
EE 261 The Fourier Transform and its Applications

Fall 2007

Solutions to Problem Set 6

1. (20 points) Nyquist rate. The signal f(t) has the Fourier transform F (s) as shown below.

0 B1 B2-B1-B2

s

F (s)

The Nyquist frequency is 2B2 since the highest frequency in the signal is B2. The Sampling
Theorem tells us that if we sample above the Nyquist rate, no aliasing will occur. Is it
possible, however, to sample at a lower frequency in this case and not get aliasing effects? If
it is possible, then explain how it can be done and specify at least one range of valid sampling
frequencies below the Nyquist rate that will not result in aliasing. If it is not possible, explain
why not.

Solution: The idea here is to somehow exploit the gap between −B1 and B1. First of all, let
us consider what happens when we sample at the Nyquist rate. The spectrum gets replicated
at integer multiples of the sampling rate, i.e., 2B2 as shown below:

sB1 B2 2B2−2B2 −B2 −B1

Now, what happens as we sample a little bit below the Nyquist rate? Well, the spectrum
still gets replicated at integer multiples of the sampling rate, but there is now overlap, i.e.,
aliasing:
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B1 B2 2B2−B2 −B1
s

−2B2

However, what happens as we decrease the sampling frequency even further? If B2 ≥ 2B1,
then we clearly will continue to have overlap for all sampling rates all the way down to 0.
A simple way to think about it is that the gap between the two spectral islands is simply
not big enough to contain another two spectral islands of the same width. Therefore, in that
case, the Nyquist rate is indeed the slowest sampling rate allowed for perfect reconstruction.

However, if B2 < 2B1, then we can find a sampling rate lower than the Nyquist frequency
and still avoid aliasing. For example, consider the case when the sampling rate is 2B1:

B1 B2 2B2−B2 −B1
s

−2B2

This can continue until the sampling frequency reaches B2 and we are on the verge of yet
another overlap:

B1 B2 2B2−B2 −B1
s

−2B2

So, clearly one possible range for fs is B2 < fs < 2B1.
Note that depending on what B2, B1 ultimately are, we may be able to exploit the gap further.

2. (20 points) Natural sampling. Suppose the signal f(t) is band-limited with Ff(s) = 0 for
|s| ≥ B. Instead of sampling with a train of δ’s we sample f(t) with a train of very narrow
pulses. The pulse is given by a function p(t), we sample at a rate T , and the sampled signal
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then has the form

g(t) = f(t)

(
∞∑

k=−∞

Tp(t− kT )

)

(a) Is it possible to recover the original signal f from the signal g?

(b) If not, why not. If it is possible, what conditions on the parameters T and B, and on
the pulse p(x) make it possible.

Solution: It’s generally easier to think about sampling in the frequency domain, so we’ll begin
by finding the Fourier transform of g(t). The trick to this problem is noting that our natural
sampling function is periodization of the pulse and can be expressed as a convolution of the
pulse with a Shah function.

g(t) = f(t)T
∞∑

n=−∞

p(t− nT )

= f(t)T

∞∑
n=−∞

δ(t− nT ) ∗ p(t)

= f(t)T

(
p(t) ∗

∞∑
n=−∞

δ(t− nT )

)

= f(t)T
(
p(t) ∗ IIIT (t)

)
Now using the transform pair for IIIT (t), along with the convolution theorem and its dual we
can easily find the Fourier transform.

Fg(s) = Ff(s) ∗ T

(
Fp(s)

1

T
III 1

T

(s)

)

= Ff(s) ∗

(
Fp(s)

∞∑
n=−∞

δ
(
s−

n

T

))

Using the multiplication property of the delta function

Fg(s) = Ff(s) ∗
∞∑

n=−∞

Fp
(n

T

)
δ
(
s−

n

T

)

And, finally, linearity of convolution and the sift property of delta function

Fg(s) =
∞∑

n=−∞

Fp
(n

T

)
Ff

(
s−

n

T

)

(a) So we see that, just like with ideal sampling, the Fourier transform of the sampled signal
is an infinite sum of shifted copies of the original signal’s Fourier transform. The only
difference in the case when realistic pulses are used is that each of these copies is scaled
by the value of the pulse’s Fourier transform at the center frequency of that copy. But a
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scaling factor can easily be taken out by adjusting the gain of the low-pass filter we use
to reconstruct f(t) from its samples. So yes, under certain conditions it is possible to

recover f(t) from g(t).

(b) As with ideal sampling, we need to sample above the Nyquist rate so that there is no

aliasing. So, we need T < 1

2B . Surprisingly, there are no conditions on the pulse p(t)

as long as it has a Fourier transform so that all the steps we took before make sense. As
long as Fp(0) �= 0 we can reconstruct f(t) by lowpass filtering with the proper scaling,
and if Fp(0) = 0 then we can recover by bandpass filtering to use one of the other copies.

3. (15 points) Let f(t) = cos 2πt. Suppose we sample f(t) at a rate 2/3 Hz and then interpolate
using a lowpass filter with cut-off frequency 2/3. What signal, g(t), is the result? Sketch f(t)
and g(t) on the same axes and comment on what you see. Is g(t) an alias of f(t) for this
sampling rate?

The process illustrated in this problem is the basis of the ‘sampling oscilloscope’.

Solution:

Start with the Fourier transform of f(t):

Ff(s) =
1

2
(δ(s − 1) + δ(s + 1)).

To sample f(t) at 2/3 Hz is, in the frequency domain, to convolve Ff with III2/3. This gives

Ff ∗ III2/3 =
1

2
(δ1 + δ−1) ∗

∞∑
k=−∞

δ2k/3 =
1

2

∞∑
k=−∞

(δ1+2k/3 + δ
−1+2k/3).

We’re then to cut off above 2/3 Hz (and below −2/3 Hz) so the question is what δ’s in the
convolution above are between −2/3 and +2/3. For the δ’s at the points 1 + 2k/3 we want
to know the integer k’s for which

−
2

3
< 1 +

2k

3
<

2

3
so

−
5

3
<

2k

3
< −

1

3
−5 < 2k < −1

and that gives k = −1 and k = −2 with corresponding δ’s (including the factor 1/2 that’s in
front):

1

2
(δ1−2/3 + δ1−4/3) =

1

2
(δ1/3 + δ

−1/3).

For the δ’s at the points −1 + 2k/3 we want to know the integer k’s for which

−
2

3
< −1 +

2k

3
<
2

3
so

1

3
<

2k

3
<

5

3
1 < 2k < 5
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and that gives k = 1 and k = 2 with corresponding δ’s

1

2
(δ

−1+2/3 + δ
−1+4/3) =

1

2
(δ

−1/3 + δ1/3).

Therefore, cutting off Ff ∗ III2/3 by Π4/3 (note that Π4/3 cuts off outside of ±2/3 results in

1

2
(δ1/3 + δ

−1/3) +
1

2
(δ

−1/3 + δ1/3) = δ
−1/3 + δ1/3.

The inverse Fourier transform of this is our function g(t), and that’s

g(t) = 2 cos
2πt

3
.

Here’s a plot of f(t) and g(t) together:

I’d say that g(t) has the same shape as f(t) but it’s stretched in both the vertical and
horizontal directions. f(t) has period 1 and amplitude 1, while g(t) has period 3 and amplitude
2.

Using the sampling rate 2/3 the sample points (according to the sampling theorem) are 3k/2.
The values of f(t) at the sample points are

f(3k/2) = cos 2π
3k

2
= cos 3kπ = (−1)k.

The values of g(t) at the sample points are

g(3k/2) = 2 cos
2π

3

3k

2
= 2 cos πk = 2(−1)k.

g(t) is ‘tracking’ f(t) at the sample points but the functions are not equal at those points;
g(t) is twice the size. I wouldn’t call g(t) an alias of f(t) in the standard usage of the term.
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4. (15 points) More on sampling. Let g(t) be an integrable, band-limited signal with Fg(s) = 0
for |s| ≥ p/2. Express the integral ∫

∞

−∞

g(t) dt

in terms of sample values of g. What is the minimum sampling rate that will allow us to do
this?

Solution: Again, it’s easiest to consider this problem in the frequency domain. First we
recognize that the area under the function is just the Fourier transform evaluated at s = 0.∫

∞

−∞

g(t) dt =

∫
∞

−∞

g(t)e−2πist dt

∣∣∣∣
s=0

= Fg(s)|s=0

This means we only need to recover one value of the Fourier transform in terms of the sampled
signal, call it h, where

h(t) = g(t)III 1

smin

(t)

This means that the ’frequency islands’ can overlap as long as they don’t interfere at s = 0.
Since the signal is bandlimited to s0 = p/2, and the spectral copies or islands are spaced smin

apart, none of the other copies will interfere at s = 0 if

smin > s0

As long as our sampling rate is greater than s0 we know that

Fh(s)|s=0 ∝ Fg(s)|s=0 =

∫
∞

−∞

g(t) dt

Specifically

Fh(s) = Fg(s) ∗ sminIIIsmin
(s)

So each copy of Fg(s) is scaled by smin and therefore

1

smin
Fh(s)|s=0 = Fg(s)|s=0 =

∫
∞

−∞

g(t) dt

Let’s find an expression Fh(s) in terms of the samples.

h(t) = g(t)
∞∑

n=−∞

δ

(
t−

n

smin

)

=

∞∑
n=−∞

g

(
n

smin

)
δ

(
t−

n

smin

)

Let gn denote the samples of g:

h(t) =
∞∑

n=−∞

gnδ

(
t−

n

smin

)
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Taking the Fourier transform

Fh(s) =
∞∑

n=−∞

gne
−2πi n

smin
s

If we evaluate this at s = 0, we get

Fh(s)|s=0 =

∞∑
n=−∞

gn

Plugging this into our previous result, we conclude∫
∞

−∞
g(t) dt = 1

smin

∑
∞

n=−∞
gn

The area is a scaled sum of the samples.

5. (15 points) Matlab Exercise on Sampling: Obtain the image ‘man.eps’ from the class website
(http://eeclass.stanford.edu/ee261/). The link is in the ‘Problem Sets and Solutions’ section.

(a) Load the 8-level gray-scale 256x256 image in Matlab using ‘imread’ command. Convert
the matrix image into a vector of length 2562 (using Matlab’s ‘:’ command) and call it
the ‘time-domain’ signal x(n). Change the values in x(n) from type ‘uint8’ to ‘double’.
Normalize it such that the maximum signal value is 1.

(b) Find the Fourier transform X(f) of x(n) using the FFT command, where X(f) has
length the same length as x(n). Plot the magnitude response of X(f) centered at 0 i.e.

on the X-axis, f ranges from −2562

2
to

(
2562

2
− 1

)
(total 2562 points).

(c) Define the ‘bandwidth’, NB(α), of the signal x(n) as the frequency values that contain
fraction α of the total energy. Mathematically, this is equivalent to

Etotal �

f=
256

2

2
−1∑

f=−
2562

2

|X(f)|2

Em �

f=m∑
f=−m

|X(f)|2

NB(α) � 2p s.t.
Ep

Etotal

= α

For the following α values, α = 0.9, 0.95, 0.99, sample the signal x(n) at the corre-
sponding Nyquist rate. In order to sample x(n) at a rate 1

r , simply pick every rth

value in x(n), so that the resulting sampled-signal xs(n) will be of length
2562

r . Find
the re-constructed signal x̂(n) of length 2562 using interpolation on the sampled-signal
xs(n). For each value of α, the methods to be used for interpolation are (i) replication
by nearest-neighbor and (ii) linear. In the two interpolation schemes, reconstruction of
any point has contributions from 1 and 2 nearest neighbors respectively. Display the
signal x̂(n) as a 256x256 image. Submit the original image, the 6 reconstructed images
and Matlab code. Briefly explain the artifacts seen in the reconstructed images. Matlab
commands
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imagesc(); colormap(’gray’)

can be used to display the image.

Solution:

(a) man_img=imread(’man256.gif’);

x_n=man_img(:);

x_n=double(x_n);

max_value=max(x_n);

x_n=x_n/max_value;

(b) X_f=fft(x_n);

len_X_f=length(X_f);

X_f_abs=abs(X_f);

X_f_centered=[X_f_abs(len_X_f/2+1:end); X_f_abs(1:len_X_f/2)];

plot([-(len_X_f/2):(len_X_f/2)-1], X_f_centered);
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(c) % Compute energy

total_energy=sum(X_f_abs.^2);

partial_energy(1)=X_f_abs(1)^2;

for i=2:(len_X_f/2)-1;

partial_energy(i)=partial_energy(i-1)+2*X_f_abs(i)^2;

end

ratio_energy=partial_energy/total_energy;
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% Compute bandwidth

cut_off_freq=length(ratio_energy(find(ratio_energy<alpha)))

% Sample signal

sampling_rate=(2*cut_off_freq)/length(x_n);

sampling_interval=floor(1/sampling_rate);

x_s_n=x_n(1:sampling_interval:end);

% Interpolation method 1 -- replace by nearest neighbor

x_hat_1=zeros(1,length(x_n));

for i=1:length(x_n)

if mod(i-1,sampling_interval)==0

x_hat_1(i)=x_s_n(1+((i-1)/sampling_interval));

elseif (1+ceil((i-1)/sampling_interval))> length(x_s_n) || ...

(1+floor((i-1)/sampling_interval))> length(x_s_n)

x_hat_1(i)=x_s_n(end);

else

if (mod(i-1,sampling_interval) > sampling_interval/2)

x_hat_1(i)=x_s_n(1+ceil((i-1)/sampling_interval));

else

x_hat_1(i)=x_s_n(1+floor((i-1)/sampling_interval));

end

end

end

hat_image_1=uint8(max_value*reshape(x_hat_1,sqrt(length(x_n)),sqrt(length(x_n))));

% Interpolation method 2 -- linear interpolation

x_hat_2=zeros(1,length(x_n));

for i=1:length(x_n)

w_2=((i-1)-floor((i-1)/sampling_interval)*sampling_interval)/sampling_interval;

w_1=1-w_2;

if (1+ceil((i-1)/sampling_interval))> length(x_s_n) || ...

(1+floor((i-1)/sampling_interval))> length(x_s_n)

x_hat_2(i)=x_s_n(end);

else

x_hat_2(i)=w_1*x_s_n(1+floor((i-1)/sampling_interval))+w_2*x_s_n(1+ceil((i-1)/

end

end

hat_image_2=uint8(max_value*reshape(x_hat_2,sqrt(length(x_n)),sqrt(length(x_n))));

% Diplay the image

figure; imagesc(man_img); colormap(’gray’);

figure; imagesc(hat_image_1); colormap(’gray’);

figure; imagesc(hat_image_2); colormap(’gray’);
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Figure 1: Original Image

Nearest neighbor reconstruction results in block-effect, whereas linear reconstruction is
more smooth.
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Figure 2: Nearest Neighbor α = 0.9
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Figure 3: Linear α = 0.9
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Figure 4: Nearest Neighbor α = 0.95
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Figure 5: Linear α = 0.95
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Figure 6: Nearest Neighbor α = 0.99
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Figure 7: Linear α = 0.99
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