
EE 261 The Fourier Transform and its Applications

Fall 2007

Solutions to Problem Set Four

1. (15 points) Cross Correlation The cross-correlation (sometimes just called correlation) of
two real-valued signals f(t) and g(t) is defined by

(f � g)(x) =
∫ ∞

−∞
f(y)g(x+ y) dy .

(a) f � g is often described as ‘a measure of how well g, shifted by x, matches f ’, thus how
much the values of g are correlated with those of f after a shift. Explain this, e.g. what
would it mean for f � g to be large? small? positive? negative? You could illustrate this
with some plots.

(b) Cross-correlation is similar to convolution, with some important differences. Show that
f � g = f− ∗ g = (f ∗ g−)−. Is it true that f � g = g � f?

(c) Cross-correlation and delays Show that

f � (τbg) = τb(f � g) .

What about (τbf) � g?

Solutions:

(a) The cross-correlation is

(f � g)(x) =
∫ ∞

−∞
f(x)g(x+ y) dy .

To get a sense of this, think about when it’s positive (and large) or negative (and large)
or zero (or near zero). If, for a given x, the values f(y) and g(x + y) are tracking each
other – both positive or both negative – then the integral will be positive and so the
value (f � g)(x) will be positive. The closer the match between f(x) and g(x+ y) (as y
varies) the larger the integral and the larger the cross-correlation. In the other direction,
if, for example, f(y) and g(x+ y) maintain opposite signs as y varies (so are negatively
correlated) them the integral will be negative and f � g)(x) < 0 The more the negatively
they are correlated the more negative (f � g)(x). Finally, it might be that the values of
f(x) and g(x+ y) jump around as y varies; sometimes positive and sometimes negative,
and it may then be that the values cancel out in taking the integral, making (f ∗ g)(x)
near zero. One might say – one does say – that f and g are uncorrelated if (f �g)(x) = 0
for all x.
Here are some plots. First take two Π’s, one shifted, Their cross-correlation looks like
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Here’s a plot of the cross-correlation between a Π and a shifted, negative Π.
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Finally, here’s a plot of the cross-correlation between a rect and a random signal (noise).
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(b) For the cross-correlation we have

(f � g)(x) =
∫ ∞

−∞
f(y)g(x+ y) dy

=
∫ ∞

−∞
f(u− x)g(u) du (substituting u = x+ y)

=
∫ ∞

−∞
f(−(x− u))g(u) du

=
∫ ∞

−∞
f−(x− u)g(u) du

= (f− ∗ g)(x) .
Next, starting from the convolution (f ∗ g−)− we have

(f ∗ g−)−(x) = (f ∗ g−)(−x)
=
∫ ∞

−∞
f(y)g−(−x− y) dy

=
∫ ∞

−∞
f(y)g(−(−x− y)) dy

=
∫ ∞

−∞
f(y)g(x+ y) dy

= (f � g)(x) .

Finally, no, cross-correlation does not, in general, commute. Using the previous identities

f � g = f− ∗ g
while then

g � f = g− ∗ f
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and while we have
f− ∗ g = g ∗ f−

we do not necessarily then have

g ∗ f− = g− ∗ f .

We would have f � g = g � f if all the functions in question were even, for example.

(c) We compute f � (τbg):

(f � (τbg))(x) =
∫ ∞

−∞
f(y)τb(x+ y) dy

=
∫ ∞

−∞
f(y)g(x+ y − b) dy

=
∫ ∞

−∞
f(y)g((x− b) + y) dy

= (f � g)(x− b)
= τb(f � g)(x)

For (τbf) � g) we have

((τbf) � g)(x) =
∫ ∞

−∞
(τbf)(y)g(x+ y) dy

=
∫ ∞

−∞
f(y − b)g(x+ y) dy

=
∫ ∞

−∞
f(u)g(x+ u+ b) du (substituting u = y − b)

=
∫ ∞

−∞
f(u)g(u+ (x+ b)) du

= (f � g)(x+ b)
= τ−b(f � g)(x) .

That is,
(τbf) � g = τ−b(f � g) .

2. (20 points) The autocorrelation of a signal f(t) with itself is defined to be

(f � f)(x) =
∫ ∞

−∞
f(y)f(x+ y) dy .

This is a measure of how much the values of f are correlated, so how much they match up
under shifts. For example, ideal white noise has uncorrelated values, thus one definition of
white noise is a signal with f � f = 0.

(a) Find Π �Π, without much work. [Use the relationship between correlation and convolu-
tion.]
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(b) Show that
(f � f)(x) ≤ (f � f)(0)

To show this use the Cauchy-Schwarz inequality. See the Course Reader, Chapter 1, for
a discussion of this in the context of general inner products. In the present context the
Cauchy-Schwarz inequality states that∫ ∞

−∞
f(t)g(t) dt ≤

{∫ ∞

−∞
f(t)2 dt

}1/2{∫ ∞

−∞
g(t)2 dt

}1/2

,

with equality holding if and only if f(t) and g(t) are proportional.

(c) Show that
F(f � f) = |Ff |2 .

This is sometimes known as the Wiener-Khintchine Theorem, though they actually
proved a more general, limiting result that applies when the transform may not exist.
It’s many uses include the study of noise in electronic systems.

(d) Correlation and radar detection Here’s an application of the maximum value property,
(f � f)(t) ≤ (f � f)(0), above. A radar signal f(t) is sent out, takes a time T to reach an
object, and is reflected back and received by the station. In total, the signal is delayed
by a time 2T , attenuated by an amount, say α, and subject to noise, say given by a
function n(t). Thus the received signal, fr(t), is modeled by

fr(t) = αf(t− 2T ) + n(t) = α(τ2T f)(t) + n(t) .

You know f(t) and fr(t), but because of the noise you are uncertain about T , which is
what you want to know to determine the distance of the object from the radar station.
You also don’t know much about the noise, but one assumption that is made is that the
cross-correlation of f with n is constant,

(f � n)(t) = C, a constant.

You can compute f � fr (so do that) and you can tell (in practice, given the data) where
it takes its maximum, say at t0. Find T in terms of t0.

Solutions:

(a) The easiest way to find Π � Π is to use the relationship between correlation and convo-
lution, established in a previous problem. For then, since Π is even,

Π �Π = Π− ∗Π = Π ∗Π = Λ .

Done.

(b) The Cauchy-Schwarz inequality reads, on squaring both sides (a little easier):(∫ ∞

−∞
f(u)g(u) du

)2

≤
∫ ∞

−∞
f(u)2 du

∫ ∞

−∞
g(u)2 du .

For g(u) substitute f(x+ u) to write(∫ ∞

−∞
f(u)f(u+ x) du

)2

≤
∫ ∞

−∞
f(u)2 du

∫ ∞

−∞
f(u+ x)2 du .

5



which says

(f � f)2(x) ≤
∫ ∞

−∞
f(u)2 du

∫ ∞

−∞
f(u+ x)2 du

But for any x, ∫ ∞

−∞
f(u+ x)2 du =

∫ ∞

−∞
f(u)2 du ,

and now we observe that∫ ∞

−∞
f(u)2 du =

∫ ∞

−∞
f(u)f(u) du = (f � f)(0) .

Putting these inequalities together we have

(f � f)2(x) ≤ (f � f)2(0) ,

and since (f � f)(0) ≥ 0 we conclude that

(f � f)(x) ≤ (f � f)(0) .

(c) To show that F(f � f) = |Ff |2 we appeal to the relationship between correlation and
convolution, and apply the convolution theorem:

F(f � f) = F(f− ∗ f)
= (Ff−)(Ff)
= (Ff)−(Ff) (using duality) .

But because f(t) is a real signal we have

(Ff)− = Ff ,

and hence, from the final line, above,

F(f � f) = (Ff)−(Ff) = (Ff)(Ff) = |Ff |2 .
(d) The transmitted signal is f(t) and the received signal is fr(t) = αf(t − 2T ) + n(t) =

α(τ2T f)(t) + n(t). Take the cross-correlation of these two signals:

(f � fr) = f � (α(τ2T f) + n)
= f � (ατ2T f) + f � n

= α(f � (τ2T f)) + f � n

= α(τ2T (f � f) + C ,

where we have used the shift property of correlation from earlier, f � (τbg) = τb(f � g),
and the assumption that f � n = C. Now suppose, as we’re told, that the maximum of
f � fr occurs at time t0. Since C is a constant, the function on the right hand side must
also assume its maximum at t0:

α(f � f)(t0 − 2T ) + C = max .

But the autocorrelation f � f assumes its maximum at 0, hence

t0 − 2T = 0 or T =
t0
2
.
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3. (20 points)Windowing functions In signal analysis, it is not realistic to consider a signal f(t)
from −∞ < t <∞. Instead, one considers a modified section of the signal, say from t = −1/2
to t = 1/2. The process is referred to as windowing and is achieved by multiplying the
signal by a windowing function w(t). By the Convolution Theorem (applied in the frequency
domain), the Fourier transform of the windowed signal, w(t)f(t) is the convolution of the
Fourier transform of the original signal with the Fourier transform of the window function
Fw∗Ff . The ideal window is no window at all, i.e., it’s just the constant function 1 from −∞
to ∞, which has no effect in either the time domain (multiplying by 1) or in the frequency
domain (convolving with δ).

Below are three possible windowing functions. Find the Fourier transform of each and plot the
log magnitude of each from −100 < s < 100. Which window is closest to the ideal window?

Rectangle Window
w(t) = Π(t)

Triangular Window
w(t) = 2Λ(2t)

Hamming Window

w(t) =

{
cos2(πt) , |t| < 1

2

0 , otherwise.

Solutions
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We express wH as

wH(t) = Π(t) cos2(πt) = Π(t)(
1
2
+
1
2
cos(2πt))

so the transform is

FwH(s) = (sinc ∗(1
2
δ(s) +

1
4
δ(s− 1) +

1
4
δ(s+ 1)))(s)

or
FwH(s) =

1
2
sinc(s) +

1
4
sinc(s+ 1) +

1
4
sinc(s− 1)
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4. (15 points) Brownian motion: Consider particles suspended in a liquid. Let f(x, t) be the
probability density function of finding a particle at a point x at time t. Using probabalistic
arguments, Einstein showed that for some systems the evolution of f(x, t) is governed by a
diffusion equation,

ft = Dfxx ,

where D is the diffusion constant and the subscripts indicate partial derivatives.

(a) Assuming that f(x, 0) = δ(x), find f(x, t). (Your answer should depend on t).

(b) Find the mean and the variance of f(x, t) (with respect to x).

(c) From his calculations, Einstein found that the diffusion constant is given by

D =
kT

6πηR
,

where k is Boltzmann’s constant, T is the temperature, η is the viscosity of the fluid,
and R is the size of the particles. Given your results from part (b), what can you say
about the diffusion of the particles (their evolution over time) as a function of their size
and of the temperature?

Solution:

(a) Let us denote by F (s, t) the Fourier transform of f(x, t) (with respect to x), i.e. F (s, t) =
Ff(s, t).
From the derivative property of the Fourier transform, we know that:

F{fxx} = (2πis)2F{f} = −4π2s2F

9



Since we are given that ft = Dfxx then ∂Ff
∂t = DF{fxx}.

Putting these relations together we obtain the following differential equation:

∂F (s, t)
∂t

= −4π2Ds2F (s, t)

This is an easy ODE whose solution is:

F (s, t) = F (s, 0)e−4π
2Ds2t

Since we know that f(x, 0) = δ(x), then F (s, 0) = 1. Hence

F (s, t) = e−4π
2Ds2t

Now we just need to take the inverse Fourier transform to find f(x, t):

f(x, t) = F−1{F (s, t)}
= F−1{e−4π2Ds2t}
= F−1{e−2π2(2Dt)s2}
=

1√
2D|t|√2πe

− x2

2.(2D|t|)

=
1

2
√
πDt

e−x
2/4Dt for t ≥ 0

(b) It is easy to see that the solution to the diffusion equation (as found in part (a)) is
actually a Gaussian with zero mean and variance 2Dt.
So we can immediately conclude that:

E[X; f(x)] = 0
E[X2; f(x)] = 2Dt

(c) The variance of the diffusion process was found to be equal to 2Dt.
Since D = kbT

6πηR , then if T increases then D increases linearly. Then the variance of the
diffusion process will increase more quickly with t, which means that the particles will
be diffused more quickly if the temperature is increased.
Similarly, if R increases then D decreases accordingly. Then the variance of the diffusion
process will increase more slowly with t, which means that the particles will be diffused
more slowly if their size increases.

5. (20 points) Voice scrambling/descrambling A simple scrambling circuit for voice commu-
nications works as follows. Consider the frequency band from 0 to 4 kHz. It is a known
fact that the overwhelming majority of the power spectrum of human voice is concentrated
in this frequency band. One way of scrambling this frequency band is to subdivide it into 4
equal sub-bands and interchange the sub-bands according to some pre-determined key. For
example, let sub-band A correspond to frequencies between 0 and 1 kHz. Then, sub-band
B corresponds to frequencies between 1 and 2 kHz, sub-band C corresponds to frequencies
between 2 and 3 kHz, and sub-band D corresponds to frequencies between 3 and 4 kHz. The
original order of the sub-bands is ABCD. A simple scrambling technique is to interchange this
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order, i.e. reorder the sub-bands to BCDA or DCBA or CABD or any other pre-determined
order. Call the resulting signal the scrambled signal. This scrambled signal is not compre-
hensible unless you know the key and can rearrange the sub-bands back into the original
order.

The goal of this problem is for you to design a MATLAB program that will descramble a
given voice signal. You may obtain the scrambled signal (’scramble.wav’) from the course
web site,

http://eeclass.stanford.edu/ee261/

in the ‘Problem Sets’ section of the Handouts. It has been scrambled in the above-described
fashion by rearranging the bands ABCD into CBDA. Descramble this signal and transcribe
the first and last 5 words. Turn in your code as well as your transcription. (No, this
is not a test of your transcribing skills, we just want to make sure that your code works.)

Solution:

function [recov,fs,nbits] = descramble(filename);

[orig,fs,nbits] = wavread(filename); origfft = fft(orig);
% C B D A
% | | | |
% A B C D
if rem(length(origfft),2),
highf = (length(origfft)+1)/2;
C = origfft(2:floor(highf/4));
B = origfft(floor(highf/4)+1:floor(highf/2));
D = origfft(floor(highf/2)+1:floor(highf*0.75));
A = origfft(floor(highf*0.75)+1:highf);
recov = [origfft(1);A;B;C;D;flipud([conj(A);conj(B);conj(C);conj(D)])];

else
highf = length(origfft)/2 + 1;
C = origfft(2:floor(highf/4));
B = origfft(floor(highf/4)+1:floor(highf/2));
D = origfft(floor(highf/2)+1:floor(highf*0.75));
A = origfft(floor(highf*0.75)+1:highf-1);
recov = [origfft(1);A;B;C;D;origfft(highf); ...

flipud([conj(A);conj(B);conj(C);conj(D)])];
end recov = real(ifft(recov));

Descrambled speech: “We shall fight in France... we shall fight in the hills, we shall never
surrender”.

Winston Churchill,

Address to the House of Commons

June 4, 1940
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