| = |h(w)| for each w € L.

The symbol N indicates, as usually, the set of all natural numbers and N; = N\
{0}. For each n € Ny, let X, = {a1,a2,...,a,} be the alphabet consisting of n
distinct symbols ai,as,...,a,. The traditional Parikh-map ¥, from 3} onto N"
is defined by W, (w) = (|wl,, ,|wl,, ,...,|wl, ). The cardinality of aset X is denoted

by Card(X).

al as ’

Assume now that n € Ny and L C X5. A basis of L is any finite subset F' of L
such that

(i) theset U, (F) consists of exactly Card(F) linearly independent elements (over
Q, the rational numbers);
(ii) for each w € L, the vector W, (w) is a linear combination (over Q ) of some
vectors in W, (F).
3



The dimension of L , denoted by dim L , is cardinality of any basis of L.

A set S C N" is linear if there exist m € N and vectors v, v1,v9,...,0, € N* such
that S = {0+ k101 +koUa+ -+ kU | k1, ke, ..., km € N}. A commutative language
L C X% is a CLIP-language if ¥, (L) is a linear set.

For each nonnegative rational number ¢, let [q| (|g], resp.) denote the smallest
(the greatest, resp.) integer k such that ¢ <k (k <gq, resp.).

A permutation o € S, is a bijective mapping {1,2,...,n} — {1,2,...,n} and it
can be simply represented by the queue o(1)o(2)---0(n) or, in the case of possible
confusion, by (o(1),0(2),...,0(n)).

We have already noticed the natural 1—1 correspondence between sets of permutations
and subsets of F,,. We say that the set R C S,, produces the set

R = {aa(l) © Qg (n) | S R}

The construction of a test set S for the language F,, is equivalent to the construction
of the corresponding set of permutations 7,. Another equivalent characterisation of
the sought-after set 7, is that (%) implies (xx) for any pair of morphisms g, h,
such that g¢(a;) = x; and h(a;) = y; (i = 1,2,...,n). These facts are obvious
but quite important for the future exposition, since they allow us to make use of both
word equation and morphisms agreement notation, as well as to switch, if convenient,
between languages and sets of permutations.

We shall need some results from the rudiments of combinatorics on words. For the
proofs of the first two see for instance [Lot]. The first is the famous Periodicity Lemma
of Fine and Wilf.

Theorem 1. If two powers u™ and v"™ of nonempty words w and v have a common
factor of length at least |u| + |v| —d, where d is the greatest common divisor of |ul
and |v|, then the primitive roots of u and v are conjugate.

The conjugacy, the second important property between two words (commutativity is
the first) can be characterized as follows.

Theorem 2. Let x and y be nonempty words. The following three conditions are
equivalent.

(i) The words = and y are conjugate;
(ii) The words x and y are of equal length and there exist unique words ty, and
to, with ty nonempty, such that t = tity is primitive and x € (t1t2)* and
y € (tat1)™;
(iii) There exists a word z such that xz = zy.
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Furthermore, if (ii) holds, then for each word w, we have zw = wy if and only if
w € (tltg)*tl.

By the next theorem and its corollary (for the easy proof, see [HaK2]), given distinct
words x1,%1, the structure of any solution «, 3 of the system of equations

T = y13, ar; = Py

is unique.

Theorem 3. Let z1 and 1y, be distinct words. The following two conditions are
equivalent.

(1) There exist words x2 and ys such that

T1T2 = Y1Y2 Ta2T1 = YaY1.

(ii) There exist a unique word t; and a unique nonempty word ty such that tits
is primitive and x1,y1 € (t1t2)*t;.

Furthermore, if (i) holds, then for each pair of words xs,ys we have
T1T3 = Y1Y3 T3T1 = Y31

if and only if |z1z3| = |y1ys| and x3,y3 € (t2t1)*t2 U{e}. Moreover xix3 € (t1ta)™
and 311 € (tot1)™.

We can write the following usable

Corollary. Let x1,z2,3,Y1,Y2,ys be words such that |xi| # |y1|, |z2| = |z3| and
{ T1T2 = Y1Y2 T1T3 = Y1Y3
T2T1 = YaY1 T3T1 = Ysy1 .

Then o =1x3 and ys = ys.

2. ON COMMUTATION OF WORDS

Let us generalize the concept of commutation to arbitrary many words. For each n €

N, we say that the words zi,z2,...,2, commute if
( © ) T1T2 " Tn = To(1)To(2) """ Lo(n)
for each permutation o € §,,. Certainly, if the words z1,x9,...,z, are all nonempty,

they commute if and only if they have the same primitive root.
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Let n € Ny. For how many permutation o € S,, the equality ( ¢ ) has to be valid to
guarantee that the words xq,zs,...,2, commute? In the following we shall see that
a number depending logarithmically on n is sufficient (Theorem 4), but, in general, a
constant number is not (Theorem 5). All logarithms are of course to the base 2.

For each m € N, n € N} define the permutation ), of 1,2,...,n inductively as
follows. Let

6L =(1); and

M=r+1r+2,...,n,1,2,...,7), where r = [n/2] .
Let now m € N+,n € {2,3,...} and assume that 5;-“ is given for j =0,1,2,...,m
and k=1,2,...,n—1. Then (denoting again r = [n/2] ), define

o1 = (5” (1),07.(2),...,00 (r),r+0="(1), r+02""(2),...,r+ 0 "(n—r)) .
It should be clear that d7, is the identity for each m > [logn] . For each n € Ny |

let
A, ={46, |m=1,2,... [lognl}.

The definition of 67, is easy to understand when n = 2% for some k. For general n,
some work with integer parts of fractions is inevitable. The reader, who wants to grasp
the main idea of our construction and avoid the exercise in counting with ceilings and
floors, can simply forget them and confine oneself to the case n = 2F.

Example 1. For n=4, n=8 and n =11 we have

Ay = {(3,4,1,2).(2,1,4,3)}

As = {(5,6,7,8,1,2,3,4),(3,4,1,2,7,8,5,6),(2,1,4,3,6,5,8,7)} , and

An = {(7,8,9,10,11,1,2,3,4,5,6), (4,5,6,1,2,3,10,11,7,8,9),
(3,1,2,6,4,5,9,7,8,11,10), (2,1,3,5,4,6,8,7,9,10,11)} .

The following result is a slight modification of Theorem 9 in [HaK2].

Theorem 4. Let n € Ny be a number and x1,xs,...,x, be words. If
(1) T1T2 " Tn = T51)Ts(2) """ Té(n)
for each 6 € A, , then the words x,xs,...,2, commute.

Proof. By induction on n. The cases n =1 and n =2 are not difficult.

Let n > 3 and assume that the theorem holds for each k € {1,2,...,n — 1}. Let
r = [n/2]. By the equality (1) we have

1. - TpTyp41 -+ Tp = Tp41..-TnT1...Typ,
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so the words =iz 2, and z,4 12,49 - x, commute. Also, by the remaining equal-
ities in (1), we have
T1X2 Ty = T5(1)T(2) - - - L(r)

for all permutations § € A, and

Tr41Tr42 .0 Tn = Trgp(1)Tr4p(2) """ Lr4p(n—r)

for each p € A, _,. By the induction hypothesis, the words =z, zs,...,z, commute,
as well as the words z,41,Zr42,...,2,. This extends the induction. [

Theorem 5. For each m € N there exists n € N such that for any m permutations
01,02,...,0m €8, we can find words x1,xs,...,x, which do not commute and satisfy

(2) T1Ty Ty = To,(1)Toy(2) " Toym) (E=1,2,...,m).

Proof. Assume that m is in N and choose n > 32". Let o01,09,...,0m be any
permutations of 1,2,...,n. We show that there exist three distinct elements p,q,r €
{1.2,...,n} which in each sequence ¢;(1),0;(2),...05(n), j = 1,2,...,m, form
either an increasing or a decreasing (i.e. monotone) subsequence.

It is a well known fact (dating back to [ErSz]) that for each s € N, any sequence of s
distinct real numbers contains a subsequence of s numbers which is either increasing
or decreasing. Thus there exist integers i1,i,...,45m-1 in {1,2,...,n} which in
01(1),01(2),...,01(n) appear in a monotone order.

Proceed by induction. Let k € {1,2,...,m — 1}. Suppose that there exist integers
JisJ2s ey dgem-» in {1,2,...,n} such that these integers form a monotone subsequence
in 05(1),04(2),...,05(n) for each s € {1,2,...,k}. Consider the permutation o;.
By the facts above, there exist integers si1,82,...,85om—k-1 in J1,72,...,Jzem-+ which
in 04(1),04(2),...,04(n), appear in either increasing or decreasing order for each s €

{1,2,...,k+ 1}. This extends the induction.

Let p<g<re{l,2,...,n} be integers which in the sequence o;(1),0;(2),...,0;(n)
form a monotone subsequence for each 7 = 1,2,...,m . Let a and b be distinct
symbols. Choose 2, =2, =a, z,=05b and z; =€ foreach i€ {1,2,..,n}\{p,q,r}.
For any j € {1,2,...,m} the equality (2) looks like aba = aba, but the words

Tp,Tq, Tr do not commute and thus neither do the words zq,z9,..., 2, . O

3. PERMUTATION, SHUFFLE AND CONJUGACY
In the rest of the paper g and h will be arbitrary morphisms defined on ¥, and we
put

(1) r; = g(a;), yi="h(a;), for i=1,....n
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We now introduce four conditions on the basis of which our vital test set and word
equation problem can be solved.

Definition. The morphisms g and h satisfy the permutation condition if they agree
on F,, i.e. if they agree on
U5 (1)00(2) " " Qo(n)

for each o € S,,.

We shall generalize the above definition to subsets of %,, . Let I = {a;,,ai,,...,a;, |1 <
i1 < ig < --- < i <n}. The morphisms g and h satisfy the permutation condition
on the set I if they agree on

a; R 7

o(1) Yig(2) o (k)

for each o € S;.

The permutation condition is very restrictive. The first anticipation is that it, in the
nontrivial case, implies commutativity. The next theorem says that exactly this is not
the case.

Theorem 6. Let g and h satisfy the permutation condition. Then one of the follow-
ing statements holds.

(i) x;=vy; foreach i€ {1,2,...,n}.

(ii) There exist p,q € {1,2,...,n}, p < q, such that z, # yp, x4 # yq and
z;y; = € for each i € {1,2,...,n}\ {p,q}. Then there exist unique word t;
and a unique nonempty word to such that t = tits is the primitive root of
T1T2 " Ty, Tp,Yp € (tltg)*tl and TqyYq € (tgtl)*tg.

(iii) There exist three indices p,q,r € {1,2,...,n} such that z, #y,, x4# Yy, and
Tryr # €. Then the words x1,%o,...,%n, Y1,Y2,---,Yn commule, i.e., if t s
the primitive root of x1xo - x,, we have Ti,To, ..., Tu,Y1,Y2,...,Yn € t*.

Proof. Assume that (i) does not hold. There then exist at least two indices j €
{1.2,...,n} such that z; #y;. Let p,¢ e {1,2,...,n}, p<gq, besuchthat z, # y,
and x4 # y,. Two possibilities arise. Either z;y; =€ foreach i€ {1,2,....,n}\{p, ¢}
or there exist r € {1,2,...,n}\ {p,q} such that z,y, # €.

1. Consider the first possibility. By Theorem 3, the case (ii) holds.

2. Assume that the second possibility holds. Suppose without loss of generality, that
x, # €. Let

L {xz fore=1,2,....,p—1, I {yz fore=1,2,....,p—1,
' ’ Yiy1 fori=pp+1,...,n—1.

Tiy1 fori=p,p+1,...,n—1;

TpZa(1)”a(2) """ Ro(n—1) = YpUo(1)Us(2) =" " Us(n—1)
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and

Zo(1)%a(2) """ Ra(n—1)Tp = Ug(1)Ug(2) """ Us(n—1)Yp

for each permutation o € S,,_1.

Since =z, # yp, we deduce from the corollary of Theorem 3, that

R122" " Zn—1 = Zg(1)%0(2) ' " " Za(n—1)

for each o € S,,_1. This certainly means that the words z1,...,2p_1,Zp41,...,2p
commute. Similarly it can be shown that the words z1,...,24-1, Z¢41,...,2Z, com-
mute. Since p,q, and r are all distinct and =z, # ¢, we deduce that the words
r1,%2,...,T, commute, which finally implies that zi,xs,...,2,,91,¥y2,...,yn com-
mute. [

Note that under the adopted assignment the permutation condition is equivalent to
( #% ). Let us recall that we are interested in the smallest possible subsets of S,, that
produce a test set for F,. It is shown that there exist a test set of size O(n) and also
that this order of magnitude is the best possible.

Example 2. Consider the language FE3. Define morphisms g,h by

g(a1) =a glaz) = ab g(a3) = bab
h(a1) = aba h(az) = ab h(asz) =b

and verify that they agree on all elements of F3 except of ajasas. By the symmetry
of letters, it shows that no proper subset of Ej3 is its test set.

Definition. The morphisms g and h satisfy the conjugacy condition if they agree
on each conjugate word of aias...a,.

Along our conventions ¢ and h satisfy the conjugacy condition if the equality

TiZig1 " TnX1T2 - Ti—1 = YiYi+1 - -Yn¥Y1Y2 - Yi—1
holds for each i€ {1,2,...,n}.

Denote by CON,, the subset of S, that produces the set of all conjugates of the word
a1a9 - Qp.

Words satisfying the conjugacy condition have some remarkable properties.

Theorem 7. Let g and h be morphisms satisfying conjugacy condition and suppose

that z1x9---x, isnonempty. Foreach i € {1,2,...,n}, let t; be the primitive root of

TiTig1 - TpT1To - Ti—1 and d; be the word such that either x; = d;y; or y; = d;x;.
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Then ty,ta,...,t, are conjugate words of each other and, for each i € {1,2,...,n},
we have d; € t}.

Proof. Since xix9---%,, ToX3- - -TpXi, ..., TpT1To---Tp_1 are conjugate, their
primitive roots ti,ts,...,t, are also conjugate, by the basic results in combinatorics
of words. Let ¢ € {1,2,...,n}. If d; # ¢, Theorem 3 implies that both d; and
TiTig1 TpT1To - Tij—1 are € t;L. The case d; = ¢ is clear. [

Definition. Let n > 2 be an integer and r = [n/2]. The morphisms ¢ and h
satisfy the shuffle condition if they agree on following n words :

(G1 Q2 Qp—3 Qr—2 Gr—1 Qp Qr41 Qr42 Gpy3 Gryq - " Gn
a1 42 Qp_3 Qyr_2 Qr_1 Gp41 Op Qpy2 Gpy3 Gpyq - Qn
a1 42 Qpr_3 Qr_2 Qp41 Qp_1 Gp42 Gy Qpy3 Qpyq - Qn

a1 g - Qp_3 Qr41 Gr—2 Qy42 Ar—1 Qr43 Ay Qr44 - - Qn

Qr41 Qr42 " QAp—3 01 Q-2 A2 Ap—1 03 Ay 04" Ay
Qr41 Gyp42° ' °An_3 Ap—2 41 Ap_—1 A2 Gp A3 Q4 Qp

Qr41 Gyp42° ' °AGn_3 Gpn—2 Ap_—1 A1 Gn A2 A3 Q4 Qp

L Qr41 Qr42 " QAp—3 Apn—3 AQpn—1 Ay 01 A2 A3 G4 Ay

The bold typeface in the definition above helps to grasp the structure of the set SH
and has no semantic relevance.

We give also a more formal definition of the set SH. For all integers ¢ € Z define
words ¢;, d; by

a;, t=1,...,r a;,, t=r+1,...,n
C; = . d; = .
€, otherwise; €, otherwise.

Then
SH = {Hcide | keZ}= {Hcidi+k k=1,...,n}.

1€EZ 1€EZL

Again, denote by SHU,, the set of n permutations that produces the words in SH.
There is not much to say about the structure of morphisms satisfying the shuffle con-
dition. It certainly does not alone imply the permutation condition. In fact Example
shows that even together the shuffle and the conjugacy conditions are not as strong as
the permutation condition. We are going to introduce one more tool.

10



Definition. Let n > 2 be an integer and r = [n/2]. The morphisms ¢g and h
satisfy the weak permutation condition if they agree on words

102 QrQr45(1)Ar46(2) " Cr45(n—r)

aT ar ...a’r n_Taa ...ar
( WP ) +0(1)%r+6(2) +6( ya1d2

Ur4+1Gr42 " Anlp(1)Ap(2) " Ap(r)

Up(1)0p(2) * " Ap(r)Ar410r42 * ** On

forall ) € A,,_,, and p € A,.

Let WPE, be the subset of S, producing the words in WP. Certainly WPE,
contains 2[log 7| + 2[log(n — r)] permutations.

4. SUFFICIENT CONDITIONS FOR THE PERMUTATION PROPERTY

Theorem 8. Let n > 4 be an integer and r = [n/2]. Suppose that morphisms g
and h satisfy both the conjugacy and the weak permutation condition and furthermore
z129 Xy # |y1y2 - - yr|. Then the morphisms satisfy the permutation condition.

Proof. By the corollary of Theorem 3,

T1X2 Ty = T5(1)T5(2) """ Ts(r)
Y1yz2 - Yr = Ys(1)Ys(2) =~ " Ys(r)
for each 6 € A,, and

Tr+1Tr42° T = Trgp()Tr4p(2) " Lrdp(n—r)

Yr+1Yr+2 - Yn = Yr4p()Yr+p(2) """ Yr+p(n—r)

for each p € A, _,. Theorem 4 now implies that the words xi,zs,...,x, commute
and so do also the words ¥i1,v2,...,y, as well as Z,41,Zr42,...,Z, and the words
Yr+1,Yr42,- -y Yn -

We shall now show that the morphisms ¢ and h satisfy the permutation property.
1. If there are exactly two distinct indices i,j € {1,2,...,n} such that z;y; and
x;y; are nonempty, there is nothing to prove: the total system of equations collapses
to xiT; = Yiy; , Ti%Ti = Y;Yi -

2. Assume thus, without loss of generality, that there exist indices p,q € {1,2,...,7},
p<q,and s€ {r+1,r+2,...,n} such that z,y, , z,y, and zsys are all nonempty
and |xy...x.] > |y1...ys| . Let ¢, w and v be the primitive roots of ziz5-- -z, ,
Y1Y2 - Yr , and z1x9- - T, , respectively. (If yiys---y, is empty, put u =v ). Cer-
tainly z,,z, arein t*, y,,y, arein u* and, by Theorem 7, the difference of z;---z,
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and y1---y, is a conjugate of v .

2.1. Now, if z, =y, (or x, =1y, ), we have necessarily ¢t = u =v since zy...z, € T
is a prefix of z;...2, € v* . Then also Z, 1Tpi2 - 2, and Ypi1Ypio---Yn are in
v* and we are through: all the words commute.

2.2. Assume thus that z, #y, and z, # y, .

2.2.1. If any of the words =z,,z4,vyp,y, is empty, we again have, by Theorem 7,
t=u=wv.

2.2.2. Let thus zp,24,¥yp, Y, all be nonempty. Then zqz3---z, is longer than 2|v|
and, by the Periodicity Lemma, ¢ =v . Again we see that the words commute. [J

Theorem 9. Assume n >4 is an integer, r = [n/2], and the morphisms g and h
satisfy the

(i) conjugacy and shuffle condition;

(ii) permutation condition on the sets {ai,as,...,a,} and {ar41,0r42,...,a0n}.

Then they satisfy the permutation condition.

Proof.

1. If ;=y; for 1 =1,2,...,n, we are through.

2. Assume then, without loss of generality, that ¢ is the greatest number ¢ €
{1,2,...,r} such that z; # y;. By Theorem 7, the words zix5---x, and zix9---x,
and therefore also x,4 12,42z, are powers of the same primitive word ¢, say. By
Theorem 6, two cases appear. Either

1° All the words xzq,zs,...,x, € t*
or

2° There exist exactly two distinct indices p and ¢ in {1,2,...,r} such that
zpyp and z,y, are nonempty and x, and x, do not commute.

2.1. Consider first case 2°. By the corollary of Theorem 3, there exist nonempty words
t1,to and integers ri,r9,S1,52 € N such that ¢t =tty, 71 # sy, 711+ 719 = 51+ 89,
Ty, =t" 1, yp, =131, xy=1t2t", and y, = 212,

2.1.1. If z,41 -2, =€, we are done.

2.1.2. Let s be the smallest number i € {r+1,r+2,...,n} such that x;y; # ¢. By
Theorem 3, there exist words wuq,us and integers rs,ry4,S3,54 € N such that wius =
t=tita, xy = t"uy, ys = t3%u1, Tep1Tsqp2 Ty = ut™ and Ysp1Ysq42c o Yn =
uot®*. By the shuffle condition we have the following identity.

(3) tTltltT3U1t2tT2U2tT4 = t51t1t53u1t2t52u2t84 .

Assume without loss of generality that 7, > s; (and thus sy > 0). Certainly (3)
implies

(4) (tgtl)rl_SltT3U1t2tT2U2tT4 = tS3U1t2tS2U2tS4 .

2.1.2.1. If s3 > 0, then ¢ = t1t5 = tst;, a contradiction, since ¢ is primitive and
12



t1,ts are both nonempty.

2.1.2.2. Suppose that s3 = 0. Then r3 # 0 and (tof1)u; = uq(taty), so u; = €
since oty is primitive. Now we have us =t and (4) yields tito = tot;, again a
contradiction.

2.2. Consider then the case 1°. Apply Theorem 6 to the words x,41,%r192,...,2, and
Yr+1Yr+25 -y Yn.

2.2.1. If z,41,%p49,...,2, € t*, the proposition obviously is true: all the words
commute.

2.2.2. The case (ii) of Theorem 6 was studied above (2.1.).
2.2.3. Suppose that z; =y; for j =r+1,r+2,...,n. The shuffle condition now leads

to equalities (z1%2-  Tg—1)Tr11Tq = (Y1Y2*** Yg—1)Yr4+1Yq. SINCE T1,Ta,...,Tq—1, T4
as well as y1,92,...,¥r, Yg are all in ¢*, it is not difficult to see that the word
ZTy41 = Yr41 is also in ¢*. Similarly, using further shuffle equalities, we prove that z;
isin t* forall j =r+41,...,n. This completes the proof. 0

5. A LINEAR SIZE TEST SET FOR THE LANGUAGE F,

In this section we construct recursively a sequence (%)nem, with 7, C &,,, which
will determine our test sets. Let us first explain the idea of the recursiveness in our
construction.

Let R be a subset of S,,. Put r = [n/2] and for any 7 € R define mappings

and
pr:{l,...on—r}—={1,....n} by p (i) =71(r+i)—r.

If {r(i)|i=1,...,r} ={1,...,r}, then both o,,p, are permutations and we say
that 7 is per partes. Put

Prerr(R) ={o, | T € R, T is per partes};
Pricur (R) = {pT | T E R, T 18 per partes}.

We say that the set R C S, is founded if

(i)  Prerr(R) produces a test set for E,;
(ii) Pricur(R) produces a test set for F,_,.

Our construction of the sequence (7p)nen, is based on the following

Theorem 10. Let R be a subset of S,, such that
(i) CON,USHU, IUWPE, CR ; and
(i) R is founded.
13



Then the set R produced by R 1is a test set for E,.

Proof. Suppose that the morphisms g and h agree on R. We want to show that g
and h satisfy the permutation condition.

Let r = [n/2] and suppose first that |x1z9- -2, # |y19y2---yr|. By (i), the mor-
phisms ¢ and h satisfy both the conjugacy and the weak permutation condition and
therefore, by Theorem 8, we are through.

Consider next the case |x1z9---2,| = |y1y2---yr|. The fact that R is founded guar-
antees that the equalities

To(1)To(2) " " To(r) = Yo(1)Yo(2) " " Yo(r)
hold for each o € §,, and
Lrtp(1)Tr+p(2) " Lrtp(n—r) = Yr+p(1)Yr+p(2) * " Yr+p(n—r)

hold for each p € S,,_,. Theorem 9 completes the proof. [

Now we are prepared to construct the desired test sets. For n =1,2,3 the set 7, has
to be equal to S,,. Consider the case n =4. We have

1234 (12324) 1243
2341 1324

CONs Q ayig SHUs § 51, WPEs
4123 (3412) 2134

The underlined elements show that CON 4 U SHU, UWPE, is founded and repeated
elements are in brackets. By Theorem 10, the set

Ty = {1234, 2341, 3412, 4123, 1324, 3142, 1243, 4312, 3421, 2134}
produces a test set for FEjy.

Before we give the general construction formula, let us still consider separately cases
n=>5,6. For n =15 the definitions yield

(12354

12345 ((12345)
54123

23451 12435
31245
CONs 34512 SHU; ¢ 14253 WPEs < 91345

45123 41523
45312

(51234 ( (45123)
(45213

14



It is not difficult to verify that CON5USHU5UWPE5 is not founded. For any o € S3
the set 75 has to contain a permutation starting by o. The underlined elements show
that we have to add for example 13245, 23145, 32145 and we get

Ts = {12345, 23451, 34512, 45123, 51234, 12435, 14253, 41523, 12354,
54123, 31245, 21345, 45312, 45213, 13245, 23145, 32145}.

Similarly for n =6 we construct

(123645

(123456 ((123456) 123546
234561 124356 645123
345612 142536 546123

CONG 3 i r6193 MU 3 4isocs Mﬂ%G{ 312456
561234 451623 213456

| 612345 | (456123) 456312
456213

One can easily see that added elements 132 465, 231 564 and 321 654, we obtain a
founded set

Ts = {123456, 234561, 345612, 456123, 561234, 612345, 124356, 142536, 415263,
451623, 123645, 123546, 645123, 546123, 312456, 213456, 456312, 456213,
132465, 231564, 321654}.

For n > 7 define
T, = CON, USHU, UWPE,, UFUN,

where FUN,, is the recursive part of 7,, which guarantees that 7, is founded. The
set FUN, 1is constructed as follows. Assume that 7 is given for £ =2,3,...,n— 1.
Let o1,09,...,0, be asequence of all distinct elements of

ﬁn/Z] \ PLEFT(CONn USHU, U ngn),
and similarly, let p1,p2,...,p,; be a sequence of all distinct elements in
7-Ln/2j \ PRIGHT(CONTL USHU, U ngn)

Denote m = max{p,q} and put py =p, forall k=¢+1,...,m, o =0, forall
k=p+1,...,m. Foreach i€ {1,2,...,m} define 7, €S, by
5 {cn(j), for j=1,2..... [n/2]
Ti\J)) = . .
(/2] + pi(j — [n/2]), forj=Tn/2]+1,....n,

and put FUN, ={r |i=1,...,m}.
15



Theorem 11. For all n € Ny, the set T, produces a test set for E,,.

Proof. The construction of 7,, shows that it satisfies both conditions of Theorem 10.
O

In the following we investigate the size of our test sets. To avoid confusion, write the
permutations temporarily in parentheses.

Let r = [n/2], s=n—-r=|n/2], v =[r/2] and s = [s/2]. For n > 7 one
easily sees that

Card(CON,, USHU,) = 2n — 2

5

(5) CardWPE,) =2 [log[n/2]] + 2- [log|n/2]|].
Note that

(1, 2, ceay ’I‘) E CON{H/Q_I ﬂ PLEFT(CONH)
and

(’I",T’ + ]., . .,1‘, ]., 2, . .,1‘, - 1) € CON[n/2'| ﬁ PLEFT(WPgn)-

Similarly

(1, 2,..., 8) € CONLn/QJ N Pricur (CONn)
and

(3,, SI + ]., e say 3, ]., 2, ceey SI - ].) € CONL’H/2J ﬂ PRIGHT(WPEn)-
This implies that
(6) Card(FUN ;) < max{Card(T |, 2)), Card(T,/27)} — 2.

We estimate the size of 7, by a function F :N, — N,. Let F(1)=1, F(2)=
2, F@B)=6, F@4)=10, F(5) =17, TF(6)=21, and for n>7 put

F(n)=2n—-2 + 2-[log[n/2]] +2- [log|n/2|] + max{F (|n/2]), F ([n/2])} — 2.

From the construction of test sets for n < 6, and from (5) and (6) we deduce, by
induction on n, that

Card(7,) < F (n)

and that [ is strictly increasing:
F(n)< F(n+1)
for all n € Ny . The monotony of F implies

max{ F ([n/2]), F (In/2])} = F ([n/2]).

16



Let
r(n) =2-[log[n/2]] +2- [log|n/2]] — 4.

Then we can write
F(n)=2-n 4+ r(n) + F([n/2])

for n> 7.

Let a >4 be a real number. As a polynomial of n , the function given by

(a—4)-n—a
2

f(n) =

grows faster than r(n), so there exist n, € N, n, > 7, such that for each n > n,,
we have f(n) > r(n). This implies that

a-(n—1)

(7) F(n) <2-n+ f(n)+ F ([n/2]) = 2%

+ F ([n/2])
for each n > n,. Let now b, = F (n,). We prove by induction that F (n) < a-n+b,
for each n € Ny. The assertion certainly holds if n < n,. Suppose n > n,. Then

a-(n—1)

pn) < 202D 4 p(pnj)y < 20

- 2
< a-(n—1)+a-(n+1)
- 2 2

n
27 + by
+a [QW—i—

+b = a-n+b, .

Also for any real number a’ such that 4 < a’ < a there is an integer b, , for which
F (n) < a'n+ by for all n € Ny. This implies the existence of a number m, € N
such that

F(n)<a-n

for all n > m,. We can summarize:

Theorem 12. For any real number a > 4 there exist integers by, m, € N such that

(i) Card(7T,) < an+b, foreach neN;
(i) Card(7,) < an for each integer n > m,.

Let a =5. It is not difficult to verify that in such a case f(n) > r(n) for all n > 37
and by (7)

Fim<s "D g E (fw2))

for n > 37. A direct computation yields following list:
F (1) =1 F (2) =2 F (3) =6 F (4) =10 F (56) =17
F (6) =21 F (7) =28 F (8) =30 F (9) =41 F (10)=45
17



F (11)=51 F (12)=53 F (13)=62 F (14)=64 F (15)=68
F (16)=70 F (17)=85 F (18)=89 F (19)=95 F (20)=97
F (21)=105 F (22)=107 F (23)=111 F (24)=113 F (25)=124
F (26)=126 F (27)=130 F (28)=132 F (29)=138 F (30)=140
F (31)=144 F (32)=146 F (33)=165 F (34)=169 F (35)=175
F (36)=177 F (37)=185 F (38)=187 F (39)=191 F (40)=193

so that TF (n) < bn, when n = 1,2,...,36. For n > 37 proceed by induction to
obtain

(n—1) (n—1) (n+1)

2

Observe that for n = 37, as well as for other underlined values, the estimate is sharp:
F (n) = 5n. We can now answer a question stated in [HaK2].

F(n) <5- + F([n/2]) < 5- + 5 = hn.

Theorem 13. For each n € Ny, the language E, = c(aiaz---a,) possesses a test
set (produced by T, ) with the size at most 5 - n.

The following result gives a lower bound for the size of a test set.

Theorem 14. Fach test set for the language FE, = c(ajas---ay,) contains at least
n—1 elements.

Proof. The assertion is certainly true for n = 1,2,3. Assume that n > 3. Let S =
{wy,wa, -+ ,w,_2} be any subset of F, with cardinality n — 2. Suppose, without
loss of generality, that a; is the last letter of w;. We construct two (nonerasing)
morphisms that agree on S, but not on F,.

For each i€ {1,2,...,n—2}, let

M; = {k | w; = zagya,z for some words z,y,z € 3, }.

Thus M; is the set of all numbers k € {2,3,...,n} such that aj precedes the symbol

a; in the word w;. By assumption, M; = {2,...,n}. For each i€ {1,2,...,n—2}
and each j € {2,3,...,n}, let
1, ifjeM;
Tij = .
0, otherwise.
Let
@j = (le, T2y, Tn—Z,j)
for each j € {2,3,...,n}. The vectors ¥s,7s,...,0,, having only n —2 coordinates,
are linearly dependent over Q, the rationals. There thus exist integers ds,ds, ..., d,,

not all zero, such that B
dovg + d3vs + - -+ + dpv, =0
18



with 0 the zero vector. Since each r;; € {0,1}, the equality

> di=0

JEM;

holds for each i€ {1,2,...,n—2}. Foreach j€{2,3,...,n}, we state

kj:dj+1,lj:1 ifdj>0
ki =1 =1 ifd; =0
kj:1,lj:—dj+1 ifdj<0 .
Then ko, ks3,...,kn, ls,l3,...,1, are all strictly positive integers and
Y (kj—1)=0
JEM;

for each i€ {1,2,...,n —2}. In particular, ¢ =1 implies that

kot kgt hy=lo g+t 1.

Let a, b be distinct symbols and g and h nonerasing morphisms: X* — {a,b}*
defined by

{g(al) =b { h(a;) = B
g(aj):akj forj:2,3,...,n; h(aj):Alj, fOrj:2,3,...,’I’L.

Let i€ {1,2,..., n —2}. We have

g(w;) = a"ba"?, h(w;) = a®'ba®

where

and, since ko + ks +---+k,=1ly+Il3+---+ 1, , also

T‘zZij: leZSQ.

JEM; JEM;
Thus g¢(w;) = h(w;). On the other hand,
g(aiar - ai—10i41 - an) # h(aiar - ai—1ai11- - an)

as soon as d; # 0. This completes the proof. [J
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6. GENERAL COMMUTATIVE LANGUAGES

We first contemplate the correlation between two concepts: ”basis” and ”test set” of a
language.

Lemma 15. Let P be any subset of L C ¥%. Length-equivalence on P quarantees
length—equivalence on L if and only if the set P contains a basis of L.

The sufficiency of the condition is evident. That it is necessary is not difficult to verify
either. For the proof we refer to [AIWo] (see also [HaKo2]). The fact implies that each
test set for L contains a basis of L .

If the basis of W(L) contains the maximal possible number n of vectors, then, by
simple length consideration, any two morphisms, which agree lengthwise on the basis,
agree at the same time lengthwise on every letter. Consequently, any basis of L is
also a test set. In general this certainly is not true: the set {ajas} is one basis of
Es = c(ajas) (the other possibility is {agai} ), but the only test set for the language
E5 is FEo itself.

In this section we show

Theorem 16. Let L C X} be a language and w € L a word such that alph(w) =
alph(L) and, for each i, symbol a; occurs at least twice in w if it occurs at least
twice in some word of L. Then c¢(L) possesses a test set of the size at most 11 - n.

Proof. The proof is given by the construction of the test set. Let
q’n(’w) = (dI: d27 sy dn),

with dy,ds,..., d, € N. For each i€ {1,2,..., n} we state

) ) ) )

r, = [dz/2-‘/ and Tn+i = dz —T;.
Let

— C..oaT Tnt+1 Tnt2  Top *
U= Ay Gy A" Gy Qo Aoy’ € Xa,

and define a projection w:3¥5 — X* by
mw(a;) = w(anss) =a; for i=1,2,....n.

Note that

m(c(v)) = e(w) .
Let B be a basis of L. Our test set will consist of the set B and of projection of
some permutations of the word v. Namely, we claim that

T, =7 ({az_‘z(ll)) aZ?(;)’ aZ?;:)’ |o€Tam}) UB
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is a test set for L. Obviously

Card(Tr) < Card(7ay,) + Card(B) < 11 - n.

To prove this assertion, let g and h be morphisms defined on 3 that agree on 77 ..
Define another morphism «: X35, — X7 by

a(a;) = w(a;)" fori=1,...,2n

and morphisms
g1=goa, hi=hoa«a

with the domain X3, . Since g and h agree on 77, the morphisms gi,h; agree on

Ton = {as(1) Gg2) *** Go(2n) | 0 € Ton}.

From Theorem 11 we deduce that ¢g; and hy agree on FE,,, as Ts, is a test set for
FEs,,.

Theorem 6 gives three possibilities to g1, h1.
1. If gi1(a;) = hi(a;) for each i = 1,2,...,2n, then also g(a;) = h(a;) for each

)

1 =1,2,...,n, and there remains nothing to prove.
2. If gi(aj)hi(a;) # € for at least three indices, then, by Theorem 6, there exist
a primitive word ¢ such that g¢q(a;),hi(a;) € t* for each i = 1,2,...,2n. Then
g(a;),h(a;) € t* for j = 1,2,...,n, and we are through, since g,h are length-
equivalent on L, due to B C TT.

3. Assume finally that there are indices p,q € {1,2,...,2n}, p < ¢ suchthat gi(a,) #
hi(ap), 91(aq) # hi(aqg) and g1(a;)hi(a;) =€ foreach i€ {1,2,...,2n}\ {p, ¢}
3.1. If g=n+p, then w(a,) = m(ay) = a,. For arbitrary u € E,, we have

9(ap)™ = g(u) = hi(u) = h(ap)®

and g(ap,) = h(a,), a contradiction with g1(ay) # hi(ayp).

3.2. Therefore ¢ # n+p and p,q < n. By definition of v, the letters a, and a
occur both exactly once in w and thus they have at most one occurrence in any word
from L. Consequently a(a,) =a,, o«(aq) =a, and

for all w e L. O

Assume in the following that each CLIP-language c(wowjws; ---wj),) is effectively given

(for instance, either through the vectors of its Parikh-map, or by giving the sequence
of words wq,wy, ws,...wy, ). Next corollary is the solution of a problem left open in
[HaK2]:
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Corollary. FEach CLIP-language over an alphabet of n symbols possesses a test set of
size at most 11 n. The test set can be effectively constructed.

Proof. Let L be a CLIP-language with alph(L) = %,, n € N;. Thus L =
wowiws ---wy, where m € N and wg,w;,...,w,, are in XY. Now it suffices to
choose w = wowiw3 -+ w2, and use Theorem 16. The effectiveness is guaranteed by

the construction of the test set for FE,, and by the fact that a subset of
{w(h WoW1, WoW2y - - .« w()wm}

is the basis of ¢(L). O

Given, for a language L', (i) a word w, which is enough "representative” for the
alphabet of L’ ; and (ii) a basis B of L', our result yields a straightforward although
rough method to construct a test set for the commutative language c¢(L’). The test
set is in fact a subset of c¢(w) augmented by a basis of L’. As we have seen, the
method can be applied to any CLIP-language L = c(wowjws ---w?,). If, moreover,
each symbol of alph(L) appears in also wjws---w,,, we can construct a test set of
size at most the dimension dim L of L. However, the small cardinality of the test set

is recouped by the length of one of its elements.

Theorem 17. Let L = c(wowiws---wk) be a CLIP-language such that alph(L)

m
= alph(wjws - --wy,) . Then L possesses an effectively constructable test set of size

dim L.

Proof. Assume, without loss of generality, that alph(L) = ¥,. By the corollary of
Theorem 16, the language L; = c(wiwj ---w},) has a finite (effectively constructable)

test set Th = {wy,u9,...,u,.} such that »r <11n . Let w = ujus---u, and
U = {woy, wou, wowy, wows, . .. WoW,} .

It should be clear that U is a subset of L and that from U we can effectively form
a basis T of L such that wou € T .

We now verify that T is a test set for L. Let g and h be morphisms that agree
on T. Since T is a basis of L, the morphisms g and h are length-equivalent on
L . This means that g and h agree on {wq,uy,u,...,u,} and thereby also on
Ty. Since Ty is a test set of L;, we deduce that the morphisms agree on Li. Let
r = wiws w3, . The word z is an element of L; and thus morphisms ¢ and
h agree on c(z). Note that |v|, >3 for each a; € X, . A slight modification of
Theorem 6 (not all letters in =z are distinct) now gives two possibilities: either

(i) g(a;) = f(a;) for i=1,2,...,n;or

(ii) there exists a primitive word ¢ such that g(a;), f(a;) € t* for i=1,2,...,n.
Because of the length-equivalence on L , the morphisms ¢ and h agreeon L. [J
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7. CONCLUSIONS AND Torics OF FURTHER RESEARCH

Hopefully the above considerations have given some information not only about test
sets for finite commutative languages but also of the impact of conjugacy- and shuffle-
like qualifications to word equations. In general, the assumption that a language is
commutative (or bounded) is very restrictive; most of the languages are of neither type.
One way to carry on the research is to study test sets for language families generated by
some well-known set of commutative languages. Let R the set of all regular languages
and ¢(R) = {c¢(R) | R € R}. Furthermore, denote by C(c(R)) the smallest trio
generated by the family ¢(R). We end the discussion to the following

Research Problem. Does there exist an effectively constructable finite test set for lan-
guages in the family C(c¢(R)) 7

It should be remembered that a trio is a family of languages closed under union, e-free
morphism image and intersection with regular sets. The intuition says that the answer
to the problem is affirmative. The construction of the test set is probably difficult.
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