
EE 261 The Fourier Transform and its Applications

Fall 2007

Problem Set Eight Solutions

1. (20 points) A True Story : Professor Osgood and a graduate student were working on a
discrete form of the sampling theorem. This included looking at the DFT of the discrete rect
function

f[n] =

{

1, |n| ≤ N
4

0, −N
2 + 1 ≤ n < −N

4 , N
4 < n ≤ N

2

The grad student, ever eager, said ‘Let me work this out.’ A short time later the student
came back saying ‘I took a particular value of N and I plotted the DFT using MATLAB
(their FFT routine). Here are plots of the real part and the imaginary part.’
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(a) Produce these figures.
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Professor Osgood said, ‘That can’t be correct.’

(b) Is Professor Osgood right to object? If so, what is the basis of his objection, and produce the
correct plot. If not, explain why the student is correct.

Solution

The student executed the following MATLAB command.

f = [0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0];

F = fftshift(fft(fftshift(f)));

DFT in MATLAB is done assuming DC at the first component of the array. Therefore the
command fftshift is used to alter the center of the input array. There is a fine detail here
that is worth noting. When the array size is N, fftshift shifts the ceil(N/2)+1 component to
be the first component of the array.

Therefore, to obtain the desired result, the rect function should be centered around the
ceil(N/2)+1 component. The following command will give F without any imaginary compo-
nent.

f = [0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0];

F = fftshift(fft(fftshift(f)));

Here’s the correct plot:

2



−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

k

re
al

 p
ar

t o
f F

(k
)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

−1

0

1

2

k

im
ag

in
ar

y 
pa

rt
 o

f F
(k

)

2. (20 points) Linearity and time-invariance. State whether the following systems are linear or
non-linear, time-invariant or time-variant, and why. Assume that v(t) is the input and w(t) is
the output for all systems. No credit will be given for answers without explanations or proofs!

(a) w(t) = v(t) cos(ωt)

(b) w(t) = sin(v(t))

(c) w(t) =
∫

∞

−∞
v(τ)e−2πitτ dτ

(d) w(t) = d
dt

v(t)

(e) w(t) = cos(ωt + v(t))

Solution:

In each case, we need to use the definition of linearity and time-invariance to prove or disprove
the claim. A system T is linear if T{α1v1(t) + α2v2(t)} = α1T{v1(t)} + α2T{v2(t)}. Given
that w(t) = T{v(t)}, a system T is time-invariant if w(t − τ) = T{v(t − τ)}.

(a) Linearity: (α1v1(t) + α2v2(t)) cos(ωt) = α1v1(t) cos(ωt) + α2v2(t) cos(ωt),

so the system is clearly linear.

Time-Invariance: v(t − τ) cos(ωt) 6= w(t − τ), so the system is time-variant.

(b) Linearity: sin(α1v1(t)+α2v2(t)) 6= α1 sin(v1(t))+α2 sin(v2(t)), so the system is non-linear.

Time-Invariance: sin(v(t − τ)) = w(t − τ), so the system is time-invariant.
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(c) Linearity:
∫

∞

−∞
(α1v1(τ)+α2v2(τ))e−2πitτ dτ = α1

∫

∞

−∞
v1(τ)e−2πitτ dτ+α2

∫

∞

−∞
v2(τ)e−2πitτ dτ ,

so the system is linear.

Time-Invariance:
∫

∞

−∞
v(τ − α)e−2πitτ dτ 6= w(t − α), so the system is time-variant.

(d) Linearity: d
dt

(α1v1(t) + α2v2(t)) = α1
d
dt

v1(t) + α2
d
dt

v2(t), so the system is linear.

Time-Invariance: d
dt

v(t − τ) = w(t − τ), so the system is time-invariant.

(e) Linearity: cos(ωt + α1v1(t) + α2v2(t)) 6= α1 cos(ωt + v1(t)) + α2 cos(ωt + v2(t)),

so the system is non-linear.

Time-Invariance: cos(ωt + v(t − τ)) 6= w(t − τ), so the system is time-variant.

3. (15 points) Zero-order hold. The music on your CD has been sampled at the rate 44.1
kHz. This sampling rate comes from the Sampling Theorem together with experimental
observations that your ear cannot respond to sounds with frequencies above about 20 kHz.
(The precise value 44.1 kHz comes from the technical specs of the earlier audio tape machines
that were used when CDs were first geting started.)

A problem with reconstructing the original music from samples is that interpolation based
on the sinc function is not physically realizable – for one thing, the sinc function is not time-
limited. Cheap CD players use what is known as ‘zero-order hold’. This means that the value
of a given sample is held until the next sample is read, at which point that sample value is
held, and so on.

Suppose the input is represented by a train of δ-functions, spaced T = 1/44.1 msec apart
with strengths determined by the sampled values of the music, and the output looks like a
staircase function. The system for carrying out zero-order hold then looks like the diagram,
below. (The scales on the axes are the same for both the input and the output.)

zero-order
hold

(a) Is this a linear system? Is it time invariant for shifts of integer multiples of the sampling
period?

(b) Find the impulse response for this system.

(c) Find the transfer function.

Solution:
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(a) Say the music is represented by a signal u(t). We sample u(t) with time spacing T and
so the input can be written as

v(t) =

∞
∑

n=−∞

u(nT ) δ(t − nT ).

The output, w(t), takes the value u(nT ) and holds it for T seconds, then takes the value
u ((n + 1)T ) and holds it for T seconds, and so on. We can express this as follows. Start
with the rect function of width T , that is ΠT (t), and center it on the interval from nT
to (n + 1)T , that is ΠT

(

t −
(

n + 1
2

)

T
)

. This shifted rect looks like

1

tnT
(

n + 1

2

)

T (n + 1)T

Then the output is

w(t) = Lv(t) =

∞
∑

n=−∞

u(nT )ΠT

(

t −

(

n +
1

2

)

T

)

.

From this expression we can easily see that the system is linear, for

L(v1(t) + v2(t)) =

∞
∑

n=−∞

(u1(nT ) + u2(nT ))ΠT

(

t −

(

n +
1

2

)

T

)

=
∞
∑

n=−∞

u1(nT )ΠT

(

t −

(

n +
1

2

)

T

)

+
∞
∑

n=−∞

u2(nT )ΠT

(

t −

(

n +
1

2

)

T

)

= Lv1(t) + Lv2(t)

Similarly,
L(αv(t)) = αLv(t).

Next, suppose we shift the time by an integer multiple of T , say mT . Then the input is

v(t − mT ) =
∞
∑

n=−∞

u(nT ) δ(t − mT − nT )

=

∞
∑

n=−∞

u(nT ) δ(t − (n + m)T ) (now let k = m + n to write the sum as)

=

∞
∑

k=−∞

u((k − m)T ) δ(t − kT )
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If w(t) = Lv(t) then the output resulting from the shift is

L(v(t − mT )) =
∞
∑

k=−∞

u((k − m)T )ΠT

(

t −

(

k +
1

2

)

T

)

(now, undoing what we did before, let n = k − m to write the sum as)

=
∞
∑

n=−∞

u(nT )ΠT

(

t −

(

n + m +
1

2

)

T

)

=
∞
∑

n=−∞

u(nT )ΠT

(

t −

(

n +
1

2

)

T − mT

)

= w(t − mT )

Thus the system is time invariant for shifts by integer multiples of T .

(b) In order to determine the impulse response, we input the delta function, δ(t), and have
to determine the output. The input is concentrated at t = 0 with strength 1 and is
thereafter 0. So, starting at t = 0, the output holds the value 1 for T seconds and is
then 0 for t ≥ T . The output is also 0 for t < 0. In other words, the impulse response is

h(t) =

{

1, 0 ≤ t < T

0, otherwise.

(c) We can now calculate the transfer function from the obtained impulse response. This is

H(s) = Fh(s) =

∫

∞

−∞

h(t) e−2πist dt

=

∫ T

0
e−2πist dt

=
e−2πist

−2πis

]T

0

=
1 − e−2πisT

2πis

= Te−πisT sinπsT

πsT

= Te−πisT sinc(sT ).

4. (20 points) Let w(t) = Lv(t) be an LTI system with impulse response h(t); thus w(t) =
(h ∗ v)(t).

(a) If h(t) is bandlimited show that w(t) = Lv(t) is bandlimited regardless of whether v(t)
is bandlimited.

(b) Suppose v(t), h(t), and w(t) = Lv(t) are all bandlimited with spectrum contained in
−1/2 < s < 1/2. According to the sampling theorem we can write

v(t) =

∞
∑

k=−∞

v(k) sinc(t−k) h(t) =

∞
∑

k=−∞

h(k) sinc(t−k) w(t) =

∞
∑

k=−∞

w(k) sinc(t−k)

Express the sample values w(k) in terms of the sample values of v(t) and h(t). (You will
need to consider the convolution of shifted sincs.)
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Solution:

(a) Take the Fourier transform of w = h ∗ v to obtain

Fw = (Fh)(Fv).

From here we see that the spectrum of w can extend no farther than the spectrum of h,
and hence if h is bandlimited so too is w whether v is or not.

(b) We work in the time domain and consider the convolution

∞
∑

m=−∞

w(m) sinc(t − m) = w(t) = (h ∗ v)(t)

=

(

∞
∑

k=−∞

h(k) sinc(t − k)

)

∗

(

∞
∑

n=−∞

v(n) sinc(t − n)

)

=
∞
∑

k,n=−∞

h(k)v(n) sinc(t − k) ∗ sinc(t − n)

We had to use different indices on the sums on the right to combine them in this way.
You’ll see in a moment why we used still another index for the sum on the left.

Now let’s work with the convolution of the shifted sincs. Taking the Fourier transform
we have

F(sinc(t − k) ∗ sinc(t − n)) = e−2πiksΠ(s) e−2πinsΠ(s)

= e−2πi(k+n)Π2(s)

= e−2πi(k+n)Π(s),

since Π2 = Π. And now taking the inverse Fourier transform we get

sinc(t − k) ∗ sinc(t − n) = sinc(t − (k + n)).

Thus
∞
∑

m=−∞

w(m) sinc(t − m) =

∞
∑

k,n=−∞

h(k)v(n) sinc(t − (k + n))

Take a particular m0 and let t = m0. Then the left hand side is just w(m0) so we have

w(m0) =
∞
∑

k,n=−∞

h(k)v(n) sinc(m0 − (k + n)).

Next, sinc(m0 − (k + n)) will be zero except when k + n = m0, in which case it’s 1. So
the double sum on the right hand side reduces to a sum over indices k and n for which
k + n = m0. Or, writing n = m0 − k, we can express the result as

w(m0) =

∞
∑

k=−∞

h(k)v(m0 − k)
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Since this holds for all m0 let’s just write this as

w(m) =

∞
∑

k=−∞

h(k)v(m − k).

Yep. The values of the output w(t) at the sample points are obtained by taking the
convolutions of the (infinite) sequences of the sample points of the impulse response and
the input.

5. (20 points) Let a > 0 and define the (continuous) running average of a signal f(t) to be

Lf(t) =
1

2a

∫ t+a

t−a

f(x) dx

(a) Show that L is an LTI system and find its impulse response and transfer function.

(b) What happens to the system as a → 0? Justify your answer based on properties of the
impulse response.

(c) Find the impulse response and the transfer function for the cascaded system M = L(Lf).
Simplify your answer as much as possible, i.e., don’t simply express the impulse response
as a convolution.

(d) Three signals are plotted (approximately) below. One is an input signal f(t). One is
Lf(t) and one is Mf(t). Which is which, and why?

(i)

(ii)

(iii)

Solution:

(a) First let’s show that L is linear:

L(α1f1(t) + α2f2(t)) =
1

2a

∫ t+a

t−a

(α1f1(x) + α2f2(x)) dx

= α1
1

2a

∫ t+a

t−a

f1(x) dx + α2
1

2a

∫ t+a

t−a

f2(x) dx

= α1L(f1(t)) + α2L(f2(t))
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Hence, L is linear. Now let’s show that L is time-invariant:

L(τt0f(t)) =
1

2a

∫ t+a

t−a

f(x − t0) dx

=
1

2a

∫ (t−t0)+a

(t−t0)−a

f(y) dy

= τt0L(f(t))

where τt0 is the shift-operator, i.e., τt0f(t) = f(t − t0). Hence, we have shown that L is
indeed time-invariant. If we define ha(t) = 1

2a
Π( t

2a
), then clearly L(f(t)) = ha(t) ∗ f(t).

Hence, the impulse response of the system is given by h(t), and the transfer function is
simply H(s) = sinc(2as).

(b) If we let a → 0, then the impulse response function becomes:

h(t) = lim
a→0

1

2a
Π(

t

2a
) = δ(t)

In the frequency domain, the transfer function becomes:

H(s) = lim
a→0

sinc(2as) = 1

which makes perfect sense.

(c) Note that M(t) = L(L(f(t))) = ha(t) ∗ (ha(t) ∗ f(t)) = (ha(t) ∗ ha(t)) ∗ f(t). Hence, the
impulse response of M is given by:

ha(t) ∗ ha(t) =

(

1

2a
Π(

t

2a
)

)

∗

(

1

2a
Π(

t

2a
)

)

=
1

2a
∆(

t

2a
)

and its transfer function is given by H(s)2 = sinc2(2as).

(d) From part (b), we know that the operator L(f(t)) atenuates high frequencies (smoothing
operator). It’s reasonable to think that the third plot corresponds to f(t), the second
plot to L(f(t)) and the first plot to M(f(t)) = L(L((f(t)))). Let’s show this more
formally. Let f(t) = u(t) (the rect function). From part (b), we know that

L(f(t)) =
1

2a
u(t) ∗ Π

(

t

2a

)

=
1

2a

∫

∞

0
Π

(

t − τ

2a

)

dτ

=







0 , t ≤ −a
1
2 + t

2a
,−a < t ≤ a

1 , t > a

which is piecewise linear on t. Similarly, it can be shown that M(f(t)) is piecewise
quadratic on t. Hence, our guess was correct.
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6. (15 points) Upsampling and Downsampling discrete signals: We are given a discrete-time
signal xn, which was obtained by sampling a continuous-time x(t) at frequency much higher
than the Nyquist rate. Let xn = x(nTs). Sometimes for an application, we need the samples of
the signal x(t) at a different sampling rate, say αTs, where α > 0. If α > 1, it is downsampling
else it is upsampling. One way to obtain the sample points at a different sampling frequency,
is to reconstruct the signal x(t) (which can be done as the original samples were obtained
by sampling above the Nyquist rate) from the samples xn and then resample it at the new
frequency. However, due to non-idealities of the D/A and the A/D converters, this approach
is not desirable. In this question, we want to obtain the new sample points directly by using
xn.

(a) Find the expression for wn = x (n (MTs)) in terms of xn, where M is an integer.

(b) Find the expression for yn = x
(

n
(

Ts

M

))

in terms of xn, where M is an integer. If the
resulting expression looks complicated, it will motivate the use of linear interpolation or
nearest-neighbor interpolation as used in HW-5.

(c) Find the expression for zn = x (n (αTs)) in terms of xn, where α > 0 is a rational number
α = P

Q
, where P and Q are integers. Give some insight into how would you accomplish

a change in sampling frequency for any α > 0 (real number).

Solution:

(a)
wn = xnM

(b)

yn =

∞
∑

k=−∞

xk

sin
(

π
(

n−kM
M

))

π
(

n−kM
M

)

(c) For any rational P and Q, zn can be obtained by a combination of upsampling and
downsampling as shown in parts (a) and (b). Depending upon the values of P and Q,
we can decide if we first downsample or upsample. For any real number α, we can choose
P and Q such that to approximate α closely.
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