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About these notes

The material in these notes was selected to a short introductory course given at the University
of Turku in the spring of 1998. The main source is the tutorial chapter “The algebraic theory
of convolutional codes” by R.J. McEliece that will appear in The Handbook of Coding Theory.
His terminology differs from certain earlier practices. As it is expected that his choices will
gain acceptance in the years to come, I have adopted all of McEliece’s suggested changes
and additions. I have also benefited from the book “Introduction to Convolutional Codes
with Applications” by A. Dholakia.

The first two chapters follow McEliece’s presentation very closely. The third chapter
is based on my understanding of some material from Dholakia’s book. The term simple
codeword is due to myself (for lack of a better term), without it I could not have communi-
cated the ideas from Dholakia’s book. A related concept of a fundamental path through the
modified state diagram has appeared in a book by H. van Tilborg.

The last chapter is again an assorted collection of material from McEliece and Dholakia.
I chose to present the algebra using subfields of the field of formal Laurent series. I think
that this makes it more apparent that blocking a convolutional code does not change the
code at all.

For the reader interested in knowing more about the convolutional codes I warmly also
recommend the book “Fundamentals of Convolutional Coding” by R. Johannesson and K. Zi-
gangirov.



Introduction

In error correcting coding the message to be sent is usually grouped into shorter sections
u(0),u(1), . . . of k bits each. Redundancy is then added such that these k-bit inputs are
mapped injectively into the set of n-tuples of bits, where n > k. Thus we arrive at a sequence
x(0),x(1), . . . of output vectors that are then transmitted into the channel. There are two
main schools on what kind of operations we should do to transform the input (the vectors
u(i)) into the output (the vectors x(i)).

One of Shannon’s theorems loosely speaking states that, if the resulting set of all possible
output streams is a “random” subset of the set of all possible sequences of bits, then we can
achieve reliable communication provided that the channel is not too bad. In the familiar
block coding (the topic of the course “Coding Theory”) the ith output x(i) only depends
on the input u(i). E.g. when using a linear code with generator matrix G, the encoding
equation

x(i) = u(i)G

holds for all integers i. In order to achieve the required level of randomness it is then necessary
that both k and n are relatively large. While not detrimental, this is clearly undesirable in
some cases.

In convolutional coding (the topic of this course) “randomness” is sought in a different
manner: instead of x(i) being a function of only u(i) we will allow dependence on the previous
inputs u(i − 1),u(i − 2), . . . as well. Here the parameter i can be thought of as marking
the passing of time: in block coding the order in which the k-bit blocks are processed is
immaterial and is thus ignored, in convolutional coding the order is important and we keep
track of the order of the input blocks with the index i. As we see from the following popular
example, in convolutional coding the parameters n and k are much smaller than in block
coding.

Let us study the following system, where k = 1, n = 2 and the input bits u(i) are
transformed into the output vectors x(i) = (x1(i), x2(i)) by the encoding formulas

{

x1(i) = u(i) + u(i− 2),
x2(i) = u(i) + u(i− 1) + u(i− 2).

Thus the sequence 1 1 0 1 0 0 of input bits is transformed into the sequence 11 10 10 00
01 11 of output pairs of bits. Here we adopted the convention that the inputs prior to the
beginning of the transmission are assumed to be zero.

We see that the above encoder at each moment of time i needs to remember the two
previous input bits u(i−1) and u(i−2). As the contents of the two memory bits specify the
encoding function completely, it is natural to say that at time i the encoder is in the state
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described by the state vector s(i) = (s1(i), s2(i)) = (u(i− 1), u(i− 2)). Using the concept of
the state vector the above encoding equations can be rewritten as

x(i) = s(i)C + u(i)D,

where C,D are the matrices

C =

(

0 1
1 1

)

D =
(

1 1
)

.

Furthermore we see that the time evolution of the encoder (i.e. how the state of the encoder
changes, as time passes by) is completely specified by the requirement that initially the
encoder was at the zero state and that

s(i+ 1) = s(i)A+ u(i)B,

where in this example A and B are the matrices

A =

(

0 1
0 0

)

B =
(

1 0
)

.

We generalize this situation to arrive at the following definition. Throughout this course we
only consider binary codes and let F denote the field of two elements.

Definition 0.1 An (n, k,m) convolutional encoder is the linear system determined by ma-
trices A,B, C and D with entries in the field F and of respective types m×m, k×m, m× n
and k × n. The encoder transforms a sequence u(i), i = 0, 1, . . . of information words ∈ Fk

into a sequence x(i), i = 0, 1, . . . of codewords ∈ Fn with the aid of a sequence of state vec-
tors s(i), i = 0, 1, . . . belonging to the state space Fm as follows: The system is initialized by
s(0) = 0 and for i ≥ 0 the time-evolution of the system and the codewords are determined
by the equations

s(i+ 1) = s(i)A+ u(i)B (1)

x(i) = s(i)C + u(i)D (2)

The associated (n, k,m) convolutional code is the collection of all the possible output se-
quences of the encoder. The code has rate k/n and degree m.

Remark 0.1 A convolutional encoder may be viewed as an automaton. This has motivated
some of the terminology.

Remark 0.2 There is an analogous situation in cryptography, where a similar division is
made between the block ciphers and the stream ciphers.

Remark 0.3 Strictly speaking the degree is a property of a convolutional encoder rather
than a property of the code. Indeed, later on we will develop a method of finding encoders
of smallest possible degree. Some sources use different terminology and what we call degree
is also often called memory or constraint length.
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Exercises

0.1 When an (n, k,m) convolutional encoder (determined by matrices A,B, C,D of compat-
ible types) is used to encode a sequence u(0),u(1), . . . ,u(r) of input vectors, the transmission
is usually extended beyond time r to ensure that the system has reached the zero state again
(the reason for this will become evident when we study Viterbi decoding). This is done by
imagining that auxiliary zero vectors u(i) = 0, i > r are also being sent. These extra input
vectors are called the terminating zeros. Show that, if the m×m matrix A is nilpotent, then
a finite number of terminating zeros suffices. Give an example of a (1, 1, 1) encodes, where
no finite number of terminating zeros will necessarily put the encoder back into the zero state.

0.2 Sharpen the result of the previous exercise by showing that in the case of a nilpotent
m×m matrix A at most m terminating zeros are needed.
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Chapter 1

Algebraic presentation of
convolutional codes

We say that two convolutional encoders are equivalent, if they generate the same code.
For reasons that will become apparent later (e.g. when decoding convolutional codes) it
is desirable to choose among equivalent encoders the one with the lowest degree. At the
moment we have no machinery to study the equivalence of two given encoders. To that end
we need such a presentation of a convolutional code, where the state space doesn’t appear
directly. We first need to review some concepts from algebra.

1.1 Rings of polynomials and power series

Throughout this course D will be an indeterminate. It can be thought of as the operator
delaying a given signal by one time unit. Given D we have the polynomial ring

F[D] =

{

n
∑

i=0

aiD
i | n ∈ N0, ai ∈ F

}

and its field of quotients, the field of rational functions

F(D) =

{

P (D)

Q(D)
| P (D), Q(D) ∈ F[D], Q(D) 6= 0

}

both with the usual algebraic operations.
We recall that the usual division of polynomials gives the ring F[D] a structure of a

Euclidean domain. We also recall the concept of Smith normal form (defined for matrices
over any Euclidean domain) from our Algebra course:

Theorem 1.1 Let A be an m × n-matrix with entries in F[D]. Then there exist invertible
matrices P and Q such that the matrix product

PAQ =









d1(D) 0 · · · 0
0 d2(D) · · · 0

0 0
. . . · · ·









is diagonal and that the diagonal entries satisfy di(D) | di+1(D) for all i.
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The polynomials di(D) appearing on the diagonal are called the invariant factors of the
matrix A. We further recall that the matrices P and Q as well as the invariant factors can
be found by performing a sequence of elementary row and column operations to the matrix
A. We shall need another characterization of the invariant factors.

Lemma 1.1 Let A be a k × n matrix with entries in the ring F[D]. Let B be another such
matrix gotten from A by an elementary row or column operation (where only multipliers in
the ring F[D] are allowed). Then, for all r = 1, 2, . . . ,min{k, n}, the r × r minors of B are
F[D]-linear combinations of the r × r minors of A.

Proof. It is enough to check the case of a row operation, for a column operation may viewed
as a row operation on the transpose of A. If the row operation is an exchange of two rows,
the claim clearly holds. As 1 is the only unit of the ring F[D], there are no elementary
row operations of the scalar multiplication type. If the row operation consists of adding the
entries of a source row (multiplied by a polynomial p(x)) to the corresponding entries in
another target row, then there are several possibilities: Any such r × r-minors of B that
don’t include the target row are obviously minors of A as well. Such r× r-minors of B that
include both the target and the source rows are also minors of A — effectively we are then
performing a determinant preserving elementary row operation on a submatrix of A. The
most interesting cases are such r × r-minors that include the target row, but don’t include
the source row. However, we may express such a minor as a sum of two r × r-determinants
by splitting the target row to the sum of the original target row and the source row times
p(x). Here the first summand is again a minor of A also. We can factor out p(x) from the
target row of the second summand. The other factor is a minor of A with rows possibly in
the wrong order. The claim then follows in this case as well.

Corollary 1.1 Let A, P,Q be as in Theorem 1.1. Then for all applicable ℓ the product
d1(D)d2(D) · · ·dℓ(D) is the greatest common divisor of all the ℓ × ℓ-minors (=subdetermi-
nants) of the matrix A. In particular, the invariant factors are uniquely determined.

Proof. From Lemma 1.1 it actually follows that, if a matrix B is gotten from another matrix
A by an elementary row or a column operation, then for all r the greatest common divisors
of the r × r minors of A and B are equal. This is because a row or a column operation can
always be reversed.

Thus a sequence of elementary row and column operations always preserves the greatest
common divisors of minors of a prescribed size r. However, for a matrix in the normal form,
this greatest common divisor is clearly the product of the r first invariant factors.

The last claim now follows from the facts that a greatest common divisor is unique up to
a unit factor and that 1 is the only unit of F[D].

Square matrices with polynomial entries that have an inverse with polynomial entries are
also called unimodular. It follows from Cramer’s rule that the determinant of such a matrix
M must be a unit in the polynomial ring, i.e. equal to one. As the determinant of a square
matrix is the product of its invariant factors, this happens if and only if all the invariant
factors are also equal to 1. Thus we have shown that a square matrix is unimodular, iff
it can be reduced to the identity matrix with elementary row operations (where we only
allow polynomial multipliers), or iff its invariant factors are all equal to 1. Equivalently, a
unimodular matrix is a product of elementary polynomial matrices of the same size.
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Example 1.1 Find the invariant factors of the matrices

A =







1 1 1
1 D D2

1 D2 D4





 B =

(

1 1 +D +D2 1 +D2 1 +D
D 1 +D +D2 D2 1

)

We shall also need the ring of formal power series in the unknown D is (formal = not
interested in convergence properties)

F[[D]] =







∑

i≥0

aiD
i | ai ∈ F







.

Again the usual ‘polynomial-like’ operations make this into an integral domain. Unlike the
ring F[D] of ‘finite’ power series this ring has many units.

Proposition 1.1 The power series a(D) = a0 + a1D + a2D
2 + · · · ∈ F[[D]] is a unit, iff

a0 6= 0 (i.e., a0 = 1).

Proof. An inverse of such a power series can be explicitly constructed by recursively solving
the unknown coefficients of the inverse series.

Example 1.2 Find the inverse elements of 1 +D and (1 +D)3.

Corollary 1.2 All the elements a(D) ∈ F[[D]] \ {0} can be uniquely expressed in the form

a(D) = Dmu(D),

where u(D) is a unit of F[[D]] and m is a non-negative integer.

We will further need the ring of formal Laurent series

F((D)) =







∑

i≥m

aiD
i | ai ∈ F, m ∈ Z







.

This is again a ring with respect to the usual definitions. However, observe that we cannot
allow such power series that have an infinite number of terms with negative exponents:
without any convergence theory the product of two such ‘Laurent series’ would not be well
defined. Actually it turns out that F((D)) is a field and not just any field:

Corollary 1.3 F((D)) is the field of quotients of the domain F[[D]].

Proof. Another exercise.

We have the following inclusions among these rings/fields:

F[D] ⊂ F[[D]],F[D] ⊂ F(D),F(D) ⊂ F((D)),F[[D]] ⊂ F((D)).

Elements of the ring F[[D]] is are also called causal Laurent series, those of F(D) realizable
Laurent series and elements of the intersection (inside the field F((D)))

F[[D]] ∩ F(D) =

{

P (D)

Q(D)
| P (D), Q(D) ∈ F[D], Q(0) 6= 0

}
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are called causal rational functions.
The number (zero, natural number or infinity) of non-zero terms in a Laurent series is

called its weight. Thus every polynomial is of finite weight and every Laurent series of a
finite weight can be written in the form DmP (D), where P (D) is a polynomial. Also for
a Laurent series a(D) of a finite weight we can define its degree to be the exponent of its
highest degree term.

In what follows we will also encounter power series and polynomials with vector coeffi-
cients. These should be thought of as elements of a suitable cartesian power F((D))n that
we will denote by Fn((D)) (similarly for other rings and fields). This is a vector space over
the field F((D)) (and a module over the subrings F[D] and F[[D]]). So we mean e.g.

(1, 0, 1) + (0, 1, 1)D + (1, 0, 0)D2 = (1 +D2, D, 1 +D)

and make the similar identifications with matrices having polynomials or power series as
entries.

We can then extend the concept of weight to power series with vector coefficients and
declare that the weight of a vector (when finite) is the sum of the weights of the components.
With the above identification this leads to a rather natural concept of a weight.

1.2 Convolutional codes and power series

We are now ready to redefine the concept of a convolutional code. The idea is simply to use
power series as generating functions of a sequence of vectors. Thus we present a sequence of
input vectors u(i) ∈ Fk, i = m,m+ 1, . . . as the series

u(D) =
∑

i≥m

u(i)Di ∈ Fk((D)).

Here we allow the transmission to begin at any time (not just at i = 0), but we do require
the system to start at some time m ∈ Z. This is a very natural relaxation and from now on
we have the liberty of choosing the origin of our time axis. Similarly we define

x(D) =
∑

i≥m

x(i)Di ∈ Fn((D)) and s(D) =
∑

i≥m

s(i)Di ∈ Fm((D)).

Definition 1.1 An (n, k) convolutional code is such a k-dimensional subspace (over the field
F((D))) of the space Fn((D)) that it has a basis consisting of vectors belonging to Fn(D).

Observe that changing the origin of the time axis from zero to m simply amounts to
multiplication by Dm. The use of Laurent series thus allows us to go back and forth in time
as need may be.

We have the obvious task of showing that this is equivalent to our earlier definition.
We show that the earlier definition will lead to a convolutional code in the sense of this
new definition. The other direction will become apparent, when we construct encoders for
convolutional codes in the sense of this latter definition.

Let us begin with an (n, k,m) convolutional encoder determined by matrices A,B, C and
D. Multiplying the defining equations (1) and (2) by Di and summing over i we arrive at
the following pair of matrix equations

{

x(D) = s(D)C + u(D)D
D−1s(D) = s(D)A+ u(D)B
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The Cramer’s formula for the elements of the inverse matrix shows that the matrixD−1Im+A
has an inverse in the ring of m×m-matrices over the field F(D). Hence we can solve s(D)
from the latter equation and substitute the result to the former equation and get the equation
x(D) = u(D)G, where

G(D) = D + B
(

D−1Im +A
)−1 C

clearly has entries in the field F(D). Obviously the rows of the k× n matrix G form a basis
of the required type.

Example 1.3 Find a polynomial generator matrix for the example convolutional code of
the introduction.

As we can always multiply basis vectors with non-zero scalars to get another basis, we can
always arrange the generator matrix G of a convolutional code to have polynomial entries —
simply clear the denominators by multiplying each row of G with the least common multiple
of of the denominators in that row. Hence a convolutional code always has non-zero elements
of finite weight. This motivates the following definition.

Definition 1.2 The free distance of a convolutional code is the minimum weight of a non-
zero element of the code.

The free distance takes the role of the minimum distance of a block code — the higher
the free distance the better the error correcting capability of the code.

Example 1.4 Show that the free distance of the convolutional code in example 1.3 is 5.

1.3 Polynomial generator matrices

A generator matrix G(D) of an (n, k) convolutional code C is called a polynomial generator
matrix of C, if all of its entries are polynomials in F[D]. A convolutional code has many
polynomial generator matrices.

Example 1.5 Show that all the following matrices generate the same (4, 2) convolutional
code

G1 =

(

1 1 +D +D2 1 +D2 1 +D
D 1 +D +D2 D2 1

)

,

G2 =

(

1 1 +D +D2 1 +D2 1 +D
1 +D 0 1 D

)

,

G3 =

(

1 1 +D +D2 1 +D2 1 +D
0 1 +D D 1

)

,

G4 =

(

1 1 1 1
0 1 +D D 1

)

.

We shall later see (crudely speaking) that the more delay operators there are in the generator
matrix the more complicated both encoding and decoding will become. Thus generator
matrices involving lower degree polynomials are to be preferred. From the above example
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we saw that row operations involving multipliers from F(D) rather than F[D] may further
simplify the generator matrix. The obvious questions are: 1) How do we measure the
complexity of a generator matrix? 2) How can we know that the generator matrix is in a
simplest possible form? We will study these two questions in this section.

Let G(D) = (gij(D)) be a k × n polynomial matrix. We will denote the ith row G by
gi(D) = (gi1(D), . . . , gin(D)) ∈ Fn[D], and we define the degree of gi(D) as the maximum
degree of its components. We then define the internal degree and external degree of G(D) as
follows.

intdegG(D) = maximum degree of G(D)’s k × k minors
extdegG(D) = sum of the row degrees of G(D).

The following two definitions will be essential in our study of polynomial generator ma-
trices.

Definition 1.3 A k × n polynomial matrix G(D) is called basic, if it has the minimum
possible internal degree among the polynomial matrices of the form T (D)G(D), where T (D)
is a non-singular k × k matrix over F(D)

Definition 1.4 A k × n polynomial matrix G(D) is called reduced, if it has the minimum
possible external degree among the matrices of the form T (D)G(D), where T (D) is unimod-
ular.

As unimodular matrices are obtained from the identity matrix by elementary row oper-
ations (with coefficients in F[D]) an equivalent definition would be to declare G(D) to be
reduced, if its external degree cannot decrease in a sequence of elementary row operations.

We first prove the following basic fact.

Lemma 1.2 Let G(D) be a k × n polynomial matrix.

(A) If T (D) is any nonsingular polynomial k × k matrix (i.e. det T (D) 6= 0), then

intdeg T (D)G(D) = intdegG(D) + deg det T (D).

In particular intdeg T (D)G(D) ≥ intdegG(D) with equality, iff T (D) is unimodular.

(B)
intdegG(D) ≤ extdegG(D).

Proof. (a) The k × k submatrices of T (D)G(D) are simply the k × k submatrices of G(D)
multiplied by T (D). Thus the k × k minors of T (D)G(D) are simply the k × k minors of
G(D) multiplied by det T (D). The claim follows.

(b) Let ei be the degree of the row gi(D), so each entry from the ith row will have
degree ≤ ei. Every term in the expansion of any k × k minor is then of degree at most
e1 + e2 + · · ·+ ek = extdegG(D).

We next prove two important theorems that list several useful properties of basic and
reduced polynomial matrices.

Theorem 1.2 A k × n polynomial matrix G(D) is basic, iff any one of the following six
conditions is satisfied.

(1) The invariant factors d1(D), d2(D), . . . , dk(D) of G(D) are all equal to 1.
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(2) The greatest common divisor of the k × k minors of G(D) is 1.

(3) The matrix G(α) has rank k for any α that is algebraic over the field F.

(4) G(D) has a polynomial right inverse, i.e. there exists an n × k matrix H(D) such that
G(D)H(D) = Ik.

(5) If x(D) = u(D)G(D) and x(D) ∈ Fn[D], then u(D) ∈ Fk[D]. (“Polynomial output
implies polynomial input.”)

(6) G(D) can be completed to a unimodular matrix by adding n−k suitable polynomial rows.

Proof. We shall prove the following implications: Basic ⇒(1) ⇒(2) ⇒(4) ⇒(5) ⇒Basic;
(2)⇔(3); (1)⇔(6).

We have already seen (lectures/exercises) that the greatest common divisor of the k × k
minors is the product of the invariant factors. Thus obviously (1) ⇔(2).
• Basic ⇒(1): Let P and Q be the unimodular matrices that take G(D) to its normal form
Γ(D), i.e.

PG(D)Q = Γ(D) =













d1(D) 0 0 · · · 0
0 d2(D) 0 · · · 0

0 · · · . . . · · · ...
0 · · · 0 dk(D) · · ·













.

So G(D) and G′(D) = Γ(D)Q−1 = PG(D) generate the same code and intdegG(D) =
intdegG′(D) as P and Q are unimodular. If there are non-constant entries in Γ(D), then
we can form another polynomial generator matrix

G′′(D) = diag
(

d1(D)−1, . . . , dk(D)−1
)

G′(D) = (Ik | 0n−k×k)Q
−1

that clearly has internal degree = intdegG(D)−∑k
i=1 deg di(D) contradicting our hypothesis

that G(D) is basic.

• (2) ⇒(4): Let us fix k columns of G(D). There are
(

n

k

)

ways to do this, we index them

by a parameter ν = 1, 2, . . . ,
(

n

k

)

. By Cramer’s rule the cofactors of this resulting submatrix

Gν(D) form a matrix Cν(D) with the property Gν(D)Cν(D) = pν(D)Ik, where pν(D) is the
determinant of Gν(D). We can then add n−k rows of all zeros to the matrix Cν(D) to form
an n × k matrix Hν such that the non-zero rows pair with the chosen k columns of G(D).
Thus G(D)Hν = pν(D)Ik. As the greatest common divisor of the polynomials pν(D) is equal

to one, there exist polynomials qν(D), ν = 1, . . . ,
(

n

k

)

such that

(nk)
∑

ν=1

qν(D)pν(D) = 1.

The polynomial matrix

H(D) =

(nk)
∑

ν=1

qν(D)Hν

then clearly is a sought right inverse to G(D).
• (4) ⇒(5): Now u(D) = u(D)G(D)H(D) = x(D)H(D), so this is trivial.
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• (5) ⇒Basic: If T (D)G(D) is a polynomial matrix then by applying (5) to the rows of this
matrix product we see that, in fact, T (D) must be a polynomial matrix, too. Our Lemma 1.2
then tells us that intdeg T (D)G(D) ≥ intdegG(D) and thus G(D) is basic.
• (2) ⇔(3): Assume (2). Let α be an arbitrary element in the algebraic closure of F, let

p(D) ∈ F[D] be the minimal polynomial of α and let qν(D), ν = 1, . . .
(

n

k

)

be the k × k

minors of G(D). Then G(α) is of rank less than k if and only if qν(α) = 0 for all ν, i.e. p(D)
divides all the polynomials qν(D). This contradicts our assumption (2). Conversely, if the
polynomials qν(D) have a non-trivial common irreducible divisor p(D), then p(D) has a root
α in some algebraic extension of F. All the k × k minors of the matrix G(α) then vanish,
hence G(α) has rank less than k.
• (1) ⇔(6): Assume (1). Then the Smith normal form equation for G can be written as

G = P−1 (Ik 0k,n−k)Q
−1.

Write Q−1 =

(

B1

B2

)

, where B1 contains the k first rows of Q−1 and B2 the remaining n−k

rows. Then G = P−1B1 and the matrix

(

P−1B1

B2

)

is unimodular as it is obtained from Q−1

by applying elementary row operations on the first k rows. Conversely, if A =

(

G(D)
H(D)

)

is

unimodular, then the Smith normal form equation

G(D) = Ik (Ik 0k,n−k)A

shows that the invariant factors of G(D) are all 1.

Theorem 1.3 A k×n polynomial matrix G(D) is reduced if and only if one of the following
three conditions is satisfied.

(1) If we define the “indicator matrix for the highest-degree terms in each row” Ḡ by Ḡij =
the coefficient of Dei in gij(D), where ei is the degree of gi(D), then Ḡ has full rank k.

(2) extdegG(D) = intdegG(D).

(3) “The predictable degree property”: For any u(D) ∈ Fk[D]

deg (u(D)G(D)) = max
1≤i≤k

(deg ui(D) + deg gi(D)) .

Proof. We shall prove that Reduced ⇒(1) ⇒(2) ⇒Reduced and that (1) ⇔(3). Let again
gi be the ith row of G(D) and ei its degree.
• Reduced ⇒(1): Suppose (1) is false. Then there is a linear dependency relation among
the rows of Ḡ and we can find a non-zero vector a = (a1, a2, . . . , ak) ∈ Fk such that aḠ = 0.
Without loss of generality we can assume that e1 ≤ e2 ≤ · · · ≤ ek. Let ℓ be the highest index
with the property aℓ 6= 0. It follows that the linear combination

g′
ℓ = a1D

eℓ−e1g1 + a2D
eℓ−e2g2 + · · ·+ aℓD

eℓ−eℓgℓ

is of degree strictly less than eℓ. A sequence of elementary row operations then replaces gℓ

with g′
ℓ contradicting our hypothesis.
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• (1) ⇒(2): Let Ḡν , ν = 1, 2, . . . ,
(

n

k

)

be the k × k submatrices of Ḡ. By our assumption

there exists ν0 such that det Ḡν0 6= 0. Let us then form the corresponding k × k submatrix
Gν0 of G(D). Then the coefficient of De1+e2+···+ek in detGν0 is det Ḡν0 6= 0. Thus intdegG ≥
e1 + e2 + · · ·+ ek = extdegG. The reverse inequality holds always by Lemma 1.2.
• (2) ⇒(Reduced): Assume that intdegG(D) = extdegG(D) and that T (D) is an arbitrary
k × k unimodular matrix. Then by Lemma 1.2

extdeg T (D)G(D) ≥ intdeg T (D)G(D) and intdeg T (D)G(D) = intdegG(D).

Combining these with our assumption we get extdeg T (D)G(D) ≥ extdegG(D), which
proves that G(D) is reduced.
• (1) ⇔(3): Let u(D) = (u1(D), . . . , uk(D)) ∈ Fk[D] and x(D) = u(D)g(D), so

x(D) = u1(D)g1(D) + · · ·+ uk(D)gk(D).

If the degree of ui(D) is di, we see that the degree of x(D) is at most d = maxi (di + ei).
This is what we “predict” the degree of x(D) to be. To test this prediction, we note that the
vector of coefficients of Dd in x(D) is b = (a1, . . . , ak)Ḡ ∈ Fn, where ai is the coefficient of
Dd−ei in ui(D). But at least one ai is non-zero, so b can be the zero vector for some choice
of u(D) if and only if Ḡ has rank less than k, otherwise the prediction is true for all choices
of u(D).

It follows immediately from our definitions that the basic polynomial generator matrices
for a given code have the lowest possible internal degree. However, it turns out that the
polynomial generator matrices of the lowest possible external degree are more important

Definition 1.5 A polynomial generator matrix for a convolutional code C is called canon-
ical, if it has the smallest possible external degree. This minimum external degree is called
the degree of the code C.

Later on we will see that this definition of the degree is in accordance with our earlier
definition — the minimum external degree for a generator matrix of a convolutional code C
turns out to be equal to the smallest possible dimension of the state space of an encoder of
C.

The following result shows that canonical polynomial generator matrices have many nice
properties.

Theorem 1.4 A polynomial generator matrix G(D) for the convolutional code C is canonical
if and only if it is both basic and reduced.

Proof. Let us first assume that G(D) is canonical. As the external degree of G(D) obviously
cannot be decreased by any sequence of elementary row operations, G(D) is automatically
reduced. In order to see that G(D) must also be basic we need to compare its internal
degree to that of a suitable basic polynomial generator matrix. So let G0(D) be such a basic
generator matrix of C, for which the external degree is as small as possible. We shall first
show that G0(D) is then necessarily reduced.

To that end let T (D) be a unimodular k×k matrix. Then the matrix product T (D)G0(D)
is also basic, as by Lemma 1.2 intdeg T (D)G0(D) = intdegG0(D) (= the common internal
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degree of all the basic generator matrices). By the choice of G0(D) extdeg T (D)G0(D) ≥
extdegG0(D). This implies that G0(D) is, indeed, reduced.

Lemma 1.2 gives again that intdegG(D) ≤ extdegG(D) so we have the following chain
of inequalities

intdegG0(D) ≤ intdegG(D) ≤ extdegG(D) ≤ extdegG0(D). (1.1)

But we just saw that G0(D) is reduced, so by Theorem 1.3 intdegG0(D) = extdegG0(D)
and so we have equality throughout the above chain of inequalities. Thus intdegG(D) =
intdegG0(D) and G(D) is also basic.

Conversely let us assume that G(D) is basic and reduced. Let G0(D) be any other
polynomial generator matrix for C. By Lemma 1.2 extdegG0(D) ≥ intdegG0(D). Since
G(D) is basic we get intdegG0(D) ≥ intdegG(D) and since G(D) is reduced we also
have intdegG(D) = extdegG(D) by Theorem 1.3. Altogether we get that extdegG0(D) ≥
extdegG(D) and thus G(D) is canonical.

The following corollary is an immediate consequence.

Corollary 1.4 The minimal internal degree of any polynomial generator matrix for a given
convolutional code C is equal to the degree of C. This internal degree is shared by all the
basic generator matrices of C.

Not only will the canonical generator matrices have the lowest possible external degree.
The next result shows that they have in a sense the lowest possible row degrees as well.

Theorem 1.5 Let G(D) be a canonical generator matrix for C and let G′(D) be any other
polynomial generator matrix. Assume that their rows are ordered such that the respective
row degrees e1 ≤ e2 ≤ · · · ≤ ek and f1 ≤ f2 ≤ · · · ≤ fk are in ascending order. Then for all i
we have ei ≤ fi. In particular all the canonical generator matrices share the same sequence
of row degrees.

Proof. Assume contrariwise that there exists an index j such that ei ≤ fi for i =
1, 2, . . . , j − 1 and ej > fj . Let gi (resp. g

′
i) be the rows of the matrix G(D) (resp. G′(D)).

As G(D) is canonical, hence basic, by the “polynomial output implies polynomial input”
property (Theorem 1.2 part (5)) the vectors g′

i can be expressed as such linear combinations
of the vectors gi where only polynomial coefficients are needed. By “the predictable degree
property” (Theorem 1.3 part (3)) only the vectors g1, g2, . . . , gj−1 can appear in the expres-
sions for g′

1, g
′
2, . . . , g

′
j. But this implies that the first j rows of G′(D) are linearly dependent

over the field F(D). This is a contradiction.
The latter claim follows immediately as when applying the result to any two canonical

generator matrices G1 and G2 either one of them can take the role of G(D) in the proven
claim.

We shall call the common values of the row degrees ei of canonical generator matrices the
Forney indices of the code C and the maximal row degree ek the memory of the code. Some
sources give what we call degree the name memory. Other terms for the minimal external
degree are constraint length and state complexity.

Now that we have a well defined concept of the memory of a convolutional code (i.e. not
dependent on the properties of a particular encoder) we can call an (n, k) convolutional code
of degree m an (n, k,m) code. Furthermore, if the code in question has free distance d we
call it an (n, k,m, d) code.

13



Example 1.6 Determine, whether the different polynomial generator matrices for the code
of example 1.5 are basic, reduced or canonical. Find the Forney indices and memory of the
code of example 1.5.

Example 1.7 Show that ifG is a polynomial generator matrix for an (n, k) code C and PGQ
is its Smith normal form, then the matrix Γ consisting of the k first rows of the polynomial
matrix Q−1 is a basic generator matrix for C. Show further that repeated applications of
the unimodular external degree reducing transformation in the proof of Theorem 1.3 lead to
a canonical generator matrix after a finite number of steps.

Example 1.8 Let C be the (5, 1, 2) code generated by the canonical matrix

G(D) = (1 +D2, 1 +D2, 1 +D +D2, 1 +D +D2, 1 +D +D2).

Show that the free distance of G(D) is 13. Show that no (5, 1, 2, d) convolutional codes with
d > 13 exist. Thus we may say that C is a distance optimal code.

We close this chapter with the remark that although polynomial generator matrices are
very natural for the development of the theory, in practice generator matrices whose entries
are causal rational functions are also important. This is because it is desirable to use a so
called systematic generator matrix, i.e. an n×k generator matrix that has the k×k identity
matrix as a block in the k leftmost columns. For most convolutional codes there are no
polynomial systematic generator matrices, so rational matrix entries are then necessary. A
generator matrix G for a convolutional code can always be put into systematic form by a
sequence of row operations using multipliers from the field F(D) (instead of the ring F[D)).
Exchanges of columns may first be necessary to achieve a situation where the first k columns
of G are linearly independent over F(D).

Example 1.9 Show that the matrix

G5 =

(

1 0 1
1+D

D
1+D

0 1 D
1+D

1
1+D

)

is a systematic causal generator matrix for the (4, 2) code of example 1.5.

Exercises

1.1 Show that if the matrix A ∈ Mm×m(F) is nilpotent, then the inverse of the matrix
D−1Im +A belongs to Mm×m (F[D]). Hint: In an earlier algebra course you have probably
seen a useful formula for the inverse of an element of the form 1 + n, where n is nilpotent.

1.2 Find the coefficients ai ∈ F of the series

(

1 +D +D2
)−1

=
∑

i≥0

aiD
i ∈ F[[D]].

If you feel like it, you may study the relation of these coefficients to the integers in the
Fibonacci sequence.
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1.3 Let C be the convolutional code generated by

G(D) = ( 1 1 +D 1 +D ) .

Show that the free distance of C is 5.

1.4 Let C be the convolutional code generated by

G(D) = ( 1 +D2 1 +D +D2 1 +D +D2 1 +D +D2 ) .

Show that the free distance of C is 10.

1.5 Find the internal and external degrees of the matrix

G =







1 0 0 1 +D
0 1 0 1 +D2

0 0 1 1 +D +D2





 .

1.6 Find a polynomial right inverse for the matrix

G3 =
(

1 1 +D +D2 1 +D2 1 +D
0 1 +D D 1

)

of Example 1.5. If possible find the input u(D) generating the output x(D) = u(D)G3 =
(1 +D,D2 +D3, 1 +D3, D +D2)?

1.7 Show that the following matrices generate the same code. Are they basic, reduced or
canonical?

G1 =
(

1 1 +D D
1 +D 1 +D +D2 1 +D +D2

)

G2 =
(

1 1 +D D
1 1 1 +D

)

1.8 Find a canonical generator matrix for the (4, 3) code C generated by the matrix G of
problem 1.5. What are the Forney indices of C?

1.9 We say that a generator matrix G(D) of an (n, k) code is systematic, if it is of the block
form G(D) = (Ik | A), where Ik is the identity matrix and A is a polynomial k × (n − k)
matrix, e.g. the matrix of exercise 1.5 is systematic. Show that a systematic generator matrix
is always basic, but not necessarily reduced.

1.10 Let G(D) be a basic polynomial generator matrix of an (n, k) code. Show that G(D)
has the following ”finite output implies finite input” property: If x(D) = u(D)G(D) has
finite weight, then the weight of the input u(D) is also finite. Give an example of a non-
basic polynomial generator matrix that also has this property. A generator matrix that doesn’t
have this property is called catastrophic.

1.11 Assume that G(D) is a canonical generator matrix of an (n, k) convolutional code.
Form a (k − 1)× n matrix G′(D) by deleting one of the rows of G(D). Show that G′(D) is
necessarily also a canonical polynomial matrix.

1.12 Let G(D) = (1+D+D4, 1+D2+D3+D4). Show that G(D) is a canonical generator
matrix for a (2, 1, 4) convolutional code C and find a polynomial right inverse H(D) for
G(D).
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1.13 Let us transform our favorite (2, 1) code with generator matrix

G(D) = (1 +D2, 1 +D +D2)

into a (4, 2) code C by “running the clock at half speed” so that at each time i two input bits
arrive and four output bits are transmitted, i.e. the input vector at time i is

v(i) = (u(2i), u(2i+ 1))

and the output vector at time i is

y(i) = (x1(2i), x1(2i+ 1), x2(2i), x2(2i+ 1)),

where u(j) (resp. xi(j)) refer to the input (resp. output) bits of the original encoder. Find a
canonical generator matrix for the (4, 2) code C. I reveal the fact that the Forney indices of
C are both = 1.

1.14 A (2, 1)-code is said to have ”Easy-Look-In” (ELI)-property, if the input bits u(i), i ≥ 0
can be easily computed in terms of the output bits x1(i), x2(i), i ≥ 0 either from the formula

u(i) = x1(i) + x1(i− 1) + x2(i− 1), (1)

or from the formula (the roles of the output signals are reversed)

u(i) = x1(i− 1) + x2(i) + x2(i− 1). (2)

What are the corresponding equations relating the signals u(D), x1(D) and x2(D)? Find a
right inverse to the generator matrix of an ELI-code in the two cases (1) and (2).

1.15 (An important and easy exercise) Why is it necessary to require that the entries of the
generator matrix must be causal?
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Chapter 2

Encoders for convolutional codes

In this chapter we will study the construction of encoders for convolutional codes. We will
also touch the subject of construction of physical encoder circuits such as the one on the
cover page. Although closer to engineering, such diagrams aid mathematicians as well in
understanding what is going on.

We will describe, how to construct a circuit closely matching a given polynomial generator
matrix for a convolutional code. It turns out that the number of delay elements in the circuit
is exactly the external degree of the generator matrix (though sometimes one may be able
to get away with fewer delays). It comes then as no surprise that the canonical generator
matrices will yield the smallest (=best) circuits. We will close this chapter by proving a
theorem effectively stating that the degree of a code is, indeed, the minimum number of
delays one will need in an encoder. While sometimes other consideration may be important
(such as easy recovery of the input bits from the output), this result more or less tells us to
concentrate on the canonical generator matrices.

2.1 Physical encoders

Let us take a closer look what happens, when we use a polynomial generator matrix G(D) =
(gij(D)) to transform the k input signals ui(D) into the n output signals xi(D). Let t denote
the time and let gij(D) =

∑

ℓ≥0 gij(ℓ)D
ℓ. Then xi(D) =

∑k
j=1 uj(D)gji(D) and breaking this

down to individual bits gives

xi(t) =
k
∑

j=1

deg gji(D)
∑

ℓ=0

uj(t− ℓ)gji(ℓ). (2.1)

In the diagrams that follow (differing slightly from the cover picture) the signals travel
from left to right or from top to bottom. Figure 2.1 shows the basic elements appearing
in the diagrams as parts of the circuitry. The signals on the wires are described either as
individual bits, e.g. a(i), at a given time i, or as the respective generating functions, e.g.
a(D) =

∑

i a(i)D
i.

We shall call any circuitry consisting of k input lines, n output lines and a collection of
the above elements a realization of the generator matrix G(D), if the bits on the output
wires are related to the bits on the input wires by the equations 2.1. Any realization of a
generator matrix for a convolutional code C is called a physical encoder for C.
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a(i) a(i-1)

”Delay” ”Split”
a(i) a(i)

a(i)

”Cross”
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b(i)

b(i)

✍✌
✎☞
+

”Add”

b(i)

a(i)+b(i)

a(i) a(i)

Figure 2.1: Parts of encoder circuits

To be able to compute the bit xi(t) from equation 2.1 we need to know all the bits uj(t−ℓ),
where ℓ ranges from 0 to ej (= the maximum degree of the polynomials gji(D)). If we have
a chain of ej delayed copies of the signal uj(D) we can then compute xi(t) by including
wires from suitable stages in the chains to the adders. This leads to the so called direct-form
realization of G(D).

We shall demonstrate the direct-form realization with all the generator matrices Gi of
Example 1.5. Let us first take a look at the matrixG1, see Figure 2.2. Reading these diagrams
becomes easier after one makes the observation that on most diagrams all horizontal wires
carry a signal of the form Diuj(D) (this means that at time t the bit uj(t− i) is ”on”). Thus
in the left hand side of the first diagram we generate the signals u1(D), Du1(D), D2u1(D)
and u2(D), Du2(D), D2u2(D) on the six horizontal wires. Then on the right hand side, the
required sums are collected to the output wires.

From this construction it is obvious that extdegG(D) delay elements suffice. Sometimes
a clever observation will save a delay element. E.g. for the matrix G1 we can make the
observation that we never need the individual twice delayed bits u1(i − 2) and u2(i − 2).
Only their sum is ever used in the computation of the output bits. So we save a single delay
by first computing the sum u1(i − 1) + u2(i − 1) and only after that introduce the second
delay. This gives another realization of the matrix G1, see Figure 2.3.

The generator matrices G2 and G3 only differ from G1 in the second row. This also shows
on the corresponding circuits

A similar saving as in the case of G1 is possible for the matrix G3 as here u2(i − 1) and
u1(i− 2) only appear in the combination u1(i− 2) + u2(i− 1). We leave it as an exercise to
construct such a realization of the generator matrix G3 that has only two delay elements. The
canonical generator matrix G4 (not surprisingly) yields the very simple circuit of Figure 2.6.
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Figure 2.2: Direct-form realization of G1
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Figure 2.3: Another realization of G1
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Figure 2.4: Direct-form realization of G2
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Figure 2.5: Direct-form realization of G3

✍✌
✎☞
+

✍✌
✎☞
+

✍✌
✎☞
+

✍✌
✎☞
+

Figure 2.6: Direct-form realization of G4
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Figure 2.7: A realization of a systematic generator matrix

The minimum number of delay elements in a realization of a generator matrix G(D) is
called the McMillan degree McdegG(D) of G(D). The above examples suggest that for all
polynomial generator matrices G(D) the inequalities

intdegG(D) ≤ McdegG(D) ≤ extdegG(D)

might hold. The latter inequality is an immediate consequence of the direct-form construc-
tion. The former inequality turns out also to be true, but we shall skip the proof.

In addition to generating F[D]-linear combinations of the input signals ui(D) one would
like to be able to generate F(D)-linear combinations. It is easy to see that this can be
done, provided that the appearing rational functions are causal (i.e. in F(D)∩F[[D]]). This
requires the use of the so called feedback, i.e. feeding the output from a delay element to an
earlier addition element.

For example, in Figure 2.7 we have a realization of a systematic generator matrix G(D) =
((1 +D +D2)/(1 +D2), 1). Up to an exchange of the output wires this is the (2, 1, 2) code
from the introduction. To see this, let z(D) be the signal leaving the first addition element.
Studying the wires meeting at this addition element we may conclude that the equation

u(D) +D2z(D) = z(D)

must hold. From this we easily solve that z(D) = u(D)/(1+D2). It is then straightforward
to see that the output signal x1(D) equals u(D)(1 +D +D2)/(1 +D2) as claimed.

2.2 Abstract encoders

We refer to an encoder in the sense of definition 0.1 as an abstract encoder in contrast to the
physical encoders that appeared in the previous section. In this section we show, how the
geometry of a physical encoder describes an abstract encoder. Hence we have completed a
proof of the equivalence of our two definitions of a convolutional code.

Given a realization of a generator matrix for an (n, k) code we let m be the number of
delay elements in the physical encoder. We build the abstract encoder on the assumption
that the state vector has, at any given time i, as components the contents of all the delay
units in a certain fixed order.

We show this by studying (hopefully convincing) examples. Let us first study our first
realization of the matrix G1, see Figure 2.2. Let us number the delay elements 1,2,3 and
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4 from top to bottom. If at a time i the delay elements contain the bits s1, s2, s3 and s4
respectively and bits u1 and u2 are fed to the two input lines, we see that the output bits
x1, x2, x3, x4 are

x1 = u1 + s3,

x2 = u1 + u2 + s1 + s2 + s3 + s4,

x3 = u1 + s2 + s4,

x4 = u1 + u2 + s1.

Thus we see that the matrices C and D used in computing the output vector x are

C =











0 1 0 1
0 1 1 0
1 1 0 0
0 1 1 0











, D =

(

1 1 1 1
0 1 0 1

)

.

Similarly we see that the contents of the delay elements are replaced by

s1 → u1,

s2 → s1,

s3 → u2,

s4 → s3.

So the matrices A and B governing the time-evolution are

A =











0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0











, B =

(

1 0 0 0
0 0 1 0

)

.

Similarly we see that the improved realization of the generator matrix G1, see Figure 2.3,
gives rise to the abstract (4, 2, 3) encoder corresponding to the matrices

A =







0 0 1
0 0 1
0 0 0





 , B =

(

1 0 0
0 1 0

)

,

C =







0 1 0 1
1 1 0 0
0 1 1 0





 , D =

(

1 1 1 1
0 1 0 1

)

.

A realization of a causal rational generator matrix also leads easily to an abstract encoder.
For example, let us consider the physical encoder of Figure 2.7. Let u be the input bit at a
time, when the contents of the two memory chips are s1 and s2. We immediately see that
the output bits are

x1 = u+ s1

x2 = u
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and that the contents of the memory chips are replaced by

s1 → u+ s2,

s2 → s1.

These equations correspond to an abstract encoder given by the matrices

A =

(

0 1
1 0

)

, B =
(

1 0
)

,

C =

(

1 0
0 0

)

, D =
(

1 1
)

.

It is an easy exercise to show that the direct form realization of a polynomial generator
matrix leads to such an abstract encoder that the matrix A is nilpotent. The previous
example shows that for a non-polynomial generator matrix this need not hold. In fact, it is
not difficult to see that, starting with a realization of a non-polynomial generator matrix,
the resulting matrix A cannot be nilpotent.

2.3 State space theorem

Our next goal is to show that the degree of a convolutional code is always a lower bound
to the McMillan degree of any generator matrix. Our proof of this depends on certain ideas
from linear system theory.

The basic idea comes from the observation that, for a physical encoder, the state, i.e.
the contents of the delay elements, clearly determine the collection of possible futures of the
encoder. Similarly, if we know the state vector of an abstract encoder at a particular time
t, we can determine the set of possible output sequences x(i), i ≥ t. It may happen that for
some encoders different values of the known state vector give rise to the same set of possible
futures. However, one might hope that for a minimal encoder this wouldn’t happen. This
line of thought could lead one to define an abstract state to be a collection of possible futures
of the code (rather than of an encoder). We shall not pursue this line of thought, but our
proof of the state space theorem (due to Forney) does reflect this idea: namely it is natural
to think that the zero vector in the space of abstract states should correspond to the set
of possible futures, when the current state is equal to zero. For a convolutional code with
a polynomial generator matrix (actually we may even allow rational entries as long as they
are causal) this translates (at time t = 0) to the set of causal codewords.

Recall that we allow our codewords x(D) =
∑

i≥m xiD
i ∈ Fn((D)) to begin at any time

m ∈ Z. We call such a word causal, if xi = 0 for any i < 0. For any power series
x(D) =

∑

i≥m xiD
i ∈ Fn((D)) we call

x+(D) =
∑

i≥max{0,m}

xiD
i

the causal part of x(D). Naturally then x−(D) = x(D)−x+(D) is called the anticausal part.
Suppose that C is an (n, k) convolutional code with Forney indices (e1, e2, . . . , ek) and

degree m = e1 + e2 + · · ·+ ek. Let C
∗ be the subset of such codewords, whose causal part is

also a codeword. Both C and C∗ are vector spaces over the binary field F and clearly C∗ is a
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subspace of C. We define the abstract state space of C, denoted ΣC , to be the corresponding
quotient space

ΣC = C/C∗.

The main result of this chapter is then the following State space theorem.

Theorem 2.1 If ΣC is the abstract state space of a given (n, k) convolutional code of degree
m, then

dimΣC = m.

Proof. Let G(D) be a canonical generator matrix for C, with rows g1(D), g2(D), . . . , gk(D)
in F n[D] and deg gi(D) = ei, for i = 1, 2, . . . k. Now consider the following m codewords of
C:

bi,j(D) = Digj(D), i = 1, . . . , k, j = −1,−2, . . . ,−ei.
We shall prove the theorem by showing that the elements bi,j(D) (or rather their cosets
modulo C∗) form a basis of ΣC .

Let us first show that the cosets of bi,j(D) span the entire state space. So let x(D) =
∑k

i=1 ui(D)gi(D) be an arbitrary codeword in C, where ui(D) =
∑

j ui,jD
j, i = 1, 2, . . . , k

are then uniquely determined Laurent series. Let then

u′i(D) =
−1
∑

j=−ei

ui,jD
j , for all i = 1, 2, . . . , k and

x′(D) =
k
∑

i=1

u′i(D)gi(D).

Then

x′(D) =
k
∑

i=1

−1
∑

j=−ei

ui,jbi,j,

is in the span of the vectors bi,j , so it suffices to show that the codeword x(D)− x′(D) is in
the subspace C∗. But

x(D)− x′(D) =
k
∑

i=1

∑

j

ui,jD
jgi(D)−

k
∑

i=1

i
∑

j=−ei

ui,jD
jgi(D)

=
k
∑

i=1





∑

j<−ei

ui,jD
j



 gi(D) +
k
∑

i=1





∑

j≥0

ui,jD
j



gi(D)

is evidently a sum of an anticausal codeword and a causal codeword. This shows that
x(D)− x′(D) ∈ C∗ and that dimC/C∗ ≤ extdegG(D).

We still need to show that the cosets of the vectors bi,j are linearly independent in C/C∗.
This is equivalent to proving that no non-zero F-linear combination of the vectors bi,j lies
in the subspace C∗. Assume contrariwise that the causal part x+(D) of

x(D) =
k
∑

i=1

−1
∑

j=−ei

ui,jbi,j(D), ui,j ∈ F,
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is also a codeword. Then x+(D) must be an F((D))-linear combination

x+(D) =
k
∑

i=1

vi(D)gi(D), vi(D) ∈ F((D)),

of the generators gi(D). By the “polynomial output implies polynomial input” property of
canonical matrices, the coefficients vi(D) must actually be polynomials.

Let us turn our attention to the anticausal part of x(D)

x−(D) = x(D) + x+(D) =
k
∑

i=1



vi(D) +
−1
∑

j=−ei

ui,jD
j



 gi(D).

If any of the polynomials vi(D) is non-zero, then by the “predictable degree property” of
canonical generator matrices, the degree of x−(D) should be at least ei ≥ 0. As this is
clearly a contradiction, we can conclude that x+(D) = 0, i.e. x(D) is anticausal. On the
other hand, if any of the coordinates

ui(D) =
−1
∑

j=−ei

ui,jD
j

of the vector x(D) with respect to the basis {gi(D)} is non-zero, hence of degree ≥ −ei,
then again by the predictable degree property deg x(D) ≥ ei − ei = 0. This contradicts the
fact that x(D) was seen to be anticausal.

Corollary 2.1 In any physical encoder for an (n, k,m) convolutional code C the number of
delay elements is at least m.

Proof. Let us study an encoder containing r delay elements. We define a function π : C →
Fr that simply maps a codeword x(D) to the r-tuple consisting of the contents of the delay
elements of the encoder at time t = 0 while generating x(D). This is obviously an F-linear
mapping.

Let us assume that x(D) ∈ ker π, i.e. when generating the output x(D), the encoder is
at the zero state at time t = 0. But by definition, a codeword is the output of an encoder in
response to some input, assuming that initially the encoder is at state 0. Hence the causal
part x+(D) of x(D) is a codeword — after all it is the response of the encoder to the inputs
yielding x after time t = 0 and starting at the zero state. Thus x(D) ∈ C∗ and ker π ⊂ C∗.

Let V ⊂ Fr be the image of the mapping π. The result of the previous paragraph may
be interpreted by stating that the function f : V → ΣC that sends π(x(D)) to the coset
x(D) + C∗ is a well-defined F-linear map. It is obviously a surjection, so the dimension of
V must be at least dimΣC = m. On the other hand the dimension of V is at most r and
the claim follows.

Corollary 2.2 If G(D) is a canonical polynomial generator matrix for the code C, then

McdegG(D) = extdegG(D).
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Proof. From the previous Corollary we get that McdegG(D) ≥ degC = extdegG(D).
The reverse inequality follows from the fact the direct-form realization of G(D) has exactly
extdegG(D) delay elements.

We have seen that the direct-form realization of a canonical generator matrix yields in
a way the simplest possible physical encoder for the code. However, this is not the whole
story — other polynomial generator matrices may lead to equally good physical encoders.
Furthermore, an immediate corollary to the theorem below is that a systematic generator
matrix always has a minimal McMillan degree.

Example 2.1 Show that the matrix

G6 =

(

1 D 1 +D 0
0 1 +D D 1

)

is basic but not reduced. Furthermore, show that it generates the code of Example 1.5 and
that McdegG6 = 1.

We state without proof a result due to Forney that settles the question, when a generator
matrix has minimal possible McMillan degree.

Theorem 2.2 Let G(D) be a polynomial generator matrix for an (n, k) convolutional code
C. Then McdegG(D) = degC, iff G(D) has both a polynomial right inverse and an an-
tipolynomial (i.e., polynomial in D−1) right inverse.

In other words, a necessary and sufficient condition for G(D) to have minimal McMillan
degree is the existence of matrices H1(D) ∈ Mn×k(F[D]) and H2(D) ∈ Mn×k(F[D

−1]) such
that

G(D)H1(D) = G(D)H2(D) = Ik.

For example the matrix G6 of the previous example has a polynomial right polynomial
inverse, because it is basic. It is also easy to verify that

H2(D) =











0 0
D−1 0
0 0

1 +D−1 1











is an antipolynomial right inverse of G6.

Exercises

2.1 Draw the direct-form realization of the matrix G2 from exercise 1.7. Find the corre-
sponding abstract encoder.

2.2 Find a realization of the generator matrix G3 from example 1.5 that needs only two
delay elements.

2.3 It is possible to give realizations for some non-polynomial generator matrices as well,
but this requires the use of feedback.
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A) Show that the signals Z1(D) and Z2(D) in the following circuit are related to each other
by the equation Z2(D) = DZ1(D)/(1 +D).

✍✌
✎☞

✲
✻

✛

❄
✲

Z2(D)
+

Z1(D) ✻

B) The matrix

G5 =

(

1 0 1
1+D

D
1+D

0 1 D
1+D

1
1+D

)

generates the code of example 1.5. Design such a circuit realizing the matrix G5 that
uses only a single delay element (and feedback).

2.4 Let G(D) be a polynomial generator matrix for an (n, k) code C. Let the row degrees of
G(D) be e1, e2, . . . , ek. Let us construct an abstract encoder from the direct-form realization
of G(D) as in section 2.2. Convince yourself that the components of the resulting state vector
at time t are ui(t − j), where j ranges from 1 to ei and i ranges from 1 to k. Show that
the matrix A of this abstract encoder is nilpotent. Hint: The power Ar governs the time
evolution of the state vector over a time interval of length r in response to a sequence of zero
inputs.

2.5 Let C be an (n, k) convolutional code and m ∈ Z. Let us define the following subspaces
of C

C<m = {x(D) =
∑

i xi(D) ∈ C | xi = 0, for all i ≥ m},
C≥m = {x(D) =

∑

i xi(D) ∈ C | xi = 0, for all i < m}.
Show that the subspace C∗ described in section 2.3 is actually the direct sum

C∗ = C<0 ⊕ C≥0.

2.6 Use the notation of the previous problem. Show that for all i the following vector spaces
ΣC,i (abstract state space at time i) all have the same dimension (= the degree of the code)

ΣC,i = C/ (C<i ⊕ C≥i) .

2.7 Theorem 2.2 guarantees that a systematic polynomial generator matrix always has a
minimal McMillan degree (why?). In exercise 1.5 we saw that the code generated by

G(D) =







1 0 0 1 +D
0 1 0 1 +D2

0 0 1 1 +D +D2







has degree 2. Find a realization of G(D) which has only two delay elements.

2.8 Let C be an (n, k) convolutional code with Forney indices e1 ≤ e2 · · · ≤ ek. Let m be
any integer with the property that m ≥ ek. With the notation of exercise 2.6 show that

C = C<m + C≥0.

Is this a direct sum? (here ‘+’ is a sum of vector spaces over F).
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2.9 Let G(D) be a canonical generator matrix for an (n, k) convolutional code C and let
the abstract encoder corresponding to the direct-form realization of G(D) be given by the
matrices A,B, C and D. Show that the matrix D is gotten from G(D) by replacing D with
zero, i.e. D = G(0). Conclude that D has full rank.

In the following problems we will prove a partial result related to Theorem 2.2 and
study the effect of a change in the direction of time. Throughout G(D) is a given canonical
generator matrix for an (n, k) code and g1(D), . . . , gk(D) are its rows. The respective degrees
of the row vectors are assumed to be e1, e2, . . . , ek. We will study the matrix G̃(D) that has
rows g̃i(D) = Deigi(D

−1). It is obviously a polynomial generator matrix for another (n, k)

convolutional code C̃. We denote by Ḡ and ¯̃G the indicator matrices for the highest degree
terms of G(D) and G̃(D) (cf. Theorem 1.3).

2.10 Show that ¯̃G = G(0), Ḡ = G̃(0) and conclude that G̃(D) is reduced.

2.11 Show that G̃(D) is basic and hence also canonical. Conclude that the Forney indices
of C and C̃ are equal. Hint: Theorem 1.2 suggests at least two different ways of showing
this.

2.12 Show that G(D) has an antipolynomial right inverse.

2.13 Show that a finite weight codeword x(D) ∈ Fn((D)) is in C̃, iff x(D−1) is in C.
Conclude that the free distances of C and C̃ are equal. Is the finiteness assumption of the
weight of x(D) ∈ C̃ necessary for x(D−1) to be in C?
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Chapter 3

Graphical presentations of a
convolutional code

Some aspects of the theory of convolutional codes can be best illustrated with the aid of
suitable graphs. We shall give two different graphical presentations, namely state diagrams
and trellis diagrams. We will use the former to introduce an algorithm for computing certain
generating functions. As a consequence we also get an algorithm for computing the free
distance of a convolutional code. The trellis diagrams will give an easy visualization of the
so called Viterbi decoding algorithm.

Both the state and trellis diagrams are presentations of a convolutional encoder rather
than of a convolutional code. The size of the diagrams (as well as the complexity of the
above mentioned algorithms) depends exponentially on the dimension of the state space of
the encoder. This again underlines the importance of canonical generator matrices.

3.1 State diagrams of encoders

Let us fix an abstract encoder (A,B, C,D) of an (n, k,m) convolutional code. The state
diagram of such an encoder is the following labelled directed graph G: There are 2m vectors
in the state space, each uniquely identified by an m-tuple of bits. We let the state vectors be
the vertices of G. There are 2k edges of G leaving any given vertex. They are in a one-to-one
correspondence with the input vectors and they represent the state transitions: given an
input vector u ∈ Fk and a state s ∈ Fm, in response to the input u the encoder will move
from state s to the state

s′ = sA+ uB.
We express this in the state diagram by connecting the vertex s to the vertex s′ with an
arrow labelled with two vectors u/x: the input u and the corresponding output

x = sC + uD.

The state diagram of the (2, 1, 2) encoder in the introduction is shown in Figure 3.1.
As the state diagram faithfully captures the state transitions and outputs that result from

a given input, the encoder (and hence also the code) is completely determined from the state
diagram. For example, we see that codewords can be reconstructed as sequences of output
labels along such continuous paths through the state diagram that begin and end at the
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Figure 3.1: State diagram of a (2, 1, 2) encoder of Example 1.3

node corresponding to the zero state (= zero vertex). If we agree that travelling along a
single edge of such a path takes one unit of time, then only the starting point on the time
axis (which can be chosen at will anyway) is lost.

We will call (for lack of a better term) a codeword simple, if the corresponding path
through the state diagram passes by the zero vertex only in the beginning and in the end.
Obviously any codeword can be expressed as such a sum of simple codewords that are being
output at disjoint intervals of time — simply cut the corresponding closed path in the state
diagram to pieces at such moments, when the path passes by the zero vertex.

Our goal will be to compute a generating function that tells us the number of simple
codewords of a given output weight i, input weight j and time span (= path length in the
state diagram) k. If the number of such codewords is A(i, j, k) the following generating
function, called the transfer function of the encoder captures all this information

T (X, Y, Z) =
∑

i,j,k

A(i, j, k)X iY jZk ∈ Z[[X, Y, Z]].

In order to count simple codewords we modify the state diagram somewhat. We split the
zero state into an initial zero state (0̄, i) and a final zero state (0̄, f). The edges are split such
that the initial zero state has no incoming edges and the final state has no outgoing edges.
We omit the the zero loop going from the zero vertex to itself altogether. Also the labels are
changed: we simply label an edge with a monomial X iY jZk, where the exponents i, j, k are
the output weight, the input weight and the path length increment (=1) respectively. For
the encoder of Example 1.3 this resulting modified state diagram is shown in Figure 3.2.

We use this modified diagram to compute the transfer function. First we need the cor-
responding generating functions counting such incomplete paths that end in a given vertex.
These are the following intermediate transfer functions ψs defined for all vertices s in the
modified state diagram

ψs(X, Y, Z) =
∑

i,j,k

As(i, j, k)X
iY jZk ∈ Z[[X, Y, Z]],
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Figure 3.2: Modified state diagram of a (2, 1, 2) encoder

where As(i, j, k) is the number of such paths from the initial zero to s in the modified state
diagram that have output weight i, input weight j and length k. Thus ψ0̄,i(X, Y, Z) = 1 and
ψ0̄,f(X, Y, Z) = T (X, Y, Z).

We see that recursive formulas for the quantities As(i, j, k) can be derived from a study
of the modified state diagram. Obviously A0̄,i(0, 0, 0) = 1 and As(i, j, k) = 0, if any of
the exponents i, j, k is negative and A0̄,i(i, j, k) = 0, if (i, j, k) 6= (0, 0, 0). We get recurrence
relations for the remaining numbers As(i, j, k) as follows. A path contributing to the number
As(i, j, k) must come to the vertex s from a neighboring vertex. We can divide such paths
into groups based on what is the last edge in the path. Let the label of an edge e be
X i(e)Y j(e)Z and the starting vertex (resp. final vertex) of e be s(e) (resp. f(e)). As all the
paths belong to one and only one group, for all s, i, j, k we have

As(i, j, k) =
∑

e,f(e)=s

As(e)(i− i(e), j − j(e), k − 1). (3.1)

Clearly the equations 3.1 always allow us to recursively compute all the numbers As(i, j, k).
The reason for this is that in the above equation, the terms in the right hand side involve
only such quantities As′(i

′, j′, k′), where i+ j + k > i′ + j′ + k′.
In order to find the intermediate transfer functions we multiply the equation 3.1 by

X iY jZk and sum over all i, j, k and arrive at the equations

ψs(X, Y, Z) =
∑

e,f(e)=s

X i(e)Y j(e)Zψs(e)(X, Y, Z), (3.2)

for all the vertices s. From this we can solve the functions ψs and hence also the transfer
function T (X, Y, Z).

For example from Figure 3.2 we get the following system of equations


















ψ10 = X2Y Z + Y Zψ01

ψ01 = XZψ10 +XZψ11

ψ11 = XY Zψ11 +XY Zψ10

ψ00,f = X2Zψ01.

From this we can solve that

T (X, Y, Z) = ψ00,f (X, Y, Z) =
X5Y Z3

1−XY Z(1 + Z)
.
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The transfer function contains a little bit more information than what is required to
compute the free distance. If we want a generating function that simply enumerates the
simple codewords of a given weight, we can do this by simply substituting Y = 1 (don’t
care about the input weight) and Z = 1 (don’t care about the path length). In the above
example we get

T (X, 1, 1) =
X5

1− 2X
= X5 + 2X6 + 4X7 + · · ·

that confirms our earlier computation showing that the free distance of this code is equal to
5. We also see that there are two different simple codewords of weight 6, four of weight 7
etc.

A word of warning is in order here: It is by no means clear that we can always find
T (X, 1, 1) and the free distance from the above computations, if we use a poorly chosen
encoder. Our argument showing that the recurrence relations 3.1 always allows to compute
the numbers As(i, j, k) (and hence the function ψs(X, Y, Z)) depended on the fact that the
exponent of Z always increases, as we travel along an edge. If we set Y = Z = 1, then the
previous argument is no longer valid. Indeed, for a bad encoder the recursion may not work
and infinities may arise.

For example, if the modified state diagram contains a cycle consisting of edges of zero
output weight, then obviously for some values of i the number of simple codewords of weight
i is infinite. It is not too difficult to see that the presence of cycles of zero output weight
is actually the only thing that may prevent recursive application of the equations 3.1 from
yielding finite values for all the coefficients of the series T (X, 1, 1).

Proposition 3.1 Let G be the modified state diagram of a convolutional encoder. Let s be
a vertex of G and let As(i) =

∑

j,k≥0As(i, j, k) be the number of such paths in G that begin
from 0̄i end at s and have total output weight i. Assume that G has no cycles consisting of
edges with zero output labels, i.e. such labels, where the exponent of X is zero. Then the
numbers As(i) are finite for all i ≥ 0 and all vertices s. Furthermore, these quantities can
be determined from the equations

As(i) =
∑

e,f(e)=s

As(e)(i− i(e)). (3.3)

In particular the series T (X, 1, 1) ∈ Z[[X ]].

Proof. We shall sketch an argument. The equations 3.3 can be obtained by summing the
equations 3.1 over the variables j and k. We say that the above equation is centered at
the vertex s. Let us study these equations thinking of the quantities As(i) as unknowns.
We want to rewrite the equation 3.3 in such a form that on the right hand side only such
quantities As′(i

′) appear that i > i′. If we can do this, then obviously our result follows by
induction on i. However, it may happen that i(e) = 0 for some edge e that ends at s. So we
replace such terms As(e)(i) by the right hand sides of the corresponding equations centered
at s(e). It may happen that other quantities As′(i) then appear, but we then repeat the
procedure of replacing such terms with the right hand sides of the equation centered at s′.
As G has only a finite number of vertices and no cycles consisting of zero output edges, the
process must terminate at some point.
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We close our study of this problem by proving the following result stating that for the
direct-form realization (or for the corresponding abstract encoder) of a canonical generator
matrix nothing bad will happen.

Theorem 3.1 Let G(D) be a canonical generator matrix for an (n, k,m) convolutional code.
Let the associated abstract encoder of the direct-form realization of G(D) be determined by
the matrices A,B, C,D and let G be the modified state diagram of this encoder. Then

1) The matrix A is nilpotent.

2) The graph G is connected.

3) The graph G contains no cycles consisting entirely of edges with zero weight output labels.

4) The number of simple codewords of a given finite weight is finite.

Proof. • 1) This is left as an exercise.
• 2) The state vector of the direct-form realization at time t contains the bits ui(t− j) where
j ranges from 1 to ei and i ranges from 1 to k. Obviously then a suitable sequence of input
vectors fills the components of the state vector with any chosen bits. Thus every vertex of G
can be reached from the initial zero vertex (or from any other vertex except the final zero).
• 3) Let us assume that G contains a zero output cycle. Let s be one of the vertices
belonging to the cycle. Obviously the final zero vertex is not included in the cycle. By part
2 the encoder will reach state s as a response to some finite sequence of inputs. Continuing a
path starting at time i = 0 from the initial zero vertex to s by repeating the cycle ever after,
we can then find a finite weight codeword, whose path never enters the final zero vertex.
By the ”polynomial output implies polynomial input” property of canonical matrices, the
inputs leading the encoder along this path must eventually be all zero vectors. In particular,
the input vectors in the cycle must all be zero vectors. However, by part 1, the encoder will
in response to a sufficient number of zero inputs eventually move to the zero state. This
contradicts our construction of the path and thus proves part 3.
• 4) This now follows from part 3 and the previous proposition.

3.2 Trellis diagrams of encoders

Another graphical presentation of an (n, k,m) encoder (A,B, C,D) is its trellis diagram. It
is also a directed graph and contains the same information in a slightly different lay-out:
the vertices of the graph are pairs (s, i) consisting of a state s and a moment of time i.
Thus there are (in theory) infinitely many vertices corresponding to the state s. The edges
correspond again to the state transitions of the encoder and their labels are as in the state
diagram. However, in a trellis diagram the edges also keep track of time and thus for all
i we have an edge labelled with the input u and the output x = sC + uD going from the
vertex (s, i) to the vertex (sA + uB, i + 1). In a trellis diagram the horizontal direction is
thought of as the time axis and all vertices {(s, i) | s ∈ Fm} (constant i) are stacked on
top of each other at a location corresponding to time i. The trellis diagram of our favorite
(2, 1, 2) encoder is shown in Figure 3.3.

We see that the trellis consists of several repeating blocks called trellis sections (the
vertices at two consecutive moments of time, i and i + 1 and the edges between those
vertices). A single trellis section obviously completely determines the encoder. Often a
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Figure 3.3: Trellis diagram of a (2, 1, 2) encoder

trellis diagram is drawn in such a way that at the beginning of the transmission, say i = 0,
only the zero vertex is shown. Then at later moments only those states that the encoder may
have reached are shown. Thus for example in Figure 3.3 at time i = 0 only the 00-vertex
would be there, at time i = 1 also the 10-vertex would be included and only at later times
i ≥ 2 would we have a complete trellis section. Similar reductions in the trellis occur also
at the end of the transmission, where only the edges corresponding to the terminating zeros
and the states such edges pass through are included in the diagram.

3.3 Viterbi decoding

As the trellis diagram of a convolutional encoder faithfully presents all the state transitions,
the codewords are again such continuous paths through the trellis diagram that begin and
end at the zero state. The trellis (and state diagram) presentation allows us to construct
codewords small sections at a time. The Viterbi algorithm allows us to also decode a received
word small sections at a time. This is quite different from usual decoding algorithms of
block codes, like the Berlekamp–Massey algorithm for decoding the BCH codes, where it is
necessary to wait for the entire codeword before decoding can begin.

We say that the Hamming distance d(x,y) of two vectors x(D),y(D) ∈ F((D)) is the
weight of their difference (if finite). When a convolutional code with a generator matrix
G(D) is used, the information u(D) is first encoded to x(D) = u(D)G(D), which is then
transmitted. Let us assume that at the receiving end the vector y(D) is observed. Due to
errors caused by the channel it may be that x(D) 6= y(D). The decoding problem is to try to
find u(D) given that y(D) was received. If we assume that G(D) is a canonical (hence basic)
polynomial generator matrix, then it suffices to find x(D) as in this case Theorem 1.2 states
that G(D) has a right inverse H(D) and u(D) can be recovered as u(D) = x(D)H(D).

Under certain reasonable assumptions this amounts to finding the codeword x(D) that
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minimizes the Hamming distance d(x(D),y(D)) from the received word y(D). In a practical
application we can assume that the times, when the transmission begins and ends, are
known. This suggests that one should use a polynomial generator matrix (as we always do)
and requires that so called terminating zeros, dummy zero input vectors, are being input
to the encoder after the actual message u(D) has been completed. Recall that x(D) nearly
always has higher degree than u(D) and thus more than deg u(D) time units are required
to transmit all of x(D). Thus we can assume that the encoder reaches the zero state at the
end of transmission, i.e. that x(D) corresponds to a continuous path from (0̄, 0) to (0̄, N) in
the trellis diagram, where N is the largest possible degree of x(D).

Let us assume that we have at hand a trellis diagram representing the code between times
i = 0 and i = N , i.e. N sections of the trellis. We can then give each edge in the trellis
graph a cost (in a graph theory course this was called weight, however, we have reserved that
word for other use) as follows. Let us assume that y(D) =

∑

i yiD
i was received. The cost

of an edge with output label xi going from a vertex (s, i) to another vertex (s′, i+ 1) is the
Hamming distance d(xi,yi) (this is the usual Hamming distance of binary vectors). As

d(x(D),y(D)) =
N
∑

i=0

d(xi,yi),

we see that the Hamming distance between a codeword x(D) =
∑

i xiD
i and the received

word y(D) is the total cost of the path through the trellis corresponding to the word x(D).
Our decoding problem is thus reduced to the graph theoretical problem of finding a minimal
cost path through a connected directed graph. In a graph theory course this was achieved by
the so called Dijkstra’s algorithm. When the graph is actually a trellis (not just any graph),
Dijkstra’s algorithm can be simplified drastically by taking advantage of the regularity of the
trellis as a graph. Anyway, we will borrow from Dijkstra’s algorithm the idea that one can
find the minimal path connecting two given vertices A and B by recursively finding minimal
paths from A to all the intermediate vertices.

The following lemma justifies the recursive step in the Viterbi decoding algorithm. We
let w(P) denote the total cost of a path P through the trellis diagram. We will denote by
Pe the path obtained by continuing the path P by the edge e. Whenever we use such a
notation, it is implied that the end vertex of path P is also the starting vertex of e. The
individual edges appearing in a path P are referred to as the legs of P.

Lemma 3.1 Assume that the minimal cost paths Ps from (0̄, 0) to all the vertices (s, i), s ∈
Fm have been found for some i ≥ 0 and that the respective costs of these paths are w(s). Let
e1, e2, . . . , er be all the edges that end at a given vertex (s, i + 1). Let (sj , i) be the starting
vertex of the edge ej and let wj be the cost of the edge ej. Then the minimal cost of a path
from (0̄, 0) to (s, i + 1) is the minimum w of the sums w(sj) + wj and Psj

ej is a minimal
cost path to, when j is chosen such that w = wj + w(sj).

Proof. The construction obviously gives a path of the prescribed cost, so we only need to
show that no path from (0̄, 0) to (s, i + 1) can have a lower cost. Assume that P is such a
path and that its cost is w(P) < w. All the paths through trellis that end at (s, i+ 1) must
have one of the edges ej as the last leg in the path — no other incoming edges exist. So let
us choose j0 such that ej0 is the last leg in P, i.e. P can be written in the form P = P ′ej0 ,
where the path P ′ consists of all the earlier legs of P. The path P ′ ends at the vertex (sj0, i)
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and thus by our assumption P ′ has cost w(P ′) ≥ w(sj0). However, then the cost of P would
be w(P) = w(P ′) + wj0 ≥ w(sj0) + wj0 ≥ w, which is a contradiction.

The Lemma 3.1 immediately leads to the following recursive algorithm for finding a mini-
mal cost path from the starting vertex (0̄, 0) to the final vertex (0̄, N). At the starting point
i = 0 we obviously have w(0̄, 0) = 0 obtained by the empty path and w(s, 0) = ∞ for all
other vertices (s, 0), s 6= 0̄.

Viterbi decoding algorithm

Step 1. Initialize

• i := 0

• w(0̄, 0) := 0

• w(s, 0) := ∞ for all s ∈ Fm, s 6= 0̄

• P(0̄, 0) := empty path

Step 2. For all s ∈ Fm initialize w(s, i+ 1) := ∞.

Step 3. For all s ∈ Fm such that w(s, i) <∞ and all the edges e leaving the vertex (s, i) do

• Let s′ be the end state of e.

• If w(e) + w(s, i) < w(s′, i+ 1) then

– P(s′, i+ 1) := P(s, i)e

– w(s′, i+ 1) := w(e) + w(s, i)

Step 4. i := i+ 1

Step 5. If i < N , then go to Step 2.

Step 6. Output P(0̄, N).

We illustrate the Viterbi decoding algorithm by the following example. We use the (2, 1, 2)
code of the introduction, so the trellis is shown in Figure 3.3. The encoder giving this trellis
corresponds to the generator matrix G = (1 + D2, 1 + D + D2). This matrix has a right

inverse H =
(

1+D

D

)

. Assume that N = 6 and that we receive the following sequence of vectors

11 11 11 00 11 11. We shall give one diagram for each moment of time i = 0, 1, . . . , 5. Each
diagram presents the outcome of Step 3 of the above algorithm after iteration i + 1. Only
the costs w(s, i+1) and the paths P(s, i+1) are shown. These are called the surviving paths
— they are the only paths that the algorithm will need in the next iteration.
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The last diagram shows the minimal cost path to the vertex (00, 6) that is the output of
the algorithm. This winning path corresponds to the codeword 11 10 10 00 01 11 = x(D) =
(1 + D + D2 + D5, 1 + D4 + D5). The corresponding input is then u(D) = x(D)H(D) =
1+D+D3. We see that the winner is at Hamming distance 3 from the received vector. Thus
we were able to correct 3 errors even though the free distance is only 5 (which suggests that
one should only be able to correct 2 errors). This happens often when applying the Viterbi
algorithm. The reason for this is that the Viterbi algorithm is a complete decoding algorithm,
i.e. it will always gives us a codeword that is closest to the received vector. There may be
several of them, if we are above the guaranteed error correction capability of the code (here
2 errors). As we just saw, for some received vectors, there are no codewords within distance
≤ 2.

It is also possible to use the trellis diagram to compute the free distance of a convolutional
code. The idea is simply that we remove the edge labelled 0̄/0̄ that leads from the vertex
(0̄, 0) to the vertex (0̄, 1) and assign each remaining edge in the trellis a cost that is equal to
the Hamming weight of the output label of the edge in question. Then we apply the Viterbi
algorithm until the condition w(s, i) ≥ w(0̄, i) holds for all s ∈ Fm. It is then easy to see that
for such i = i0 the variable w(0̄, i0) equals the free distance. We have excluded the all-zero
path and it is obvious that for no i > i0 can we find a lower cost path to vertex (0̄, i). After
all, such a path will have to pass through one of the vertices (s, i0).

It is an easy application of Theorem 3.1 to show that in the case of a canonical generator
matrix the above algorithm will converge, i.e. eventually for some i the condition w(s, i) ≥
w(0̄, i) holds for all s ∈ Fm.

Example 3.1 Recompute the free distance of the example code of the introduction using
the Viterbi algorithm.

When a causal rational generator matrix is used, we have no systematic way to terminate
a codeword (no finite number of terminating zeros suffices). The Viterbi algorithm can
be used, nevertheless. As we no longer know the state of the encoder at the end of the
transmission (at time N), we simply select the minimal cost path P(s, N), s ∈ Fm as the
survivor.

We close this chapter with the remark that the Viterbi algorithm easily adapts to metrics
other than the Hamming distance. For example in soft decision decoding, where reliability
information about the received bits is available, squared Euclidean distance may be used
instead.
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Exercises

In problems 1 to 3 we study the modified state diagram of Figure 3.2 corresponding to
the (2, 1) code with generator matrix G(D) = (1 + D2 1 + D + D2), and study different
applications of the transfer function.

3.1 Let Fn be the number of simple codewords corresponding to paths of length n ∈ Z. Show
that Fi = 0, for i < 3, F3 = 1 and that for all i > 3 we have the Fibonacci recurrence relation

Fi = Fi−1 + Fi−2.

3.2 Let x(D) = u(D)G(D) be a finite weight simple codeword of this code. Show that the
weight of x(D) depends only on the weight of the input u(D).

3.3 Let n > 5 be an integer. Show that the number of such simple codewords of weight n
that correspond to paths of an even length is equal to the number of such simple codewords
of weight n that correspond to paths of an odd length.

3.4 Let us study the (3, 1) code generated by the canonical matrix

G(D) = ( 1 +D 1 +D2 1 +D +D2 ) .

Draw the state diagram of the encoder gotten from the direct-form realization of G(D). As a
graph it is identical to that of Figure 3.1, only the labels are different. Compute the transfer
function of this encoder. Show that the free distance of this code is 7 and find all the simple
codewords of weight at most 9.

3.5 In a state or a trellis diagram there are often many parallel edges connecting two ver-
tices. In this problem we study this phenomenon. Assume that a canonical generator matrix
was used in constructing the diagrams.

A) Show that such edges of a state diagram that loop from the zero vertex to itself are in a
one-to-one correspondence with the polynomial codewords of degree 0. Hence such edges form
a vector space over the field F (under addition of the output labels). This additive group is
called the parallel transition group.

B) Show that the dimension p of the parallel transition group is equal to the number of such
Forney indices that are equal to zero.

C) Let s and s′ be two state vectors. Let us consider the state diagram. Show that the number
of edges leading from the vertex s to the vertex s′ is either zero or equal to 2p, where p is the
dimension of the parallel transition group.

3.6 Draw the state diagram and the trellis section of the direct-form realization of the canon-
ical matrix

G(D) =
(

1 1 +D D
1 1 1 +D

)

.

Check, whether (D +D2 +D3, 0, 1 +D2 +D4) is a codeword or not.

3.7 Assume that the (2, 1) code and the trellis of Figure 3.3 is used. Find a codeword closest
to the received vector y(D) = (1 +D + D2 +D3 + D4, 1 +D +D2 + D4) with the Viterbi
algorithm. What is the corresponding input u(D)?
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3.8 Sometimes a received bit is so badly garbled that it is impossible to say, whether it should
be interpreted as 1 or 0. In such a situation the receiver is in some applications allowed to
(instead of making a guess between 0 and 1) mark such a bit as an erasure ‘?’. This is
interpreted as an unknown bit at Hamming distance 1/2 from both 0 and 1. So for example
the Hamming distance between the vectors 0?101 and 11101 is then 3/2. There is no need
for the costs assigned to the edges in a trellis to be integers. Therefore the Viterbi algorithm
will decode erasures as well as errors with no modifications. Find the codeword closest to the
received vector 11 ?0 0? 00 10 11, when the (2, 1, 2) code of Figure 3.3 is being used.

3.9 Assume that the code of Example 1.5 is used. Find all the codewords that are as close
to the received vector 0111 0100 1000 as possible.

3.10 Find the trellis diagram of the (3, 1)-code C generated by

G(D) = (1 +D2, 1 +D +D2, 1 +D +D2).

(Encoding determined by the canonical matrix G(D).) With the aid of the Viterbi algorithm
find all the words of C that are at the lowest possible Hamming distance from the received
vector y = 111 010 110 011.

3.11 Find the trellis diagram of the (3, 1, 2)-code C generated by

G(D) = (1 +D, 1 +D2, 1 +D +D2)

(Encoding based on the canonical generator matrix G(D)) Compute the free distance of C
with the aid of the Viterbi algorithm.

3.12 An (n, 1, m) convolutional code C is called antipodal, if the entries gi(D), i = 1, . . . , n
of a canonical generator matrix G(D) all have the following properties: gi(0) = 1 (i.e. the
constant term is 1) and deg gi(D) = m (i.e. the highest degree Dm-term has coefficient 1).
In a trellis diagram gotten from G(D) there are exactly two out-going edges leaving each
vertex and exactly two incoming edges entering each vertex. Show that, if C is antipodal,
then the output labels of the two edges leaving a given vertex differ at all the bit positions.
Similarly show that the output labels of the two edges entering a given vertex also differ at
all positions. Hint: One way is to think about a physical encoder.
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Chapter 4

Good convolutional codes and some
constructions

A most striking fact is the lack of algebraic constructions of families of convolutional codes.
The contrast to the theory of block codes is very sharp in this respect. A convolutional
(n, k,m) code is called distance optimal, if it has the largest free distance among the codes
with these parameters. As the parameters n and k are usually quite small, exhaustive search
has yielded tables of distance optimal convolutional codes. We have included such tables
to section 4.1. In this chapter we also study two ways of constructing new convolutional
codes from known codes. The concept of a dual code is quite natural and allows us to define
convolutional codes by means of a parity check matrix. We also take a look at the process
of puncturing convolutional codes. This is quite a useful way of increasing the information
rate of a convolutional code.

4.1 Tables of distance optimal convolutional codes

In addition to giving the tables let us study a method of deriving bounds to the free distance
of an (n, k) code C. The bound will depend on the Forney indices e1 ≤ e2 ≤ · · · ≤ ek of
C. Let us study the subspace Cℓ of C consisting of polynomial codewords of degree at most
ℓ, where ℓ is some natural number. The space Cℓ can be viewed as a block code of length
n(ℓ+ 1) in an obvious manner. The next proposition tells us the dimension of this code.

Proposition 4.1 The dimension dℓ of the space of polynomial codewords of a bounded degree
≤ ℓ in an (n, k) code with Forney indices e1 ≤ e2 ≤ · · · ≤ ek and canonical generator matrix
G(D) is

dℓ =
k
∑

i=1

max{0, ℓ+ 1− ei}.

Proof. This is an immediate consequence of the linear independence of the rows of G(D)
over F[D] and of the “polynomial output implies polynomial input” and the “predictable
degree” properties of canonical generator matrices.
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Corollary 4.1 The dimension dℓ of the space of polynomial codewords of a bounded degree
≤ ℓ in an (n, k,m) code is bounded by

dℓ ≥ k(ℓ+ 1)−m.

Here we have an equality, when ℓ is large enough (greater than or equal to the largest Forney
index).

If the code C we started with has free distance d, then obviously the minimum Hamming
distance of any of the codes Cℓ is at least d. This allows us to exclude the existence of certain
(n, k,m, d) codes and to prove the distance optimality of some codes. To that end we must
have some information about the existence of binary linear block codes. The following well-
known bound is particularly useful in proving the non-existence of certain low-dimensional
block codes.

Theorem 4.1 Griesmer Bound If a binary linear code of length n, dimension k and
minimum distance d exists, then

n ≥
k−1
∑

i=0

⌈

d

2i

⌉

.

Proof. Omitted. See for example MacWilliams–Sloane, The Theory of Error-Correcting
Codes, page 546.

Example 4.1 Show that a (2, 1, 2) code (resp. a (2, 1, 3) code) cannot have free distance
larger than 5 (resp. 6).

The next example shows that the bounds one can get from proposition 4.1 are not the
whole story.

Example 4.2 Show that proposition 4.1 cannot give a bound tighter than 4 to the free
distance of a (2, 1, 1) code but yet no convolutional (2, 1, 1) code can have a free distance
higher than 3.

In the tables that follow we use the so called octal presentation of polynomials. A polyno-
mial p(D) with binary coefficients can be efficiently packed (in the interest of saving space in
the tables) as follows: Interpret p(D) as a polynomial having integer coefficients. Then write
the integer p(2) in octal (base 8) form. For example p(D) = 1 +D2 has octal presentation
58 (=5 decimal) and p(D) = 1 +D +D5 has octal presentation 438 (=35 decimal). In the
tables we omit the subscript 8.

Table 4.1 — some optimal (2, 1, m) codes
m d canonical G(D)
0 2 (1 1)
1 3 (1 3)
2 5 (5 7)
3 6 (13 17)
4 7 (23 35)
5 8 (53 75)
6 10 (133 171)
8 12 (561 753)
10 14 (2335 3661)
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Table 4.2 — some optimal (3, 1, m) codes
m d canonical G(D)
0 3 (1 1 1)
1 5 (1 3 3)
2 8 (5 7 7)
3 10 (13 15 17)
4 12 (25 33 37)
5 13 (47 53 75)
6 15 (133 145 175)
7 16 (225 331 367)
8 18 (557 663 711)

Table 4.3 — some optimal (3, 2, m) codes
m d canonical G(D)

0 2

(

1 0 1
0 1 1

)

2 3

(

3 2 3
2 1 1

)

3 4

(

1 2 3
4 1 7

)

4 5

(

7 4 1
2 5 7

)

5 6

(

3 6 7
14 1 17

)

6 7

(

13 6 13
6 13 17

)

7 8

(

3 6 15
34 31 17

)

Table 4.4 — some optimal (4, 1, m) codes
m d canonical G(D)
0 4 (1 1 1 1)
1 7 (1 3 3 3)
2 10 (5 7 7 7)
3 13 (13 15 15 17)
4 16 (25 27 33 37)
5 18 (53 67 71 75)
6 20 (135 135 147 163)
7 22 (235 275 313 357)
8 24 (463 535 733 745)
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4.2 The dual code and Wyner–Ash codes

For any two vectors x(D) = (x1(D), . . . , xn(D)) and y(D) = (y1(D), . . . , yn(D)) in Fn((D))
we use the notation

x · y = x1(D)y1(D) + · · ·+ xn(D)yn(D)

(even though this is not an “inner product”). Given an (n, k) convolutional code C with
canonical generator matrix G(D) we call

C⊥ = {y ∈ Fn((D)) | y · x = 0 for all x ∈ C}

the dual code of C. It is easy to see that C⊥ is, indeed, an (n, n − k) convolutional code:
standard arguments from linear algebra show that its dimension as a vector space over
F((D)) is n− k and that it has a basis consisting of vectors ∈ Fn(D). We immediately see
that y(D) ∈ Fn((D)) is a codeword of C⊥ if and only if

y(D)G(D)T = 0̄.

Thus we may call G(D) a parity-check matrix for C⊥.
By Theorem 1.2 the matrix G(D) can be completed to a unimodular matrix Q by adding

a suitable (n− k)× n block L

Q =

(

G
L

)

.

Let us then write the matrix Q−1 in a block form

Q−1 = P =
(

UT V T
)

,

where U is a polynomial k × n matrix and V is a polynomial (n − k) × n matrix. As P is
of full rank, the rows of V are linearly independent over F((D)). Because P is the inverse
matrix of Q the rows of V are orthogonal to the rows of G(D). Hence V is a polynomial

generator matrix for C⊥. On the other hand the matrix P T =
(

U
V

)

is unimodular. Thus

adding the rows of U to the matrix V turns it into a unimodular matrix. By Theorem 1.2,
the matrix V is basic.

It can be shown (a result from linear algebra but beyond the scope of our course ‘Linear
Algebra’) that an (n− k)× (n− k) minor of V is equal to the k × k-minor of G gotten by
including the columns of G that were excluded from V . Thus the internal degrees of V and
G are equal. The internal degree of a basic generator matrix is equal to the degree of a code,
so we have the following result due to Forney.

Theorem 4.2 degC = degC⊥.

Example 4.3 Let G(D) be a canonical generator matrix of an (n, n−1) code C. Let ∆i(D)
be the minor gotten from G(D) by excluding the ith column. Then

(∆1(D),∆2(D), . . . ,∆n(D))

generates the dual code C⊥.

Example 4.4 Let A = (aij) be a unimodular 3× 3-matrix. By a direct computation verify
the “minors of the inverse” result quoted in the proof of Theorem 4.2.
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Next we introduce the only known families of distance optimal codes. Consider the
following two parity-check matrices

Hm =
(

1 1 +D 1 +D2 1 +D +D2 · · · 1 +D + · · ·+Dm
)

,

where m ≥ 2 and the entries are the 2m polynomials of degree at mostm that have a constant
term equal to 1, and

H ′
m =

(

1 +Dm 1 +D +Dm 1 +D2 +Dm · · · 1 +D + · · ·+Dm
)

,

where m ≥ 3 and the entries are the 2m−1 polynomials of degree exactly m that have a
constant term equal to 1.

Theorem 4.2 tells us that the codes defined by these parity-check matrices both have
degree m. The (2m, 2m − 1, m) code defined by the parity-check Hm is called the mth order
Wyner–Ash code in honor of its discoverers. Similarly the (2m−1, 2m−1 − 1, m) code defined
by the parity-check matrix H ′

m is called the extended Wyner–Ash code of order m.

Proposition 4.2 The free distance of the Wyner–Ash code (resp. the extended Wyner–Ash
code) is three (resp. four).

Proof. Obviously from the relations

(1 +D, 1) · (1 +D, 1 +D2) = 0

and
(1 +Dm) + (1 +D +Dm) + (1 +D2 +Dm) + (1 +D +D2 +Dm) = 0

it follows that there exists codewords of the prescribed weights.
As neither Hm nor H ′

m has a zero entry neither code has words of weight 1. Similarly
since there are no relations of the type

Drp1(D) +Dsp2(D) = 0,

where r and s are integers and p1(D), p2(D) are entries in the parity-check matrix, no words
of weight 2 exist either. This proves that the free distance of Wyner–Ash codes is exactly
three.

Let x(D) be a polynomial word of minimal weight in an extended Wyner–Ash code.
Without loss of generality we may assume that the constant term x(0) 6= 0. By studying the
constant term of x(D) ·H ′

m we conclude that x(0) must have an even weight. Similarly we
see that the number of highest degree terms in x(D) must also be even. In order for x(D) to
have a weight less than four it is therefore necessary that x(D) is of degree zero. But then
the weight of x(D) must be an even number, so it cannot have weight three. The other low
weights were excluded earlier, so the claim follows.

Example 4.5 Find a canonical generator matrix for the (4, 3, 2, 3) Wyner–Ash code and
for the (4, 3, 3, 4) extended Wyner–Ash code. Show that their respective Forney indices are
(0, 1, 1) and (0, 1, 2).

Proposition 4.3 The extended Wyner–Ash codes are distance optimal.
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Proof. Let C be any (2m−1, 2m−1 − 1, m) code. By Proposition 4.1, the dimension of the
linear block code C0 must be at least 2m−1 − 1 − m. Assume that the free distance of C
is d ≥ 5. Thus C0 is a linear code of length 2m−1, dimension at least 2m−1 − 1 − m and
minimum distance at least 5. Let H be the parity-check matrix for the code C0. There are
2m−1 columns and at most m + 1 rows in the matrix H . Let H(i), i = 1, . . . , 2m−1 be the
column vectors of H . The sums H(i) +H(j) must all be distinct for different pairs of indices
i < j, for otherwise there is a codeword of weight at most 4. However, the number of such

sums is
(

2m−1

2

)

= 2m−2 (2m−1 − 1). For m ≥ 5 this is higher than the number of vectors in

the column space of H , which is a contradiction. In the case m = 3 (resp. m = 4) the block
code C1 (resp. the block code C0) is a binary linear [8, 3] code. It is easy to see that the
minimum distance of such a code cannot > 4.

We state the following result. A proof consists of a study of certain low weight linear
combinations of the entries of a parity-check matrix for the codes in question and is left as
a challenging (but not at all too difficult) exercise.

Theorem 4.3 (Ytrehus) Any (n, n− 1, m) code with free distance at least three must have
n ≤ 2m and any (n, n− 1, m) code with free distance at least four must have n ≤ 2m−1.

As an immediate corollary to Ytrehus’ Theorem we see that the Wyner–Ash codes are
also distance optimal – after all the non-existence of (2m, 2m − 1, m, d) codes for d ≥ 4 is
included in the theorem.

Example 4.6 Show that all (2, 1) codes and our favorite (4, 2) code of Example 1.5 are
‘self-dual up to a permutation of the components of the output’.

4.3 Blocking and puncturing convolutional codes

The information rate of an ordinary block code can be increased by simply throwing away
one or more bits from each codeword. Usually the minimum distance of the code suffers from
this process, but for a long code, this may not be too bad. In the case of a convolutional
code it would be too crude a process to simply discard one of the components of the output
signal. The adopted practice is to first artificially increase the “length” n by the so called
blocking that amounts to ‘running the system clock at a fractional speed’ and only then
puncturing one or more components of the output. We shall give an algebraic description of
the steps involved. An interesting observation is that the resulting punctured codes can be
decoded with the (simpler) trellis diagram of the original (simpler) code.

Let M ≥ 2 be an integer and let E = DM . The field of formal Laurent series F((D)) can
be viewed as an M-dimensional vector space over the subfield F((E)) that is obviously also
a field of formal Laurent series. The powers 1 = D0, D,D2, . . . , DM−1 obviously form a basis
of F((D)) over F((E)). Similarly the space Fn((D)) can be viewed as an nM-dimensional
F((E))-space. In this case a natural basis would consist of such n-tuples eij that have a single

non-zero component Di, i = 0, 1, . . . ,M − 1 at position j = 1, 2, . . . , n and zeros elsewhere.
When we express an arbitrary vector x(D) in Fn((D)) as an F((E))-linear combination of
the vectors eij , we immediately see that the weight of x(D) does not depend on the point of
view. For example the vector

(1 +D2 +D3 1 +D +D2) = (1 + E)e01 + Ee11 + (1 + E)e02 + e12
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is of weight 6 as an element of F2((D)) and as an element of F4((E)).
For an arbitrary (n, k,m, d) code C we define the Mth blocking C [M ] of C to be the

(nM, kM) code gotten by viewing C as a vector space over the subfield F((E)), where the
coordinates will be computed with respect to the basis {eij | j = 1, . . . , n, i = 0, 1, . . . ,M−1}
of Fn((D)).

By the above discussion, the free distance of C [M ] is also d. Furthermore the F-spaces of
causal codewords of C and C [M ] are obviously equal. By the state space theorem, the degree
of the code C [M ] is then also m, so C [M ] is an (nM, kM,m, d) code.

The problem of finding a canonical generator matrix for a blocking remains. A canonical
generator matrix G(D) for C simply gives us an F((D))-linear mapping LG from Fk((D))
to Fn((D)) with respect to the standard bases: LG(u(D)) = u(D)G(D). This F((D))-linear
mapping is obviously also F((E))-linear. So to get a generator matrix for the blocking C [M ]

we simply compute the matrix of the mapping LG with respect to the new standard bases.
To that end we first study the simple case n = k = 1, where LG is simply multiplication

by a polynomial p(D) = g11(D). In this case the standard basis consists of the powers
1, D,D2, . . . , DM−1 and multiplication by p(D) corresponds to an M ×M matrix p[M ](E)
called the polycyclic pseudocirculant of p(D). To find p[M ](E) we first regroup the terms
in p(D) according to the remainder of the degree modulo M , i.e. we write p(D) as an
F[E]-linear combination of the monomials in the basis

p(D) = p0(D
M) + p1(D

M)D + p2(D
M)D2 + · · ·+ pM−1(D

M)DM−1 =
M−1
∑

i=0

pi(E)D
i.

The polynomials pi(E) are called the Mth polyphase components of p(D).
We can similarly divide input and output signals into their respective polyphase compo-

nents. The matrix p[M ](E) that we want to find should give the dependence of the polyphase
components of the output u(D)p(D) on the polyphase components of the input u(D).

From the polyphase decomposition of p(D) we immediately see that for any j, 0 ≤ j ≤
M − 1

Djp(D) =
M−1
∑

i=0

Di+jpi(E) =
j−1
∑

i=0

DiEpi+M−j(E) +
M−1
∑

i=j

Dipi−j(E).

The extra factor E = DM comes from the fact that in the power Di+j the exponent may
“overflow” and become larger than M − 1. Hence the matrix p[M ](E) = (pij(E)) has entries

pij(E) =

{

pj−i(E), if j ≥ i and
EpM+j−i(E), if j < i.

Observe that contrary to the practice in our course ‘Linear Algebra’ the matrix of a
linear mapping is written on the right hand side. This is necessary, when we use row vector

notation. We also observe that the degree of the ith row of the matrix p[M ](E) is
⌊

e+i−1
M

⌋

,

where e = deg p(D).
The general case now follows easily. We only need to keep track of the order of the basis

vectors eij. Let us fix the ordering so that the first basis vectors are the monomials Di at

position 1, i.e. ei1, i = 0, 1, . . . ,M − 1, followed by the vectors ei2 in their natural order and
so on. With this convention the matrix of LG with respect to the bases eij is gotten from the

47



matrix G(D) by simply replacing each entry gij(D) with the M ×M block g
[M ]
ij (E). Thus

we have the following result:

Theorem 4.4 (Hole) Let G(D) = (gij(D)) be a polynomial generator matrix for an (n, k)
code C. Then the Mth blocking C [M ] is generated by the matrix

G[M ](E) =















g
[M ]
11 (E) g

[M ]
12 (E) · · · g

[M ]
1n (E)

g
[M ]
21 (E) g

[M ]
22 (E) · · · g

[M ]
2n (E)

...
...

. . .
...

g
[M ]
k1 (E) g

[M ]
k2 (E) · · · g

[M ]
kn (E)















.

To summarize: we have simply replaced the original delay operator D by its suitable
power E. So effectively the transition from C to C [M ] is obtained by letting the system clock
run at a fractional speed, i.e. we wait for M times as many input bits as while using C and
also output M times as many output bits.

Theorem 4.5 Let G(D) be a canonical generator matrix for an (n, k,m) code C and let the
Forney indices of C be e1 ≤ e2 ≤ · · · ≤ ek. Then the matrix G[M ](E) is a canonical generator

matrix for C [M ] and the Forney indices of C [M ] are ei,j =
⌊

ei+j

M

⌋

, where j = 0, 1, 2, . . . ,M−1

and i = 1, 2, . . . , k.

Proof. The statement about the Forney indices follows immediately from our earlier obser-
vation about the row degrees of the polycyclic pseudocirculants, if we can show that G[M ](E)
is canonical. However, an easy computation shows that the external degree of G[M ] is equal
to the external degree of G(D). Since extdegG[M ](E) = extdegG(D) = m and this is equal
to the degree of the code C [M ], the matrix G[M ] has the lowest possible external degree and
hence is canonical.

Example 4.7 Find canonical generator matrices for the second and the third blockings of
the distance optimal (2, 1, 3) code C of Table 4.1. Show that C [3] is a distance optimal
(6, 3, 3) code.

From a blocking of a code C some components of the output vectors can then be thrown
away. This so called puncturing amounts to removing some columns from the generator ma-
trix of C [M ]. The columns to be deleted are usually given by the so called puncturing pattern
P = (pij) — a binary n×M matrix, where the entry pij is 0, if the column corresponding to

the basis element ej−1
i is removed from the generator matrix and 1 otherwise. If G(D) is a

generator matrix for C, we denote by GP (D) the matrix gotten by puncturing G according
to the pattern P .

We have no way of knowing, when the nice properties of a generator matrix G are shared
by the punctured matrix GP . Sometimes a canonical generator matrix remains canonical,
sometimes a generator matrix becomes catastrophic (see the exercises for this concept).
Usually puncturing decreases the free distance of the code and may sometimes also decrease
the degree of the code.

Example 4.8 Let C be the distance optimal (2, 1, 3) code of Example 4.7 and G[2] the
canonical generator matrix for its second blocking C [2]. Show that removing one of the
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Figure 4.1: A (3, 2, 2) trellis
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Figure 4.2: A (2, 1, 2) trellis for a punctured (3, 2, 2) code

columns ei1 leads to a non-basic (catastrophic) generator matrix, but removing the column
of e12, i.e. puncturing with the pattern

P =

(

1 1
1 0

)

yields a canonical generator matrix for a distance optimal (3, 2, 3, 4) code.

In addition to being useful in the search for good codes, the technique of puncturing gives
significant savings in the complexity of the Viterbi decoding algorithm. The savings come
from the fact that one may decode a blocking with the trellis of the original code — simply
split the output/received vector intoM parts. The same observation is valid for a punctured
code as well — simply omit the corresponding output bits from every Mth section of the
trellis. These are the bits marked ‘X’ in Figure 4.2.

In Viterbi decoding the number of additions is equal to the number of edges in a trellis. If
we use a canonical trellis of an (nM, kM,m) code, there are 2kM edges leaving each of the 2m

states — a total of 2m+kM edges per kM input bits. If we useM sections of a canonical trellis
of the original (n, k,m) code, there are 2k+m edges in a trellis section. So in the latter case
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we only need to add the costs of M2k+m edges. (As the trellis of an (nM, kM,m) code often
contains many parallel edges, some additions could be replaced by comparisons. However,
for many CPUs, like Intel x86, a comparison is not at all faster than an addition.) The
number of comparisons that must be made in the Viterbi algorithm is also cut down, when
M sections of an (n, k,m) trellis are used instead of a section of an (nM, kM,m) trellis.

Exercises

4.1 Using Proposition 4.1 show that the free distance of a (2, 1, 4) code cannot be > 8.
Proposition 4.1 cannot be used to improve this result. Prove the non-existence of a convo-
lutional (2, 1, 4) code of free distance 8 by excluding all the possible candidates G(D) for a
canonical generator matrix. A useful observation is that, if a polynomial has an even weight,
it is divisible by 1 +D. Testing the candidates with polynomial inputs of degree ≤ 2 should
suffice.

4.2 With the aid of Proposition 4.1 show that a (3, 2, 1) code cannot have free distance larger
than 3. By studying candidate generator matrices, show that this bound cannot be achieved
and that hence (3, 2, 1) codes cannot have any better distance properties than a carefully
chosen (3, 2, 0) code. Hint: This is a lot easier than the previous problem.

4.3 Let H = (h1(D), . . . , hn(D)) be a polynomial parity-check matrix for an (n, n − 1, m)
code C, where m = maxi deg hi(D). Let r be the dimension of the F-space V spanned by the
polynomials hi(D) in the ring F[D].

A) Form an F-linear map φ from Fn to the space V such that the code C0 consisting of
constant codewords in C is equal to the kernel of φ. Show that dimC0 = n− r.

B) Show that the number of non-zero Forney indices of C is r − 1. Hint: The number of
Forney indices equal to zero was computed in problem 5 of set 5.

C) Show that all the Forney indices of the Wyner–Ash code are either 0 or 1.

D) Show that all the Forney indices of the extended Wyner–Ash code are either 0,1 or 2.

4.4 Let C be a convolutional code. Show that for all the codewords x(D) =
∑

i xiD
i of C

all the components xi have an even weight, iff the vector (1, 1, 1, . . . , 1) belongs to the dual
code C⊥.

4.5 Let C be the distance optimal (3, 1, 3) code of Table 4.2. Find a canonical generator
matrix for the (3, 2, 3) code C⊥. Show that the free distance of C⊥ is 4 (and hence that C⊥

is also distance optimal according to Table 4.3). Hint: Proving the free distance is probably
easiest, if you study the parity-check equation. For example the existence of a codeword of
weight 3 implies an equation Drh1(D) + Dsh2(D) + Dth3(D) = 0, where hi(D) are (not
necessarily distinct) entries in the parity-check matrix.

4.6

A)If p(D) is a polynomial of degree e show that the degree of the ith row of the matrix p[M ](E)

is
⌊

e+i
M

⌋

.

B) Show that for all integers e,M > 0 e =
∑M−1

i=0

⌊

e+i
M

⌋

.
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4.7 Find the canonical generator matrix G[2] for the second blocking of the (2, 1, 2, 5) code
generated by G(D) = (1+D2, 1+D+D2). Compare the result to the answer of problem 1, set
3. Which matrices gotten by removing a single column from G[2](E) are canonical generator
matrices for (3, 2) codes? Show also that the (4, 2, 2, 5) code C [2] is distance optimal.

4.8 Show that, if G(D) is a basic generator matrix for a convolutional code, then G[M ](E),
E = DM is also basic. Hint: What could be a polynomial right inverse for G[M ](E)?

4.9 Let C be the distance optimal (2, 1, 3) code of Table 4.1. From the Griesmer bound it
follows, that no [9, 3, d] codes for d ≥ 5 and no [12, 3, d] codes for d ≥ 7 exist.

A)Show that C [2] is a distance optimal (4, 2, 3) code.

B)Show that puncturing C according to the pattern

P =
(

1 1
1 0

)

leads to a canonical generator matrix for a (3, 2, 3) code CP . Find a parity-check matrix for
CP (see Example 4.3) and show that the free distance of CP is 4. Show that CP is distance
optimal.

4.10 Show that for a (2, 1, m, d) code we always have d ≤
⌊

4(m+2)
3

⌋

. Which codes of Table 4.1

meet this bound?

4.11

A) Find a canonical generator matrix for an (8, 2, 2, 10) convolutional code C. Show that no
(8, 2, 2, d) codes for d > 10 exist.

B) Show that the (4, 1, 1, 7) code of the table is distance optimal, i.e. no (4, 1, 1, d) codes for
d > 7 exist.

4.12 Let C be the (3, 1, 3, 10)-code from Table 4.2. Show that the vector (1, D, 1 + D)
belongs to the dual code C⊥. Find a canonical generator matrix for C⊥. With the aid of the
parity-check equation show that the free distance of C⊥ is four.

4.13 Construct a canonical generator matrix for a (6, 2, 3, 10) code. Show that such a code
is distance optimal, i.e. no (6, 2, 3, d) codes with d > 10 exist.

4.14 Let us puncture the (2, 1, 3) code from the tables. Which puncturing patterns P lead
to a canonical generator matrix GP for a (3, 2, 3) code?

4.15 Let G(D) = (1 + D2, 1 + D2, 1 + D + D2, 1 + D + D2, 1 + D + D2) be a (obviously
canonical) generator matrix for a (5, 1, 2) code C. Show that C is an optimal code with free
distance 13. Find a (10, 2, 2, 13) code.
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Chapter 5

Modern Variations

In this chapter I will give a cursory description of two very powerful classes of error-correcting
codes, Turbo codes and LDPC codes. Turbo coding was presented by Berrou, Glavieux and
Thitimajshima in 1993, and it was the first class of error-correcting codes that allowed one
to communicate at a rate close to the Shannon bound. For example the 4G (LTE) cellular
phone system relies on turbo codes when transmitting bulk data between base station and
user equipment (e.g. a cell phone). Low Density Parity Check codes were first studied by
Gallager as early as in the 1960s. However, the potential of the underlying ideas was forgotten
for a long time (my understanding is that the theory was somewhat underdeveloped, also
real-time application of LDPC-codes places heavy constraints on the computational speed of
the hardware and that was probably not available in the 60s). LDPC-codes will be used in
for example the European second generation digital video broadcast standard (the upgrade
to the current digital television system used in e.g. Finland).

Both classes of codes use reliability information about individual bits at the receiving end.
These are simply probabilities of the value of the bit b, i.e. the pair of numbers P (b = 0) and
P (b = 1). More often than not the probabilities are conditional. If C is a known value of a
(set of) random variable, we use the conditional probabilities P (b = 0|C), P (b = 1|C). The
two probabilities must add up to one, so it is wasteful to use two variables. A convenient of
packing this information into a single variable is the so called log-likelihood ratio, LLR(b),
defined as

LLR(b|C) = ln
P (b = 0|C)
P (b = 1|C) .

The interpretation of this is immediate. The number LLR(b) is positive, iff P (b = 0) >
P (b = 1), i.e. if b is more likely to be 0 than 1. On the other hand if LLR(b) < 0, then b is
more likely to be equal to 1. If P (b = 0) = P (b = 1) = 1/2, then LLR(b) = 0 indicating that
we don’t really know anything about the value of the bit b. The absolute value |LLR(b)|
thus quantifies the level of certainty about the value of b. As extremal cases we see that
LLR(b) = ∞, when b is known to be = 0 with absolute certainty. Similarly LLR(b) = −∞
indicates absolute certainty of b = 1.

The decoding algorithms used for both turbo codes and LDPC-codes combine information
about the value of a bit collected from different sources. If (sometimes this is a BIG IF) two
sources of information C1 and C2 are independent in the sense that the events P (b = i, C1)
and P (b = i, C2) are independent for i = 0 or i = 1, then we can easily combine the
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corresponding LLRs as follows

LLR(b|C1, C2) = LLR(b|C1) + LLR(b|C2).

Independence of this kind is often only approximate, but we ignore this problem in what
follows. We simply record the fact that a properly designed turbo code or an LDPC-code
will achieve approximate independence, when the code blocks are long enough. Extensive
computer simulations are needed to verify that a candidate code works as well as it should.

What kind of independent sources of information about the value of a bit can we have?
There will always be intrinsic information coming from the communication channel. The
bit was transmitted as a waveform or a burned into a CD-rom, magnetic tape or whatever.
Some distortion may have happened, and by modelling that distortion we can interpret the
read/received data about the uncoded bit. Then we, of course, have extrinsic information
tying the value of any given bit to that of other bits. After all, we know with absolute
certainty that the combination of transmitted bits forms a valid codeword. The key novelty
present in both turbo codes and LDPC-codes is that there will be several sources of extrinsic
information. We shall see that in a way a code is broken into smaller parts in such a way
that we can carry out partial decoding on those parts. Furthermore, we have available
decoding algorithms that give as outputs reliability information about individual bits — not
just something ‘crude’ like the closest codeword. We can then feed extrinsic information
gotten by decoding partial words as inputs in other parts. Furthermore, we can iterate this
process, and do another round of decoding on an already used part of the code with a view
of using extrinsic information from other sources and get more accurate output from that
part. After all, in subsequent rounds the decoders handling partial codewords are ostensibly
doing their work on more accurate data, and we are thus entitled to expect better output.

The mathematical tools needed to understand these processes are very different from
those traditionally used in the study of error-correcting codes in Turku. I only have time to
scratch the surface and give crude outlines of the ideas and algorithms. Also, I am unfamiliar
with the necessary mathematics of stochastic processes myself.

5.1 Parity check matrices and Tanner graphs

Recall that a (binary linear) block code C of length n and dimension k can be defined by
giving its check matrix H . It is a matrix with n columns, at least n − k columns (we may
occasionally use extra check equations that are linear combinations of other check equation)
and entries from F . A vector x ∈ F n is a word of the code C, if and only if it satisfies the
matrix equation HxT = 0. In other words a codeword must be orthogonal to all the rows of
the parity check matrix H .

Example 5.1 A binary linear code of length 10 and dimension 6 is defined by the check
matrix

H =















1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1















.
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✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

Figure 5.1: The Tanner graph of the check matrix of Example 5.1.

This check matrix has five rows, but we observe that the sum of all rows is the all zero vector.
Hence the code defined by this matrix is 6-dimensional. Because all the columns are distinct,
it follows easily that the code has minimum Hamming distance three.

A parity check matrix gives rise to a so called Tanner graph. The Tanner graph related
to a check matrix is a bipartite graph. It has n variable nodes, one for each bit, (drawn as
circles below). The Tanner graph also has so called check nodes, one for each row of the
matrix H . The variable node number j is connected to the check node number i in the graph
by an edge of the graph, iff Hij = 1. The bipartite property means that there are no edges
connecting two check nodes to each other nor any edges connecting two variable nodes to
each other.

Example 5.2 The Tanner graph related to the check matrix H of Example 5.1 is shown in
Figure 5.1. Because there are two ones on each column of H, each variable node is connected
to exactly two check nodes. Because there are four ones on each row of H, each check node
is connected to exactly four variable nodes.

The Tanner graph is primarily used to describe so called message passing algorithms.
These algorithms are iterative. Each iteration is split into two halves. During the first half
iteration the variable nodes are sending messages to all the check nodes they are connected
with about their internal state. During the second half iteration the check nodes reply with
messages to all the variable nodes connected to them. The details of the messages vary
according to what the algorithm is doing.

The case when a message passing algorithm is used to filling erasures is the simplest.
Assume that a word of the code C is being transmitted. Assume further that the codeword
goes through a so called binary erasure channel. This means that each and every bit is
either received correctly, or (with a probability p) is received as a totally illegible erasure
- an unknown bit of value ? that is equally likely to be 0 or 1. In other words after going
through a binary erasure channel the LLR of each bit is either 0 or ±∞.

In this case during the first half-iterations the variable nodes always tell all the check
nodes connected to them their current information about their value, 0/?/1. For their part
the check nodes carry out the following calculations. Assume that the bits bi1 , bi2 , . . . , bik are
connected to check node cr. Then we know that in the the field F the linear equation

bi1 + bi2 + · · ·+ bik = 0
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is true. So for each t, 1 ≤ t ≤ k, the check node cr attempts to solve bit from this equation.
The attempt is successful, if and only if all the other bits biℓ , ℓ 6= t sent in a definite value.
In that case the the check node cr sends the solution of this equation to the variable node
number it. If the attempt to solve the value of bit was unsuccessful, i.e. if at least one other
bit involved in this check equation was still unknown, then the message from cr back to
variable node it is also a ?.

Observe that if all the bits involved in the check equation at cr were already known, then
the messages back from the check node cr to the variable nodes only consist of confirmations
of the values (because we assumed that no errors took place — only erasures).

The purpose of having a Tanner graph is to illuminate this passing of messages.

Example 5.3 Assume that a word of the code of Example 5.1 is transmitted through a binary
erasure channel, and is received in the form ?011?10?1?. We initialize the variable nodes in
the Tanner graph of Figure 5.1 with these values.

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

0 1? 1 ? 1 0 ? 1 ?

In the first half-iteration the check nodes receive respective messages (from left to right)
?011, ??10, 0??1, 11??, and 101?. The three check nodes in the middle received two ?-
messages each, and hence cannot solve any of the variables from their respective parity check
equations. On the other hand the first check node only received a single ?, and can thus solve
the value of b1 from its knowledge of b2, b3, b4. Thus it can send back one useful message:
”your pals think that your value is 0” to variable node number 1. Similarly the last check
node can solve b10 = 0 from its check equation. The first and the last bits contentedly update
their contents. So after the first iteration the situation is thus as follows.

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

0 1 1 ? 1 0 ? 10 0

The messages received by the check nodes during the first half of the second iteration are
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thus 0011, 0?10, 0??1, 11?0 and 1010. The work of check nodes one and five is done. We
observe that this time check node number two can solve b5 = 1. Similarly check node number
four can solve b8 = 0, while check node number three can only twiddle its thumbs. The scene
is now

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

0 1 1 1 0 10 01 0

We see that the values of all the variable nodes are now known. However the algorithm
may not know about it yet (depends how you code it!)? One option is to let the third check
node finally give the decoded word its nod of approval. After all, the other check nodes are
already content. This way we get an extra verification that we now have, indeed, a valid
codeword.

A couple of general remarks about the general theory are due. Assume that we have a
very long code. Assume that we further node the weight distributions of both the variable
and the check nodes, in other words we know the fraction of variable nodes connected to one,
two, et cetera check nodes, and that we similarly know the fraction of check nodes involving
(one, two,) three, four, et cetera variables. The Tanner graph of our example is special
in this sense that all the variable node are involved in exactly two parity check equations,
and all the check equations involve exactly four bits. This type of Tanner graphs are called
regular. Also assume that we know the probability of any of the bits getting erased. It is not
unreasonable to think that under those circumstances we can predict how often the above
algorithm will then stall (no progress during an iteration)/not stall, and thus fail/succeed.
After that we can start playing the game of looking for optimal weight distributions of both
variable and check nodes. While the analysis is somewhat simpler on a regular Tanner graph,
it turns out that non-regular graphs often yield better codes. All of this is beyond the scope
of this course.

5.2 Belief propagation, AWGN-channel, LDPC-codes

We next explain the necessary modifications to the message passing algorithm, when the
messages involve a full continuum of reliability information. The first obstacle to a general-
ization is what can a check node do, when it is only fed reliability information. To that end
we prove the following

Lemma 5.1 Assume that the events (bi = 0) with i = 1, 2, . . . , k are independent and that
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P (bi = 0) = pi. Then the probability that
∑k

i=1 bi = 0 is given by the formula

2P (
k
∑

i=1

bi = 0)− 1 =
k
∏

i=1

(2pi − 1).

Proof. We prove this by induction on the number of bits k, the base case k = 1 being
obvious. So assume that for some natural number ℓ we have

2P (
ℓ
∑

i=1

bi = 0)− 1 = fℓ =
ℓ
∏

i=1

(2pi − 1).

Then sℓ =
∑ℓ

i=1 bi vanishes with probability (1+fℓ)/2 and sℓ = 1 with probability (1−fℓ)/2.
The sum

∑ℓ+1
i=1 bi vanishes when sℓ = bℓ+1. By the independence assumption this happens

with probability

P (sℓ = 0, bℓ+1 = 0) + P (sℓ = 1, bℓ+1 = 1) =

(

1 + fℓ
2

)

pℓ+1 +

(

1− fℓ
2

)

(1− pℓ+1),

so expanding the right hand side gives that

2P (sℓ + bℓ+1 = 0)− 1 = fℓ(2pℓ+1 − 1)

as required.

Here we make several observations. Let b̂ be the so called hard decision value of a bit b,
i.e. b̂ = 0, if P (b = 0) ≥ 1/2 and b̂ = 1, if P (b = 0) < 1/2. Then the factor 2pi − 1 ≥ 0 if

and only if b̂ = 0. From the lemma we immediately see that
∑k

i=1 b̂i is more probable as a
value of

∑k
i=1 bi, because the number

∏

i(2pi − 1) is positive if and only if an even number of
the probabilities pi are < 1/2. Furthermore, the factors 2pi − 1 ∈ [−1, 1] and |2pi − 1| = 1
only when there is a certainty about the value of bi. Also we have

∣

∣

∣

∣

∣

k
∏

i=1

(2pi − 1)

∣

∣

∣

∣

∣

≤ |2pj − 1|

for all indices j = 1, 2, . . . , k. In other words we get a confirmation of the intuitively obvious
fact that the uncertainty of the sum of uncertain bits is higher than the uncertainty of any
of the bits participating in the sum.

We want to rewrite the result of Lemma 5.1 using log-likelihood ratios. If LLR(b) = x,
then P (b = 0) = exP (b = 1) = ex(1− P (b = 0) =. From this equation we solve P (b = 0) =
ex/(ex + 1). Consequently

2P (b = 0)− 1 = 2
ex

ex + 1
− 1 =

ex − 1

ex + 1
= tanh

x

2
.

Let us define a function

φ(x) := ln
(

ex + 1

ex − 1

)

= − ln tanh
x

2
,

when x is a positive real number.
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Lemma 5.2 The function φ is an everywhere decreasing bijection from the set R>0 to itself.
It is its own inverse, i.e.

φ(φ(x)) = x

for all positive real numbers x.

Proof. A straightforward exercise.

On some occasions it is convenient to extend the definition of φ by declaring φ(0) = ∞
and φ(∞) = 0. This turns φ to a continuous function (with respect to the obvious topologies)
from [0,∞] to itself.

Proposition 5.1 Assume that the bits bi, i = 1, 2, . . . , k are independent random variables,
and that we know that LLR(bi) = xi. Then the most probable value of the sum s =

∑k
i=1 is

ŝ =
∑k

i=1 b̂i. The absolute value of its log-likelihood ratio can be calculated from the formula

|LLR(s)| = φ

(

k
∑

i=1

φ(|xi|)
)

.

The sign of LLR(s) is (−1)ŝ.

Proof. Assume first that b̂i = 0 for all i. Then xi ≥ 0 for all i. By Lemma 5.1 we have

2P (s = 0)− 1 =
k
∏

i=1

exi − 1

exi + 1
.

Hence

ln(2P (s = 0)− 1) = −
k
∑

i=1

φ(xi).

Therefore

φ(LLR(s)) = − ln(2P (s = 0)− 1) =
k
∑

i=1

φ(xi).

In this case the claim follows from the fact that φ is its own inverse.
If some of the hard decision values b̂i are equal to one, i.e. xi < 0, then we can invert those

bits bi. Such an inversion alters the parity of the sum s, replaces the factor 2P (bi = 0)− 1
with its negative, and similarly replaces xi with its negative. Therefore a total of ŝ sign
changes take place, and the formula holds in the general case as well.

Another problem we need to address is how to obtain the intrinsic LLRs for each bit.
To say anything about this, we need to model the communication channel. A common and
relatively realistic model is the so called additive white gaussian noise channel (AWGN for
short). In the simplest case this means that a bit b is first mapped to a real number x as
follows: 0 7→ +1, 1 7→ −1. We then assume that the channel adds random noise n to the
transmitted signal so that the receiver reads the number

y = x+ n

from the channel. Here we assume that n is a normally distributed zero-mean random
variable with known standard deviation σ. This means that the probability density function
of n is

p(n) =
1√
2πσ2

e−
n2

2σ2 .
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Therefore we get the conditional probabilities (in the sense of probability density)

P (y|b = 0) = P (y|x = 1) = P (n = y − 1) =
1√
2πσ2

e−
(y−1)2

2σ2

and similarly

P (y|b = 1) = P (n = y + 1) =
1√
2πσ2

e−
(y+1)2

2σ2 .

A priori we usually do not know anything about the value of b, i.e. P (b = 0) = P (b =
1) = 1/2. This is because either b is a message bit chosen by the user, or a check bit of a
linear code (and thus again equally likely to have either value). There are some exceptional
situations, e.g. when b is a terminating zero of a convolutional code, but in that case one
may question the wisdom of spending transmission power in sending b anyway!

This allows us to reverse the order of the conditional probabilities as

P (b = 0|y) = P (b = 0, y)

P (y)
=
P (b = 0)

P (y)

P (y, b = 0)

P (b = 0)
=

1

2P (y)
P (y|b = 0)

and similarly

P (b = 1|y) = 1

2P (y)
P (y|b = 1).

Hence

LLR(b|y) = ln
P (b = 0|y)
P (b = 1|y) = ln







e−
(y−1)2

2σ2

e−
(y+1)2

2σ2





 =
2y

σ2
.

Remember that the receiver can read y from the channel. In order to calculate the LLR,
the receiver needs to also know the noise variance σ2. The receiver can also measure this,
because it has access to several thousands of transmitted bits, and can thus accurately
estimate the expected value

E(y2) = E((x+ n)2) = E(x2) + 2E(xn) + E(n2) = 1 + 0 + σ2 = 1 + σ2.

In what follows we thus assume that the receiver know the value of σ2. As E(x2) = 1 and
E(n2) = σ2, and the energy of a radio signal (or any harmonic oscillation) is proportional to
the square of the amplitude, the ratio 1/σ2 is often called the signal-to-noise ratio (=SNR).

We can finally describe the details of the message passing algorithm (also called the belief
propagation algorithm) on a Tanner graph, when reliability information (i.e. LLRs) is used.
The data structure needs to support the following items.

• Each variable node needs to know:

– the intrinsic LLR of this bit,

– the messages from all the check nodes this bit is involved in,

– the best guess of the hard decision value of this bit (0 or 1).

• Each check node needs to know:

– all the incoming messages (one from each bit participating in this check equation),
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– (optionally) information about whether the hard decision values of the above bits
pass this parity check.

At the beginning of the belief propagation algorithm the data at variable nodes is ini-
tialized in such a way that the values of the intrinsic LLRs are obtained from the receiver
(based on the received signal according to the channel model and whatever else affects the
interpretation of the signal). The message data is initialized to all zeros (no information has
arrived from the check nodes yet).

During the first half of any iteration all the variable nodes send messages to all the
check nodes connected to them in the Tanner graph. Assume that variable node i has
intrinsic LLR xi and messages m(k, i) that it received from check node number k during
the previous iteration. Then the message sent to check node number k will be the number
n(i, k) := xi+

∑

j,j 6=km(j, i). In other words, we take the information received from OTHER
check nodes into account. The variable node also calculates the sum zi = xi +

∑

j m(j, i)

and updates the hard decision guess of bit bi to be b̂i = 0, if zi ≥ 0, and b̂i = 1, if zi < 0.
Note that in practices it makes sense to first compute zi, and the subtract the effect of a
single message, so n(i, k) = zi −m(k, i). Optionally we can also send the value of b̂i to all
the check nodes.

During the second half of any iteration the check nodes process the incoming messages,
and replies to them by sending each variable back information about the LLR of each bit
that can be deduced from the LLRs of the other bits involved in this check equation. So
check node number k sends the variable node number i the number

m(k, i) :=
∏

j 6=i

sgn(n(j, k)) φ





∑

j 6=i

φ(|n(j, k)|)


 .

Optionally the check node may also send a central controller information about whether the
hard decision values of the bits pass the parity check.

The algorithm terminates after a prescribed number of rounds (usually 50 or 100), or
when all the check nodes report that the variable nodes’ current beliefs about the bit values
now pass all the parity checks, and further iterations are thus unnecessary.

Before describing the goal of all these calculations, let us take a look at a toy example.

Example 5.4 Follow the belief propagation algorithm, when the repetition code of length
three defined by the check matrix

H =

(

1 1 0
0 1 1

)

is used. We assume that the intrinsic LLR of bit number i is xi, and initialize the Tanner
graph accordingly.

During the first iteration the following messages are passed. The variable nodes send
their intrinsic LLRs to the check nodes. Now that the check nodes are only connected to
two variable nodes they reply by sending back to each variable node the LLR of the other bit
involved in the parity check equation.

During the second iteration the messages sent by the first and the third variable nodes
remain unchanged as they did not receive any messages independent from the lone check
node they are connected to. On the other hand, the second variable node now takes into

60



x1 x2 x3

0 0 0 0

Figure 5.2: An initialization of belief propagation on a Tanner graph

x1 x2 x3

x1 x2 x2 x3

x2 x1 x3 x2

Figure 5.3: Belief propagation on a Tanner graph after a single iteration

account the message it received from the first check node in its message to the second check
node, and vice versa. Therefore the message sent from the check nodes to the first and third
variable nodes are updated accordingly, but no changes are made to the message sent to the
second variable node. The situation after the second iteration is shown in Figure 5.4.

We observe that further iterations will no longer change the contents of the messages so
we may as well stop after two iterations here.

Let us study the contents of the variable nodes at the end of the toy example run. We
see that at this point for all i = 1, 2, 3 we have zi = x1 + x2 + x3. In other words at the
end of the belief propagation all the bits think that they are equal to 0, if x1 + x2 + x3 ≥ 0
and all think that they are equal to 1, if x1 + x2 + x3 < 0. In the repetition code all the
bits agree, so this is certainly useful. Also all the bits base their final decision on the sum
of their LLRs. What is the interpretation of this sum? Initially the variable nodes only had
intrinsic information. The key point not taken into account was that the combination of the
transmitted bits was a valid codeword with absolute certainty. As usual we assume that a
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x1 x2 x3

x1 x3

x1 x3

x2 + x3

x2 + x3

x1 + x2

x1 + x2

Figure 5.4: Belief propagation on a Tanner graph after two (or more) iterations

priori each codeword is transmitted with the same probability, and that the intrinsic LLRs
are independent from each other. For example, if we transmit the three bits via an AWGN
channel, separated in time, then we receive a vector y = (y1, y2, y3), and xi = LLR(bi|yi).
Independence means that

P (y|000) = P (y1|b1 = 0) · P (y2|b2 = 0) · P (y3|b3 = 0),

and similarly
P (y|111) = P (y1|b1 = 1) · P (y2|b2 = 1) · P (y3|b3 = 1).

Here in the conditional probabilities the events 000 and 111 should be read as “000 (resp.
111) was transmitted”, and the event y should be read as “the vector y was received”. The
assumption that the codewords were a priori equally likely to be transmitted implies that

ln

(

P (000|y)
P (111|y)

)

= ln
P (b1 = 0|y1)
P (b1 = 1|y1)

ln
P (b2 = 0|y2)
P (b2 = 1|y2)

ln
P (b3 = 0|y3)
P (b3 = 1|y3)

= x1 + x2 + x3.

Because all the bits are known to be equal in our case we can interpret this as saying that

ln

(

P (bi = 0|y)
P (bi = 1|y)

)

= x1 + x2 + x3.

In other words, taking the entire received vector into account, we gain the information from
the repeated bits. This motivates the following definition.

Definition 5.1 Assume that a binary code C is being used. Denote its codewords by b =
(b1, b2, . . . , bn). Given the received vector y (and a channel model) we call the LLR

LLR(bi = 0|y) = ln

(
∑

b∈C,bi=0 P (y|b)
∑

b∈C,bi=1 P (y|b)

)

the a posteriori LLR of bit bi.
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The a posteriori probabilities for the values of the bit bi can be interpreted as follows. We
split the code C into two piles of codewords according to the value of the bi. Then we calculate
the log-likelihood ratio of the two piles conditioned on the received vector. Of course, when
C is large, calculating this LLR by brute force means appears to have prohibitive complexity.
However, we have the following result.

Theorem 5.1 Assume that the Tanner graph of a code is a tree, i.e. it contains no cycles.
Then at the end of the belief propagation algorithm we have that each variable node can
calculate the a posteriori LLR of its bit as the sum of the intrinsic LLR and the incoming
messages from the check nodes:

zi = xi +
∑

k

m(k, i) = LLR(bi = 0|y).

Proof. Omitted.

The key assumption in the previous theorem is that the Tanner graph should have no
cycles. Let us alter our toy example a bit to see the effect of having a cycle in the Tanner
graph.

Example 5.5 Let us add a third, redundant check equation to the definition of the repetition
code. So the parity check matrix looks like

H =







1 1 0
0 1 1
1 0 1







and the corresponding initialized Tanner graph is shown in Figure 5.5

x1 x2 x3

0 0 0 0 0 0

Figure 5.5: Belief propagation on a Tanner graph with a 6-cycle

As earlier, we see that after a single iteration, the check nodes have sent messages (x2, x3)
to the first variable node, messages (x1, x3) to the second, and (x1, x2) to the third. The second
iteration updates the messages from the check nodes to (x2+x3, x2+x3) to the first variable,
(x1+x3, x1+x3) to the second and (x1+x2, x1+x2) to the third. The third iteration sees only
messages equal to x1 + x2 + x3 going from all the check nodes to their neighboring variable
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nodes. In the fourth iteration the first variable node receives (x1 + 2x2 + x3, x1 + x2 + 2x3),
the second receives (2x1+x2 +x3, x1+x2 +2x3) and the third (2x1 +x2+x3, x1+2x2 +x3).
At this point the LLR-totals at all the variable nodes are equal to 3x1 + 3x2 + 3x3. We see
that as iterations tick by the coefficients will keep increasing.

We interpret the outcome of the last toy example as saying that the presence of cycles
in the Tanner graph creates dependencies among the messages - the same information is
fed back to the messages after they have completed a full cycle, reinforcing themselves in
an unintended manner. However, we also observe that this phenomenon does not lead to
the wrong decisions made at the end. The reinforcing cycles scale the a posteriori LLRs
incorrectly, but (often enough) do not change the signs. Therefore we can use the belief
propagation algorithm even if the Tanner graph contains some cycles. A more careful analysis
shows that the shorter the cycle the more detrimental its effect may be. Therefore code
designers take great pains to exclude all cycles of length 4, and usually as many, if not all,
of the cycles of length 6 as they can.

A few words about LDPC-codes. Contrary to our toy examples the more realistic parity
check matrices have a very low number of 1s, indeed. As an example I mention an LDPC
code of length n = 64800 that will be used in the DVB-T2 standard (the update to the
current digital TV system used in Europe including Finland). The code has dimension
43200, so there will be 64800 variable nodes and 21600 check nodes in the Tanner graph. Of
the variable nodes 4320 are connected to 13 check nodes, 38880 to 3 check nodes, 21599 to
two check nodes, and there is a single variable node connected to only one check node. The
average number of check nodes a variable node is connected is thus 10/3. So the check matrix
H has in the average a tad more than 3 ones on a column with 21600 entries! The average
number of bits involved in a parity check is thus ten. It stands to reason that these number
should be low. If there are many variable nodes connected to a check node, then that check
node will usually only send relatively weak messages given that out of several participating
bits, some will be unreliable, and as we saw, the unreliability adds up. Consequently the
number of connections per variable node has to be even lower, because we cannot have too
many independent parity checks.

Optimal distributions of the weight distributions on the Tanner graph can be found using
tools from stochastics. We cannot study that theory within the scope of this course. Never-
theless, very good LDPC-codes (of a prescribed rate) can be designed with the known tools.
A catch is that for the codes to work as well as promised by the theory (that is asymptotic
in nature) they need to be relatively long.

5.3 Turbo codes, Soft output Viterbi algorithm

Originally (some variations are possible) turbo codes are binary linear codes of rate 1/3
gotten from a (2, 1) convolutional code C by the following recipe. First we find a systematic
generator matrix Gsys(D) = (1, f(D)) for C. This forces a rational function as the latter
component f(D). For example with our favorite convolutional code we use the generator
matrix Gsys(D) = (1, (1 + D2)/(1 + D + D2)) instead of the polynomial generator matrix
G(D) = (1 +D2, 1 +D+D2). To turn C into a turbo code we need to specify the length of
the input sequence N = deg u(D) + 1. In addition to that we need a so called interleaver,
i.e. a bijection σ ∈ Sym({0, 1, 2, . . . , N − 1}) permuting the indices i = 0, 1, 2, . . . , N − 1.
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The key idea in turbo codes is to use the same convolutional code C also to encode the
interleaved message ũ(D) =

∑N−1
i=0 u(σ(i))Di. The words of the turbo code are the vectors

(u(D), u(D)f(D), ũ(D)f(D)) ∈ F [[D]]3. A couple of remarks are due. Observe that we do
not transmit the sequence ũ(D). This would be kind of wasteful, because it would amount
to repeating the bits of u(D) albeit in a different order. As f(D) is no longer a polynomial
function, terminating the power series u(D)f(D) and ũ(D)f(D) (i.e. turning them into
polynomials) usually requires non-zero dummy input bits. Furthermore, the two power
series usually require different sequences of dummy bits for termination. There are some
variations on how to do this, but as long as the decoder is aware of the exact method, the
choice doesn’t really matter.

The performance of a turbo code depends on the following ingredients. A good choice of
the interleaver π allows (as we shall see) us to get a code with a higher Hamming distance. On
the other hand the presence of convolutional codes allows us to construct an iterative efficient
(soft decision) decoding algorithm. We cannot quite use the ordinary Viterbi algorithm,
because its output consists of hard information - the closest codeword. Luckily a more
suitable version is available. To decode the turbo code iteratively we need a variant of the
Viterbi algorithm that calculates the a posteriori LLRs of individual component bits of u(D).
Again we utilize the trellis. Namely, in the formula for the a posteriori probabilities it is
natural to lump together the codewords according to the state of the trellis that they pass
through just before and immediately after the bit of interest. This is the idea behind the so
called two-way algorithm (also known as the forward-backward algorithm).

Let us concentrate on a single trellis section between instances of time i and i+1. I denote
by Σ(i) the state space at instant i. Assume that we have already calculated, conditioned on
all a priori information about the bits u(j), j < i and the intrinsic information about all the
bits xℓ(j), j < i, ℓ = 1, 2, that the probabilities of the early part of the path of a codeword
ends in the state s ∈ Σ(i) is P−(s, i). Assume that we have similar information about the
probability P+(s, i), based on the intrinsic information about the bits xℓ(j), j ≥ i+1, ℓ = 1, 2,
and on a priori information about the input bits u(j), j ≥ i+1, of a valid codeword continuing
from the state s ∈ Σ(i+ 1) in the future.

For each edge e in this trellis section we assign a number P (e) = P (in(e))P (out(e)) that
is the a priori probability P (in(e)) of its input label, in(e), times the probability of its output
label P (out(e)). As we assume that the random processes involving the reception of all the
bits are independent from each other, this is just the product of the probabilities of the
individual bits of out(e) conditioned on the received version of this part of the codeword.
Then we can calculate the following probabilities:

• The probabilities P−(s, i+ 1) for all the states s ∈ Σ(i+ 1).

• The probabilities P+(s, i) for all the states s ∈ Σ(i).

• The ratio of the a posteriori probabilities P (u(i) = 0) and P (u(i) = 1) conditioned on
the available data.

Before we look at the formulas for all these probabilities, I remark that the probabilities
p−(s, i) are calculated forward, i.e. in the direction of increasing i. The probabilities P+(s, i)
on the other hand are calculated backward, in the direction of decreasing i. We shall see
that the formula for the a posteriori probabilities of the input bits requires all P+ and P−
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to be known. So we need to traverse the trellis twice (hence the name forward-backward
algorithm), the a posteriori probabilities can be calculated on the latter direction.

On with the formulas. Any state s ∈ Σ(i + 1) can be reached from a state s′ ∈ Σ(i),
iff there are (one or more) edges going from (s′, i) to (s, i + 1). We denote the set of such
edges by E(s′, s, i). Note that the set is usually empty for some states s′. As in the usual
Viterbi algorithm we add the effect of an edge e to what we know about its starting initial
state ∈ Σ(i) to get something about its final state ∈ Σ(i+ 1). As this time both pieces are
probabilities of independent events, we multiply the two numbers instead of adding them
(as was done in vanilla Viterbi). Also, because we want to take all the paths through the
trellis into account, we add the atomic probabilities together instead of selecting the path
with minimum total distance (as was the case in vanilla Viterbi). So in the end we get, for
each state s ∈ Σ(i+ 1) the following probability mass

M−(s, i+ 1) =
∑

s′∈Σ(i)

∑

e∈E(s′,s,i)

P−(s′, i)P (e).

There is no reason for these sums to sum up to one. So we can (but actually don’t necessarily
have to) rescale them to meet that criterion (this is one way of conditioning these probabilities
to the fact we only take into account paths corresponding to valid codewords). So let
M−(i+ 1) =

∑

s∈Σ(i+1)M
−(s, i+ 1). Then the sought probabilities are

P−(s, i+ 1) =
M−(s, i+ 1)

M−(i+ 1)
.

The backward calculation is completely analogous (imagine that you reverse the direc-
tion of time, and walk through the trellis in the opposite direction). So we calculate the
probability masses

M+(s′, i) =
∑

s∈Σ(i+1)

∑

e∈E(s′,s,i)

P (e)P+(s, i+ 1),

their sum M+(i) =
∑

s′∈Σ(i)M
+(s′, i), and (using that as a normalization factor) the proba-

bilities

P+(s′, i) =
M+(s′, i)

M+(i)
.

In order to calculate the a posteriori likelihood ratio (or LLR) of the input bit u(i) we,
as usual, split codewords into two groups according to the value of u(i). We further split
them into smaller groups according to the states the codewords pass through at instants i
and i + 1. As the structure of the code allows us to join any ending from i + 1 to ∞ with
any beginning from −∞ to i, we are all set, and the definition of the a posteriori probability
gives us the formula

LLR(u(i)) = ln

∑

s′∈Σ(i)

∑

s∈Σ(i+1)

∑

e∈E(s′,s,i),in(e)=0 P
−(s′, i)P (e)P+(s, i+ 1)

∑

s′∈Σ(i)

∑

s∈Σ(i+1)

∑

e∈E(s′,s,i),in(e)=1 P
−(s′, i)P (e)P+(s, i+ 1)

.

Observe that if we forget to scale the probability masses M−(s′, i) and M+(s, i+ 1) to sum
up to unit, and simply use them in place of M−(s′, i) and M+(s, i+1), then all the terms in
both numerator and the denominator will be multiplied by M−(i)M+(i+1), and this factor
is thus cancelled in the ratio. Therefore the scaling is not always done. However, in a long
trellis the numbers then quickly become quite small. Depending on the hardware carrying
out the calculations this may or may not be a problem.
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Example 5.6 Solutions to the homework problems 6 and 7 from the last set of 2013 version
of the course will be added here.

Now we can describe an iterative decoding algorithm for a turbo code. We initialize the
a priori LLRs for the input bits u(i) to be all zero. We can calculate the probabilities of all
the edges P (out(e)) for both component convolutional codes: the first code that transmitted
(u(D), u(D)f(D)) and the second code that transmitted (ũ(D), ũ(D)f(D)) - conditioned on
the received signal only. Observe that the intrinsic information on the bits of ũ(D) is the
same as that of the bits u(D).

Then we can iterate the following two stage algorithm a fixed number of times.

(i) Run SOVA on the first component code. Update the a priori LLRs of u(i) to be equal
to the freshly calculated a posteriori LLRs.

(ii) Run SOVA on the second component code (observe that we now use the a posteriori
LLRs of the input bits of the first component code as a priori LLRs). Update the a
priori LLRs of u(i) to be equal to the freshly calculated a posteriori LLRs.

Observe that the two SOVA-decoders take turns using the a posteriori LLRs provided by
the other as a priori LLRs. The two steps here are called half-iterations.

The idea is that the two decoders keep feeding each other with progressively more accurate
information about the transmitted word. We can loosely interpret this in the same spirit as
the belief propagation algorithm as follows. The first half iteration attempts to decode the
bit u(i) using its nearby neighbors u(i ± 1), u(i ± 2), . . . , u(i ± m). This is because in the
trellis we can reach any state from a given one in m steps, and at approximately that point
an eventual disturbance caused by an incorrect bit has been corrected (it would take too
long to justify this). Similarly in the second half iteration we take into account information
from bits u(σ−1(σ(i) ± k)), k = 1, 2, . . . , m, to get more accurate information about the bit
u(i) = u(σ−1(σ(i))). If the interleaver σ is designed well enough the two sets of bits do
not intersect for any i, and thus the two half-iterations give independent information. As
we carry out more iterations we gradually collect information about u(i) from further and
further out (much like in the case of LDPC codes).

Another thing we must take into account when designing an interleaver is the minimum
Hamming distance of the resulting turbo code. A carelessly chosen interleaver may create a
turbo code with several low weight words. These will hurt the performance of a turbo code
by creating a so called error floor. This is a well studied problem, but we end our cursory
description of turbo codes here.
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