
Chapter 9

Introduction to convolutional codes

We now introduce binary linear convolutional codes, which like binary linear block codes are
useful in the power-limited (low-SNR, low-ρ) regime. In this chapter we will concentrate on
rate-1/n binary linear time-invariant convolutional codes, which are the simplest to understand
and also the most useful in the power-limited regime. Here is a canonical example:

Example 1. Figure 1 shows a simple rate-1/2 binary linear convolutional encoder. At each
time k, one input bit uk comes in, and two output bits (y1k , y2k) go out. The input bits enter a
2-bit shift register, which has 4 possible states (uk−1, uk−2). The output bits are binary linear
combinations of the input bit and the stored bits.

- n - n y1k = uk + uk−1 + uk−2 -

6 6

input bits
uk

-t D uk−1
-t D uk−2

t

- n
? y2k = uk + uk−2 -

Figure 1. Four-state rate-1/2 binary linear convolutional encoder.

The code C generated by this encoder is the set of all output sequences that can be produced
in response to an input sequence u = (. . . , uk , uk+1, . . .). The code is linear because if (y1,y2)
and (y′

2) are the code sequences produced by u and u′, respectively, then (y1 + y′
2)1,y

′
1,y2 + y′

is the code sequence produced by u + u′ .

As in the case of linear block codes, this implies that the minimum Hamming distance dfree

between code sequences is the minimum Hamming weight of any nonzero codeword. By inspec-
tion, we can see that the Hamming weight of the output sequence when the input sequence is
(. . . , 0, 0, 1, 0, 0, . . .) is 5, and that this is the only weight-5 sequence starting at a given time k.
Of course, by time-invariance, there is such a weight-5 sequence starting at each time k.

We will see that maximum-likelihood sequence decoding of a convolutional code on an AWGN
channel can be performed efficiently by the Viterbi algorithm (VA), with complexity proportional
to the number of states (in this case 4). As with block codes, the probability of error per bit
Pb(E) may be estimated by the union bound estimate (UBE) as

√
Pb(E) ≈ Kb(C)Q (γc(C)(2Eb/N0)) ,

117

118 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

where the nominal coding gain is γc(C) = Rdfree, R is the code rate in input bits per output
bit, and Kb(C) is the number of minimum-weight code sequences per input bit. For this code,
dfree = 5, R = 1/2, and Kb(C) = 1, which means that the nominal coding gain is γc(C) = 5/2
(4 dB), and the effective coding gain is also 4 dB. There is no block code that can achieve an
effective coding gain of 4 dB with so little decoding complexity.

As Example 1 shows, convolutional codes have two different kinds of structure: algebraic struc-
ture, which arises from convolutional encoders being linear systems, and dynamical structure,
which arises from convolutional encoders being finite-state systems. We will first study their
linear system structure. Then we will consider their finite-state structure, which is the key to
ML decoding via the VA. Finally, we will show how to estimate performance using the UBE,
and will give tables of the complexity and performance of the best known rate-1/n codes.

9.1 Linear time-invariant systems over finite fields

We start with a little linear system theory, namely the theory of linear time-invariant (LTI)
systems over finite fields. The reader is probably familiar with the theory of discrete-time LTI
systems over the real or the complex field, which are sometimes called discrete-time real or
complex filters. The theory of discrete-time LTI systems over an arbitrary field F is similar,
except that over a finite field there is no notion of convergence of an infinite sum.

9.1.1 The input/output map of an LTI system

In general, a discrete-time system is characterized by an input alphabet U , an output alphabet Y,
and an input/output map from bi-infinite discrete-time input sequences u = (. . . , uk , uk+1, . . .)
to output sequences y = (. . . , yk, yk+1, . . .). Here we will take the input and output alphabets
to be a common finite field, U = Y = Fq . The indices of the input and output sequences range
over all integers in Z and are regarded as time indices, so that for example we may speak of uk

as the value of the input at time k.

Such a system is linear if whenever u maps to y and u′ maps to y′, then u + u′ maps to
y + y′ and αu maps to αy for any α ∈ Fq . It is time-invariant if whenever u maps to y, then
Du maps to Dy, where D represents the delay operator, namely the operator whose effect is to
delay every element in a sequence by one time unit; i.e., u′ = Du means u′ = uk−1 for all k.k

It is well known that the input/output map of an LTI system is completely characterized by
its impulse response g = (. . . , 0, 0, . . . , 0, g0, g1, g2, . . .) to an input sequence e0 which is equal
to 1 at time zero and 0 otherwise. The expression for g assumes that the LTI system is causal,
which implies that the impulse response g must be equal to 0 before time zero.

The proof of this result is as follows. If the input is a sequence ek which is equal to 1 at time
k and zero otherwise, then since ek = Dke0, by time invariance the output must be Dk g. Then
since an arbitrary input sequence u can be written as u =

�
k ukek, by linearity the output

must be the linear combination
y =

�

k

uk D
k g.

The output yk at time k is thus given by the convolution

yk =
�

�≤k k

uk� gk−k� , (9.1)

′

9.1. LINEAR TIME-INVARIANT SYSTEMS OVER FINITE FIELDS 119

where we use the fact that by causality gk−k� = 0 if k < k . In other words, y is the convolution
of the input sequence u and the impulse response g:

y = u ∗ g.

It is important to note that the sum (??) that defines yk is well defined if and only if it is
a sum of only a finite number of nonzero terms, since over finite fields there is no notion of
convergence of an infinite sum. The sum (??) is finite if and only if one of the following two
conditions holds:

(a) There are only a finite number of nonzero elements gk in the impulse response g;

(b) For every k, there are only a finite number of nonzero elements uk� with k′ ≤ k in the input
sequence u. This occurs if and only if there are only a finite number of nonzero elements
uk with negative time indices k. Such a sequence is called a Laurent sequence.

Since we do not in general want to restrict g to have a finite number of nonzero terms, we
will henceforth impose the condition that the input sequence u must be Laurent, in order to
guarantee that the sum (??) is well defined. With this condition, we have our desired result:

Theorem 9.1 (An LTI system is characterized by its impulse response) If an LTI
system over Fq has impulse response g, then the output sequence in response to an arbitrary
Laurent input sequence u is the convolution y = u ∗ g.

9.1.2 The field of Laurent sequences

A nonzero Laurent sequence u has a definite starting time or delay, namely the time index of
the first nonzero element: del u = min{k : uk �= 0}. The zero sequence 0 is Laurent, but has
no definite starting time; by convention we define del 0 = ∞. A causal sequence is a Laurent
sequence with non-negative delay.

The (componentwise) sum of two Laurent sequences is Laurent, with delay not less than the
minimum delay of the two sequences. The Laurent sequences form an abelian group under
sequence addition, whose identity is the zero sequence 0. The additive inverse of a Laurent
sequence x is −x.

The convolution of two Laurent sequences is a well-defined Laurent sequence, whose delay
is equal to the sum of the delays of the two sequences. The nonzero Laurent sequences form
an abelian group under convolution, whose identity is the unit impulse e0. The inverse under
convolution of a nonzero Laurent sequence x is a Laurent sequence x−1 which may be determined
by long division, and which has delay equal to del x−1 = −del x.

Thus the set of all Laurent sequences forms a field under sequence addition and convolution.

9.1.3 D-transforms

The fact that the input/output map in any LTI system may be written as a convolution y = u∗g
suggests the use of polynomial-like notation, under which convolution becomes multiplication.

=
�

120	 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

Therefore let us define the formal power series u(D) =
�

k ukD
k , g(D) =

�
k gk D

k , and
y(D) =

�
k yk D

k . These are called “D-transforms,” although the term “transform” may be
misleading because these are still time-domain representations of the corresponding sequences.

In these expressions D is algebraically just an indeterminate (place-holder). However, D may
also be regarded as representing the delay operator, because if the D-transform of g is g(D),
then the D-transform of Dg is Dg(D).

These expressions appear to be completely analogous to the “z-transforms” used in the theory
of discrete-time real or complex LTI systems, with the substitution of D for z−1 . The subtle
difference is that in the real or complex case z is often regarded as a complex number in the
“frequency domain” and an expression such as g(z−1) as a set of values as z ranges over C; i.e.,
as a true frequency-domain “transform.”

It is easy to see that the convolution y = u ∗ g then translates to

y(D) = u(D)g(D),

if for multiplication of D-transforms we use the usual rule of polynomial multiplication,

yk uk� gk−k� ,
k�

since this expression is identical to (??). Briefly, convolution of sequences corresponds to mul-
tiplication of D-transforms.

In general, if x(D) and y(D) are D-transforms, then the product x(D)y(D) is well defined when
either x(D) or y(D) is finite, or when both x(D) and y(D) are Laurent. Since a causal impulse
response g(D) is Laurent, the product u(D)g(D) is well defined whenever u(D) is Laurent.

Addition of sequences is defined by componentwise addition of their components, as with vector
addition. Correspondingly, addition of D-transforms is defined by componentwise addition. In
other words, D-transform addition and multiplication are defined in the same way as polynomial
addition and multiplication, and are consistent with the addition and convolution operations for
the corresponding sequences.

It follows that the set of all Laurent D-transforms x(D), which are called the Laurent power
series in D over Fq and denoted by Fq ((D)), form a field under D-transform addition and
multiplication, with additive identity 0 and multiplicative identity 1.

9.1.4 Categories of D-transforms

We pause to give a brief systematic exposition of various other categories of D-transforms.

Let f (D) =
�

k∈Z fk D
k be the D-transform of a sequence f . We say that f or f(D) is “zero

on the past” (resp. “finite on the past”) if it has zero (resp. a finite number) of nonzero fk with
negative time indices k, and “finite on the future” if it has a finite number of nonzero fk with
non-negative time indices k. f(D) is finite if it is finite on both past and future.

(a) (Polynomials	 Fq [D].) If f(D) is zero on the past and finite on the future, then f(D) is
a polynomial in D over Fq . The set of all polynomials in D over Fq is denoted by Fq [D].
D-transform addition and multiplication of polynomials is the same as polynomial addition
and multiplication. Under these operations, Fq [D] is a ring, and in fact an integral domain
(see Chapter 7).

121 9.1. LINEAR TIME-INVARIANT SYSTEMS OVER FINITE FIELDS

(b) (Formal power series Fq [[D]].) If f (D) is zero on the past and unrestricted on the future,
then f(D) is a formal power series in D over Fq . The set of all formal power series in D
over Fq is denoted by Fq [[D]]. Under D-transform addition and multiplication, Fq [[D]] is
a ring, and in fact an integral domain. However, Fq [[D]] is not a field, because D has no
inverse in Fq [[D]]. A formal power series corresponds to a causal sequence.

(c) (Laurent polynomials	 Fq [D, D−1].) If f (D) is finite, then f(D) is a Laurent polynomial
in D over Fq . The set of all Laurent polynomials in D over Fq is denoted by Fq [D, D−1].
Under D-transform addition and multiplication, Fq [D, D−1] is a ring, and in fact an integral
domain. However, Fq [D, D−1] is not a field, because 1 + D has no inverse in Fq [D, D−1]. A
Laurent polynomial corresponds to a finite sequence.

(d) (Laurent power series Fq ((D)).) If f (D) is finite on the past and unrestricted on the future,
then f (D) is a Laurent power series in D over Fq . The set of all Laurent power series in
D over Fq is denoted by Fq ((D)). As we have already seen, under D-transform addition
and multiplication, Fq ((D)) is a field; i.e., every nonzero f(D) ∈ Fq ((D)) has an inverse
f−1(D) ∈ Fq ((D)) such that f (D)f −1(D) = 1, which can be found by long division of
D-transforms; e.g., over any field, the inverse of D is D−1, and the inverse of 1 + D is
1 − D + D2 − D3 + · · ·.

(e) (Bi-infinite power series Fq [[D, D−1]].) If f (D) is unrestricted on the past and future, then
f(D) is a bi-infinite power series in D over Fq . The set of all bi-infinite power series in
D over Fq is denoted by Fq [[D, D−1]]. As we have seen, D-transform multiplication is not
well defined for all f (D), g(D) ∈ Fq [[D, D−1]], so Fq [[D, D−1]] is merely a group under
D-transform addition.

(f) (Rational functions Fq (D).) A Laurent power series f(D) (or the corresponding sequence f)
is called rational if it can be written as f(D) = n(D)/d(D), where n(D) and d(D) �= 0 are
polynomials in Fq [D], and n(D)/d(D) denotes the product of n(D) with d−1(D). The set
of all rational power series in D over Fq is denoted by Fq (D). It is easy to verify that that
Fq (D) is closed under D-transform addition and multiplication. Moreover, the multiplicative
inverse of a nonzero rational D-transform f(D) = n(D)/d(D) is f −1(D) = d(D)/n(D),
which is evidently rational. It follows that Fq (D) is a field.

It is easy to see that Fq [D] ⊂ Fq [D, D−1] ⊂ Fq (D) ⊂ Fq ((D)), since every polynomial is
a Laurent polynomial, and every Laurent polynomial is rational (for example, D−1 + 1 =
(1 + D)/D). The rational functions and the Laurent power series have the nicest algebraic
properties, since both are fields. Indeed, the rational functions form a subfield of the Laurent
power series, as the rational numbers Q form a subfield of the real numbers R. The polynomials
form a subring of the rational functions, as the integers Z form a subring of Q.

The following exercise shows that an infinite Laurent D-transform f (D) is rational if and only
if the corresponding sequence f eventually becomes periodic. (This should remind the reader of
the fact that a real number is rational if and only if its decimal expansion is eventually periodic.)

Exercise 1 (rational = eventually periodic). Show that a Laurent D-transform f (D) is rational
if and only if the corresponding sequence f is finite or eventually becomes periodic. [Hints: (a)
show that a sequence f is eventually periodic with period P if and only if its D-transform f(D)
can be written as f(D) = g(D)/(1 − DP), where g(D) is a Laurent polynomial; (b) using the
results of Chapter 7, show that every nonzero polynomial d(D) ∈ Fq [D] divides 1 −DP for some
integer P .]

122 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

9.1.5 Realizations of LTI systems

So far we have characterized an LTI system over Fq by its input/output map, which we have
shown is entirely determined by its impulse response g or the corresponding D-transform g(D).
The only restriction that we have placed on the impulse response is that it be causal; i.e., that
g(D) be a formal power series in Fq [[D]]. In order that the input/output map be well-defined,
we have further required that the input u(D) be Laurent, u(D) ∈ Fq (D).

In this subsection we consider realizations of such an LTI system. A realization is a block
diagram whose blocks represent Fq -adders, Fq -multipliers, and Fq -delay (memory) elements,
which we take as our elementary LTI systems. An Fq -adder may have any number of inputs
in Fq , and its output is their (instantaneous) sum. An Fq -multiplier may have any number of
inputs in Fq , and its output is their (instantaneous) product. An Fq -delay element has a single
input in Fq , and a single output which is equal to the input one time unit earlier.

For example, if an LTI system has impulse response g(D) = 1 + αD + βD3, then it can be
realized by the realization shown in Figure 2. In this realization there are three delay (memory)
elements, arranged as a shift register of length 3. It is easy to check that the input/output map
is given by y(D) = u(D) + αDu(D) + βD3u(D) = u(D)g(D).

? n
? n

-

-

u −k 2-u −k 1-uk

? n
? n

uk−3
D D D

-

-

α × β ×

-

+ + - yk = uk + αuk−1 + βuk−3

Figure 2. Realization of an LTI system with impulse response g(D) = 1 + αD + βD3 .

More generally, it is easy to see that if g(D) is finite (polynomial) with degree deg g(D) = ν,
then an LTI system with impulse response g(D) can be realized similarly, using a shift register
of length ν.

The state of a realization at time k is the set of contents of its memory elements. For example,
in Figure 2 the state at time k is the 3-tuple (uk−1, uk−2, uk−3). The state space is the set of all
possible states. If a realization over Fq has only a finite number ν of memory elements, then the

3state space has size qν , which is finite. For example, the state space size in Figure 2 is q .

Now suppose that we consider only realizations with a finite number of blocks; in particular,
with a finite number of memory elements, and thus a finite state space size. What is the most
general impulse response that we can realize? If the input is the impulse e0(D) = 1, then
the input is zero after time zero, so the impulse response is determined by the autonomous
(zero-input) behavior after time zero. Since the state space size is finite, it is clear that the
autonomous behavior must be periodic after time zero, and therefore the impulse response must
be eventually periodic— i.e., rational. We conclude that finite realizations can realize only
rational impulse responses.

Conversely, given a rational impulse response g(D) = n(D)/d(D), where n(D) and d(D) �= 0
are polynomial, it is straightforward to show that g(D) can be realized with a finite number
of memory elements, and in fact with ν = max{deg n(D), deg d(D)} memory elements. For
example, Figure 3 shows a realization of an LTI system with the impulse response g(D) =

123 9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES

(1 + αD + βD3)/(1 − D2 − D3) using ν = 3 memory elements. Because the impulse response is
infinite, the realization necessarily involves feedback, in contrast to a feedbackfree realization of
a finite impulse response as in Figure 2.

vk−2 + vk−3 + �

uk vk vk−1 vk−2 vk−3
D D D

α × β ×

-

? n
? n+ +

-

-

-

n
6

-

? n
? n

-

-

-
? n+
-

yk = vk + αvk−1 + βvk−3

Figure 3. Realization of an LTI system with impulse response
g(D) = (1 + αD + βD3)/(1 − D2 − D3).

Exercise 2 (rational realizations). Generalize Figure 2 to realize any rational impulse response
g(D) = n(D)/d(D) with ν = max{deg n(D), deg d(D)} memory elements.

In summary:

Theorem 9.2 (finitely realizable = rational) An LTI system with causal (thus Laurent)
impulse response g(D) has a finite realization if and only if g(D) is rational. If

νg(D) = n(D)/d(D), then there exists a realization with state space size q , where ν =
max{deg n(D), deg d(D)}. The realization can be feedbackfree if and only if g(D) is polynomial.

9.2 Rate-1/n binary linear convolutional codes

A rate-1/n binary linear convolutional encoder is a single-input, n-output LTI system over the
binary field F2. Such a system is characterized by the n impulse responses {gj (D), 1 ≤ j ≤ n},
which can be written as an n-tuple g(D) = (g1(D), . . . , gn(D)).

If the input sequence u(D) is Laurent, then the n output sequences {yj (D), 1 ≤ j ≤ n} are
well defined and are given by yj (D) = u(D)gj (D) More briefly, the output n-tuple y(D) =
(y1(D), . . . , yn(D)) is given by y(D) = u(D)g(D).

The encoder is polynomial (or “feedforward”) if all impulse responses gj (D) are polynomial.
In that case there is a shift-register realization of g(D) as in Figure 1 involving a single shift
register of length ν = deg g(D) = maxj deg gj (D). The encoder state space size is then 2ν .

Example 1 (Rate-1/2 convolutional encoder). A rate-1/2 polynomial binary convolutional
encoder is defined by a polynomial 2-tuple g(D) = (g1(D), g2(D)). A shift-register realization
of g(D) involves a single shift register of length ν = max {deg g1(D), deg g2(D)} and has a state
space of size 2ν . For example, the impulse response 2-tuple g(D) = (1 + D2 , 1 + D + D2) is
realized by the 4-state rate-1/2 encoder illustrated in Figure 1.

More generally, the encoder is realizable if all impulse responses gj (D) are causal and rational,
since each response must be (finitely) realizable by itself, and we can obtain a finite realization
of all of them by simply realizing each one separately.

′ ′ ′

124 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A more efficient (and in fact minimal, although we will not show this yet) realization may
be obtained as follows. If each gj (D) is causal and rational, then gj (D) = nj (D)/dj (D) for
polynomials nj (D) and dj (D) �= 0, where by reducing to lowest terms, we may assume that
nj (D) and dj (D) have no common factors. Then we can write

1(D), n2(D), . . . , nn(D))
=

n′(D)
g(D) =

(n
d(D) d(D)

,

where the common denominator polynomial d(D) is the least common multiple of the denomi-
nator polynomials dj (D), and n′(D) and d(D) have no common factors. In order that g(D) be
causal, d(D) cannot be divisible by D; i.e., d0 = 1.

Now, as the reader may verify by extending Exercise 2, this set of n impulse responses may be
realized by a single shift register of length ν = max{deg n′(D), deg d(D)} memory elements, with
feedback coefficients determined by the common denominator polynomial d(D) as in Figure 3,
and with the n outputs formed as n different linear combinations of the shift register contents,
as in Figure 1. To summarize:

Theorem 9.3 (Rate-1/n convolutional encoders) If g(D) = (g1(D), g2(D), . . . , gn(D)) is
the set of n impulse responses of a rate-1/n binary linear convolutional encoder, then there
exists a unique denominator polynomial d(D) with d0 = 1 such that we can write each gj (D)
as gj (D) = nj (D)/d(D), where the numerator polynomials nj (D) and d(D) have no common
factor. There exists a (minimal) realization of g(D) with ν = max{deg n′(D), deg d(D)} memory
elements and thus 2ν states, which is feedbackfree if and only if d(D) = 1.

9.2.1 Finite-state representations of convolutional codes

Because a convolutional encoder is a finite-state machine, it may be characterized by a finite
state-transition diagram. For example, the encoder of Example 1 has the 4-state state-transition
diagram shown in Figure 4(a). Each state is labelled by two bits representing the contents of
the shift register, and each state transition is labelled by the two output bits associated with
that transition.

Alternatively, a finite-state encoder may be characterized by a trellis diagram, which is simply
a state-transition diagram with the states sk at each time k shown separately. Thus there are
transitions only from states sk at time k to states sk+1 at time k + 1. Figure 4(b) shows a
segment of a trellis diagram for the encoder of Example 1, with states labelled as in Figure 4(a).

n - n - n - n
� HHH

0000 HHH
00

� HHH
00�� � � ��

�- ������ q � � n �j n �j n �j n111 10 PPPP�� 10 ��
H 10 ��

�� 10 H 10 ��
H 10* � HHH

* �� HHH
*HHH01 · · · @� H @� H @� H · · · �� 1100 � n � 01 �@�

00 � 00 i1101 ?6
������ 01 �@ � 01 �@�

� j � j � j
)10�� � 01* n * n * n

�
PPPP 01 �@R R ��@R�� n - n - n - n11 � @ 11 �

�@@ 11 @ 11

Figure 4. (a) Four-state state transition diagram; (b) Corresponding trellis diagram.

9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES 125

9.2.2 Rate-1/n binary linear convolutional codes

A rate-1/n binary linear convolutional code C is defined as the set of “all” output n-tuples
y(D) that can be generated by a rate-1/n binary linear convolutional encoder. If the encoder
is characterized by an impulse response n-tuple g(D), then C is the set of output n-tuples
y(D) = u(D)g(D) as the input sequence u(D) ranges over “all” possible input sequences.

How to define the set of “all” input sequences is actually a subtle question. We have seen
that if g(D) is not polynomial, then we must restrict the input sequences u(D) to be Laurent
in order that the output y(D) be well-defined. On the other hand, u(D) should be permitted
to be infinite, because it can happen that some finite code sequences are generated by infinite
input sequences (this phenomenon is called catastrophicity; see below).

The following definitions of the set of “all” input sequences meet both these criteria and are
therefore OK; all have been used in the literature.

• The set F2((D)) of all formal Laurent series;

• The set F2(D) of all rational functions;

• The set F2[[D]] of all formal power series.

Here we will use the set F2((D)) of formal Laurent series. As we have seen, F2((D)) is a
field under D-transform addition and multiplication, and includes the field F2(D) of rational
functions as a proper subfield. Since g(D) is rational, the set F2(D) would suffice to generate
all finite code sequences; however, we prefer F2((D)) because there seems no reason to constrain
input sequences to be rational. We prefer either of these to F2[[D]] because F2((D)) and F2(D)
are time-invariant, whereas F2[[D]] is not; moreover, F2[[D]] is not a field, but only a ring.

The convolutional code generated by g(D) ∈ (F2(D))n will therefore be defined as

C = {y(D) = u(D)g(D), u(D) ∈ F2((D))}.

The rational subcode of C is the set of all its rational sequences,

Cr = {y(D) ∈ C : y(D) ∈ (F2(D))n},

and the finite subcode of C is the set of all its Laurent polynomial sequences,

Cf = {y(D) ∈ C : y(D) ∈ (F2[D, D−1])n}.

Since F2[D, D−1] ⊂ F2(D) ⊂ F2((D)), we have Cf ⊂ Cr ⊂ C.

Exercise 3 (input/output properties)

(a) Show that y(D) is an n-tuple of formal Laurent series, y(D) ∈ (F2((D)))n .

(b) Show that y(D) is rational if and only if u(D) is rational; i.e.,

Cr = {y(D) = u(D)g(D), u(D) ∈ F2(D)}.

(c) Show that y(D) is finite if and only if u(D) = a(D)lcm{dj (D)}/ gcd{nj (D)}, where a(D)
is finite, lcm{dj (D)} is the least common multiple of the denominators dj (D) of the gj (D), and
gcd{nj (D)} is the greatest common divisor of their numerators.

′

′
′

126 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A convolutional code C has the group property under D-transform addition, since if y(D) =
u(D)g(D) and y′(D) = u′(D)g(D) are any two convolutional code n-tuples generated by two
input sequences and u(D) and u′(D), respectively, then the n-tuple y(D) + y′(D) is generated
by the input sequence u(D) + u′(D). It follows that C is a vector space over the binary field
F2, an infinite-dimensional subspace of the infinite-dimensional vector space (F2((D)))n of all
Laurent n-tuples.

At a higher level, a rate-1/n convolutional code C is a one-dimensional subspace with generator
g(D) of the n-dimensional vector space (F2((D)))n of all Laurent n-tuples over the Laurent field
F2((D)). Similarly, the rational subcode Cr is a one-dimensional subspace with generator g(D)
of the n-dimensional vector space (F2(D))n of all rational n-tuples over the rational field F2(D).
In these respects rate-1/n convolutional codes are like (n, 1) linear block codes.

9.2.3 Encoder equivalence

Two generator n-tuples g(D) and g′(D) will now be defined to be equivalent if they generate
the same code, C = C . We will shortly seek the best encoder to generate any given code C.

Theorem 9.4 (Rate-1/n encoder equivalence) Two generator n-tuples g(D), g′(D) are
equivalent if and only if g(D) = u(D)g′(D) for some nonzero rational function u(D) ∈ F2(D).

Proof. If the two encoders generate the same code, then g(D) must be a sequence in the code
generated by g′(D), so we have g(D) = u(D)g′(D) for some nonzero u(D) ∈ F2((D)). Moreover
g(D) is rational, so from Exercise 3(b) u(D) must be rational. Conversely, if g(D) = u(D)g′(D)
and y(D) ∈ C, then y(D) = v(D)g(D) for some v(D) ∈ F ((D)); thus y(D) = v(D)u(D)g′(D)
and y(D) ∈ C , so C ⊆ C′. Since g′(D) = g′(D)/u(D), a similar argument can be used in the
other direction to show C′ ⊆ C, so we can conclude C = C .

Thus let g(D) = (g1(D), g2(D), . . . , gn(D)) be an arbitrary rational generator n-tuple. We
can obtain an equivalent polynomial generator n-tuple by multiplying g(D) by any polynomial
which is a multiple of all denominator polynomials dj (D), and in particular by their least
common multiple lcm{dj (D)}. Thus we have:

Corollary 9.5 Every generator n-tuple g(D) is equivalent to a polynomial n-tuple g′(D).

A generator n-tuple g(D) is called delay-free if at least one generator has a nonzero term at
time index 0; i.e., if g �= 0. If g(D) is not delay-free, then we can eliminate the delay by using
instead the equivalent generator n-tuple g′(D) = g(D)/Ddel g(D), where del g(D) is the smallest
time index k such that gk �= 0. Thus:

Corollary 9.6 Every generator n-tuple g(D) is equivalent to a delay-free n-tuple g′(D), namely
g′(D) = g(D)/Ddel g(D).

A generator n-tuple g(D) is called catastrophic if there exists an infinite input sequence u(D)
that generates a finite output n-tuple y(D) = u(D)g(D). Any realization of g(D) must thus
have a cycle in its state-transition diagram other than the zero-state self-loop such that the
outputs are all zero during the cycle.

127 9.2. RATE-1/N BINARY LINEAR CONVOLUTIONAL CODES

There is a one-to-one correspondence between the set of all paths through the trellis diagram of
a convolutional encoder and the set {u(D)} of all input sequences. However, the correspondence
to the set of all output sequences {u(D)g(D)}— i.e., to the convolutional code C generated by
the encoder— could be many-to-one. For example, if the encoder is catastrophic, then there are
at least two paths corresponding to the all-zero output sequence, and from the group property
of the encoder there will be at least two paths corresponding to all output sequences. In fact,
the correspondence between convolutional code sequences and trellis paths is one-to-one if and
only if g(D) is noncatastrophic.

By Exercise 3(c), y(D) is finite if and only if u(D) = a(D)lcm{dj (D)}/ gcd{nj (D)} for some
finite a(D). Since lcm{dj (D)} is also finite, u(D) can be infinite if and only if gcd{nj (D)} has
an infinite inverse. This is true if and only gcd{nj (D)} �= Dd for some integer d. In summary:

Theorem 9.7 (Catastrophicity) A generator n-tuple g(D) is catastrophic if and only if all
numerators nj (D) have a common factor other than D.

Example 2. The rate-1/2 encoder g(D) = (1 + D2 , 1 + D + D2) is noncatastrophic, since
the polynomials 1 + D2 and 1 + D + D2 are relatively prime. However, the rate-1/2 encoder
g(D) = (1 + D2 , 1+ D) is catastrophic, since 1 + D2 and 1 + D have the common divisor 1 + D;
thus the infinite input 1/(1 + D) = 1 + D + D2 + . . . leads to the finite output y(D) = (1 + D, 1)
(due to a self-loop from the 11 state to itself with output 00).

If g(D) is catastrophic with greatest common factor gcd{nj (D)}, then we can easily find
an equivalent noncatastrophic generator n-tuple by dividing out the common factor: g′(D) =
g(D)/ gcd{nj (D)}. For instance, in Example 2, we should replace (1 + D2 , 1+ D) by (1 + D, 1).

In summary, we can and should eliminate denominators and common numerator factors:

Corollary 9.8 Every generator n-tuple g(D) is equivalent to a unique (up to a scalar multiple)
noncatastrophic delay-free polynomial n-tuple g′(D), namely

g′(D) =
lcm{dj (D)}

g(D).
gcd{nj (D)}

Thus every rate-1/n binary convolutional cade C has a unique noncatastrophic delay-free poly-
nomial generator n-tuple g(D), which is called canonical. Canonical generators have many nice
properties, including:

• The finite subcode Cf is the subcode generated by the finite input sequences.

• The feedbackfree shift-register realization of g(D) is minimal over all equivalent encoders.

In general, it has been shown that a convolutional encoder is minimal — that is, has the
minimal number of states over all encoders for the same code— if and only if it is non-
catastrophic and moreover there are no state transitions to or from the zero state with all-
zero outputs, other than from the zero state to itself. For a rate-1/n encoder with generator
g(D) = (n1(D), . . . , nn(D))/d(D), this means that the numerator polynomials nj (D) must have
no common factor, and that the degree of the denominator polynomial d(D) must be no greater
than the maximum degree of the numerators.

′

128 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

A systematic encoder for a rate-1/n convolutional code is one in which the input sequence
appears unchanged in one of the n output sequences. A systematic encoder for a code generated
by polynomial encoder g(D) = (g1(D), . . . , gn(D)) may be obtained by multiplying all generators
by 1/g1(D) (provided that g10 = 1). For example, g(D) = (1, (1 + D + D2)/(1 + D2)) is a
systematic encoder for the code generated by (1 + D2 , 1 + D + D2).

A systematic encoder is always delay-free, noncatastrophic and minimal. Sometimes systematic
encoders are taken as an alternative class of nonpolynomial canonical encoders.

9.2.4 Algebraic theory of rate-k/n convolutional codes

There is a more general theory of rate-k/n convolutional codes, the main result of which is as
follows. Let C be any time-invariant subspace of the vector space of all y(D) ∈ (Fq ((D)))n. A
canonical polynomial encoder for C may be constructed by the following greedy algorithm:

Initialization: set i = 0 and C0 = {0};
Do loop: if Ci = C, we are done, and k = i;

otherwise, increase i by 1 and take any polynomial y(D) of
least degree in C \ Ci as gi(D).

The shift-register realization of the resulting k×n generator matrix G(D) = {gi(D), 1 ≤ i ≤ k}
is then a minimal encoder for C, in the sense that no other encoder for C has fewer memory
elements. The degrees νi = deg gi(D) = max1≤j≤n deg gij (D), 1 ≤ i ≤ k, are uniquely deter-
mined by this construction, and are called the “constraint lengths” (or controllability indices)
of C; their maximum νmax is the (controller) memory of C, and their sum ν =

�
i νi (the “over-

all constraint length”) determines the size 2ν of the state space of any minimal encoder for C.
Indeed, this encoder turns out to have every property one could desire, except for systematicity.

9.3 Terminated convolutional codes

A rate-1/n terminated convolutional code Cµ is the code generated by a polynomial convolutional
encoder g(D) (possibly catastrophic) when the input sequence u(D) is constrained to be a
polynomial of degree less than some nonnegative integer µ:

Cµ = {u(D)g(D) | deg ui(D) < µ}.

In this case the total number of possibly nonzero input bits is k = µ, and the total number
of possibly nonzero output bits is n = n(µ + ν), where ν = max deg gj (D) is the shift-register
length in a shift-register realization of g(D). Thus a terminated convolutional code may be
regarded as an (n′, k) = (n(µ + ν), µ) binary linear block code.

The trellis diagram of a terminated convolutional code is finite. For example, Figure 5 shows
the trellis diagram of the 4-state (ν = 2) rate-1/2 encoder of Example 1 when µ = 5, which
yields a (14, 5, 5) binary linear block code.

Exercise 4. Show that if the (catastrophic) rate-1/1 binary linear convolutional code gener-
ated by g(D) = 1 + D is terminated with deg u(D) < µ, then the resulting code is a (µ+1, µ, 2)
SPC code. Conclude that any binary linear SPC code may be represented by a 2-state trellis
diagram.

129 9.4. THE VITERBI ALGORITHM

n - n - n - n - n - nn - 00
� HHH

0000 n - 00 HHH
00

� HHH
00 00 00HHH

HHH � � ��
j n j n �j n �j n �j n �� �
H 10 H 10 ��

H 10
@�

� HHH

H 10 ��
H 10 �

� ��
HHH

HHH
* ��* HHH

* �@ @�
� @�

� HHH� j � j � j � j �H n H n H n H n H n@ j 01 �@�
R n �@

� 01
��� 01 �@�� 01 �@� � 01

R n �@@
* * * *
R n �@@ R- n@@ 11 � - 11 � - 11 � @ 11 �

Figure 5. Trellis diagram of a terminated rate-1/2 convolutional encoder.

Exercise 5. Show that if the (catastrophic) rate-1/1 binary linear convolutional code gen-
erated by g(D) = 1 + D + D3 is terminated with µ = 4, then the resulting code is a (7, 4, 3)
Hamming code.

9.4 Maximum likelihood sequence detection: The VA

A convolutional code sequence y(D) = u(D)g(D) may be transmitted through an AWGN chan-
nel in the usual fashion, by mapping each bit yjk ∈ {0, 1} to s(yjk) ∈ {±α} via the usual 2-PAM
map. We denote the resulting sequence by s(y(D)). At the output of the channel, the received
sequence is

r(D) = s(y(D)) + n(D),

where n(D) is an iid Gaussian noise sequence with variance N0/2 per dimension.

As usual, maximum-likelihood sequence detection is equivalent to minimum-distance (MD)
detection; i.e., find the code sequence y(D) such that ‖r(D) − s(y(D))‖2 is minimum. In turn,
since s(y(D)) is binary, this is equivalent to maximum-inner-product (MIP) detection: find the
code sequence y(D) that maximizes

〈r(D), s(y(D))〉 =

�

k

〈rk, s(yk)〉 =
�

j

�

k

rkj s(ykj).

It may not be immediately clear that this is a well-posed problem, since all sequences are
bi-infinite. However, we will now develop a recursive algorithm that solves this problem for
terminated convolutional codes; it will then be clear that the algorithm continues to specify a
well-defined maximum-likelihood sequence detector as the length of the terminated convolutional
code goes to infinity.

The algorithm is the celebrated Viterbi algorithm (VA), which some readers may recognize
simply as “dynamic programming” applied to a trellis diagram.

The first observation is that if we assign to each branch in the trellis a “metric” equal to
‖rk − s(yk)‖2, or equivalently −〈rk, s(yk)〉, where yk is the output n-tuple associated with that
branch, then since each path through the trellis corresponds to a unique code sequence, MD
or MIP detection becomes equivalent to finding the least-metric (“shortest”) path through the
trellis diagram.

The second observation is that the initial segment of the shortest path, say from time 0 through
time k, must be the shortest path to whatever state sk it passes through at time k, since if there
were any shorter path to sk, it could be substituted for that initial segment to create a shorter
path overall, contradiction. Therefore it suffices at time k to determine and retain for each state

130 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

sk at time k only the shortest path from the unique state at time 0 to that state, called the
“survivor.”

The last observation is that the time-(k + 1) survivors may be determined from the time-k
survivors by the following recursive “add-compare-select” operation:

(a) For each branch from a state at time k to a state at time k + 1, add the metric of that
branch to the metric of the time-k survivor to get a candidate path metric at time k + 1;

(b) For each state at time	 k + 1, compare the candidate path metrics arriving at that state
and select the path corresponding to the smallest as the survivor. Store the survivor path
history from time 0 and its metric.

At the final time µ + ν, there is a unique state, whose survivor must be the (or at least a)
shortest path through the trellis diagram of the terminated code.

The Viterbi algorithm has a regular recursive structure that is attractive for software or hard-
ware implementation. Its complexity is clearly proportional to the number of trellis branches per
unit of time (“branch complexity”), which in the case of a binary rate-k/n 2ν -state convolutional
code is 2k+ν .

For infinite trellises, there are a few additional issues that must be addressed, but none lead
to problems in practice.

First, there is the issue of how to get started. In practice, if the algorithm is simply initiated
with arbitrary accumulated path metrics at each state, say all zero, then it will automatically
synchronize in a few constraint lengths.

Second, path histories need to be truncated and decisions put out after some finite delay. In
practice, it has been found empirically that with high probability all survivors will have the
same history prior to about five constraint lengths in the past, so that a delay of this magnitude
usually suffices to make the additional probability of error due to premature decisions negligible,
for any reasonable method of making final decisions.

In some applications, it is important that the decoded path be a true path in the trellis; in
this case, when decisions are made it is important to purge all paths that are inconsistent with
those decisions.

Finally, the path metrics must be renormalized from time to time so that their magnitude does
not become too great; this can be done by subtracting the minimum metric from all of them.

In summary, the VA works perfectly well on unterminated convolutional codes. Maximum-
likelihood sequence detection (MLSD) of unterminated codes may be operationally defined by
the VA.

More generally, the VA is a general method for maximum-likelihood detection of the state
sequence of any finite-state Markov process observed in memoryless noise. For example, it
can be used for maximum-likelihood sequence detection of digital sequences in the presence of
intersymbol interference.

′

9.5. PERFORMANCE ANALYSIS OF CONVOLUTIONAL CODES 131

9.5 Performance analysis of convolutional codes

The performance analysis of convolutional codes is based on the notion of an “error event.”

Suppose that the transmitted code sequence is y(D) and the detected code sequence is y′(D).
Each of these sequences specifies a unique path through a minimal code trellis. Typically these
paths will agree for long periods of time, but will disagree over certain finite intervals. An error
event corresponds to one of these finite intervals. It begins when the path y′(D) first diverges
from the path y(D), and ends when these two paths merge again. The error sequence is the
difference e(D) = y′(D) − y(D) over this interval.

By the group property of a convolutional code C, such an error sequence e(D) is a finite code
sequence in C. If the encoder g(D) is noncatastrophic (or if the code is a terminated code), then
e(D) = ue(D)g(D) for some finite input sequence ue(D).

The probability of any such finite error event in AWGN is given as usual by
√

Pr(y′(D) | y(D)) = Q (‖s(y′(D)) − s(y(D))‖2/2N0).

As in the block code case, we have

‖s(y′(D)) − s(y(D))‖2 = 4α2dH (y , y).

The minimum error event probability is therefore governed by the minimum Hamming distance
between code sequences y(D). For convolutional codes, this is called the free distance dfree.

By the group property of a convolutional code, dfree is equal to the minimum Hamming weight
of any finite code sequence y(D); i.e., a code sequence that starts and ends with semi-infinite
all-zero sequences. In a minimal trellis, such a code sequence must start and end with semi-
infinite all-zero state sequences. Thus dfree is simply the minimum weight of a trellis path that
starts and ends in the zero state in a minimal trellis, which can easily be found by a search
through the trellis using a version of the VA.

Example 1 (cont.) From the state-transition diagram of Figure 4(a) or the trellis diagram
of Figure 4(b), it is clear that the the free distance of the example 4-state rate-1/2 code is
dfree = 5, and that the only code sequences with this weight are the generator sequence g(D) =
(1 + D2 , 1 + D + D2) and its time shifts Dk g(D).

For a rate-k/n binary convolutional code, it makes sense to normalize the error probability
per unit time of the code— i.e., per k input or n output bits. The probability of an error event
starting at a given time, assuming that no error event is already in progress at that time, may
be estimated by the union bound estimate as

√
Pc(E) ≈ Kmin(C)Q (2α2dfree/N0) (9.2)

√
= Kmin(C)Q (γc(C)(2Eb/N0)), (9.3)

where Eb = nα2/k is the average energy per bit, and

γc(C) = dfree(k/n) (9.4)

is the nominal coding gain of the convolutional code C, while Kmin(C) is the number of error
events of weight dfree in C per unit time. Note that the nominal coding gain γc(C) = dfree(k/n)

132 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

is defined analogously to the block code case. Note also that for a time-invariant code C, the
error event probability Pc(E) is independent of time.

For direct comparison to block codes, the error probability per bit may be estimated as:
√

Pb(E) = Pc(E)/k ≈ Kb(C)Q (γc(C)(2Eb/N0)), (9.5)

where the error coefficient is Kb(C) = Kmin(C)/k.

Example 1 (cont.) The nominal coding gain of the Example 1 code is γc(C) = 5/2 (4 dB) and
its error coefficient is Kb(C) = Kc(C) = 1, so the UBE is

√
Pb(E) ≈ Q (5Eb/N0).

Compare the (8, 4, 4) RM block code, which has the same rate (and the same trellis complexity),
but has nominal coding gain γc(C) = 2 (3 dB) and error coefficient Kb(C) = 14/4 = 3.5.

In general, for the same rate and “complexity” (measured by minimal trellis complexity),
convolutional codes have better coding gains than block codes, and much lower error coefficients.
They therefore usually yield a better performance vs. complexity tradeoff than block codes, when
trellis-based ML decoding algorithms such as the VA are used for each. Convolutional codes
are also more naturally suited to continuous sequential data transmission than block codes.
Even when the application calls for block transmission, terminated convolutional codes usually
outperform binary block codes. On the other hand, if there is a decoding delay constraint, then
block codes will usually slightly outperform convolutional codes.

Tables 1-3 give the parameters of the best known convolutional codes of short to moderate
constraint lengths for rates 1/2, 1/3 and 1/4, which are well suited to the power-limited regime.

We see that it is possible to achieve nominal coding gains of 6 dB with as few as 16 states
with rate-1/3 or rate-1/4 codes, and effective coding gains of 6 dB with as few as 32 states, to
the accuracy of the union bound estimate (which becomes somewhat optimistic as these codes
become more complex). (There also exists a time-varying rate-1/2 16-state convolutional code
with dfree = 8 and thus γc = 4 (6 dB).) With 128 or 256 states, one can achieve effective coding
gains of the order of 7 dB. ML sequence detection using the Viterbi algorithm is not a big thing
for any of these codes.

133 9.5. PERFORMANCE ANALYSIS OF CONVOLUTIONAL CODES

Table 9.1: Rate-1/2 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 3 1.5 1.8 1 1.8
2 5 2.5 4.0 1 4.0
3 6 3 4.8 2 4.6
4 7 3.5 5.2 4 4.8
5 8 4 6.0 5 5.6
6 10 5 7.0 46 5.9
6 9 4.5 6.5 4 6.1
7 10 5 7.0 6 6.7
8 12 6 7.8 10 7.1

Table 9.2: Rate-1/3 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 5 1.67 2.2 1 2.2
2 8 2.67 4.3 3 4.0
3 10 3.33 5.2 6 4.7
4 12 4 6.0 12 5.3
5 13 4.33 6.4 1 6.4
6 15 5 7.0 11 6.3
7 16 5.33 7.3 1 7.3
8 18 6 7.8 5 7.4

Table 9.3: Rate-1/4 binary linear convolutional codes

ν dfree γc dB Kb γeff (dB)
1 7 1.75 2.4 1 2.4
2 10 2.5 4.0 2 3.8
3 13 3.25 5.1 4 4.7
4 16 4 6.0 8 5.6
5 18 4.5 6.5 6 6.0
6 20 5 7.0 37 6.0
7 22 5.5 7.4 2 7.2
8 24 6 7.8 2 7.6

134 CHAPTER 9. INTRODUCTION TO CONVOLUTIONAL CODES

9.6 More powerful codes and decoding algorithms

We conclude that by use of the optimal VA with moderate-complexity convolutional codes like
those in Tables 1-3, we can close about 7 dB of the 12 dB gap between the Shannon limit and
uncoded performance at error rates of the order of Pb(E) ≈ 10−6 .

To get closer to the Shannon limit, one uses much longer and more powerful codes with
suboptimal decoding algorithms. For instance:

1. Concatenation of an inner code with ML decoding with an outer Reed-Solomon (RS) code
with algebraic decoding is a powerful approach. For the inner code, it is generally better to use
a convolutional code with VA decoding than a block code.

2. A convolutional code with an arbitrarily long constraint length may be decoded by a
recursive tree-search technique called sequential decoding. There exist various sequential de-
coding algorithms, of which the fastest is probably the Fano algorithm. In general, sequential
algorithms follow the best code path through the code trellis (which becomes a tree for long
constraint lengths) as long as the path metric exceeds its expected value for the correct path.
When a wrong branch is taken, the path begins to look bad; the algorithm then backtracks and
tries alternative paths until it again finds a good one.

The amount of decoding computation is a random variable with a Pareto (power-law) dis-
tribution; i.e., Pr(number of computations ≥ N)
 N −α . A Pareto distribution has a finite
mean when the Pareto exponent α is greater than 1. The rate at which α = 1 is called the
computational cut-off rate R0. On the AWGN channel, at low code rates, the computational
cut-off rate occurs when Eb/N0 is about 3 dB away from the Shannon limit; thus an effective
coding gain of the order of 9 dB can be obtained at error rates of the order of Pb(E) ≈ 10−6 .

3. In the past decade, these techniques have been superseded by capacity-approaching codes
such as turbo codes and low-density parity-check codes with iterative decoding. Such powerful
coding schemes will be the principal topic of the latter part of this course.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

