
EE 261 The Fourier Transform and its Applications

Fall 2007

Solutions to Problem Set Three

1. (5 points) Still another reciprocal relationship The equivalent width of a signal f(t), with
f(0) != 0, is the width of a rectangle having height f(0) and area the same as under the graph
of f(t). Thus

Wf =
1

f(0)

∫ ∞

−∞
f(t) dt .

This is a measure for how spread out a signal is.

Show that WfWFf = 1. Thus, the equivalent widths of a signal and its Fourier transform are
reciprocal.

Solution: The things we need to note are

Ff(0) =

∫ ∞

−∞
e−2πi0·tf(t) dt =

∫ ∞

−∞
f(t) dt ,

and the corresponding statement using the inverse Fourier transform,

f(0) =

∫ ∞

−∞
e2πis·0Ff(s) ds =

∫ ∞

−∞
Ff(s) ds .

Then we compute

Wf =
1

f(0)

∫ ∞

−∞
f(t) dt

=
Ff(0)

f(0)

WFf =
1

Ff(0)

∫ ∞

−∞
Ff(s) ds

=
f(0)

Ff(0)

⇒ WfWFf =
Ff(0)

f(0)

f(0)

Ff(0)
⇒ WfWFf = 1

2. (10 points) Find the Fourier transforms of the function shown in the graph (a shifted sinc)
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Solution:

The sinc function is centered at c, stretched by 1
b , scaled by a. Thus,

f(x) = a sinc[b(x − c)].

Since Fh[b(x − c)] = 1
|b|e

−2πicsĥ(s
b ),

f̂(s) =
a

|b|
e−2πicsΠ(

s

b
)

3. (5 points each) The figures below show a signal f(t) and six other signals derived from f(t).
Note the scales on the axes.

t

f(t)

0 1

1

2

Suppose f(t) has Fourier transform F (s). Express the Fourier transforms of the other six
signals in terms of F (s).
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Solution:

The signal f(t) is shown below. Denote its Fourier transform by F (s).

t

f(t)

0 1

1

2

(a) The first modified signal is given by f(−t), or, without writing the variable, f−. Its
Fourier transform is F−, or, writing the variable, F (−s).

(b) To express next one in terms of f we first reverse f to f− (which gives the preceding
picture) and then shift to the right by 2, giving f−(t− 2). The Fourier transform of this
is e−2πi2sF(f−)(s) = e−4πis(Ff)−(s) = e−4πisF (−s).

(c) The next signal is just f(t − 1), and the Fourier transform is e−2πisF (s).

(d) The next one is twice as large in the horizontal direction, which is accomplished by
forming f(t/2). The Fourier transform is 2F (2s).

(e) This is given by f(t) + f(t + 2) so its Fourier transform is F (s) + e4πisF (s) = (1 +
e4πis)F (s).

(f) Finally, we have two signals in opposite directions. That’s just f(t) + f(−t) so the
Fourier transform is F (s) + F (−s).

4. (35 points) Some practice with convolution

In this problem, we want you to have some practice with handling convolution and integration.
So, for parts (a) to (c), explicitly evaluate the convolution integral. Also verify your results
by applying the convolution theorem for Fourier transforms.
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(a) What is Πa ∗Πa?

(b) Let f(x) = e−|x|, −∞ < x < ∞. Find (f ∗ f)(x).

(c) Let g(x) = e−πx2

, −∞ < x < ∞. Show that (g ∗ g)(x) = 1√
2
e−πx2/2.

(d) From the result in part(c), deduce the result of the n-fold convolution of g, i.e., g∗g∗...∗g
(with n factors of g).

Solution:

(a) This convolution is:

(Πa ∗Πa)(x) =

∫ ∞

−∞
Πa(y)Πa(x − y) dy,

but since Πa is zero outside the interval (−a/2, a/2), we can expect the integration to
be finite for any given x. We have to split this up into cases.

Case 1: x < −a or x > a
In this case, we claim that Πa(y)Πa(x − y) = 0 for all y since the rectangular functions
are non-overlapping.

Case 2: −a ≤ x ≤ 0

(Πa ∗ Πa)(x) =

∫ ∞

−∞
Πa(y)Πa(x − y) dy

=

∫ a/2

−a/2
Πa(x − y) dy

=

∫ x+a/2

x−a/2
Πa(u) du (substituting u = x − y)

=

∫ x+a/2

−a/2
1 du (since x < 0 and Πa(u) is zero for u < −a/2)

= x + a.

Case 3: 0 ≤ x ≤ a
This is handled very similarly to the previous case:

(Πa ∗Πa)(x) =

∫ ∞

−∞
Πa(y)Πa(x − y) dy

=

∫ a/2

−a/2
Πa(x − y) dy

=

∫ x+a/2

x−a/2
Πa(u) du (substituting u = x − y)

=

∫ a/2

x−a/2
1 du (since x > 0 and Πa(u) is zero for u > a/2)

= a − x.
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Combining the cases we see that:

(Πa ∗Πa)(x) =







x + a, −a ≤ x ≤ 0
a − x, 0 ≤ x ≤ a
0, otherwise.

We notice that this is the definition of aΛa(x) = aΛ (x/a).
To verify the result using the convolution property of the Fourier transform, we take
the Fourier transform of (Πa ∗ Πa)(x), which is a2sinc2(as). This can be written as
a [a sinc(as)]. Taking the inverse Fourier transform of this will yield our previous result
of aΛa(x).

(b) The convolution (f ∗ f)(x) is

(f ∗ f)(x) =

∫ ∞

−∞
f(y)f(x − y) dy

=

∫ ∞

−∞
e−|y|e−|x−y| dy

=

∫ ∞

−∞
e−|y|e−|y−x| dy.

Since the functions of interest are even, we only need to consider the case of x < 0. The
result for x > 0 can be obtained using symmetry arguments. So, for the case where
x < 0,

(f ∗ f)(x) =

∫ ∞

−∞
e−|y|e−|y−x| dy

=

∫ x

−∞
eyey−x dy +

∫ 0

x
eye−y+x dy +

∫ ∞

0
e−ye−y+x dy

=
ex

2
− xex +

ex

2
= (1 − x)ex

For x ≥ 0,
(f ∗ f)(x) = (1 + x)e−x

by symmetry. Combining these results, we get

(f ∗ f)(x) = (1 + |x|)e−|x|.

(c) The convolution (g ∗ g)(x) is

(g ∗ g)(x) =

∫ ∞

−∞
g(y)g(x − y) dy

=

∫ ∞

−∞
e−πy2

e−π(x−y)2 dy

=
1√
2
e−πx2/2 (by integration by parts)

To verify the result using the convolution property of the Fourier transform, we take
the Fourier transform of (g ∗ g)(x), which is e−πs2

.e−πs2

= e−2πs2

. Taking the inverse
Fourier transform of this will yield our previous result of 1√

2
e−πx2/2.

5



(d) It should be obvious that the n-fold convolution of g(x) will yield 1√
n
e−πx2/n. We can

show this using the Fourier transform. The Fourier transform of g ∗ g ∗ ... ∗ g is e−nπs2

.
Taking the inverse Fourier transform would be 1√

n
e−πx2/n.

5. (30 points) Convolution: Reversals, Shifts and Stretches Let f(t) and g(t) be signals.

(a) If both f(t) and g(t) are reversed, what happens to their convolution? If one of f(t) and
g(t) is reversed what happens to their convolution?

Define the shift operator τbf and the stretch operator σaf by

τbf(t) = f(t − b) , σaf(t) = f(at) .

(b) Show that
(τbf) ∗ g = τb(f ∗ g) = f ∗ (τbg) .

Write out in words what this says. Use this result to deduce that if either f or g is
periodic of period T then f ∗ g is periodic of period T . (However, see Problem 6 below!)

(c) Show that

(σaf) ∗ g =
1

|a|
σa(f ∗ (σ1/ag)) , (σaf) ∗ (σag) =

1

|a|
σa(f ∗ g) .

Write out in words what these identities say.

Solution:

(a) If both signals are reversed we have

(f− ∗ g−)(x) =

∫ ∞

−∞
f−(y)g−(x − y) dy

=

∫ ∞

−∞
f(−y)g(−(x − y)) dy =

∫ ∞

−∞
f(−y)g(−x + y) dy

=

∫ ∞

−∞
f(u)g(−x − u) du (substituting u = −y)

= (f ∗ g)(−x)

= (f ∗ g)−(x)

Thus we conclude that
f− ∗ g− = (f ∗ g)− .

6



Suppose now that just one signal is reversed, say f . Then

(f− ∗ g)(x) =

∫ ∞

−∞
f−(y)g(x − y) dy

=

∫ ∞

−∞
f(−y)g(x − y) dy

=

∫ ∞

−∞
f(u)g(x + u) du (substituting u = −y)

=

∫ ∞

−∞
f(u)g(−(−x − u)) du

=

∫ ∞

−∞
f(u)g−(−x − u) du

= (f ∗ g−)(−x)

We can write this without the variable as

f− ∗ g = (f ∗ g−)− .

Similarly
f ∗ g− = (f− ∗ g)− .

Note how the earlier formula follows from either of these. Say we establish f− ∗ g =
(f ∗ g−)−. Then

f− ∗ g− = (f ∗ (g−)−)− = (f ∗ g)− .

(b) We compute

((τbf) ∗ g)(x) =

∫ ∞

−∞
τbf(y)g(x − y) dy

=

∫ ∞

−∞
f(y − b)g(x − y) dy

=

∫ ∞

−∞
f(u)g(x − (u + b)) dy (substituting u = y − b)

=

∫ ∞

−∞
f(u)g(x − b − u) dy

=

∫ ∞

−∞
f(u)(τbg)(x − u) du

= (f ∗ (τbg))(x)

This establishes one of the identities, that

(τbf) ∗ g = f ∗ (τbg) ,

But notice that we can also write the penultimate integral above as
∫ ∞

−∞
f(u)g(x − b − u) dy = (f ∗ g)(x − b) ,

and so
(τbf) ∗ g = τb(f ∗ g)
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as well.

In words, the identities (τbf) ∗ g = τb(f ∗ g) = f ∗ (τbg) say that a delay of b in either
signal f or g also delays their convolution by b.

Now suppose that f(t) is periodic of period T . Then τT f = f , i.e., a delay by T doesn’t
change the signal. For the convolution of f with any g we then have

τT (f ∗ g) = (τT f) ∗ g = f ∗ g .

But this says that the convolution is also unchanged if delayed by T , and so f ∗ g is
periodic of period T . We could draw the same conclusion if we started with g being
periodic. However, in anticipation of addressing the issue raised in the ’Conversation on
convolution’ all of this holds provided the integrals defining the convolutions converge

(c) For the first identity, (σaf) ∗ g = 1/|a|σa(f ∗ (σ1/ag)), we compute:

((σaf) ∗ g)(x) =

∫ ∞

−∞
(σaf)(y)g(x − y) dy

=

∫ ∞

−∞
f(ay)g(x − y) dy

=
1

|a|

∫ ∞

−∞
f(u)g(x −

u

a
) du (substituting u = ay)

=
1

|a|

∫ ∞

−∞
f(u)g(

1

a
(ax − u)) du

=
1

|a|

∫ ∞

−∞
f(u)(σ1/ag)(ax − u) du

=
1

|a|
(f ∗ (σ1/ag))(ax)

=
1

|a|
σa(f ∗ (σ1/ag))(x) .

The second identity, (σaf) ∗ (σag) = (1/|a|)σa(f ∗ g), actually follows from this. For
according to the first identity

(σaf) ∗ (σag) =
1

|a|
σa(f ∗ σ1/aσag) ,

and
σ1/aσag = g .

In words, the second identity (a little easier) says that if each of f(t) and g(t) are
operated on by σa, so scaled to f(at) and g(at), then their convolution is also operated
on by σa and multiplied by 1/|a|. The first identity says that if σa operates on f
then in convolution with g the operation becomes σ1/a operating on g, and the whole
convolution is multiplied by 1/|a|.

6. (10 points) Rajiv and Lykomidis are arguing about convolution over dinner one night:

Rajiv: You know, convolution really is a remarkable operation, the way it imparts properties
of one function onto the convolution with another. Take periodicity – if f(t) is periodic
then (f ∗ g)(t) is periodic with the same period. I think that was a homework problem
we gave the class.
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Lykomidis: There’s a problem with that statement. You want to say that if f(t) is a periodic function
of period T then (f ∗ g)(t) is also periodic of period T .

Rajiv: Right.

Lykomidis: What if g(t) is also periodic, say of period R? Then doesn’t (f ∗ g)(t) have two periods,
T and R?

Rajiv: I suppose so.

Lykomidis: But wouldn’t this lead right to a contradiction? I mean, for example, you can’t have a
function with two periods, can you?

The conversation continues. They are joined by Thomas:

Rajiv and Lykomidis: We think we’ve found a fundamental contradiction in mathematics.

Thomas: Why don’t you look at a simple, special case first. What happens if you convolve sin 2πt
with itself?

Rajiv: OK, both functions have period 1 so for the convolution you get a function that’s periodic
of period 1, no problem.

Lykomidis: No, you don’t. Something goes wrong.

What’s going on? With whom do you agree and why?

Solution:

The problem is that the integral defining the convolution of two periodic functions won’t
converge (maybe it will for some values, though I doubt it, but certainly not in general).
Taking f(t) = sin 2πt as an example, the convolution is

(f ∗ f)(t) =

∫ ∞

−∞
sin 2πτ sin 2π(t − τ) dτ .

Let t = 1. Then because of periodicity

(f ∗ f)(1) =

∫ ∞

−∞
sin 2πτ sin 2π(1 − τ) dτ =

∫ ∞

−∞
sin 2πτ(− sin 2πτ) dτ = −

∫ ∞

−∞
sin2 2πτ dτ ,

and this integral is infinite.

7. (25 points)
Probability Distributions, Convolution and MATLAB. You have three six-sided dice, one
white, one red and one black. The white one is fair but the red and the black are not, in
particular:

Prob (1) Prob (2) Prob (3) Prob (4) Prob (5) Prob (6)
white 1/6 1/6 1/6 1/6 1/6 1/6
red 1/12 1/12 2/12 2/12 3/12 3/12
black 4/12 3/12 2/12 1/12 1/12 1/12

(a) (10 points) You roll each die once. What is the probability that the sum of all the three
rolls is equal to 7 or 8 or 12. (Hint: You may want to use matlab)
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(b) (5 points) You repeat rolling all three dice many times. (Each time your roll each die
once.) Let Xi, Yi and Zi be the random variable denoting the i-th roll of the white, red
and black die correspondingly. As the number of trials N increases, what do you think
the empirical average of the numbers

1

3N

N
∑

i=1

(Xi + Yi + Zi)

should be.

(c) (10 points) Use MATLAB to plot the distribution of the empirical average, for N =
2, 10, 100 and 1000.

Solution:

(a) We know from class that if you add two independent random variables X and Y (Z =
X + Y ) whose probability density functions are px and py, then you get a new random
variable whose probability density function is equal to px ∗ py =

∫ ∞
−∞ px(z − u)py(u)du.

If you add two independent discrete random variables X and Y , you get a similar result
except that instead of integrating you sum:

Prob{X + Y = z} =
∑

u

Prob{X = z − u}Prob{X2 = u}

=
∑

u

px(z − u)py(u).

See the section on the Central Limit Theorem in the course reader for a discussion of this
and the connection with convolution. In fact, since MATLAB works with vectors and
not with continuous functions, the convolution command conv actually gives you the
summation described above. This is perfect since it’s exactly what we need to calculate
the distribution of the sum of the rolls from the three dice.
A sample MATLAB code for finding this purpose is:

white_die = [ 1/6 1/6 1/6 1/6 1/6 1/6 ];
red_die = [ 1/12 1/12 2/12 2/12 3/12 3/12];
black_die = [ 4/12 3/12 2/12 1/12 1/12 1/12];
% Observe that the sum of the three dice must be between 3 and 18
dice_sum = 3:18
pr_dice_sum = conv(white_die,red_die);
pr_dice_sum = conv(pr_dice_sum,black_die);

disp(’Prob(three dice sum equal to 7 or 8 or 12)’);
pr_dice_sum( find(dice_sum==7) )+pr_dice_sum( find(dice_sum==8) )+pr_dice_sum( find(dice_sum==12) )

The desired probability turns out to be 0.2998.

(b) If you take enough trials, the sample average will converge to the mean value of a random
roll of the die,

sum(dice_sum.*pr_dice_sum)/3

that is 3.4167. We did not ask for any sort of proof, and we won’t give any, other than
the claim that “probability theory works”.

(c) A sample MATLAB code for finding the distribution for N rolls (in this case N = 10)
is:
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average = 1;
N = 2;
for i=1:N

average = conv(average,pr_dice_sum);
end
xaxis = [0:length(average)-1] + 3*N;
xaxis = xaxis/(3*N);

figure();
set(gca, ’Linewidth’,1.6);
set(gca, ’FontSize’,18);
bar(xaxis, average);
axis([1 6 -inf inf]);
title(’Distribution of the Empirical Average, N=2’);
print(’-depsc’,’EmpAverage2.eps’);

The MATLAB plots themselves are below. It’s technically not correct, but no points
should be taken off if they used the plot command instead of the bar command (the
difference being that plot connects the points and bar leaves them separate).
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