
EE 261 The Fourier Transform and its Applications

Fall 2007

Solutions to Problem Set Two

1. (25 points) A periodic, quadratic function and some surprising applications

Let f(t) be a function of period T = 2 with

f(t) = t2 if 0 ≤ t < 2.

Here’s the picture.
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(a) Find the Fourier series coefficients, cn, of f(t).

(b) Using your result from part (a), obtain the following: Hint: You might want to read

section 1.14.3 on pages 54 - 57 of the course reader before trying this part.

∞
∑

n=1

1

n2
=

π2

6
.

∞
∑

n=1

(−1)n+1

n2
=

π2

12
.

∞
∑

n=0

1

(2n + 1)2
=

π2

8
.

Solution:
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(a) The Fourier coefficients may be calculated using the following integral:

cn =
1

2

∫ 2

0
f(t) e−2πint/2 dt

=
1

2

∫ 2

0
t2e−iπnt dt

=
1

2

{

[

t2e−iπnt

−iπn

]2

0

+ 2

∫ 2

0

t e−iπnt

iπn
dt

}

(integration by parts)

=
1

2

{

−4

iπn
+

2

iπn

∫ 2

0
t e−iπnt dt

}

=
2i

πn
+

1

iπn

∫ 2

0
t e−iπnt dt

=
2i

πn
+

1

iπn

(

−2

πin

)

(integration by parts again)

=
2 (1 + iπn)

π2n2
, n 6= 0

For the case of n = 0, we just have to find the average value of the function over a single
period. Hence,

c0 =
1

2

∫ 2

0
f(t) dt

=
1

2

∫ 2

0
t2 dt

=
4

3

(b) We first write the Fourier series expansion of the function of interest

∞
∑

n=−∞

cneiπnt = t2 for 0 ≤ t < 2

Let us evaluate both sides of the equation at t = 0. The left hand side of the equation
would simply be

∑∞
n=−∞ cn. We might be tempted to set the right hand side to zero.

This is not true in this case since the periodic function has a discontinuity at t = 0.
When such a case occurs, the value of

∑∞
n=−∞ cn would converge to the average of the
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left and right hand limits, which in this case is 2. Therefore, we have

∞
∑

n=−∞

cn = 2

∞
∑

n=−∞

2 (1 + iπn)

π2n2
= 2

∞
∑

n=1

2 (1 + iπn)

π2n2
+

4

3
+

−1
∑

n=−∞

2 (1 + iπn)

π2n2
= 2

∞
∑

n=1

2 (1 + iπn)

π2n2
+

∞
∑

n=1

2 (1 − iπn)

π2n2
=

2

3

∞
∑

n=1

4

π2n2
=

2

3

∞
∑

n=1

1

n2
=

π2

6

For the second relation, we evaluate both sides of

∞
∑

n=−∞

cneiπnt = t2 for 0 ≤ t < 2

at t = 1. This is the quickest and easiest way to introduce a (−1)n into the summation.
The function f(t) is continuous at t = 1, so the right hand side will just be 12 = 1.
Writing this out we have

∞
∑

n=−∞

cn(−1)n = 1

∞
∑

n=−∞

2 (1 + iπn)

π2n2
(−1)n = 1

∞
∑

n=1

2 (1 + iπn)

π2n2
(−1)n +

4

3
+

−1
∑

n=−∞

2 (1 + iπn)

π2n2
(−1)n = 1

∞
∑

n=1

2 (1 + iπn)

π2n2
(−1)n +

∞
∑

n=1

2 (1 − iπn)

π2n2
(−1)n = −

1

3

∞
∑

n=1

4

π2n2
(−1)n = −

1

3

Multiplying both sides by -1 and rearranging the equation yields:
∞
∑

n=1

(−1)n+1

n2
=

π2

12
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The third relation is obvious when we write out the first two sums:

1 +
1

22
+

1

32
+

1

42
+ ... =

π2

6

1 −
1

22
+

1

32
−

1

42
+ ... =

π2

12

Adding these sums together, we have

2

(

1 +
1

32
+

1

52
+ ...

)

=
π2

4

2

∞
∑

n=0

1

(2n + 1)2
=

π2

4

∞
∑

n=0

1

(2n + 1)2
=

π2

8

2. (10 points) Whither Rayleigh? What happens to Rayleigh’s identity if f(t) is periodic of
period T 6= 1?

Solution:

For a function f with period T , we have the expansion

f(t) =

∞
∑

n=−∞

cne2πint/T

where

cn =
1

T

∫ T

0
e−2πint/T f(t)dt.

Define g(t) = f(Tt). Then g has period

We shall derive Rayleigh’s identity for f from Rayleigh’s identity for g. First observe that

ĝ(n) =

∫ 1

0
e−2πintg(t)dt

=

∫ 1

0
e−2πintf(Tt)dt

=

∫ T

0
e−2πinu/T f(u)

du

T

= cn.(1)

Next,

∫ 1

0
|g(t)|2dt =

∫ 1

0
|f(Tt)|2dt

=

∫ T

0
|f(u)|2

du

T
(2)
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From Rayleigh’s identity for a function with period 1,

∫ 1

0
|g(t)|2dt =

∞
∑

n=−∞

|ĝ(n)|2.

Therefore, from equations (??) and (??), we have

1

T

∫ T

0
|f(t)|2dt =

∞
∑

n=−∞

|cn|
2,

Rayleigh’s identity for f .

3. (25 points) Sinesum2, Square Wave, High Frequency Noise and AM Modulation.

This problem is based on the Matlab application in the ‘Sinesum2 Matlab Program’ section
of ‘Handouts’ on the course website. Go there to read the directions and to get the files. It’s
a tool to plot sums of sinusoids of the form

N
∑

n=1

An sin(2πnt + φn) .
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Combined Signal

(a) Using the sinesum2 application, generate (approximately) the signal plotted above. You
should be able to do this with seven harmonics. Along with the overall shape, the things
to get right are the approximate shift and orientation of the signal. To get started,
observe that the signal looks like a square wave signal. Recall that the square wave
signal is studied in Section 1.7 of the course reader. However, you’ll see that additional
flipping and shifting need to be done. This can be accomplished by changing the phases
φn (do that in two steps, say first a flip and then a shift). Explain what you’re doing at
each stage.

(b) Additive high frequency noise is very common when signals go through various commu-
nications systems. In this case, we will assume that the previous signal goes through
some communication system, that adds high frequency noise which can be approximated
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as: 0.5 sin(2π50t). How does this change the original signal in the time domain? What
happens if the amplitude of the noise increases from 0.5 to 2. Plot your results and
explain what you observe.

(c) Amplitude Modulation (AM) is a technique used in communication systems for trans-
mitting information. Typically, AM works by varying the amplitude of a carrier signal
(simple sine signal of the form A sin(2πfct + φc)) in relation to the information signal
that needs to be transmitted. For example, if we denote the information signal we want
to trasmit by m(t), m(t)A sin(2πfct + φc) is one type of “AM signal” (double-sideband
suppressed-carrier (DSBSC) AM signal to be exact!) that we could choose to transmit.
Naturally, a lot more can be said about AM, but this is not the scope of this question.

To examine an example of AM, we will assume that the signal from part (a) is multiplied
by sin(2π50t). Using sinesum2, plot the new signal, and explain how this can be done.

Solution:

(a) (10points) We set up sinesum with 7 harmonics and we enter the following amplitudes,
and no phase shifts:

A1 = 7, A2 = 0, A3 = 2.3333, A4 = 0, A5 = 1.4, A6 = 0, A7 = 1 .

The plot looks like
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Combined Signal

The shape looks pretty good, but it’s upside down from what we want – it goes up where
we want it to go down and vice versa. To flip the figure upside down we want to replace
each An by −An, and this can be accomplished by a phase shift of π in each harmonic.
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To obtain the signal that we want,we need to shift the whole signal to the left by about
0.3. This means that in each term we would replace t by t + 0.3. Since the terms are of
the form sin(2πnt + φ), that means we want an additional phase shift of n× 0.3 for the
n’th term, n = 1, . . . , 5. So the final phase shifts should be,

φ1 = 0.6π, φ2 = 0 φ3 = 1.8π, φ4 = 0, φ5 = π, φ6 = 0, φ7 = 0.2π .

Perfect match!
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Combined Signal

(b) (5 points) Clearly, the signal distortion increases as the amplitude of the noise increases.
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Combined Signal

(c) (10 points) Using the identity:

sin(2π50t) sin(2πft + φ) = 0.5 cos(2π(50 − f)t − φ) − 0.5 cos(2π(50 + f)t + φ)

= 0.5 cos(2π(50 − f)t − φ) + 0.5 cos(2π(50 + f)t + φ + π)

= 0.5 sin(2π(50 − f)t − φ + π/2) + 0.5 sin(2π(50 + f)t + φ + 3π/2)

we can immediately see that the new signal can be written as one withe the following
amplitudes and phase shifts:

A49 = 3.5, A51 = 3.5, A47 = 1.1667, A53 = 1.1667,

A45 = 0.7, A55 = 0.7, A43 = 0.5, A57 = 0.5

φ49 = −0.6π + π/2, φ51 = 0.6π + 3π/2, φ47 = −1.8π + π/2, φ53 = 1.8π + 3π/2,

φ45 = −π + π/2, φ55 = π + 3π/2, φ43 = −0.2π + π/2, φ57 = 0.2π + 3π/2
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4. (20 points) Piecewise linear approximations and Fourier transforms.

(a) Find the Fourier transform of the following signal.

0

1

2

2

2.5

4 6 t

Hint: Think Λ’s.

(b) Consider a signal f(t) defined on an interval from 0 to D with f(0) = 0 and f(D) =
0. We get a uniform, piecewise linear approximation to f(t) by dividing the inter-
val into n equal subintervals of length T = D/n, and then joining the values 0 =
f(0), f(T ), f(2T ), . . . , f(nT ) = f(D) = 0 by consecutive line segments. Let g(t) be
the linear approximation of a signal f(t), obtained in this manner, as illustrated in the
following figure where T = 1 and D = 6.
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Find Fg(s) for the general problem (not for the example given in the figure above) using
any necessary information about the signal f(t) or its Fourier transform Ff(s). Think
Λ’s, again.

Solution:

(a) The function is given by the sum of two scaled and shifted triangle functions. Recall
from the first problem set the triangle function with a parameter a > 0 is

Λa(t) = Λ(t/a) =

{

a−|t|
a , |t| ≤ a

0 , |t| > a

The function in part (a) is given by

2Λ2(t − 2) + 2.5Λ2(t − 4) .

0

1

2

2

2.5

4 6 t

Thus, using the shift and stretch theorems we find the following Fourier transform,

2Λ2(t − 2) + 2.5Λ2(t − 4) ⇋ 2e−2πis(2)2sinc2(2s) + 2.5e−2πis(4)2sinc2(2s)

⇋ sinc2(2s)
(

4e−4πis + 5e−8πis
)

.

(b) This is an extension of the previous part (a). The piecewise linear approximation g(t) is
the sum of shifted and stretched triangles that are scaled by values of function f(t) at
their center points:
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We compute Ff(s) by

Ff(s) = F

(

n−1
∑

k=1

f(kT )ΛT (t − kT )

)

=

n−1
∑

k=1

f(kT )FΛT (t − kT )

=

n−1
∑

k=1

f(kT )T sinc2(Ts)e−2πis(kT )

= T sinc2(Ts)

n−1
∑

k=1

f(kT )e−2πiskT .

5. (10 points) The modulation property of the Fourier transform.

(a) Let f(t) be a signal, s0 a number, and define

g(t) = f(t) cos(2πs0t)

Show that

Fg(s) =
1

2
Ff(s − s0) +

1

2
Ff(s + s0)

(No delta functions, please, for those who know about them.)

(b) Find the signal (in the time domain) whose Fourier transform is pictured, below.

− 6 − 4 − 2 0

1

2 4 6

Solution:
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(a) We appeal directly to the definition of the Fourier transform:

Fg(s) =

∫ ∞

−∞
g(t)e−2πistdt

=

∫ ∞

−∞
f(t) cos(2πs0t)e

−2πistdt

=

∫ ∞

−∞
f(t)

1

2
(e2πis0t + e−2πis0t)e−2πistdt

=
1

2

∫ ∞

−∞
f(t)e−2πi(s−s0)tdt +

1

2

∫ ∞

−∞
f(t)e−2πi(s+s0)tdt

=
1

2
Ff(s − s0) +

1

2
Ff(s + s0)

(b) With an eye toward using part (a), the function illustrated in this part can be written
as

1

2
(2Λ2(s − 4)) +

1

2
(2Λ2(s + 4)) = Λ2(s − 4) + Λ2(s + 4) .

So it looks like we want to find a function f(t) whose Fourier transform is 2Λ2(s), for if
we then multiply it by cos(2π · 4 · t) the modulation property gives us what we want for
the Fourier transform:

F(f(t) cos 8πt) = Λ2(s + 4) + Λ2(s − 4) .

Now, since FΛa(s) = a sinc2(as), we obtain by duality

F(a sinc2(as)) = Λ−
a = Λa ,

using also that Λa is even. If we thus set

f(t) = 4 sinc2(2t)

we have
4 sinc2(2t) ⇋ 2Λ2(s)

as desired. Finally, we then take

g(t) = 4 sinc2(2t) cos(8πt) .

6. (10 points) Fourier transforms and Fourier coefficients Suppose the function f(t) is zero
outside the interval −1/2 ≤ t ≤ 1/2. We form a function g(t) which is a periodic version of
f(t) with period 1 by the formula

g(t) =

∞
∑

k=−∞

f(t − k) .

The Fourier series representation of g(t) is given by

g(t) =
∞
∑

k=−∞

ĝ(n)e2πint .
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Find the relationship between the Fourier transform Ff(s) and the Fourier series coefficients
ĝ(n).

Solution Recall that to calculate the Fourier series coefficient, we can take the integral over
any period of the signal. We can choose the period (−1

2 , 1
2). Then, the Fourier coefficients of

g(t) are

ĝ(n) =

∫ 1

2

− 1

2

g(t) exp2πint dt

but since f(t) is zero outside of the region (−1
2 , 1

2) and g(t) is simply the replicas of f(t) with
period 1, both functions are equal in the region (−1

2 , 1
2). Thus,

ĝ(n) =

∫ 1

2

− 1

2

f(t) exp2πint dt

=

∫ ∞

−∞
f(t) exp2πint dt

which we immediately recognize as the Fourier Transform of f(t). Therefore, we get

ĝ(n) = f̂(s)|s=n

The Fourier coefficients of the periodic function g(t) are simply the samples of the Fourier
Transform of f(t), taken at all the integers.

7. (50 points) Consider the functions g(x) and h(x), shown below

1

1
x

h(x)

-1

-1

1

1
x

g(x)

Denote the Fourier transforms by Fg(s) and Fh(s), respectively.

(a) (5 points) Lykomidis says that the imaginary part of Fg(s) is (sin(2πs) − 2πs) /
(

4π2s2
)

.
Brad, however, expresses concerns about Lykomidis’ work. He is not sure that this can
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be the imaginary part of g. “Why would it have a singularity at s = 0?” Brad says, as a
general fact, if a function is integrable, as g(t) is, then its Fourier transform is continuous.
Lykomidis, asks Brad whether he is willing to buy him coffee if he (Lykomidis) can prove
him (Brad) wrong. Brad feels very confident and quickly accepts. Is Lykomidis getting
free coffee?

(b) (5 points) What are the two possible values of ∠Fh(s), i.e., the phase of Fh(s)? Express
your answer in radians.

(c) (5 points) Evaluate
∫∞
−∞Fg(s) cos(πs) ds.

(d) (5 points) Evaluate
∫∞
−∞Fh(s)ei4πs ds.

(e) (10 points) Without performing any integration, what is the real part of Fg(s)? Explain
your reasoning.

(f) (10 points) Without performing any integration, what is Fh(s)? Explain your reasoning.

(g) (10 points) Suppose h(x) is periodized to have period T = 2. Without performing any
integration, what are the Fourier coefficents, ck, of this periodic signal?

Solution:

(a) Lykomidis is getting free coffee because

sin 2πs = 2πs −
(2πs)3

3!
+ O(s5)

= 2πs −
8π3s3

6
+ O(s5)

so
1

4π2s2
sin 2πs =

1

2πs
+ O(s) .

Then
1

4π2s2
sin 2πs −

1

2πs
;

the singularities cancel and what remains is continuous at s = 0.

(b) Since h(x) is a real and odd function, the Fourier transform Fh(s) would be purely
imaginary and odd. The phase of a purely imaginary function is either π/2 or −π/2
radians.

(c) There are a few methods to do this. The most straightforward approach would be to
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write the cosine function in terms of complex exponentials.
∫ ∞

−∞
Fg(s) cos(πs) ds =

∫ ∞

−∞
Fg(s)

(

1

2
eiπs +

1

2
e−iπs

)

ds

=
1

2

∫ ∞

−∞
Fg(s)eiπs ds +

1

2

∫ ∞

−∞
Fg(s)e−iπs ds

=
1

2

∫ ∞

−∞
Fg(s)ei2πs( 1

2
) ds +

1

2

∫ ∞

−∞
Fg(s)ei2πs(− 1

2
) ds

=
1

2
F−1Fg

(

1

2

)

+
1

2
F−1Fg

(

−
1

2

)

=
1

2
g

(

1

2

)

+
1

2
g

(

−
1

2

)

=
1

2

(

1

2

)

+
1

2
(0)

=
1

4
.

(d) This part is similar to part(b). We can write the integral as:
∫ ∞

−∞
Fh(s)ei4πs ds =

∫ ∞

−∞
Fh(s)ei2πs(2) ds

= F−1Fh(2)

= h(2)

= 0.

(e) For this part, we appeal to the even and odd decomposition of the real function g(x).
Note that the values on the vertical axis are real numbers, so you can state with absolute
certainty that g(x) is real. This decomposition is:

g(x) = ge(x) + go(x),

where ge(x) = 1
2 [g(x) + g(−x)] and go(x) = 1

2 [g(x) − g(−x)].
Since ge(x) gives rise to a transform that is real and even while go(x) results in one that
is purely imaginary and odd, it follows that the real part of Fg(s) will be the Fourier
transform of ge(x). If we assume the value of g(x) at x = 0 to be 1

2 , ge(x) is:

0.5

x

1-1

Notice that the shape is nothing more than 1
2Λ(x). The Fourier transform of 1

2Λ(x), and
hence the real part of Fg(s), will therefore be 1

2 sinc2(s).
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Some students may assume that the value of g(x) at x = 0 is 1. In this case, ge(x) = Λ(x)
and hence Fg(s) would be sinc2(s).

Both solutions are acceptable.

(f) If you got the previous part, this part should be obvious. Notice that h(x) = 2go(x) no
matter what value you assume g(x) to be at x = 0. Since the Fourier transform of go(x) is

”i” multiplied by the imaginary part of Fg(s), it follows that Fh(s) = i2.
[

sin(2πs)−2πs
4π2s2

]

=

i
[

sin(2πs)−2πs
2π2s2

]

.

(g) Consider hp(x) which is obtained by periodizing a function h(x), i.e.,

hp(x) =
∞
∑

n=−∞

h(x − nT ) =
∞
∑

k=−∞

cke
i 2πkt

T .

It was mentioned in the lectures, that ck = 1
T Fh

(

k
T

)

. With T = 2 and Fh(s) from the
previous part, the Fourier coefficients would be:

ck =
1

2
Fh

(

k

2

)

= i2

(

sin(πk) − πk

2π2k2

)

= −
i

πk

since sin(πk) = 0 for all k = 0,±1,±2, .... As a check, h(x) is odd, so the Fourier
coefficients of its periodized version would be purely imaginary and odd, which is the
case.
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