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Abstract

We consider repetitions in words and solve a longstanding open problem about

the relation between the period of a word and the length of its longest unbordered

factor (where factor means uninterrupted subword). A word u is called bordered

if there exists a proper prefix that is also a suffix of u, otherwise it is called

unbordered. In 1979 Ehrenfeucht and Silberger raised the following problem:

What is the maximum length of a word w, w.r.t. the length τ of its longest

unbordered factor, such that τ is shorter than the period π of w. We show that,

if w is of length 7
3τ or more, then τ = π which gives the optimal asymtotic

bound.
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periodicity, unbordered words

1. Introduction

When repetitions in words are considered then two notions are central: the

period, which gives the least amount by which a word has to be shifted in order

to overlap with itself, and the shortest border, which denotes the least (nontrivial)

overlap of a word with itself. Both notions are related in several ways, for example,
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the period of an unbordered word is its length, and the length of the shortest

border of a bordered word is not larger than its period. Moreover, a shortest

border itself is always unbordered. Periodicity also restricts occurrences of long

unbordered factors (that is, uninterrupted substrings). Deeper dependencies

between the period of a word and its unbordered factors have been investigated

and exploited in applications for decades; see also references to related work

below.

Let us recall the problem by Ehrenfeucht and Silberger. Let w be a (finite)

word of length |w|, let τ(w) denote the maximum length of unbordered factors

of w, and let π(w) denote the period of w. Certainly, τ(w) ≤ π(w) since a period

of w is also a period of its factors. Moreover, it is well-known that τ(w) = π(w)

when |w| ≥ 2π(w). So, the interesting cases are those where |w| < 2π(w).

Actually, the interesting cases are also the most common ones since by far most

words have a period that is longer than one half of their length. When such

words are considered, a bound on |w|, enforcing τ(w) = π(w), that depends on

τ(w) becomes more interesting than the one depending on π(w).

The problem by Ehrenfeucht and Silberger asks about a bound on |w|

depending on τ(w) such that τ(w) = π(w) is enforced. In this paper we establish

the following fact for all finite words w:

If |w| ≥ 7

3
τ(w) then τ(w) = π(w) .

This bound on the length of w is asymtotically tight; see the following example

by Assous and Pouzet.

Previous Work

Ehrenfeucht and Silberger raised the problem described above in [1]. They

conjectured that |w| ≥ 2 τ(w) implies τ(w) = π(w). That conjecture was falsified

shortly thereafter by Assous and Pouzet [2] by the following example:

w = anban+1banban+2banban+1ban (1)
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where n ≥ 0 and τ(w) = 3n+6 (note that ban+1banban+2 and an+2banban+1b

are the two longest unbordered factors of w) and π(w) = 4n+7 and |w| = 7n+10,

that is, τ(w) < π(w) and |w| = 7/3 τ(w) − 4 > 2τ(w). Assous and Pouzet in

turn conjectured that 3τ(w) is the bound on the length of w for establishing

τ(w) = π(w). Duval [3] did the next step towards answering the conjecture. He

established that |w| ≥ 4 τ(w) − 6 implies τ(w) = π(w) and conjectured that,

if w possesses an unbordered prefix of length τ(w), then |w| ≥ 2 τ(w) implies

τ(w) = π(w). Despite some partial results [4, 5, 6] towards a solution, Duval’s

conjecture was only solved in 2004 [7, 8] with a new proof given in [9]. It turned

out that the optimal bound is 2 τ(w)− 1. Note that a positive answer to (the

extended version of) Duval’s conjecture lowered the bound for Ehrenfeucht and

Silberger’s problem to 3 τ(w)− 2, in accordance with the conjecture by Assous

and Pouzet [2].

However, there remained a gap of τ(w)/3 between that bound and the largest

known example which is given above. The bound of 7
3τ(w) has been conjectured

in [7, 8]. This conjecture is proved here, and the problem by Ehrenfeucht and

Silberger is finally solved.

Other Related Work

The result related most closely to the problem by Ehrenfeucht and Silberger

is the so called critical factorization theorem (CFT).

The CFT states the following: Let w = uv be a factorization of a word w

into u and v. The local period of w at the point |u| is the length q of the shortest

square centered at |u|. More formally, let x be the shortest word such that x is a

prefix of vy and a suffix of zu for some y and z; then q = |x|. It is straightforward

to see that q is not larger than the period of w. The factorization uv is called

critical if q equals the period of w. The CFT states that a critical factorization

exists for every nonempty word w, and moreover, a critical factorization uv can

always be found such that |u| is shorter than the period of w. The CFT was

conjectured first by Schützenberger [10], proved by Césari and Vincent [11], and

brought into its current form by Duval [12]. Crochemore and Perrin [13] found
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a new elegant proof of the CFT using lexicographic orders, and realized a direct

application of the theorem in a new string-matching algorithm.

How does the CFT relate to the problem by Ehrenfeucht and Silberger?

Observe that the shortest square x2 centered at some point in w is always such

that x is unbordered. If x results from a critical factorization and occurs in w

(recall that x can, by definition, outreach the limits of w), then w contains an

unbordered factor of the length of its period. Therefore, it follows from the CFT

that |w| > 2π(w)−2 implies τ(w) = π(w). This bound is asymptotically optimal.

In this paper, we establish the asymptotically optimal bound on |w| enforcing

the equality τ(w) = π(w) in terms of τ(w) instead of π(w). This rounds off the

long lasting research effort on the mutual relationship between the two basic

properties of a word w, that is, τ(w) and π(w).

2. Notation and Basic Facts

Let us fix a finite set A of letters, called alphabet, for the rest of this paper.

Let A∗ denote the monoid of all finite words over A including the empty word

denoted by ε. Let w = uv ∈ A∗. Then u−1w = v and wv−1 = u. In general, we

denote variables over A by a, b, c, and d and variables over A∗ are usually denoted

by f , g, h, r through z, and by Greek letters, including their subscripted and

primed versions. The letters i through q are to range over the set of nonnegative

integers.

Let w = a1a2 · · · an. We denote the length n of w by |w|, in particular |ε| = 0.

Let 1 ≤ i ≤ j ≤ n. Then u = aiai+1 · · · aj is called a factor of w. A factor u

is called proper when u 6= w, that is, i 6= 0 or j 6= n. Let 0 ≤ i ≤ n. Then

u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w, and v = ai+1ai+2 · · · an
is called a suffix of w, denoted by v ≤s w. A prefix or suffix is called proper

when 0 < i < n. The longest common prefix w of two words u and v is denoted

by u∧p v and is defined by w = u, if u ≤p v, or w = v, if v ≤p u, or wa ≤p u and

wb ≤p v for some different letters a and b. The longest common suffix of u and

v, denoted u ∧s v, is defined similarly, as one would expect. Two words u and
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v, with |u| ≤ |v|, overlap each other, if there is a word w, with |v| < |w| < |uv|,

such that u ≤p w and v ≤s w or v ≤p w and u ≤s w. An integer 1 ≤ p ≤ n is

a period of w if ai = ai+p for all 1 ≤ i ≤ n − p. The smallest period of w is

called the period of w, denoted by π(w). A nonempty word u is called a border

of a word w, if w = uy = zu for some nonempty words y and z. We call w

bordered, if it has a border, otherwise w is called unbordered. Let τ(w) denote

the maximum length of unbordered factors of w, and τ2(w) denote the maximum

length of unbordered factors occurring at least twice in w. We have that

τ(w) ≤ π(w) . (2)

Indeed, let u = b1b2 · · · bτ(w) be an unbordered factor of w. If τ(w) > π(w) then

bi = bi+π(w) for all 1 ≤ i ≤ τ(w)− π(w) and b1b2 · · · bτ(w)−π(w) is a border of u;

a contradiction.

Let C be a total order on A. Then C extends to a lexicographic order, also

denoted by C, on A∗ with u C v if either u ≤p v or xa ≤p u and xb ≤p v and

a C b. Let Ca denote a lexicographic order where the maximum letter a is fixed

in the respective order on A. A C-maximum suffix α of a word w is defined as a

suffix of w such that v C α for all v ≤s w.

The following remarks state some facts about maximum suffixes which are

folklore. They are included in this paper to make it self-contained.

Remark 2.1. Let w be a bordered word. The shortest border u of w is unbor-

dered, and w = uzu. The longest border of w has length equal to |w| − π(w).

Indeed, if u is a border of w, then each border of u is also a border of w.

Therefore u is unbordered, and it does not overlap with itself. If v is a border of w

then |w| − |v| is a period of w. Conversely, the prefix of w of length |w| − π(w)

is a border of w.

Remark 2.2. Any maximum suffix of a word w occurs only once in w and is

longer than |w| − π(w).

Indeed, let α be the C-maximum suffix of w for some order C. Then w = xαy

and α C αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w),

5



then uα ≤p w gives a contradiction again.

Remark 2.3. Let ϑ be its own maximum suffix w.r.t. some order C, and let x

be a prefix of ϑ of length π(ϑ). Then x is unbordered.

Indeed, suppose on the contrary that x is bordered, that is, x = ghg for some

nonempty g. Let ϑ = xy. We have gy C ϑ = ghgy, by assumption, which implies

y C hgy. Note that gy is not a prefix of ϑ otherwise |gh| < |x| is a period of ϑ

contradicting the choice of x. Hence, zb ≤p y and za ≤p hgy for some different

letters a and b with b C a. But, y ≤p ϑ, since |x| = π(w), implies zb ≤p ϑ which

contradicts the maximality of ϑ (since zb ≤p ϑ C za ≤p hgy). These arguments

are illustrated by the following figure.

ϑ

x

g h g

y

z a z b

Let an integer q with 0 ≤ q < |w| be called a point in w. A nonempty word

x is called a repetition word at point q if w = uv with |u| = q and there exist

words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length

of the shortest repetition word at point q in w. We call π(w, q) the local period

at point q in w. Note that the repetition word of length π(w, q) at point q

is necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with

u, v 6= ε and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then q

is called a critical point. Let C be an order on A and J be its inverse. Then

the shorter of the C-maximum suffix and the J-maximum suffix of some word

w is called a critical suffix of w. This terminology is justified by the following

version of the so called critical factorization theorem (CFT) [13] which relates

maximum suffixes and critical points.
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Theorem 2.4 (CFT). Let w be a nonempty word and γ be a critical suffix of

w. Then |w| − |γ| is a critical point.

Remark 2.5. Let rs be an unbordered word where |r| is a critical point. Then

s and r do not overlap and sr is unbordered with |s| as a critical point.

3. Special Factorizations

Let us highlight the following definitions. They are not standard and will be

central to the proof of Theorem 4.1. Let the words α and w be given.

Definition 3.1. The longest prefix of α strictly shorter than α that is also a

suffix of w will be called the α-suffix of w.

Definition 3.2. The number |wy−1|, where y is the α-suffix of w, is called the

α-period of w, denoted by πα(w).

In particular, |w| − |α| < πα(w) ≤ |w|.

Definition 3.3. The shortest prefix x of w satisfying πα(x) = πα(w) is called

the α-critical prefix of w.

Remark 3.4. Note that the α-suffix of w can be empty, but it cannot be equal

to α. For example, the abb-suffix of aabb is empty. Therefore, the abb-critical

prefix of aabb is aabb itself. In general, if α is unbordered and it is a suffix of w,

then the α-suffix of w is empty.

Let x be the α-critical prefix and y the α-suffix of w. Note that πα(w) ≤

|x| ≤ |w| and, in particular, πα(w) = |x| = |w| if y = ε. Consider the following

illustration of the definitions with ga 6≤p α.

7



w

g ≤p α a

x

y ≤p α

Remark 3.5. Note that za = x, where a is a letter, is the α-critical prefix of w

if and only if za is the longest prefix of w satisfying πα(z) < πα(za).

Example 3.6. Consider w = ababbaababab of length 12 and α = ababb. The

α-suffix of w is abab, whence πα(w) = 8. The α-critical prefix of w is ababbaababa

of length 11, since

πg(ababbaababa) = 8 , and πg(ababbaabab) = 6 .

a b a b b a a b a b a b

4. Solution of the Ehrenfeucht–Silberger Problem

This entire section is devoted to the proof of the main result of this paper:

the solution of the Ehrenfeucht–Silberger problem by Theorem 4.1.

Theorem 4.1. Let w ∈ A∗. If |w| ≥ 7
3τ(w) then τ(w) = π(w).

We identify two particular unbordered factors of w and show that the as-

sumption of the theorem, namely that these factors are strictly smaller than

3
7 |w|, leads to τ(w) = π(w).

Note that the claim holds trivially if every letter in w occurs only once

because in that case τ(w) = π(w) = |w|. We now define a factorization of w

which is of central importance to our approach. Let

w = v′uzuv
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such that |u| = τ2(w) and z is of maximum length (recall that τ2(w) denotes the

maximum length of unbordered factors occurring at least twice in w). Moreover,

let us fix

t = v ∧p zu and t′ = v′ ∧s uz

for the rest of this proof.

It is clear that such a factorization exists whenever a letter occurs more than

once in w. However, it is not necessarily unique. Suppose, for instance, that t′u

contains an unbordered factor û, distinct from u but of the same length. Then

we have a factorization v̂′ûẑûv̂ of w, which also satisfies the requirements. Note,

moreover, that if we define t̂ and t̂′ analogously to t and t′, then we have

t−1v = t̂−1v̂ and v′t′
−1

= v̂′(t̂′)
−1
. (3)

v′ u z u v

v̂′ û ẑ û v̂

t′

t̂′

t

t̂

In one case it will be important to require that t′u does not contain such

an unbordered factor û. That is, we shall single out the leftmost possible

factorization (within bounds given by the factor t′uzut). We shall refer to this

condition by saying that t′ is as short as possible. If this additional assumption

is not stated explicitly, then we consider an arbitrary factorization maximazing

|u| and |z|. The assumption is helpful in view of the following claim.

Claim 4.2. Let t′ be as short as possible, and let ϑ be a maximum suffix of t′u

w.r.t. some order C. Then |ϑ| ≤ |u|.

Proof. Suppose that there is a maximum suffix ϑ of t′u strictly longer than u.

The prefix û of ϑ of length π(ϑ) is unbordered by Remark 2.3. It is of length at

least |u|, since otherwise u is bordered. From |u| = τ2(w) the equality |û| = |u|

follows since û occurs at least twice in w; a contradiction with the minimality of

t′.
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The example of long words where the period exceeds the length of the longest

unbordered factors by Assous and Pouzet (see page 3) turns out to highlight the

most interesting cases of this proof. We therefore use its instance with n = 2 as

a running example throughout this section. With this example a factorization of

the above kind is illustrated by the following figure.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

We start the proof by the following claim, which investigates a special

situation, easy to exclude.

Claim 4.3. Let ϑ be the maximum suffix of u w.r.t. some order C. If v0ϑ is

a prefix of ϑv for some nonempty word v0, then uzuϑ−1v0ϑ is unborderd.

Proof. Suppose on the contrary that uzuϑ−1v0ϑ has a shortest border h. Note

that h is, like every shortest border of a factor in w, not longer than |u| = τ2(w).

In fact |h| < |u| since |h| = |u| contradicts the maximality of |z|. If |ϑ| < |h| < |u|

then ϑ occurs more than once in u contradicting Remark 2.2, which states that

a maximum suffix occurs only once in a word. And finally, if |h| ≤ |ϑ| then u

is bordered by h since then h ≤s ϑ ≤s u; a contradiction which concludes the

proof.

As the reader already noted, our main tool will be considering maximum

suffixes w.r.t. certain lexicographic orders. Let us therefore fix an order C. Let

α denote the C-maximum suffix of u and β the J-maximum suffix of u, where

J is the inverse order of C. Let yα and yβ denote the α- and β-suffix of uv.

Moreover, let y be the shorter of yα and yβ and let ξ be either α or β so that

y = yξ. Let γ denote the shorter of α and β. Note that |y| < |γ| in any case.

The following figure shall illustrate the considered setting by an example

where v 6= t and |α| < |β| and |yα| > |yβ |, that is, we have y = yβ and ξ = β

and γ = α.
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v′ u

β = ξ

yβ = y

α = γ

yα

ta

z u

β = ξ

α = γ tb

v

yα

yβ = y

The same notation for our running example is depicted next.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

yβ = y ta tb

yαα = u

β = ξ = γ

yβ = y

α = u

β = ξ = γ yβ = y

It turns out that the proof splits into two main situations according to

whether or not |v| > |ty|. Each of the cases yields a long unbordered factor of w.

4.1. The First Factor

In this subsection we shall suppose |v| > |ty| and consider the ξ-critical prefix

of w. Note that the following claim holds independently of whether or not v 6= t.

Claim 4.4. If |v| > |ty|, then τ(w) ≥ |γzuvy−1|.

Proof. Supose |v| > |ty|. The inequality implies that the ξ-critical prefix of

w can be written as v′uzuv0d, where d is a letter. Let g denote the ξ-suffix of

v′uzuv0.
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Assume first that gd = ξ as illustrated by the next figure.

v′ u

y = yξ

ξ = gd

z u

ξ = gd

v

y = yξ

v0d

gd = ξ

Then the word uzuv0d is unbordered, by Claim 4.3. Recall that |γ| ≤ |ξ| ≤ |u|

and that |v0d| ≥ |vy−1|, since v′uzuv0d is the ξ-critical prefix of w. Therefore

we have τ(w) ≥ |uzuv0d| ≥ |γzuvy−1| as claimed.

Suppose next gc is a prefix of ξ with c 6= d. (Note that if gd 6= ξ, then c 6= d

is implied by the definition of the ξ-critical prefix.) We distinguish two cases on

the order of c and d in C.

Suppose c C d and consider βzuv0d. Recall that |β| > |y| and |v| ≤ |v0d|+ |y|.

Hence, either βzuv0d is unbordered and we get τ(w) ≥ |βzuv0d| ≥ |γzuvy−1|

and we are done, or βzuv0d has a shortest border hd.

Suppose |h| ≤ |g| and |h| < |β| as illustrated by the next figure.

v′ u

gc

hc

β

hd

z u

β

v

v0d

gd

hd

Then hd is a prefix of β and the occurrence of hc ≤s gc in ξ, and hence also in

u, contradicts the maximality of β since hd J hc.
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Suppose |g| < |h| < |β| as illustrated by the next figure.

v′ u

β = ξ

gc

hd

gd

z u

β = ξ

v

v0d

gd

hd

Then gd occurs in u and ξ = β. Indeed, gc ≤p ξ gives a contradiction if ξ = α

since gc C gd. But now, h contradicts the assumption that g is the ξ-suffix of

v′uzuv0.

It remains that |β| ≤ |h| which implies β ≤p h as illustrated next.

v′ u

β t

hd

z u

β

v

v0d

β

hd

The choice of u implies |h| < |u|. Hence, either h = βv0 or the word uzuv0h
−1β

is unbordered, by Claim 4.3. If uzuv0h
−1β is unbordered, then |u| > |hd|

and |v| ≤ |v0d| + |y| imply τ(w) ≥ |uzuv0h−1β| > |βzuv0d| ≥ |γzuvy−1|. If

uzuv0h
−1β is bordered, then h = βv0, which implies v0d ≤p t (recall that

t = v ∧p zu), and |v| ≤ |ty|, since |v| ≤ |v0d| + |y|; a contradiction. This

completes the case c C d.

The case d C c is similar considering αzuv0d and the claim is thereby proved.

Remark 4.5. Note that we have arguments for v′ symmetric to those for v.

That is, if we define α′, β′, y′, ξ′ and γ′ for v′ analogously, then Claim 4.4 implies

the following: If |v′| > |t′y′|, then τ(w) ≥ |y′−1v′uzγ′|.

13



4.2. The Second Factor

In this section, we investigate the possibility |v| ≤ |ty|. We shall also suppose

that v is not a prefix of zu, that is, t 6= v. In the rest of the paper, whenever

t 6= v, the first letter of t−1v will be denoted by b and the first letter of t−1zu by

a. In other words, the word ta is a prefix of zuv and tb a prefix of v, with a 6= b.

Let δ denote the word such that δa is the Ca-maximum suffix of t′uta for

some fixed order Ca such that a is the maximum in A. The word δ plays an

important role in this section, similar to the role of ξ in the previous section.

We first point out that every factor of t′uv is strictly less than δa w.r.t. Ca if

|v| ≤ |ty|. In particular, δa does not occur in t′uv in such a case.

Claim 4.6. Let f be a factor of t′uv. If |v| ≤ |ty|, then f Ca δa and f 6= δa.

Proof. If f occurs in t′ut or y, then the claim follows from the maximality

of δa.

Assuming |v| ≤ |ty|, it remains that there is a prefix f ′b of f such that

f ′ ≤s t
′ut. Then f ′a ≤s t

′uta, and the maximality of δa implies f ′a Ca δa. The

claim now follows from f ′b ≤p f and f ′b Ca f ′a.

The following claim introduces a further long unbordered factor of w, namely

δt−1zuvy−1δ , where yδ is the δa-suffix of w.

Claim 4.7. The word δt−1zuvy−1δ is unbordered, and |yδ| < |v| − |t|.

Proof. If |yδ| ≥ |v| − |t|, then there is a suffix t0 of t′ut such that t0b is a prefix

of yδ, and hence, a prefix of δ. This contradicts the maximality of δa w.r.t. Ca

since t0a is a suffix of t′uta, and hence, a suffix of δa. So, we have |yδ| < |v| − |t|.

In particular, we have that the δa-critical prefix of δt−1zuv is strictly longer

than δt−1zut, whence it can be written as δt−1zutvδd, where d is a letter. The

definition of the critical prefix implies that |tvδd| ≥ |v| − |yδ|. Let g denote the

δa-suffix of δt−1zutvδ. Since δa does not occur in t′uv by Claim 4.6, we have

that gd 6= δa. Therefore gc is a prefix of δa and c 6= d. Moreover, we deduce

d Ca c from Claim 4.6.
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Suppose that |tvδd| > |v| − |yδ|. Then there is a suffix g′ of g such that

g′d is a prefix of yδ, and hence, also of δ. We obtain a contradiction with the

maximality of δa, since g′c is a factor of δa. The situation is illustrated in the

following figure.

v′ u

t

δ

yδ
a

z u

t

δ

b

v

yδ

tvδd
g′d

gdgc

δt−1zutvδd

Therefore |tvδd| = |v| − |yδ| and δt−1zuvy−1δ is the δa-critical prefix of

δt−1zuv.

Suppose that δt−1zuvy−1δ is bordered, and let h be its shortest border. The

definition of the critical prefix implies that the δa-period of δt−1zuvy−1δ is

|δt−1zuvy−1δ |, whence δa ≤p h. Since |h| < |u|, we have that δa occurs in uv

contradicting Claim 4.6.

Our running example gives the following setting, with d = b.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

ta = δa tb yδ

δt−1zutvδd
tvδd
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Claim 4.8. The word δ satisfies

|δ| > |t|+ |t′| − |z| . (4)

Proof. Suppose the contrary. Then δ lies within the overlap of ut and t′u in

uzu, as illustrated by the following figure.

u z u

t a

t′

δ

This contradicts the maximality of δa since it occurs now twice in t′uta; see also

Remark 2.2.

Remark 4.9. Similarly to the symmetric version of Claim 4.4, see Remark 4.5,

we have a symmetric setting for Claim 4.7, too.

Provided that t′ 6= v′, let a′t′ ≤s v
′uz and b′t′ ≤s v

′ with a′ 6= b′. Let

δ′ be the mirror analogue to δ. If |v′| ≤ |y′t′|, then Claim 4.7 translates to

y′−1δ v′uzt′−1δ′ is unbordered and |y′δ| < |v′| − |t′|.

Claim 4.4 is formulated for an arbitrary order C. Since we want to combine

results of § 4.1 with the present section, we shall identify C and Ca. In particular,

we have b C a, and δa is the C-maximum suffix of t′uta.

The conditions |v| ≤ |ty| and the t 6= v now imply that utb and yα have in

uv an overlap κb. In other words, κ is a suffix of ut such that uv = utκ−1yα.

Since |yα| < |α|, we have

|t| > |v| − |α|+ |κ| . (5)

16



u v

t b

yα

κ

Note that κb is a prefix of yα, and κa a suffix of uta. We have the following

claim.

Claim 4.10. If t′ is as short as possible, then

|κ| > |t|+ |t′| − |z| . (6)

Proof. Similarly as above for δ, we deduce that κa cannot be a factor of

the overlap of t and t′ in z, otherwise α is not the C-maximum suffix of t′u,

a contradiction with Claim 4.2 on page 9.

4.3. Implied Inequalities

In this subsection, we summarize the properties proved in previous sections

and conclude the proof of the main Theorem 4.1. We proceed by case distinction,

which is based on whether or not t = v (t′ = v′); in addition to the main criterion

of previous sections, that is, whether or not |v| > |ty| (|v′| > |t′y′|).

Case 1: t 6= v or t′ 6= v′, but not both.

By symmetry, we assume t 6= v and t′ = v′ in the following. We also assume

that t′ is as short as possible. Note that this assumption does not change the

situation, that is, we still have t 6= v and t′ = v′ (see (3)).

Subcase 1.1: |v| > |ty|

Claim 4.4 on page 11 yields τ(w) ≥ |γzuvy−1|. If |v′| ≤ |v|, then the inequality

|γ| > |y| implies τ(w) > |zuv| ≥ 1
2 |w|; a contradiction to our assumption. We

therefore have |v′| > |v|.
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Claim 4.2 implies

|γz| > |v′| . (7)

Indeed, if |γz| ≤ |v′|, then γz ≤s t
′ = v′, and hence, there is a maximum suffix

ϑ of t′u strictly longer than u contradicting Claim 4.2 (where we let ϑ be the

maximum suffix of t′u with respect to the same order to which γ is the maximum

suffix of u).

We deduce a contradiction since now τ(w) ≥ |γzuvy−1| > 1
2 |w| by

2(|γ|+ |z|+ |u|+ |v| − |y|) > |v′|+ |γ|+ |z|+ 2(|u|+ |v| − |y|) (by (7))

> |v′|+ |z|+ 2(|u|+ |v|)− |y| (by |γ| > |y|)

> |v′|+ |z|+ 2|u|+ |v| (by |v| > |y|)

= |w|.

Subcase 1.2: |v| ≤ |ty|

We obtain a contradiction by establishing a set of inequalities that do not

have a common solution. Inequality (4) can be transformed into

L1 := |δ| − |t| − |t′|+ |z| − 1 ≥ 0 .

Claim 4.7 on page 14 yields |δzu| + 1 ≤ 3
7 |w| which together with |w| = |v| +

|v′|+ 2|u|+ |z| gives

L2 := 3|v′|+ 3|v| − |u| − 4|z| − 7|δ| − 7 ≥ 0 .

Moreover, since |yδ| ≤ |δ|, Claim 4.7 yields |t−1zuv| ≤ 3
7 |w| and we obtain

L3 := 7|t|+ 3|v′| − 4|v| − 4|z| − |u| ≥ 0 . (8)

The desired contradiction now follows from

21 L1 + 4 L2 + 3 L3 = −7|uzδ + 7| ,

which is obtained keeping in mind that t′ = v′.
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Case 2: t 6= v and t′ 6= v′.

By symmetry, we can suppose |v′| ≤ |v|, which implies τ(w) < |γzuvy−1|,

see the beginning of Subcase 1.1. Claim 4.4 now yields |v| ≤ |ty|. As above in

Subcase 1.2, we obtain L1, L2, L3 ≥ 0. We need some more inequalities in this

case for we assume t′ 6= v′. Inequality (5) can be transformed into

L4 := |t|+ |α| − |κ| − |v| − 1 ≥ 0 ,

and the inequality (6) into

L5 := |κ| − |t| − |t′|+ |z| − 1 ≥ 0 .

We now exploit Remark 4.5 on page 13. If τ(w) ≥ |y′−1v′uzγ′|, then using

|y′| < |γ′| and τ(w) ≤ 3
7 |w| we obtain the inequality

L6 := 3|v| − 4|v′| − 4|z| − |u| − 7 ≥ 0 .

If, on the other hand, the inequality |v′| ≤ |t′y′| holds, then we can use Remark 4.9

and derive the mirror variant of (8), namely, the inequality

L′6 := 7|t′|+ 3|v| − 4|v′| − 4|z| − |u| ≥ 0 .

We now get

14 L1 + 2 L2 + 2 L3 + 7 L4 + 7 L5 + 3 L′6 =

14 L1 + 2 L2 + 2 L3 + 7 L4 + 7 L5 + 3 L6 + 21(|t′|+ 1) = −42− 7|zuα−1| ;

a contradiction again.

Case 3: t = v and t′ = v′.

This is the only case, in which we prove τ(w) = π(w), instead of a contradic-

tion.

We have π(w) ≤ |uz| and, clearly, we can suppose that π(w) > |u|, since

otherwise π(w) = τ(w) = |u|. Let rs be a critical factorization of u. Then szr

is unbordered of length π(w), unless r is a prefix, and s is a suffix of z; see
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Remark 2.5 on page 7. Suppose the latter possibility. Now, either one of the

words uz and zu is unbordered of length π(w) or u is both prefix and suffix of z.

We are therefore left with the case w = v′uiz′ujv, with i, j ≥ 2, where u is not a

suffix of uz′ and not a prefix of z′u. Note that z′ cannot be empty. Moreover, v′

is a suffix of u and v is a prefix of u, which implies

|v′| < |u|, |v| < |u| (9)

by the maximality of z.

Suppose, without loss of generality, i ≤ j. Similarly as above, we have that

either sz′uj−1r or z′uj is unbordered. From |ujz′| ≤ 3
7 |w| and from |z′| > 0 we

deduce

|v′v| >
(

4

3
j − i

)
|u| .

If i < j, then we obtain from j ≥ 3 that |v′v| > 2|u|; a contradiction with (9).

Therefore i = j.

If v′ is a suffix of uz′ and v a prefix of z′u, then we have π(w) = τ(w) = |z′uj |.

Otherwise we obtain from Case 1 and Case 2 an unbordered factor of v′uz′uv of

length at least 3
7 |v
′uz′uv|. Moreover, this factor contains u as a factor, which

can be substituted with uj to obtain an unbordered factor of w of length at least

3
7 |v
′ujz′ujv|. Take, as an example, the word βzuv0d from the proof of Claim

4.4 on page 11. If βz′uv0d is unbordered, then clearly also the word βz′ujv0d

is unbordered, which is a factor of w, and has the required length. It is not

difficult to check that this happens with all words for which the proof used the

main assumption that they are shorter than 3
7 |w|.

This concludes the proof of Theorem 4.1.

5. Conclusions

The relation between the period π(w) of a word w and the length τ(w)

of its longest unbordered factors has been investigated in this paper. Clearly,

τ(w) ≤ π(w). It is also not difficult to see that τ(w) = π(w) holds for long

words, that is, for words, which are much longer than both τ(w) and π(w). The
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question of interest is: When exactly is a word long enough so that τ(w) = π(w)

is enforced? When the word length is expressed w.r.t. π(w), it is well-known

that

|w| > 2π(w)− 2 implies τ(w) = π(w) .

Theorem 4.1 of the present paper makes the complementary statement

|w| ≥ 7

3
τ(w) implies τ(w) = π(w) .

This solves a problem raised first by Ehrenfeucht and Silberger in 1979.

The bounds 2τ(w) (see [1]) and 3τ(w) (see [2]) have been previously conjec-

tured, and several attempts in proving the latter have been made; see [3, 4, 5, 6, 9].

However, the bound proved above is (asymptotically) tight as demonstrated by

an example in [2] with words of length 7
3τ(w)− 4 and τ(w) < π(w). For the sake

of clarity we did not try to make the additive constant optimal in this paper.

We only note that our arguments can be easily modified to obtain that already

|w| > 7
3τ(w) − 8

3 implies τ(w) = π(w). We do not consider this value of the

additive constant to be too interesting since we conjecture that the example by

Assous and Pouzet is optimal, that is

|w| > 7

3
τ(w)− 4 implies τ(w) = π(w) ,

and, moreover, if |w| = 7
3τ(w)− 4 and τ(w) 6= π(w), then w is of the form given

by (1).

Apart from the actual result, we would like to point out the proof techniques

used to solve the Ehrenfeucht–Silberger problem. In particular, the notion of

α-critical prefix of a word w (Definition 3.3) is used to find long unbordered

factors in words with a large period, that is, words that do not have much of a

global structure. We are confident that the investigation of α-critical prefixes

of a word will lead to more insights in its structure, for example w.r.t. its local

periods.
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[9] Š. Holub, A proof of the extended Duval’s conjecture, Theoret. Comput. Sci.

339 (1) (2005) 61–67.

[10] M.-P. Schützenberger, A property of finitely generated submonoids of free

monoids, in: Algebraic theory of semigroups (Proc. Sixth Algebraic Conf.,

Szeged, 1976), Vol. 20 of Colloq. Math. Soc. János Bolyai, North-Holland,

Amsterdam, 1979, pp. 545–576.

[11] Y. Césari, M. Vincent, Une caractérisation des mots périodiques, C. R.
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