
Binary morphisms with stable suffix complexity

Štěpán Holub

Abstract

Let g, h be marked morphisms of words. A pair (g1, h1) of marked
morphisms is called a successor of (g, h) if g ◦ g1(a) = h ◦ h1(a) and
g ◦ g1(b) = h ◦ h1(b) and the images of g1 and h1 are shortest possible.
Successors play an important role in studying the Post Correspondence
Problem. Typically, they are simpler than the original morphisms, mea-
sured by the number of suffixes of their images (called the suffix com-
plexity). In some cases, however, the suffix complexity is stable – it does
not decrease. In this paper we study the binary case, that is, morphisms
defined on a two-letter alphabet. We give a full characterization of binary
morphisms with stable suffix complexity.

It is a surprising fact that solutions w of the equation g(w) = h(w), where
g, h : Σ∗ → ∆∗ are morphisms of a free monoid, are poorly understood even
if the cardinality of Σ is two (i.e. in the binary case). The situation is easy
only in some special cases, for example when at least one of the morphisms is
periodic. The Post Correspondence Problem (PCP), which asks whether the
equation has a nonempty solution, is known to be undecidable in general, but
decidable in the binary case. The first proof of decidability of the binary case
was announced in [1], however, it contains a gap. A complete proof was given in
[4], and [5] shows that the decision process is of polynomial time. The structure
of the set of all solutions is known for some binary cases. However, even in
the binary case, there is still no description of general solutions, in particular,
there is no efficient algorithm known that decides whether a given word can be
a solution of the above equation. For more details and references see [6, 7, 2].

If a single reason for the complications in the above mentioned research
should be pointed out, it could be the existence of so called successor morphisms
(called “equality collectors” in [1]). Studying a pair of binary morphisms, sooner
or later one may discover that the existence of a solution, as well as its structure,
depends essentially on the same question for a different pair of morphisms.
Turning the attention to the new pair (the successors) the situation may occur
again. The crucial question is whether the resulting chain of reductions can
be kept under control. This can be done using so called suffix complexity of
morphisms, which in most cases decreases; the concept was first introduced in
[1]. However, there are some cases in which the suffix complexity is stable. These
cases were once again studied in [1] where a characterization is given, which is
sufficient for a proof that the binary PCP is decidable. In this paper we give
a complete classification of stable instances for both balanced and unbalanced

1

binary morphisms. One of the crucial advantages of the binary alphabet is that
it is enough to consider marked morphisms only, which makes the exposition
simpler. This makes no real harm to generality, since each binary morphism has
its “marked version”, which is, for the purposes of the PCP, equivalent to the
original one (for more detailed explanation of marked versions, see the literature
mentioned above). Moreover, even if the original morphisms are not marked,
already the first “generation” of successors is marked always.

1 Preliminaries

We shall mostly use only elementary notation of combinatorics on words, see
for example [8].

The empty word is denoted by ε. The first and the last letter of the word
u is denoted by pref1(u) and suff1(u) respectively. We write u ≤ v to denote
that u is a prefix of the word v. When we say that two words u and v are
comparable, we refer to the prefix ordering. Analogously, we say that two words
are suffix-comparable, if one of them is a suffix of the other. In this paper we
define simple languages by regular expressions, for instance (ab)+a. We say that
u is a prefix of a language L if it is a prefix of at least one word in L. Therefore,
if we write for example u ≤ (ab)+a, we mean that u is a prefix of (ab)ia for
some i ≥ 1.

A morphism g is called marked if pref1(g(a)) 6= pref1(g(b)) for any two
distinct letters a and b. It is length preserving if |g(u)| = |u| for all u.

2 Successors and suffix complexity

Let g, h : {a, b}∗ → ∆∗ be two marked binary morphisms. The markedness in
particular implies that none of the images is empty. Since each alphabet can be
encoded into {a, b}, it is convenient to suppose that also ∆ = {a, b}.

A prefix-minimal pair of words (e, f) satisfying

g(e) = h(f) (1)

is called a block of (g, h). (By “prefix-minimal” we mean that if nonempty
prefixes e′ of e and f ′ of f satisfy g(e′) = h(f ′), then e′ = e and f ′ = f .)

Since the morphisms are marked, it is not difficult to see that for each
nonempty word p ∈ ∆+ there is at most one prefix-minimal pair of words (u, v)
such that

pg(u) = h(v).

Indeed, the continuation of u or of v is always uniquely determined by the
overflow of already constructed prefix of (u, v).

Example 1. As an example, let p = a, and

g(a) = aa, g(b) = bb,

h(a) = ab, h(b)= baa.

2

Obviously, if ag(u) = h(v), then pref1(v) = a since the first letter of h(b) is b, not
a. Let v = av′. We have g(u) = bh(v), which again implies that pref1(v) = b.
After four similar steps we see that the unique minimal pair (u, v) satisfying
ag(u) = h(v) is (ba, ab).

Similarly, for each nonempty word q ∈ ∆+ there is at most one prefix-
minimal pair of words (u, v) such that

g(u) = qh(v).

This, in particular, implies that there are at most two distinct blocks. Moreover,
if two distinct blocks (e, f) and (e′, f ′) exist, then pref1(e) 6= pref1(e′) and
pref1(f) 6= pref1(f ′). In such a case we define

g1(a) = e, g1(b) = e′,

h1(a) = f, h1(b) = f ′,

and say that the pair (g1, h1) is a successor of (g, h). Note that both morphisms
g1 and h1 are marked.

The suffix complexity σ(g) of a morphism g is in [1] defined as the number
of different non-empty words occurring as suffixes of an image of g. Formally,

σ(g) = Card{x | x 6= ε; x ∈ suff(g(a)) ∪ suff(g(b))}.

Let Og be the set of all suffixes of g(a) and g(b) that occur as overflows in
at least one block. More precisely, u ∈ Og if and only if u is a nonempty suffix
of g(a) or g(b), and there are (possibly empty) words e1, f1, e2 and f2 such that

g(e1) = h(f1)u and ug(e2) = h(f2). (2)

As explained above, each u ∈ Og determines uniquely a word f2 ∈ suff(f) ∪
suff(f ′) such that ug(e2) = h(f2) for some e2. That defines a mapping

πg : Og → suff(f) ∪ suff(f ′).

It should be clear that πg is surjective: for each non-empty word v from suff(f)∪
suff(f ′) there is a corresponding overflow u, which is in Og; in fact, this is how
the set Og was defined. Let, for example, v ∈ suff(f). Then

u = g(e1)(h(fv−1))−1,

where e1 is the minimal prefix of e satisfying |g(e1)| > |h(fv−1)|.
This immediately implies

σ(h1) ≤ Card(Og) ≤ σ(g). (3)

Moreover, the equality holds if and only if

• each suffix of g(a) and g(b) is in Og, and

3

• the mapping πg is injective.

Remark 1. Later we shall mainly use the first of the two above conditions.
Injectivity, however, is not guaranteed, as the following example shows:

g(a) = abb g(b) = b

h(a) = a h(b) = bb.

Here Og = suff(g(a)) ∪ suff(g(b)), but both overflows b and bb map to b ∈
suff(h1(b)).

Similarly we define Oh, and obtain

σ(g1) ≤ Card(Oh) ≤ σ(h). (4)

We say that a pair of morphisms (g, h) has stable suffix complexity if (g, h) has
a successor (g1, h1) such that σ(g) = σ(h1) and σ(h) = σ(g1).

3 Stable suffix complexity

In this section we give a complete characterization of marked binary morphisms
with stable suffix complexity. In the sequel we let (g, h), written also as (g0, h0),
denote a pair of marked binary morphisms, and (gi+1, hi+1), with i ≥ 0, will
denote the successor of (gi, hi).

We let ga denote either g(a) or g(b) so that pref1(ga) = a. Similarly we
define gb, ha and hb. The symmetry allows us to adopt the convention that ga
is always equal to g(a), and gb to g(b). For the morphism h, however, there
remain two different possibilities: either pref1(h(a)) = a and pref1(h(b)) = b, or
vice versa. We shall often cover both cases by using variables x and y, and shall
write h(x) = ha and h(y) = hb, where {x, y} = {a, b}.

It is natural to identify cases that only differ by exchanging morphisms g
and h and/or letters a and b. Let therefore µ : {a, b}∗ → {a, b}∗ denote the
morphism defined by a 7→ b and b 7→ a. We denote the identity morphism
on {a, b}∗ by id. We say that two pairs of morphisms (g, h) and (g′, h′) are
symmetric if {g, h} = {µ1 ◦ g′ ◦ µ2, µ1 ◦ h′ ◦ µ2} with µ1, µ2 ∈ {µ, id}. Note also
that {µ, id} are the only length preserving morphisms.

We start with a simple lemma, which follows from the fact that each suffix
is an overflow.

Lemma 1. Assume that the pair (g, h) has stable suffix complexity. Let u be
a suffix of ga or gb. If c is the first letter of u, then u is comparable with
hc. Moreover, there is a prefix v of ga or gb such that vu ∈ {ga, gb} and v is
suffix-comparable with ha or hb.

The lemma holds also if we exchange g and h.
Next lemma is a slightly more advanced tool for studying the stable suffix

complexity. Once more, it has variants given by symmetries of morphisms g
and h, as well as letters a and b.

4

Lemma 2. Let (g, h) have stable suffix complexity. If

suff1(ha) = suff1(hb) = a, (5)

then ga ∈ a+ and gb ∈ ba∗.

Proof. Suppose suff1(ha) = suff1(hb) = a. Let k be the largest positive integer
such that bak is a suffix of ga or gb. Since ak ∈ Og, there is a (possibly empty)
word v such that vak ∈ {ga, gb} and v is suffix-comparable with ha or hb, by
Lemma 1. If v is nonempty, the assumption (5) yields that a is its suffix, a
contradiction with the maximality of k. Hence v is empty, and ga ∈ a+.

Suppose that gb = bu and u /∈ a∗. Since u ∈ Og and u is not a suffix of
ga, we deduce that there are words e1, f1 such that g(e1b) = h(f1)u, which
implies g(e1)b = h(f1). This is a contradiction with the assumption about the
last letters of ha and hb.

We can now state our main result.

Theorem 1. Let (g, h) be a pair of marked binary morphisms. The suffix
complexity of (g, h) is stable if and only if (at least) one of the following cases
takes place (up to symmetry):

(Case 1) At least one of the morphisms is length preserving.

(Case 2) There are integers j, k, `,m ≥ 1 such that

ga = aj , gb = bk,

ha = a`, hb = bm,

and gcd(j, `) = gcd(k,m) = 1.

(Case 3) There are integers j, ` ≥ 0 and integers k,m ≥ 1 such that

ga = abj , gb = bk,

ha = ab`, hb = bm,

and gcd(k,m) = 1, j ≤ k and ` ≤ m.

(Case 4) There are integers j, k ≥ 1 and integers `,m ≥ 0 such that

ga = (ab)j , gb = (ba)k,

ha = (ab)`a, hb = (ba)mb,

with gcd(j, `+m+ 1) = 1 and gcd(k, `+m+ 1) = 1.

(Case 5) There are integers j, k, `,m ≥ 0 such that

ga = (ab)ja, gb = (ba)kb,

ha = (ab)`a, hb = (ba)mb,

and a) either gcd(j + k + 1, `+m+ 1) = 1

b) or gcd(j + k + 1, `+m+ 1) = 2 and j − ` is odd.

5

(Case 6) There are integers t ≥ 2 and k,m ≥ 0 such that

ga = a, gb = (bat)kb,

ha = a, hb = (bat)mb,

and gcd(k + 1,m+ 1) = 1.

(Case 7) There are integers t, k, `,m ≥ 1 such that

ga = a, gb = bk,

ha = atb`, hb = bm,

` ≤ m and gcd(k,m) = 1.

Before starting the proof, let us make the following remark. The proof
is quite concise, leaving many claims to be verified by the reader. However,
each such verification should be straightforward, even if possibly laborious. In
most cases, such a claim can be verified by a direct construction similar to the
one in Example 1. The leading and ubiquitous idea, hidden behind references
to Lemma 1 but also used implicitly, is the fact that every suffix has to be
an overflow. For example, if bba is a suffix of g(a) or g(b), then the word
hb has to start with bb (if its length is not one), otherwise bba cannot be an
overflow, and the suffix complexity cannot be stable. Also claims counting
suffix complexities are laconic since their verification is direct. An important
part of the proof validity is the completeness of the case division. Even in this
regard, the reader has to check carefully that the claims invoking the symmetry
are correct. However, the author tried hard to make the classification as tabular
as possible.

Proof. The proof is a case analysis. The main criterion of the division in sub-
cases is the number of words of length one among ga, gb, ha, hb.

If one of the morphisms is length preserving, it is easy to see that the suffix
complexity is stable (see Example 2). Let therefore at least one of the images
of each of the two morphisms have length at least two.
1. Suppose, first, that all four words ga, gb, ha, hb have length at least two.
1.1. Let aa ≤ ga and bb ≤ gb. Repeated application of Lemma 1 yields that
ga, ha ∈ a+ and gb, hb ∈ b+. Let ha = h(x) and hb = h(y). Let

g(a) = aj , g(b) = bk,

h(x) = a`, h(y) = bm.

The suffix complexities are σ(g) = j + k and σ(h) = ` + m. It easy to verify
that

g1(a) = a
`

gcd(j,`) , g1(b) = b
m

gcd(k,m) ,

h1(a) = x
j

gcd(j,`) , h1(b) = y
k

gcd(k,m) .

6

Therefore the suffix complexity of (g, h) is stable if and only if gcd(j, `) =
gcd(k,m) = 1.
1.2. Let ab ≤ ga and bb ≤ gb. From Lemma 1 we deduce gb, hb ∈ b+, and
ga, ha ∈ ab+. Let again ha = h(x) and hb = h(y), and let

g(a) = abj , g(b) = bk,

h(x) = ab`, h(y) = bm.

Since the suffix complexity of (g, h) is stable, we have b ∈ Og. It is not difficult
to see that words u and v satisfying bg(u) = h(v) exist if and only if k and m
are coprime.

A direct construction of the successor then yields

g1(a) = abj
′
, g1(b) = bm,

h1(a) = xy`
′
, h1(b) = yk,

where j′, `′ are the smallest nonnegative integers satisfying

j + j′k = `+ `′m.

Let j > k. Then σ(g) = j + 1; whence σ(h1) = max{`′, k} + 1 implies `′ = j.
From the equality j + j′k = ` + jm we deduce j′ ≥ m. However, now also
nonnegative integers j′ −m and j − k satisfy

j + (j′ −m) = `+ (j − k)m,

a contradiction with the minimality of j′ and `′. Therefore j ≤ k. Similarly
we conclude that ` ≤ m, which yields the conditions of Case 3. The suffix
complexity is stable, since σ(g) = σ(h1) = k + 1 and σ(h) = σ(g1) = m+ 1.
1.3. Let ab ≤ ga and ba ≤ gb. Lemma 1 implies ga, ha ≤ (ab)+ and gb, hb ≤
(ba)+. Lemma 2 yields suff1(ha) 6= suff1(hb) and suff1(ga) 6= suff1(gb). Mor-
phisms of the form

g(a) = (ab)j , g(b) = (ba)k,

h(x) = (ab)`, h(y) = (ba)m

do not have stable suffix complexity. This can be seen from the fact that suffixes
of odd length cannot be overflows. Therefore, up to symmetry, we have in this
subcase two possibilities.
1.3.1. Suppose, first, that there are integers j, k, `,m such that

g(a) = (ab)j , g(b) = (ba)k,

h(x) = (ab)`a, h(y) = (ba)mb.

Then we obtain, by a direct inspection of blocks,

g1(a) = a
`+m+1

gcd(j,`+m+1) , g1(b) = b
`+m+1

gcd(k,`+m+1) ,

h1(a) = (xy)
j

gcd(j,`+m+1) , h1(b) = (yx)
k

gcd(k,`+m+1) .

7

Since σ(g) = 2(j + k) and σ(h) = 2(`+m+ 1) while

σ(g1) =
`+m+ 1

gcd(j, `+m+ 1)
+

`+m+ 1

gcd(k, `+m+ 1)
,

and

σ(h1) =
2j

gcd(j, `+m+ 1)
+

2k

gcd(k, `+m+ 1)
,

it follows that the suffix complexity is stable if and only if gcd(j, ` + m + 1) =
gcd(k, `+m+ 1) = 1.
1.3.2. The second possibility is

g(a) = (ab)ja, g(b) = (ba)kb,

h(x) = (ab)`a, h(y) = (ba)mb.

for some j, k, `,m. Put

r =
`+m+ 1

gcd(j + k + 1, `+m+ 1)
, s =

j + k + 1

gcd(j + k + 1, `+m+ 1)
.

It is not difficult to verify that r and s are the smallest positive integers such
that g((ab)r) = h((xy)s). Also, they are the smallest positive integers satisfying
g((ba)r) = h((yx)s).

Recall that there is at most one block (e, f) with pref1(e) = a and at most
one block (e′, f ′) with pref1(e′) = b. We deduce that the pairs ((ab)r, (xy)s)
and ((ba)r, (yx)s) are either blocks, or they both split into blocks. The first
possibility yields

g1(a) = (ab)r, g1(b) = (ba)r,

h1(a) = (xy)s, h1(b) = (yx)s.
(6)

The second possibility implies that there are nonnegative integers j′, k′, `′,m′

such that

g1(a) = (ab)j
′
a, g1(b) = (ba)k

′
b,

h1(a) = (xy)`
′
x, h1(b) = (yx)m

′
y.

(7)

Since

g ◦ g1(ab) = g((ab)j
′
ab(ab)k

′
) = h((xy)`

′
xy(xy)m

′
) = h ◦ h1(ab),

the minimality of r and s implies j′ + k′ + 1 = r and `′ + m′ + 1 = s. It is
straightforward to verify that integers j′ and `′ are (minimal) solutions of the
equation

j′(j + k + 1) + j = `′(`+m+ 1) + `. (8)

8

The suffix complexity of g is 2(j + k + 1). The suffix complexity of h1 is
either 4s (if the possibility (6) holds), or 2s (if the case (7) takes place). Since
we are interested in the stable suffix complexity, we can suppose gcd(j + k +
1, `+m+ 1) ≤ 2.

Let, first, the numbers j + k + 1 and `+m+ 1 be coprime. Basic modular
arithmetic implies that equality (8) has nonnegative solutions j′ < ` + m + 1
and `′ < j+ k+ 1, and we have the case (7). It is straightforward to verify that
this already yields stable suffix complexity and the first option of Case 5.

Let now gcd(j+k+1, `+m+1) = 2. In this case, the stable suffix complexity
is achieved if and only if (8) has no solution, which occurs if and only if j − ` is
odd. This is the second option of Case 5.

Up to symmetry we have checked all cases in which all four words have length
at least two.
2. Let now ga = a, and the remaining three words have length at least two.
2.1. Suppose that bb ≤ gb. Then Lemma 1 implies that

ga = a, gb = bk,

ha = ajb`, hb = bm,

for some j ≥ 1, k,m ≥ 2 and j + ` ≥ 2. If ` = 0, then we obtain a situation
leading to Case 2. If ` > 0, then we can use similar argumentation as in 1.2.
The suffix complexity is stable if and only if gcd(k,m) = 1 and ` ≤ m, which is
Case 7.
2.2. Let ba ≤ gb (and thus also ba ≤ hb).
2.2.1. If aa ≤ ha, then gb ∈ ba+, by Lemma 1, and Lemma 2 implies ha ∈ a+
and hb ∈ ba+. We have a situation symmetric to Case 3.
2.2.2. Let ab ≤ ha. Lemma 1 implies that gb ≤ (ba)+, and Lemma 2 yields
that gb ∈ (ba)+b. In particular, bab ≤ gb, which implies that neither ha, nor hb
contain baa as a factor. Similarly they do not contain the factor bb. Therefore
ga, ha ≤ (ab)+ and gb, hb ≤ (ba)+, which leaves us with Case 4 or Case 5, as
shown above.
3. Suppose that ga = ha = a. This implies that gb and hb have length at least
two, since we already suppose that the morphisms are not length preserving.
3.1. If bb ≤ gb or bb ≤ hb, then Lemma 1 implies Case 2. Moreover, if a is the
last letter of gb or hb, then, up to symmetry, we have Case 3, by Lemma 2.
3.2. Let therefore ba ≤ gb and ba ≤ hb, and let b be the last letter of both gb
and hb. Lemma 1 now implies that bb is not a factor of gb or hb and we have

gb = bak1bak2 . . . bakmb, and hb = ba`1ba`2 . . . ba`m′ b.

Lemma 1 further implies that ki = `1 for each i = 1, . . . ,m, and `j = k1 for
each j = 1, . . . ,m′. Therefore we obtain

g(a) = a, g(b) = (bat)kb,

h(x) = a, h(y) = (bat)mb.

9

An analysis analogous to the one carried on in 1.3.2. yields that the suffix
complexity is stable if and only if gcd(k + 1,m+ 1) = 1, and we have Case 6.
4. It remains to consider the case ga = a and hb = b.
4.1. Let bb ≤ gb. Then ha = ajb`, by Lemma 1.
4.1.1. If ` = 0, then aa ≤ ha, and gb = btam. We have a situation symmetric
to Case 7 treated in 2.1.
4.1.2. If ` ≥ 1, then Lemma 2 implies gb ∈ b+, which yields the Case 7 again.
4.2. By symmetry, we can now suppose ba ≤ gb and ab ≤ ha. If gb = ba or
ha = ab, then we have a contradiction with Lemma 2. Therefore bab ≤ gb and
aba ≤ ha. Lemma 1 and Lemma 2 now yield that we have Case 5.

The proof is complete.

The content of the previous theorem is concisely given in Table 1. Note
that in some cases the successor morphisms have again stable suffix complexity.
The following example shows a simple situation in which there exists an infinite
sequence of successors, all of them having the same suffix complexity.

Example 2. Consider the Case 1 with g = id. There are two possibilities accord-
ing to the choice of x and y. Suppose the more complex situation, namely, let
h(a) = hb and h(b) = ha. Let (gi, hi), i = 1, 2, . . . be the sequence of successors
of (g, h). It is straightforward to verify that

(g1, h1) = (h ◦ µ, µ),

(g2, h2) = (id, µ ◦ h ◦ µ),

(g3, h3) = (µ ◦ h, µ), and

(g4, h4) = (g, h).

It is obvious that all pairs have stable suffix complexity and the sequence is
infinite with period four.

4 Balanced cases

In this section we focus on a special case of balanced morphisms.
By |w|`, with ` ∈ {a, b}, we shall denote the number of occurrences of letter

` in w. We say that a pair of morphisms (g, h) is balanced if for each ρ(.) ∈
{|.|, |.|a, |.|b} either

ρ(g(a)) < ρ(h(a)), ρ(g(b)) > ρ(h(b)), or

ρ(g(a)) > ρ(h(a)), ρ(g(b)) < ρ(h(b)), or

ρ(g(a)) = ρ(h(a)), ρ(g(b)) = ρ(h(b)).

Otherwise we say that the instance is unbalanced. We study balanced cases
because they constitute the core of the difficulty in PCP. It is obvious that the
equation g(w) = h(w) has no nonempty solution in the unbalanced case. Let

10

Table 1: Morphisms with stable suffix complexity

g(a) g(b) g1(a) g1(b)

h(x) h(y) h1(a) h1(b)

Case 1
a b au bv

au bv x y

Case 2
aj bk a` bm

a` bm xj yk

Case 3
abj bk abj

′
bm

ab` bm xy`
′

yk

Case 4
(ab)j (ba)k a`+m+1 b`+m+1

(ab)`a (ba)mb (xy)j (yx)k

Case 5 a)
(ab)ja (ba)kb (ab)j

′
a (ba)k

′
b

(ab)`a (ba)mb (xy)`
′
x (yx)m

′
y

Case 5 b)
(ab)ja (ba)kb (ab)(`+m+1)/2 (ba)(`+m+1)/2

(ab)`a (ba)mb (xy)(j+k+1)/2 (yx)(j+k+1)/2

Case 6
a (bat)kb a (bat)mb

a (bat)mb x (yxt)ky

Case 7
a bk atbj

′
bm

atb` bm xy`
′

yk

11

us remark that the situation is slightly more complicated in so called General-
ized PCP, but even in that problem the unbalanced cases can be solved quite
straightforwardly (for more details on the Generalized PCP see for example [3])

The following result says that there is practically just one case in which a
chain of successors with stable suffix complexity contains only balanced pairs.

Theorem 2. Let (gi, hi), i = 0, 1, 2 be pairs of balanced morphisms such that
(g1, h1) is a successor of (g0, h0), and (g2, h2) is a successor of (g1, h1). Suppose
that all three morphisms have the same suffix complexity. Then either both g1
and h1 are length preserving, or

g0(a) = aj , g0(b) = bk,

h0(a) = bm, h0(b) = a`,

where j, k, `,m are positive integers satisfying

gcd(j,m) = gcd(k, `) = gcd(m, k) = gcd(`, j) = 1 .

Suppose, by symmetry, that m = min{j, k, l,m}. Then m < k < ` and m <
j < `. The sequence of successors {(gi, hi)}i∈N0

, where (gi+1, hi+1) denotes a
successor of (gi, hi) for each i ≥ 0, is well defined and has period four.

Proof. Theorem 1 yields a list of candidates for the pair (g0, h0). It remains to
verify that the possibilities of the present theorem are the only ones in which
the additional assumptions are satisfied. Namely, the successor (g1, h1) has to
have stable suffix complexity, and all three pairs (gi, hi), i = 0, 1, 2 have to be
balanced.

Consider the situation when g1 and h1 are both length preserving; in other
words, we have σ(g1) = σ(h1) = 2. Therefore also σ(g0) = σ(h0) = 2. It
is interesting to note that this does not imply that g0 and h0 are themselves
length preserving; the morphism f defined by f(a) = ab and f(b) = b represents
another possibility satisfying σ(f) = 2. We can therefore have for example
g0 = f and h0 = f ◦ µ. If g1 and h1 are both length preserving, then we have a
situation similar to Example 2, the infinite sequence of successors is well defined,
and has a period four.

Further we shall suppose that g1 is not length preserving, which implies that
nor h1 is, since the pair (g1, h1) is balanced. We gradually investigate situations
in which the pair (g0, h0) has one of the forms of Theorem 1. In each case we
shall respect the notation used in Theorem 1, in its proof and in Table 1.
Case 1 This case is excluded by the above discussion.
Case 2 This case yields the possibility described in the theorem. Since (g0, h0)
is balanced, we have h0(a) = b` and h0(b) = am. Moreover, gcd(j, `) =
gcd(k,m) = 1 by the stability of the suffix complexity. A direct construction
yields the following pairs (gi, hi), i = 0, 1, 2, 3:

a b

g0 aj bk

h0 bm a`
7→

a b

g1 a` bm

h1 bj ak
7→

a b

g2 ak bj

h2 b` am
7→

a b

g3 am b`

h3 bk aj

12

and the pair (g4, h4) is again equal to (g0, h0). The stable suffix complexity
of (g1, h1) implies gcd(j,m) = gcd(k, `) = 1. The inequalities m < j < ` and
m < k < ` follow from the fact that the morphisms are balanced.
Case 3 If j = `, then also k = m, otherwise (g1, h1) is not balanced in |.|b
or in |.|a; then both g1 and h1 are length preserving. Suppose, therefore, by
symmetry, that j < `, which implies m < k, and j′ > 0.

If x = b, then the pair (g1, h1) is not balanced in |.|b. Suppose therefore
x = a. Since (g1, h1) is balanced, we have also `′ < j′. Recall that j′, `′ are the
smallest nonnegative integers satisfying

j + j′k = `+ `′m.

From j′ > `′ we have

` = j + j′k − `′m ≥ j + k + `′(k −m),

which implies ` > k and ` > m since we have k > m; a contradiction with
conditions for Case 3 in Theorem 1.
Case 4 Since (g0, h0) is balanced, we have `+m > 0. It is obvious that (g1, h1)
do not have successor.
Case 5 a) Without loss of generality (by symmetry) we can suppose j < `
and k > m since (g0, h0) is balanced (and since j = ` and k = m imply
that (g0, h0) has not stable suffix complexity unless both morphisms are length
preserving). Still without loss of generality we can suppose j+k > `+m, where
j + k = ` + m > 0 would again imply that the suffix complexity of (g0, h0) is
not stable. We have

j′(j + k + 1) + j = `′(`+m+ 1) + `, (9)

k′(j + k + 1) + k = m′(`+m+ 1) +m. (10)

As above, we can suppose m′ > k′ and `′ < j′ since (g1, h1) is balanced and
has stable suffix complexity (the case m′ < k′ and `′ > j′ is analogous). The
equality (9) can be rewritten as

`− j = j′(j + k + 1)− `′(`+m+ 1),

which is in contradiction with inequalities j′ > `′ and j + k > ` + m, as it is
straightforward to see.
Case 5 b) It is easy to see that the pair (g1, h1) has not stable suffix complexity.
Case 6 The pair (g0, h0) is balanced only if k = m. Therefore, either both
morphisms are length preserving, or the suffix complexity is not stable.
Case 7 If t > 1, then (g0, h0) is not balanced in |.|a. If t = 1, then we have
Case 3, already discussed above.

References

[1] Andrzej Ehrenfeucht, Juhani Karhumäki, and Grzegorz Rozenberg. The
(generalized) Post correspondence problem with lists consisting of two words
is decidable. Theoret. Comput. Sci., 21(2):119–144, 1982.

13

[2] Jana Hadravová and Štěpán Holub. Large simple binary equality words. In
DLT ’08: Proceedings of the 12th international conference on Developments
in Language Theory, pages 396–407, Berlin, Heidelberg, 2008. Springer.

[3] Vesa Halava, Tero Harju, and Mika Hirvensalo. Generalized Post corre-
spondence problem for marked morphisms. Internat. J. Algebra Comput.,
10(6):757–772, 2000.

[4] Vesa Halava, Tero Harju, and Mika Hirvensalo. Binary (generalized) Post
correspondence problem. Theoret. Comput. Sci., 276(1-2):183–204, 2002.

[5] Vesa Halava and Štěpán Holub. Reduction tree of the binary Generalized
Post Correspondence Problem, journal = Int. J. Found. Comput. Sci., fjour-
nal = International Journal of Foundations of Computer Science, volume =
to appear,.

[6] Štěpán Holub. Binary equality sets are generated by two words. J. Algebra,
259(1):1–42, 2003.

[7] Štěpán Holub. A unique structure of two-generated binary equality sets. In
Developments in language theory, volume 2450 of Lecture Notes in Comput.
Sci., pages 245–257. Springer, Berlin, 2003.

[8] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library.
Cambridge University Press, Cambridge, 1997.

14

