
POLYNOMIAL ALGORITHM FOR FIXED POINTS OF
NONTRIVIAL MORPHISMS

ŠTĚPÁN HOLUB

Abstract. A word w is a fixed point of a nontrival morphism h if w = h(w)

and h is not the identity on the alphabet of w. The paper presents the first
polynomial algorithm deciding whether a given word is such a fixed point. The

algorithm also constructs the corresponding morphism, which has the smallest
possible number of non-erased letters.

1. Introduction

Fixed points of morphisms are interesting objects in all mathematical structures.
In this paper we consider morphisms of free monoids, that is, of finite words with
the operation of concatenation. Given a morphism h : Σ∗ → Σ∗, its fixed points
were characterized first in [2] and later in a more algebraic manner in [1], where
also one-sided infinite fixed points are characterized. Two sided fixed points are
studied in [4].

The inverse problem, that is, to determine whether a given word is a fixed point
of a morphism, seems to be more difficult. Obviously, each word is a fixed point of
the identity, therefore the question asks about morphisms that are not the identity
on the input word, in literature often called nontrivial. The importance of the
property of being a fixed point of a nontrivial morphism is highlighted in [3] by
pointing out a couple of equivalent formulations relevant to the theory of formal
languages and the combinatorics on words.

Here we present the first polynomial algorithm deciding whether a given word
has the discussed property. Moreover, the algorithm also allows to construct a
corresponding morphism which is in a good sense minimal possible.

2. Basic concepts

Let Σ be an alphabet. A word w is a fixed point of a morphism h : Σ∗ → Σ∗ if
h(w) = w. Following [3], we shall say that w is morphically imprimitive if h(x) 6= x
for at least one letter occurring in w. Accordingly, a word w is called morphically
primitive if h(w) = w implies that h is the identity on alph(w), where alph(w)
denotes the set of letters occurring in w.

By |w|x we shall denote the number of occurrences of the letter x in w. If L is
a (sub)set of letters, we define

|w|L =
∑
x∈L

|w|x.

We shall now briefly summarize properties of finite fixed points of a morphism
h. For proofs and more details consult [1].

1

2 ŠTĚPÁN HOLUB

Given a morphism h : Σ∗ → Σ∗ we shall say that a letter a ∈ Σ is mortal if
hj(a) = ε for some j ∈ N. Here ε denotes the empty word, and hj means j-times
repeated application of h. The set of mortal letters of morphism h is denoted by
Mh. Second important set of letters, denoted by Eh, is the set of expanding letters.
A letter b is expanding if h(b) = xby with xy ∈M∗h.

It can be shown that if w is a fixed point of h, then w ∈ (Mh ∪Eh)∗. Obviously,
hi(w) = w for each i ∈ N. A number t ∈ N can be chosen such that ht(a) = ε
for each mortal letter a ∈ alph(w). If t is the smallest possible, then it is called
the mortality exponent of h, and is denoted by exp(h). One can also see, under
the assumption h(w) = w, that hexp(h) is the identity on alph(w) if and only if h
is. Since it is usually convenient to consider the morphism hexp(h) instead of h, we
shall say that h is a stable morphism if exp(h) = 1, and limit ourselves to stable
morphisms.

If h is a stable morphism, then the equality h(w) = w defines a k-tuple

(w1, w2, . . . , wk)

such that w = w1w2 . . . wk, and for each i = 1, . . . , k there is a letter ai ∈ Σ with

wi = h(ai).

In particular, we have |wi|ai
= 1. We shall say that the k-tuple (w1, w2, . . . , wk) is

the morphic factorization of w induced by h.

Example 1. Define

h(a) = ε, h(b) = a, h(c) = bcd, h(d) = ε, h(e) = de.

Then abcdde is a fixed point of h, exp(h) = 2, and the morphic factorization of w
induced by h is (abcd, de).

Morphically imprimitive words can now be characterized in terms of factoriza-
tions as follows.

Theorem 2. A word w ∈ Σ∗ is morphically imprimitive if and only if there is a
stable morphism h defined on alph(w) such that h(w) = w and at least one factor
in the morphic factorization of w induced by h has length at least two.

This is equivalent to the following conditions: there is a factorization F =
(w1, w2, . . . , wk) of w, and a subset EF of alph(w) such that

(1) |wi|EF
= 1 for each i = 1, 2, . . . , k; and

(2) alph(wi) ∩ EF = alph(wj) ∩ EF implies wi = wj.

The correspondence between the two descriptions is straightforward: If a stable
morphism h is given, then we can choose EF = Eh, and to define the factorization
so that for each wi we have wi = h(ai) for some ai ∈ Eh. Then

wi = `(ai) ai r(ai),

for some words `(ai), r(ai) ∈M∗h.
Conversely, if a factorization described in the theorem is given, we can define h

on a ∈ EF by h(a) = wi where {a} = alph(wi) ∩ EF , and h(b) = ε for b /∈ EF .
This correspondence allows to use the term expanding letters also for elements

of EF .
We say that the morphic factorization (w1, w2, . . . , wk) is trivial, if k = |w|, that

is, each word wi has length one. Trivial factorizations are induced by morphisms
which are the identity on alph(w).

POLYNOMIAL ALGORITHM FOR FIXED POINTS OF NONTRIVIAL MORPHISMS 3

The set of expanding letters is not given uniquely by the factorization, as the
following example shows.

Example 3. Consider the word w = caddbccaddbc. It has a morphic factorization
F1 = (caddbc, caddbc), which is induced by two different stable morphisms h and
h′ defined by:

h1(a) = caddbc, Mh1 = {b, c, d};
h′1(b) = caddbc, Mh′

1
= {a, c, d}.

The only expanding letter in F1 is therefore either a or b.
Another morphic factorization of w is F2 = (cad, dbc, cad, dbc), with the unique

set of expanding letters {a, b}. It is induced by just one morphism h2 given by

h2(a) = cad, h2(b) = dbc, Mh2 = {c, d}.

The remaining morphic factorization of w is the trivial one.

We shall return to the ambiguity of expanding letters later.
Let a be a letter in w. We denote by ra the word such that ara is the longest

common prefix of all suffixes of w starting with a. Similarly, we denote by la the
word such that laa is the longest common suffix of all prefixes of w ending with a.

We also denote the word laa ra by na. It is easy to see, considering the last and
the first occurrence of a in w, that a /∈ alph(ra) as well as a /∈ alph(la).

Informally, we can say that na is the largest neighborhood common to all occur-
rences of a in w. Such a neighborhood constitutes an “upper bound” for the image
of a. More precisely, if h(w) = w then h(a) is a factor of na. The following lemma
is an easy, but important observation.

Lemma 4. For each letter b ∈ alph(na) we have |w|b ≥ |w|a.

We say that letters a and b are twins if b ∈ alph(na) and a ∈ alph(nb). We shall
write a‖b in such a case. It is easy to verify the following properties.

Lemma 5. (1) a‖a.
(2) If a‖b, then |w|a = |w|b.
(3) If |w|a = |w|b and a ∈ alph(nb), then a‖b.
(4) If a ∈ alph(nb) and b ∈ alph(na) then a‖b.
(5) If a‖b, then na = nb.

Our algorithm, deciding whether a given word w is morphically primitive, works
with positions within the word. The i-th position in w is defined by the prefix of
w of length i, which means that the set of positions in w is simply the set

Cw = {0, 1, . . . , |w|}.

The factor of w between positions i and j, with i ≤ j, will be denoted by w[i, j].
In other words, w[0, j] is the prefix of w of length j, and

w[i, j] = w[0, i]−1w[0, j].

Clearly, w[i, i] = ε.
An important role in our considerations play letters with minimal frequency in

w occurring in a given factor. Therefore we define

µ(u) = {a | a ∈ alph(u) and |w|a ≤ |w|b for each b ∈ alph(u)}.

4 ŠTĚPÁN HOLUB

Let F be a morphic factorization of w and EF be its set of expanding letters.
The basic idea behind the algorithm is to classify the positions as left or right,
according to whether they are situated left or right from the expanding letter in
the corresponding factor. Formally, let h be a stable morphism inducing F with
Eh = EF . We define

L = L(F, EF) = {i | i ≥ |h(w[0, i])|},
R = R(F, EF) = {i | i ≤ |h(w[0, i])|},

where L denotes the set of left positions and R the set of right ones. Since the
inequalities in the definition are not strict, it can be observed that L and R are not
disjoint; L ∩R is the set of positions that constitute the morphic factorization F .

The following lemma will become the crucial tool for our algorithm.

Lemma 6. Let F be a morphic factorization of w, induced by a stable morphism
h, and EF be its set of expanding letters. Let i, j ∈ Cw satisfy i < j, i ∈ L and
j ∈ R. If c ∈ µ(w[i, j]), then either c ∈ EF , or there is a letter c′ ∈ alph(w[i, j])
such that c′ ∈ EF , c‖c′ and c ∈ alph(h(c′)).

Proof. The assumptions on i and j imply that alph(w[i, j]) ∩ Eh 6= ∅, and for each
letter b ∈ alph(w[i, j]) ∩ Mh there is a letter a ∈ alph(w[i, j]) ∩ Eh such that
b ∈ alph(h(a)).

Suppose that c /∈ Eh and let c′ ∈ alph(w[i, j]) ∩ Eh be such that c ∈ alph(h(c′)).
Then |w|c ≥ |w|c′ , by Lemma 4, and the assumption c ∈ µ([i, j]) yields |w|c = |w|c′ .
Therefore c and c′ are twins, by Lemma 5(3). �

Let us explain informally the content of the previous lemma. We can call a
factor w[i, j] satisfying i ∈ L and j ∈ R a stretch factor since it expands on both
sides when mapped by h. The claim of the lemma can be then shortly expressed as
follows: the least frequent letter occurring in a stretch factor, or one of its twins,
has to be expanding.

Example 7. A trivial example illustrating the use of Lemma 6 are words w such
that |w|a = 1 for some letter a. Such words are always morphically imprimitive as
soon as w 6= a. It is enough to define Eh = a and h(a) = w.

Connection to Lemma 6 is the following. Note that w itself is always its stretch
factor, which means that the positions 0, |w| lie in L ∩ R for each morphic factor-
ization of w. Lemma 6 now implies a ∈ Eh.

Note that the sets L and R depend on the choice of EF . The ambiguity of EF
therefore becomes very inconvenient. Lemma 6, however, yields a partial remedy for
this difficulty, which is formulated in the following classification of sets of expanding
letters.

Lemma 8. Let F = (w1, w2, . . . , wk) be a morphic factorization of w. Then
EF can be chosen as an arbitrary set of representatives of the collection of sets
µ(w1), µ(w2), . . . , µ(wk). Moreover, for each i ∈ {1, . . . , k} the elements of µ(wi)
are pairwise twins.

Proof. Follows immediately from Lemma 6, since each wi is obviously a stretch
factor independently of the choice of EF . �

In order to fix the choice of the set of expanding letters for a factorization
F = (w1, w2, . . . , wk), we say that EF is the standard set of expanding letters, if

POLYNOMIAL ALGORITHM FOR FIXED POINTS OF NONTRIVIAL MORPHISMS 5

alph(wi) ∩ EF is the letter from µ(wi) that occurs leftmost in wi. Since we are
interested only in the morphic factorization itself, not in the particular choice of
expanding letters, we can always work, without loss of generality, with the standard
set of expanding letters.

3. The algorithm

Note that the problem to find out whether there is a nontrivial morphic factoriza-
tion of a word w is in NP since it is easy to verify whether a suggested factorization
is correct. Suppose that we have somehow obtained the set E of expanding letters
for a morphic factorization. Then we have a unique factorization

w = z0a1z1a2z2 · · · zk−1akzk

such that a1a2 · · · ak ∈ E∗ and alph(z0z1 · · · zk)∩E is empty. It remains to split the
words z1, . . . , zk−1 in a suitable way to create a correct morphic factorization of w.
It should not be surprising that the latter task is not very difficult. The core of the
problem is therefore to find the set of expanding letters, and the main tool to do it
is Lemma 6.

In order to exploit Lemma 6 for less trivial cases than the one described in
Example 7 we have to determine other positions in w that are forced to be either
in L or in R, in addition to 0 and |w|. The following lemmas yield three more rules
that can be applied.

Lemma 9. Let F be a morphic factorization of w with the set of expanding letters
EF . If w[i, i+ 1] = a and a ∈ EF , then i ∈ L and i+ 1 ∈ R.

Proof. Follows directly from the definition of L and R, since a is an expanding
letter. �

Lemma 10. Let w[i, j] = na for some letter a. Then for each morphic factorization
F of w such that a ∈ EF we have i ∈ R and j ∈ L.

Proof. Suppose, for a contradiction, that there is a morphic factorization F of w
such that i /∈ R. This means that there is a letter b in la such that la = u1bu2,
and there is a word tu1bv in the factorization F , where t is nonempty. This implies
that the neighborhood na should be extended into tna, a contradiction with its
maximality. The proof of j ∈ L is analogical. �

Finally, the next lemma says that two different neighborhoods of the same letter
have the same structure of L and R positions.

Lemma 11. Let F be a morphic factorization of w. Let a ∈ EF and let w[i, j] =
w[i′, j′] = na. If i+k ∈ L (i+k ∈ R resp.), with i ≤ i+k ≤ j, then also i′+k ∈ L
(i′ + k ∈ R resp.).

Proof. The claim is very intuitive. Formally, it can be proved as follows. Let h be
the stable morphism inducing F with Eh = EF , and let

w[m,m+ 1] = w[m′,m′ + 1] = a

with i ≤ m < j and i′ ≤ m′ < j′. Note that m and m′ are unique, and

m− (i+ k) = m′ − (i′ + k).(1)

6 ŠTĚPÁN HOLUB

Since a ∈ Eh we have

|h(w[0,m])| −m = |h(w[0,m′])| −m′.(2)

From w[i+k,m] = w[i′+k,m′], if i+k ≤ m, or w[m, i+k] = w[m, i′+k], otherwise,
we deduce

|h(w[0,m])| − |h(w[0, i+ k])| = |h(w[0,m′])| − |h(w[0, i′ + k])|.(3)

Combining the equalities (1)–(3) we obtain

|h(w[0, i+ k])| − (i+ k) = |h(w[0, i′ + k])| − (i′ + k),

which concludes the proof. �

We now have all necessary ingredients to formulate our algorithm. We have
listed several conditions forcing some positions to be left or right. On the other
hand, if we already know some left and right positions, then Lemma 6 may yield
new expanding letters.

We define subsets L(E) and R(E) of Cw as the smallest sets satisfying the following
conditions

(a) 0, |w| ∈ L(E) and 0, |w| ∈ R(E).
(b) If w[i, i+ 1] ∈ E, then i ∈ L(E) and i+ 1 ∈ R(E).
(c) If w[i, j] = na for some a ∈ E, then i ∈ R(E) and j ∈ L(E).
(d) If w[i, j] = w[i′, j′] = na for some a ∈ E, then

• i+ k ∈ L(E) with i ≤ i+ k ≤ j implies i′ + k ∈ L(E); and
• i+ k ∈ R(E) with i ≤ i+ k ≤ j implies i′ + k ∈ R(E).

On the other hand, for two subsets of L and R of Cw we define E(L, R) as the
smallest subset of alph(w) satisfying the following condition:

(f) If i < j, i ∈ L and j ∈ R then E(L, R) contains the letter from µ(w[i, j]) that
has the leftmost occurrence in w[i, j].

The crucial part of our algorithm can now be described by the following simple
pseudocode.

FixedPoint(w)
1 E← ∅;
2 repeat
3 L← L(E); R← R(E);
4 E← E(L, R);
5 until L = L(E) ∧ R = R(E) ;
6 return E, L, R;

To find the corresponding morphic factorization is no more difficult. As noted
above, we have a uniquely given factorization

w = z0a1z1a2z2 · · · zk−1akzk,(4)

where k = |w|E, and we search for words u1, v1, u2, v2, . . . , uk−1, vk−1 such that
• uivi = zi for i = 1, . . . , k − 1
• ai = aj implies ui−1aivi = uj−1ajvj (where we define u0 = z0 and vk = zk).

This task may seem nontrivial, but it turns out that it is enough to split zi

in such a way that ui contains all positions of zi lying in R, and vi contains all
positions lying in L. In particular, it is possible to define ui as the maximal prefix

POLYNOMIAL ALGORITHM FOR FIXED POINTS OF NONTRIVIAL MORPHISMS 7

of zi satisfying |z0a1z1a2 · · · zi−1aiui| ∈ R. Such a prefix exists since the empty
word satisfies the condition.

The whole algorithm looks as follows.

MorphicFactorization(w)
1 E, L, R← FixedPoint(w);
2 k ← |w|E;
3 if E = alph(w)
4 then return Primitive;
5 else return Imprimitive;
6 (z0, a1, z1, a2, . . . , zk−1, ak, zk)← the words from (4);
7 for i = 1, . . . , k − 1
8 do ui ← maximal prefix of zi such that |z0a1z1a2 · · · zi−1aiui| ∈ R ;
9 vi ← u−1

i zi;
10 return (z0a1u1, v1a2u2, . . . , uk−1akzk);

Let us see some examples of how the algorithm works.

Example 12. Let w = caabaaaabaac. We have na = a, nb = aabaa and nc = c. Let
us follow the run of the algorithm FixedPoint. At the beginning we set E = ∅.
Rounds of the repeat loop yield the following:

Round 1. • (a) implies L(∅) = {0, 12}; R(∅) = {0, 12};
• since µ(w[0, 12]) = {b, c}, (f) implies E({0, 12}, {0, 12}) = {c};

c a a b a a a a b a a c0 1 2 3 4 5 6 7 8 9 10 11 12

L L

R R

Round 2. • since c ∈ E, (b) implies 0, 11 ∈ L , 1, 12 ∈ R, and (c) implies 1, 12 ∈ L ,
0, 11 ∈ R;

• µ(w[1, 11]) = {b}, and (f) implies b ∈ E;

c a a b a a a a b a a c0 1 2 3 4 5 6 7 8 9 10 11 12

L L L L

R R R R

nb nb

Round 3. • since b ∈ E, (b) implies 3, 8 ∈ L , 4, 9 ∈ R, and (c) implies 6, 11 ∈ L ,
1, 6 ∈ R; the condition (d) is satisfied.

• the condition (f) does not yield any new elements for E.

c a a b a a a a b a a c0 1 2 3 4 5 6 7 8 9 10 11 12

L L LLL L L

R R R RR R R

The remaining part of the algorithm MorphicFactorization yields the factor-
ization (c,aabaa, aabaa,c) with E = {b, c}.

A slightly modified word from the following example shows the importance of
the condition (d), which was not needed in Example 12.

8 ŠTĚPÁN HOLUB

Example 13. Consider w = caabaaabaac. We have again na = a, nb = aabaa and
nc = c. The rounds of the repeat loop now yield the following (the first two rounds
are very similar as in Example 12):

Round 1. • (a) implies L(∅) = {0, 11}; R(∅) = {0, 11};
• since µ(w[0, 11]) = {b, c}, (f) implies E({0, 11}, {0, 11}) = {c};

Round 2. • since c ∈ E, (b) implies 0, 10 ∈ L , 1, 11 ∈ R, and (c) implies 1, 11 ∈ L,
0, 10 ∈ R;

• µ(w[1, 10]) = {b}, and (f) implies b ∈ E;
Round 3. • since b ∈ E, (b) implies 3, 7 ∈ L , 4, 8 ∈ R, and (c) implies 6, 10 ∈ L ,

1, 5 ∈ R;

c a a b a a a b a a c0 1 2 3 4 5 6 7 8 9 10 11

L L L LL L L

R R R RR R R

nb nb

• since w[1, 6] = w[5, 10] = nb, we use (d) to obtain that
◦ 1 ∈ L ∩ R implies 5 ∈ L ∩ R;
◦ 5 ∈ L ∩ R implies 9 ∈ L ∩ R;
◦ 10 ∈ L ∩ R implies 6 ∈ L ∩ R;
◦ 6 ∈ L ∩ R implies 2 ∈ L ∩ R;

c a a b a a a b a a c0 1 2 3 4 5 6 7 8 9 10 11

L L L L LLL L L L

R R R RR RR R R R

• w[1, 2], w[5, 6] and w[9, 10] are stretch factors, whence (f) implies a ∈ E;
Round 4. • we already have E = alph(w), and we obtain L = R = {0, 1, . . . , 11}.

Therefore w is morphically primitive.

We shall now declare and proof the correctness of the algorithms.

Theorem 14. Let w be a word, let E, L, R be the output of FixedPoint(w), and
let F be the output of MorphicFactorization(w).

(1) F is a morphic factorization of w such that EF = E.
(2) Let F ′ be a morphic factorization of w, and let EF ′ be its standard set of

expanding letters. Then E ⊆ EF ′ , L ⊆ L(F ′, EF ′) and R ⊆ R(F ′, EF ′).
In particular, w is morphically primitive if and only if E = alph(w).

Proof. (1) Denote v0 = z0 and uk = zk. It is obvious from the construction that
|vi−1aiui|EF

= 1 holds for each i = 1, . . . , k. It remains to show that aj = am

implies vj−1 = vm−1 and uj = um. For each i ∈ {1, 2, . . . , k} denote

di = |z0a1z1a2 · · · zi−1ai|.
We first claim that both uj and um are prefixes of ra. To see this, suppose that
one of them, say uj , is not; then ra is a prefix of uj . This implies, by condition
(c), that dj + |ra| ∈ L. Also dj + |uj | ∈ R by the definition of uj . Therefore
w[dj + |ra|, dj + |uj |] is a stretch factor that does not contain any expanding letter,
a contradiction with E = E(L, R) and the condition (f).

Since both uj and um are prefixes of ra, they are both prefixes of the word
ziai+1zi+1· · · akzk for both i = j and i = m. Therefore both uj and um are prefixes

POLYNOMIAL ALGORITHM FOR FIXED POINTS OF NONTRIVIAL MORPHISMS 9

of both zj and zm since neither uj nor um contains an expanding letter. Condition
(d) and the definition of uj and um now implies uj = um.

The proof that vj−1 = vm−1 is analogical.
(2) Note that the algorithm FixedPoint adds elements into sets E, L or R fol-

lowing the rules given by conditions (a)–(f). It is transparent that the condition (a)
corresponds to the trivial fact that 0 and |w| are in L ∩ R for all morphic factor-
izations of w; conditions (b)–(d) correspond to Lemma 9–Lemma 11 respectively;
and the condition (f) corresponds to Lemma 6. An inspection of just mentioned
lemmas implies that all additions into E, L or R made by the algorithm are forced,
in the sense expressed by the claim (2) of the present theorem.

Finally, alph(w) = E is equivalent to the fact that the corresponding factorization
is trivial, which concludes the proof. �

It is not difficult to see that the complexity of the algorithm is polynomial in
n = |w|. We give just some basic hints.

• The cardinality of E is bound by n, whence the repeat loop runs at most
alph(w)+1 times, since the cardinality of E grows in each round except the
last one.
• Consider the construction of sets L(E), R(E). To check each of the conditions

(a)–(d) takes polynomial amount of time. After each check either one of
the sets grows, or the construction is over. Therefore the construction is
polynomial.
• Similarly, the construction of E, which is ruled just by the condition (f), is

polynomial.
• Therefore FixedPoint runs in polynomial time. Polynomiality of the rest

of MorphicFactorization is obvious.

4. Conclusion

The algorithm we have given yields a morphic factorization that is minimal. This
means that each morphic factorization is a refinement of the found one, possibly
up to residual ambiguity given by the choice of twins, and by the position of cuts
between two expanding letters. The minimality is given by the fact that the algo-
rithm yields a list of “obligatory” left and right positions. The factorization itself
then easily follows, including information about the above mentioned ambiguity.

We hope that the information yielded by the algorithm can help to answer other
questions about morphical primitivity and imprimivity of words.

References

[1] David Hamm and Jeffrey Shallit. Characterization of finite and one-sided infinite fixed points

of morphisms on free monoids. Technical Report CS-99-17, University of Waterloo, July 1999.
[2] Tom Head. Fixed languages and the adult languages of OL schemes. Internat. J. Comput.

Math., 10(2):103–107, 1981/82.

[3] Daniel Reidenbach and Johannes C. Schneider. Morphically primitive words. In Proceedings
of the 6th International Conference on Words, WORDS 2007, pages 262–272.

[4] Jeffrey Shallit and Ming wei Wang. On two-sided infinite fixed points of morphisms. Theor.

Comput. Sci., 270(1-2):659–675, January 2002.

