
EE 261 The Fourier Transform and its Applications

Fall 2007

Problem Set Seven Solutions

1. (15 points) DFT basics.

(a) Prove the shift theorem for the discrete Fourier transform:

F(τpf) = ω−pF f.

where
τpf[n] = f[n− p].

(b) Replication. Suppose that the signal f = (f[0], f [1], . . . , f[N − 1]), has discrete Fourier
transform F. We create a new signal g[n], n = 0, 1, . . . , 2N − 1 with twice the number
of points defined by,

g[n] = =

{
f[n], n = 0, 1, . . . N − 1
f[n−N ], n = N,N + 1, . . . 2N − 1

Find the DFT of g in terms of F.

(c) Zero-Padding. Consider a vector of N samples, x = (x[0], x[1], . . . , x[N−1]). We augment
this vector by appending M zeros to the end of it to form a new signal x̃ of length N +M .
Express X̃ = F x̃ and X = Fx in terms of samples of a continuous Fourier transform
and compare the two. Why might we want to ‘zero-pad’?

Solution:

(a) For the DFT of the shift τpf we have

F(τpf) =

N−1∑
n=0

τpf[n]ω−n,

=
N−1∑
n=0

f[n− p]ω−n .

1



Now change the index, letting k = n− p:

F(τpf) =

N−1−p∑
k=−p

f[k]ω−(k+p)

=

N−1−p∑
k=−p

f[k]ω−kω−p

= ω−p
N−1−p∑
k=−p

f[k]ω−k

= ω−p
F f

because when calculating the DFT we can sum over any complete period of the input.

(b) Remember that to take the N -point DFT of f forces us to think of f as periodic of period
N . Forming the replicated signal g is the same as looking at f as a periodic signal of
period 2N :

. . .

g︷ ︸︸ ︷
f[0], f [1], . . . , f[N − 1]︸ ︷︷ ︸

f

, f [N ] = f[0], f [N + 1] = f[1], . . . , f[2N − 1] = f[N − 1]︸ ︷︷ ︸
f

Thus to compute the DFT of g we regard f as periodic of period 2N and find its 2N -
point DFT. We indicate the orders of the DFT’s involved with a subscript N or 2N . We
have, for m = 0, 1, . . . , 2N − 1,

F2Ng[m] =
2N−1∑
k=0

f[k]e−2πimk/2N .

We first break this up into sums over the two halves, from 0 to N − 1 and from N − 1
to 2N − 1:

F2Ng[m] =
N−1∑
k=0

f[k]e−2πimk/2N +
2N−1∑
k=N

f[k]e−2πimk/2N .

To bring in the N -point DFT of f we have to get an N in the denominator of the complex
exponential, not a 2N . For this we distinguish the cases when m is even or odd. Suppose
first that m is even, say m = 2�. Here we can let � range from 0 to N − 1 and we’ll get
all the even indices from 0 to 2N − 1. We have

F2Ng[2�] =
N−1∑
k=0

f[k]e−2πi2�k/2N +
2N−1∑
k=N

f[k]e−2πi2�k/2N

=

N−1∑
k=0

f[k]e−2πi�k/N +

2N−1∑
k=N

f[k]e−2πi�k/N

= FN f[�] + FN f[�]

(the second sum also gives F f[�] because any N -consecutive indices are OK)

= 2FN f[�]

2



Next suppose that m is odd. This time we can write m = 2� + 1 where again � ranges
from 0 to N − 1. For the DFT of g we have

F2Ng[2� + 1] =

N−1∑
k=0

f[k]e−2πi(2�+1)k/2N +

2N−1∑
k=N

f[k]e−2πi(2�+1)k/2N

=

N−1∑
k=0

f[k]e−2πi�k/Ne−2πik/2N +

2N−1∑
k=N

f[k]e−2πi�k/Ne−2πik/2N

=
N−1∑
k=0

f[k]e−2πi�k/Ne−πik/N +
2N−1∑
k=N

f[k]e−2πi�k/Ne−πik/N

But if we rewrite the second sum (using periodicity of f),

2N−1∑
k=N

f[k]e−2πi�k/Ne−πik/N =

N−1∑
k=0

f[k]e−2πi�(k+N)/N e−πi(k+N)/N

= e−πie−2πi�
N−1∑
k=0

f[k]e−2πi�k/Ne−πik/N

= −

N−1∑
k=0

f[k]e−2πi�k/Ne−πik/N ,

we see that it cancels with the first sum. That is, for � = 0, 1, . . . , N − 1

F2Ng[2�] = 2FN f[�]

F2Ng[2� + 1] = 0

(c) We suppose that the discrete signal x[k] actually comes from samples of a continuous
signal x(t). If the samples are spaced Δt apart we can then write

x[n] = x(nΔt) .

The DFT of x[n] is

X [m] =

N−1∑
n=0

x[n]e−2πinm/N

=

N−1∑
n=0

x(nΔt)e−2πinm/N

=
N−1∑
n=0

x(nΔt)e−2πinΔtm/NΔt

Next, we use the sifting property of δ to write

x(nΔt)e−2πinΔtm/NΔt =

∫
∞

−∞

δ(τ − nΔt)x(τ)e−2πiτm/NΔt dτ

3



so that

N−1∑
n=0

x(nΔt)e−2πinΔtm/NΔt =
N−1∑
n=0

∫
∞

−∞

δ(τ − nΔt)x(τ)e−2πiτm/NΔt dt

=

∫
∞

−∞

(
N−1∑
n=0

δ(τ − nΔt)x(τ)

)
e−2πiτm/NΔt dτ .

Thus if we introduce the sampled (continuous) signal

xs(τ) =

N−1∑
n=0

δ(τ − nΔt)x(τ)

then we see that

X[m] =

∫
∞

−∞

xs(τ)e−2πiτm/NΔt dτ

= Fxs(m/NΔt) m = 0, . . . , N − 1 .

In words, the DFT, X , of the discrete signal x is made up of samples of a continuous
Fourier transform.

Now lets do the same for the zero-padded signal X̃m, starting with the DFT definition:

X̃ [m] =

N+M−1∑
n=0

x̃n[n]e−2πinm/N+M , m = 0, 1, . . . , N + M − 1.

Since x̃[n] = x[n] for n = 0, 1, . . . , N − 1 and x̃[n] = 0 for n ≥ N

X̃[m] =

N−1∑
n=0

x[n]e−2πinm/(N+M )

=
N−1∑
n=0

x[n]e−2πinΔtm/((N+M)Δt).

Then exactly as above,
X̃ [m] = Fxs(m/(N + M)Δt) .

What has this accomplished? In the time domain we have added new sample points, of
the same spacing Δt, and this has increased the length of the time domain from NΔt
to (N + M)Δt. If we are confident that the continuous signal x(t) that underlies the
discrete signal x is zero beyond the original last sample value x[N − 1] = x((N − 1)Δt)
then we haven’t misled ourselves about the nature of the signal in the time domain.
But we gain information in the frequency domain. The original length of the frequency
domain is determined by the relationship (see the notes)

2BL = N so 2B =
N

L
=

N

NΔt
=

1

Δt
.

Adding sample points in the time domain but maintaining the spacing there thus does
not change the extent of the frequency domain; it’s still 1/Δt. However, when we increase
the number of sample points in the time domain to N + M we increase the number of

4



sample points in the frequency domain also to N +M and the spacing has been decreased
from 1/NΔt to 1/(N +M)Δt. The phrase one hears most often to describe zero-padding
is that it ‘refines the grid in the frequency domain.’

Another reason for zero-padding is to force the sequence that we take the DFT of to
be certain length. For example, this could lead to less calculations if we have a FFT
algorithm at our disposal that only accepts sequences of a certain set of lengths. Some
software packages will do this for you automatically.

2. (10 points) What is 1 ∗ f? What is 1 ∗ 1?, 1 ∗ a, where a = (a, a, . . . , a)?

Solution In convolving with the constant vector 1 the m’th component of the convolution is
given by

(1 ∗ f)[m] =
N−1∑
n=0

f[n] ,

i.e., it is a constant, independent of m and, in fact, is simply F f[0]. Thus

1 ∗ f = (F f[0],F f[0], . . . ,F f[0]) = F f[0]1 .

This result also follows easily by taking the discrete Fourier transform. For

F (1 ∗ f) = F 1F f = δ0 F f = F f[0]δ0 ,

and then taking the inverse discrete Fourier transform gives:

1 ∗ f = F
−1(F f[0]δ0) = F f[0]F−1δ0 = F f[0]1 .

Note that in the continuous case convolving a signal f(t) with the constant function 1 gives
the constant value

(1 ∗ f)(t) =

∫
∞

−∞

f(t) dt = Ff(0) .

The integral of f(t), as compared to the sum of the values f[n], and its value Ff(0) may be
considered as the continuous analog of the result of this problem.

As for 1 ∗ 1, we have
1 ∗ 1 = F1[0] 1 = Nδ0[0] 1 = N1 .

Similarly
1 ∗ a = Na .

3. (10 points) Upsampling and downsampling. Again suppose that the signal f, of size N , has
discrete Fourier transform F

(a) Upsampling. We create a new signal h of size 2N , n = 0, 1, . . . , 2N − 1 with twice the
number of points, by inserting 0’s among the values f[n], i.e.

h[n] =

{
f[n/2], n even
0, n odd

Find the DFT of h in terms of F.

5



(b) Downsampling. We create another new signal g, with half the number of points, n =
, 1, . . . , N/2 − 1 (assume that N is even), by keeping only the values of f[n] at even
indices, i.e.,

g[n] = f[2n]

Find the DFT of g in terms of F.

Solution:

(a) The upsampled version of f looks like

h[0] = f[0],h[1] = 0,h[2] = f[1],h[3] = 0,h[4] = f[2], . . .

For the DFT of order 2N we split the sum over the even and odd indices

F2Nh[n] =

2N−1∑
k=0

h[k]e−2πink/2N

=
∑

k even

h[k]e−2πink/2N +
∑

k odd

h[k]e−2πink/2N

=
∑

k even

h[k]e−2πink/2N (since h[k] = 0 for odd indices)

=
N−1∑
�=0

h[2�]e−2πin(2�)/2N

=

N−1∑
�=0

f[�]e−2πin�/N

= FN f[n] ,

for n = 0, 1, . . . , 2N − 1. Here we understand F = FN f to be periodic of period N and
H = F2Nh to be periodic of period 2N , and we see that H is a replicated version of F:

H︷ ︸︸ ︷
F[0],F[1], . . . ,F[N − 1]︸ ︷︷ ︸

F

,F[0],F[1], . . . ,F[N − 1]︸ ︷︷ ︸
F

Compare this result with the problem on replication. In that problem we got a factor of
2 times the DFT when we replicated the signal in the time domain. It would then seem
that a factor of 2 should come in if we took the inverse DFT of the replicated signal to
get back the upsampled signal. Why doesn’t it? It’s because the inverse DFT of order
2N has a factor 1/2N out front, while the inverse DFT of order N has a factor 1/N ;
follow the earlier argument through with this observation and you’ll see what happens.

(b) The downsampled version of f is

g[0] = f[0], g[1] = f[2], g[2] = f[4], . . . , g[
N

2
− 1] = f[N − 2]

6



The DFT of g of order N/2 is

FN/2g[m] =

N

2
−1∑

n=0

g[n]e−2πinm/(N/2)

=

N

2
−1∑

n=0

f[2n]e−2πi(2n)m/N

To bring in the order N DFT of f we need a sum that goes over from 0 to N − 1. We
can do that if we modify f by putting in zeros at all the odd indices. For this, introduce

z[n] =

{
1, n even

0, n odd

so that

(fz)[n] =

{
f[n], n even

0, n odd

Then for m = 0, . . . , N
2 − 1,

FN/2g[m] =

N

2
−1∑

n=0

f[2n]e−2πi(2n)m/N

=

N−1∑
n=0

(fz)[n]e−2πinm/N = FN (fz)[n]

=
1

N
(F f ∗ Fz)[m]

so we need to find Fz and then take the convolution.

We have, for m = 0, . . . , N − 1,

Fz[m] =

N−1∑
n=0

z[n]e−2πinm/N

=
∑

n even

z[n]e−2πinm/N

=

N

2
−1∑

n=0

1 · e−2πi(2n)m/N

=

{
N
2 , m = 0, m = N

2

0, otherwise

That is,

Fz =
N

2
(δ0 + δN/2) ,

and then

(F f ∗ Fz)[m] =
N

2
(F ∗ (δ0 + δN/2)[m]

=
N

2
(F[m] + F[m−

N

2
])

7



Finally, for m = 0, . . . , N
2 − 1,

Fg[m] =
1

2
(F[m] + F[m−

N

2
]) ,

or, if we want to use positive indices for F then because of periodicity,

Fg[m] =
1

2
(F[m] + F[m +

N

2
]) .

4. (15 points) Handel’s Hallelujah

In this problem we will explore the effects of sampling with or without anti-aliasing filters.
As we saw in lecture there is a significant distortion of music due to aliasing if we sample
slower than twice the highest frequency component. However if we can suppress the high
frequency components before sampling we can possibly avoid distortion due to aliasing. In
this problem we will use an anti-aliasing filter H(s) whose Fourier transform is shown below.
H(s) is available on the class web site in the Matlab file anti-aliasing.mat, which contains
H(s) in the vector Hs.

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s(Hz)

H
(s
)

Figure 1: Anti aliasing filter

Built into Matlab is a snippet of Handel’s Hallelujah Chorus, you load it into the workspace
by typing

load handel

This loads two variables into the workspace y that contains about 8 seconds of Handel’s
Hallelujah Chorus and Fs which is the sampling frequency used.

Finally here is the problem, resample the snippet of Handel’s Hallelujah Chorus down to a
sampling frequency of fs = 4096hz that should be half of the original sampling frequency.

Now apply the anti-aliasing filter to Handel’s Hallelujah Chorus so that you cut off all fre-
quencies higher than 2048hz, and then resample down to fs = 4096hz. Is there any audible
difference between the two versions? Why or why not. Turn in your (commented!) Matlab

8

http://see.stanford.edu/materials/lsoftaee261/anti-aliasing.mat



code along with a short discussion (2 paragraphs) of any audible difference you heard or did
not hear.

Hints:

To resample at half the sampling rate, you can use

xhalf = x(1:2:length(x));

Remember to adjust the sampling rate correctly when you use sound or wavwrite.

Recall that you can use fft to take the Fourier transform, and ifft to take the inverse Fourier
transform. Hs has been arranged in the same way Matlab’s fft returns Fourier transforms.

To evaluate H(s)X(s) try using the .* operator.

Solution:

Just from observing the transfer function of the anti-aliasing filter, we expect a more “base”

version when we apply the anti-aliasing filter, but that version will be free of aliasing artifacts.
We implement a Matlab script to make the two versions, shown below

load handel

% we downsample directly

yhalf = y(1:2:length(y));

% and since I have not installed OSS on my Linux box

% yet, I write out to a wavfile

wavwrite(yhalf,Fs/2,16,’handel2.wav’);

% alternatively I could use

% sound(yhalf,Fs/2,16)

% and then with an AA filter...

load anti-aliasing

% we take the fourier transform

Y = fft(y);

% and filter

Z = Y.*Hs;

% then back into the time domain

z = ifft(Z);

% and downsample

zhalf = z(1:2:length(z));

% we scale zhalf since wavwrite wants inputs

% ranging from -1 to 1

zhalf = zhalf/max(abs(zhalf));

% we write out to a file

wavwrite(zhalf,Fs/2,16,’handel3.wav’);

% or if I had OSS installed

% sound(zhalf,Fs/2,16)

9



−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
0

100

200

300

400

500

600

700

800

s(Hz)

|Y
(s
)|

consider the spectrum of the snippet Note that the signal is primarily in the low frequencies
and we hear the noise increase in the lower frequencies due to aliasing when we do not apply
the anti-aliasing filter, however as expected when we apply the anti aliasing filter, it sounds
a bit “bass”.

10


