
EE 261 The Fourier Transform and its Applications

Fall 2007

Problem Set Nine Solutions

1. (10 points) 2D Convolution Find and sketch the function defined by the following convo-
lution:

g(x, y) = Π(x)Π(y) ∗ Π(x)Π(y)

Solution:

Let h(x, y) = Π(x)Π(y). Then
Fh(ξ, η) = sinc ξ sinc η

Now by the convolution theorem

Fg(x, y) = Fh(ξ, η)Fh(ξ, η)

so
Fg(x, y) = sinc2ξ sinc2η

In turn, this is separable, so

g(x, y) = (F−1sinc2)(x) (F−1sinc2)(y)

or
g(x, y) = Λ(x)Λ(y)

Here’s a plot – it looks like a pyramid with a square base:
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2. (10 points) 2D Radial Stretch Theorem If g(r) is a circularly symmetric function with
Hankel transform G(ρ), show that the Hankel transform of g(ar) is 1

|a|2
G

( ρ
a

)
.

Solution:

Recall that

G(ρ) = 2π

∫ ∞

0
g(r)J0(2πρr) rdr

Let u = ar so that r = u
a and dr = du

a . Since g(−r) = g(r) (a property of radial functions)
we can assume a > 0 without loss of generality. Then

F {g(ar)} = 2π

∫ ∞

0
g(ar)rJ0(2πρr) dr

=
1

a2
2π

∫ ∞

0
g(u)uJ0(2πρ

u

a
) du

=
1

a2
G

(ρ

a

)

=
1

|a|2
G

(ρ

a

)

3. (20 points) 2D Fourier Transforms Find the 2D Fourier Transforms of:
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(a) sin 2πax1 sin 2πbx2

Solution:

Because the function is separable we have

F(sin 2πax1 sin 2πbx2) = F sin 2πax1F sin 2πbx2

=
1

2i
(δ(ξ1 − a)− δ(ξ1 + a))

1

2i
(δ(ξ2 − b)− δ(ξ2 + b))

= −
1

4
(δ(ξ1 − a)δ(ξ2 − b)− δ(ξ1 − a)δ(ξ2 + b)

−δ(ξ1 + a)δ(ξ2 − b) + δ(ξ(1 + a)δ(ξ2 + b))

= −
1

4
(δ(ξ1 − a, ξ2 − b)− δ(ξ1 − a, ξ2 + b)

−δ(ξ1 + a, ξ2 − b) + δ(ξ1 + a)δ(ξ2 + b)

The plot of this would be four spikes, two up, two down, at the four vertices of the
rectangle (a, b), (−a, b), (a,−b), (−a,−b).

(b) e−ar2

Solution:

You can use the radial stretch theorem, above, on this, knowing the Fourier transform
of a Gaussian. That gives, in polar coordinates,

Ff(ρ) =
π

a
e−π

2

a
ρ2

You can also do it directly using that f(x, y) is separable,

f(x, y) = e−ax2

e−ay2

,

and appealing to the formulas for the Fourier transform of a one-dimensional Gaussian.

(c) e−2πi(ax+by) cos(2πcx)

Solution:

Again, this is separable

F
{
e−2πi(ax+by) cos(2πcx)

}
= F

{
e−2πiax cos(2πcx)e−2πiby

}

= F
{
e−2πiax cos(2πcx)

}
F

{
e−2πiby

}

=

(
δ(ξ + a) ∗

1

2
[δ(ξ + c) + δ(ξ − c)]

)
δ(η + b)

=
1

2
[δ(ξ + a+ c) + δ(ξ + a− c)]δ(η + b)

This can also be expressed using the multi-dimensional notation for the product of delta
functions of different variables

Ff(ξ, η) =
1

2
[δ(ξ + a+ c, η + b) + δ(ξ + a− c, η + b)]
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(d) cos(2π(ax+ by)) Hint: Use the addition formula for the cosine.

Solution:

One way to do this is to write

cos(2π(ax+ by)) = cos 2πax cos 2πby − sin 2πax sin 2πby,

i.e., as a separable function. Then (much like part (a))

F(cos(2π(ax + by))) = F(cos 2πax cos 2πby)−F(sin 2πax sin 2πby)

= F(cos 2πax)F(cos 2πby)−F(sin 2πax)F(sin 2πby)

=
1

4
(δ(ξ − a) + δ(ξ + a))(δ(η − b) + δ(η + b))

+
1

4
(δ(ξ − a)− δ(ξ + a))(δ(η − b)− δ(η + b))

=
1

4
(δ(ξ − a)δ(η − b) + δ(ξ − a)δ(η + b)

+δ(ξ + a)δ(η − b) + δ(ξ + a)δ(η + b))

+
1

4
(δ(ξ − a)δ(η − b)− δ(ξ − a)δ(η + b)

−δ(ξ + a)δ(η − b) + δ(ξ + a)δ(η + b))

These are some combinations and cancelations here, leading to

F(cos(2π(ax+ by))) =
1

2
δ(xi − a)δ(η − b) +

1

2
δ(ξ + a)δ(η + b)

=
1

2
(δ(ξ − a, η − b) + δ(ξ + a, η + b))

The plot is two spikes at opposite corners of the rectangle, (a, b) and (−a,−b).

4. (20 points) Given a function f(x1, x2) define

g(x1, x2) = f(−x1, x2), h(x1, x2) = f(x1,−x2)
k(x1, x2) = f(x2, x1) m(x1, x2) = f(−x2,−x1)

Find Fg, Fh, Fk, and Fm in terms of Ff . Show your work. In each case interpret your
result geometrically in terms of an image and its spectrum.

Solution:

(a) For g(x1, x2) = f(−x1, x2) we find

Fg(ξ2, ξ2) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(−x1, x2) dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi((−u)ξ1+x2ξ2)f(u, x2) dudx2

(making the (single) change of variable u = −x1)

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi(u(−ξ1)+x2ξ2)f(u, x2) dudx2

= Ff(−ξ1, ξ2)

Geometrically, f(−x1, x2) is a reflection across the x2-axis. The result says that the
spectrum is likewise reflected across the ξ2-axis.
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(b) The calculation for h(x1, x2) = f(x1,−x2) is virtually the same, resulting in Fh(ξ1, ξ2) =
Ff(ξ2,−ξ2). This time the result says that a reflection across the x1-axis corresponds
to a reflection across the ξ1-axis.

(c) For k(x1, x2) = f(x2, x1) if you write the definition

Fk(ξ1, ξ2) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x2, x1) dx1dx2

you might be tempted just to say that this is a switch of x1 and x2 so the answer
is obviously Ff(ξ2, ξ1). That’s the correct answer, but it’s not immediately obvious.
Indeed, write the integral for Ff(ξ2, ξ1). That’s

Ff(ξ2, ξ1) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ2+x2ξ1)f(x1, x2) dx1dx2.

Is it so obvious that this is the preceding integral? It works, but you have to make a
two-dimensional change of variables.

Another approach, however, is to use the general stretch theorem and write(
x2

x1

)
=

(
0 1
1 0

)(
x1

x2

)
and write A =

(
0 1
1 0

)
,

so that k(x) = f(Ax). Note that detA = −1, so |detA| = 1. You can easily see that
AA = I (applying A once reverses the coordinates and applying it again reverses them
back) so that A−1 = A and then, since A is symmetric, A−T = A. Taking all this into
account, according to the general stretch theorem we have

Fg(ξ) = Ff(Aξ) or Fg(ξ1, ξ2) = Ff(ξ2, ξ1).

The flip k(x1, x2) = f(x2, x1) represents a reflection across the line x1 = x2. The result
says that the spectrum is reflected across the line ξ1 = ξ2.

(d) The final case m(x1, x2) = f(−x2,−x1) is handled in a way similar to the preceding
case, writing (

−x2

−x1

)
=

(
0 −1
−1 0

)(
x1

x2

)
so using −A =

(
0 −1
−1 0

)

Arguing just as above then leads to

Fg(ξ1, ξ2) = Ff(−ξ2,−ξ1).

Geometrically, m(x1, x2) = f(−x2,−x1) is a reflection across the line x2 = −x1. The
result says that this produces a reflection across the line ξ2 = −ξ1

5. (15 points) 2D DFT Let f be a M ×N matrix (you can think of f as an M ×N image).
The 2D DFT of f is given by the following formula:

Ff [k, l] =

M−1∑
m=0

N−1∑
n=0

f [m,n]ω−ln
N ω−km

M

where
ωN = e2πi/N , ωM = e−2πi/M .
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(a) Separability: Is the 2D DFT separable? If yes, how can you take advantage of this
property to compute the 2D DFT of the matrix f?
Solution

Yes, the 2D DFT is separable. To see this, let fm be the mth row of the matrix f : it’s
a vector of length N. Let Ffm be the 1D DFT of fm then:

Ffm[l] =
N−1∑
n=0

fm[n]ω
−ln
N =

N−1∑
n=0

f [m,n]ω−ln
N

Then, from the given formula for the 2D DFT, we can easily see that:

Ff [k, l] =

M−1∑
m=0

Ffm[l]ω
−km
M

In other words, this is a 1D DFT of the vector of length M which consists of the lth

entry in each vector Ffm.
So we can take advantage of the separability by first computing the 1D DFT of the rows
of f and then doing another 1D DFT to find the [k, l] entry in Ff .

(b) Modulation: Let g be anM ×N image obtained from f in the following way: g[m,n] =
f [m,n]ωmk0

M ωnl0
N where k0 and l0 are integers. What is Fg in terms of Ff?

Solution:

Fg[k, l] =

M−1∑
m=0

N−1∑
n=0

g[m,n]w−ln
N ω−km

M

=
M−1∑
m=0

N−1∑
n=0

f [m,n]ωk0n
M ωl0n

N w−ln
N ω−km

M

=

M−1∑
m=0

N−1∑
n=0

f [m,n]ω
−(k−k0)n
M ω

−(l−l0)n
N

= Ff [k − k0, l − l0]

(c) 2D convolution Given 2 matrices f and g of size M ×N , their 2D convolution is given
by:

(f ∗ g)[m,n] =

M−1∑
u=0

N−1∑
v=0

f [u, v]g[m− u, n− v]

Show that F(f ∗ g) = Ff ×Fg, where on the right we mean the M ×N matrix whose
elements are the products of the corresponding elements of Ff and Fg.

Hint: Write out the expression for F(f ∗ g). You’ll get a nasty looking expression with
four nested sums. But swap the order of summation, change the variable of summation
(analogous to changing the variable of integration) and use the fact that the 1D DFT
can be computed by summing over any N (or M) consecutive indices.
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Solution:

Let h = f ∗ g. Then

Fh[k, l] =

M−1∑
m=0

N−1∑
n=0

h[m,n]ω−ln
N ω−km

M

=

M−1∑
m=0

N−1∑
n=0

M−1∑
u=0

N−1∑
v=0

f [u, v]g[m − u, n− v]ω−ln
N ω−km

M

=
M−1∑
u=0

N−1∑
v=0

f [u, v]
M−1∑
m=0

N−1∑
n=0

g[m− u, n− v]ω−ln
N ω−km

M

=

M−1∑
u=0

N−1∑
v=0

f [u, v]

M−1−u∑
s=−u

N−1−v∑
t=−v

g[s, t]ω
−l(t+v)
N ω

−k(s+u)
M

=

M−1∑
u=0

N−1∑
v=0

f [u, v]Fg[k, l]ω−lv
N ω−ku

M

= Fg[k, l]
M−1∑
u=0

N−1∑
v=0

f [u, v]ω−lv
N ω−ku

M

= Fg[k, l] ×Ff [k, l]

6. (15 points) Image Segmentation

Obtain the image dog.jpg from the class website (http://eeclass.stanford.edu/ee261/). The
link is present next to the HW-9 link.

(a) Load the gray-scale image in Matlab using the imread command. Convert the matrix
image from type uint8 to double. Plot the initial image.

(b) Now, consider the matrices:

Bx =

⎡
⎣ 0 0 0
1 −1 0
0 0 0

⎤
⎦ and By =

⎡
⎣ 0 1 0
0 −1 0
0 0 0

⎤
⎦

Using the Matlab conv2 command (with the option ’same’ - run help for details), filter
the initial image by convolving it with the matrix Bx. Filter the initial image once more
by convolving it with the matrix By. Find all the entries of the two filtered images that
are greater than 10 and make the corresponding entries of the initial image equal to 255.
Plot the resulting image. What do you observe?

(c) Repeat the steps in part b) only this time instead of filtering the initial image, use a
‘smoothed’ version of it. Generate the smoothed version by passing the initial image
through an ideal Low Pass 2-D filter. Now, increase / decrease the LP filter’s width.
In each case, plot the ’smoothed image’ and the final resulting image. What do you
observe?
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Solution:

(a) Please see attached Matlab code and plots.

(b) Please see attached Matlab code and plots. Essentially, this process results in over-
segmentation of the picture due to local irregularities in the gradient images. Smoothing
of the initial picture can help eliminate some of these irregularities.

(c) Please see attached Matlab code and plots. After sufficient smoothing of the initial
image, a satisfactory segmentation can be achieved.

close all;

clear all;

gap_thr=10;

%================= Part a =================================

img=imread(’dog.jpg’);

img=double(img);

fig=figure(); set(fig, ’PaperPosition’,[0.25 0.25 6 6]);

imagesc(img);colormap(’gray’); title(’Initial Image’);

print(’-depsc’,’InitImg.eps’);

%================= Part b =================================

i=0;

for f=0.5:-0.06:0.08;

filt_img=img;

if f<0.5

h=zeros(size(img));

Xmax=size(img,1);

Ymax=size(img,2);

xo=ceil(Xmax*f);

yo=ceil(Ymax*f);

h(1:xo,1:yo)=1;

h(Xmax-xo+1:Xmax,1:yo)=1;

h(1:xo,Ymax-yo+1:Ymax)=1;

h(Xmax-xo+1:Xmax,Ymax-yo+1:Ymax)=1;

filt_img=real(ifft2(fft2(img).*h));

fig=figure(); set(fig, ’PaperPosition’,[0.25 0.25 6 6]);

imagesc(filt_img);colormap(’gray’);

title(sprintf(’Smoothed Image (f=%g)’,f));

print(’-depsc’,sprintf(’SmoothedImg%d.eps’,i));

end

boundaries=zeros(size(img));

By=[ 0 1 0 ; 0 -1 0 ; 0 0 0 ];

img_conv2_y=conv2(filt_img,By,’same’);

Bx=[ 0 0 0 ; 1 -1 0 ; 0 0 0 ];

img_conv2_x=conv2(filt_img,Bx,’same’);
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boundaries(find(abs(img_conv2_y)>gap_thr))=255;

boundaries(find(abs(img_conv2_x)>gap_thr))=255;

img_with_bound=img;

img_with_bound(find(boundaries))=255;

fig=figure(); set(fig, ’PaperPosition’,[0.25 0.25 6 6]);

imagesc(boundaries); colormap(’gray’);

title(sprintf(’Object Boundaries (f=%g)’,f));

print(’-depsc’,sprintf(’Boundaries%d.eps’,i));

fig=figure(); set(fig, ’PaperPosition’,[0.25 0.25 6 6]);

imagesc(img_with_bound);colormap(’gray’);

title(sprintf(’Initial Image with Object Boundaries (f=%g)’,f));

print(’-depsc’,sprintf(’Init_Img_with_Bound%d.eps’,i));

i=i+1;

end
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Figure 1: Matlab Plots(1/3).
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Smoothed Image (f=0.32)
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Figure 2: Matlab Plots(2/3).
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Smoothed Image (f=0.14)
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Figure 3: Matlab Plots(3/3).
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