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Abstract. We give several refinements of known theorems on Borel uni-

formizations of sets with ”large sections”. In particular, we show that a set

B ⊂ [0, 1] × [0, 1] which belongs to Σ0
α, α ≥ 2, and which has all ”vertical”

sections of positive Lebesgue measure, has a Π0
α uniformization which is the

graph of a Σ0
α-measurable mapping. We get a similar result for sets with

nonmeager sections. As a corollary we derive an improvement of Srivastava’s

theorem on uniformizations for Borel sets with Gδ sections.

1. Introduction

We are going to answer a question posed by Piotr Borodulin-Nadzieja, namely
what can be said about the Borel class of Borel measurable selections of Borel sets
with sections of positive Lebesgue measure. The existence of a Borel uniformization
in such a case was shown by Blackwell and Ryll-Nardzewski in [1]. The existence of
Borel uniformizations of sets with large sections in the sense of category was proved
by Sarbadhikari in [10]. An abstract version can be found in [4, Theorem 18.6].
Mauldin in [8] proved theorems on the existence of Borel parametrizations in the
above cases. In fact, all the mentioned results deal with rather more general situa-
tions. Also we will deal with a slightly more general setting.
We get uniformization theorems for Borel sets B ⊂ X × Y , for X and Y Pol-

ish, with sections Bx = {y ∈ Y : (x, y) ∈ B} of positive probability µ(x,Bx)
with respect to suitable probability kernels µ and for Borel sets with sections Bx

nonmeager (i.e., not of the first category) in suitable Baire supersets F (x) ⊂ Y .
In both cases we get some information about the Borel class of the corresponding
selection. We also get a continuum of such pairwise disjoint uniformizations with
their union parametrized by X ×{0, 1}N in a Borel isomorphic way. As a corollary
of the ”category case”, we get a modification of the Srivastava selection theorem
for Gδ-valued mappings (see [12, Theorem 4.1]). Thus we get information about
the Borel class of the selection also in this case. Our proof is inspired by that of
Kechris (see [4, Exercise 18.20(iv) and the hint to it] or [11, Theorem 5.9.2]). We
get also a version of this theorem for selectors of partitions.
The main methods we need to get our refinements are well-known. The first of

them concerns the finer description of Borel sets of a given class using a particular
scheme of subsets (cf. [4, Theorem 22.21], or also [7, Theorem 2.2] for the nonsep-
arable case). The other one is the method of getting a selection used in [6] which
we only slightly modify. As is well-known the latter result gives the possibility to

2000 Mathematics Subject Classification. 54H05; 54C65, 54E50.

Key words and phrases. Borel classes, sets with large sections, uniformizations, selections.
The work is a part of the research project MSM 0021620839 financed by MSMT and partly
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get some information about the class of the selection, so it is no surprise that we
get our results in this way (cf. also [9] in this context).
Since the methods work almost without any further work also for X nonsepara-

ble, we formulate our results in this more general setting.

2. Projections along large sections

We replace the elegant proofs of the preservation of Borelness when projecting
sets with large sections by modifications which preserve some information about the
Borel class of the projection. In the case of large sections in the sense of category
this is a result of Montgomery (see [4, Exercise 22.22]) which we improve, as a
revision of the proof of the theorem by Montgomery and Novikov (see [4, Theorem
16.1]). Similarly, we get also a needed modification of the property ”Borel on Borel”
from [4, Definition 18.5] for the case of Borel probability kernels.
We use the standard notation B(Y ) for the set of all Borel subsets of the topo-

logical space Y . We also denote by Σ0
α, Π

0
α, ∆

0
α the additive, multiplicative, and

ambiguous classes for α ≥ 1. We write, e.g., Σ0
α(Y ) for the family of all Borel sets

of the additive class Σ0
α in Y . One may find this notation, e.g., in [4].

A family D of sets in a metric space X is discrete if every x ∈ X has a neigh-
bourhood intersecting at most one element of D. The family is σ-discrete if it is
the union of countably many discrete families. It is an easy, and well-known, obser-
vation that D1 ∧ · · · ∧Dk := {D1 ∩ · · · ∩Dk : Dj ∈ Dj , j = 1, . . . , k} is (σ-)discrete
if every Dj is σ-discrete. We repeatedly use the fact that the union of a discrete
family of sets of Σ0

α(X) in a metric space X is in Σ0
α for every countable ordinal

α ≥ 1 (see [5, Section 30, Subsection 10, Theorems 3 and 4] for an explanation).
To point out what assumptions are needed, we formulate the following lemma

in a more general setting than we need it below. Let us recall that a Borel measure
µ on a topological space Y is τ -additive if sup{µ(A) : A ∈ A} = µ(

⋃
A) for every

family of open sets in Y which is directed upwards (cf. [2, Definition 2.3]). Let us
recall that every Radon measure is τ -additive ([2, Proposition 6.9]) and that every
finite Borel measure on a Polish space is Radon ([4, Theorem 17.11]).

Lemma 2.1. Let X be a metrizable space, Y be a topological space, µ : X×B(Y )→
[0, 1] be such that

(a) µ(x, ·) is a Borel τ -additive probability on Y for every x ∈ X, and
(b) {x ∈ X : µ(x,H) > r} is Σ0

α0
-measurable in X (1 ≤ α0 < ω1) for every

open H ⊂ Y and r ∈ R.

Let B ⊂ X × Y be in Σ0
α(X × Y ), 1 ≤ α < ω1.

Then the set {x ∈ X : µ(x,Bx) > 0} is in Σ
0
α∗(X), where α∗ = α0 + α if α ≥ ω

and α∗ = α0 + (α− 1) if α < ω.

Proof. We shall show that the set π∗µ(B, r) := {x ∈ X : µ(x,Bx) > r} is in Σ0
α∗(X)

for every r ∈ R by induction with respect to α (with α0 fixed).
Let B be an open subset of X ×Y . There is a σ-discrete base U of open subsets

of X (see [5, Section 21, Subsection 16, Corollary 1a]). So B =
⋃
{Ua×Wa : a ∈ I},

where each Wa is open in Y , and the family {Ua}a∈I ⊂ U is σ-discrete in X. We
use the τ -additivity of µ(x, ·) for each x ∈ X. We apply it to the upwards directed
family of open sets Ax = {Wa1

∪ · · · ∪ Wak
: x ∈ Ua1

∩ · · · ∩ Uak
, a1, . . . , ak ∈

I, k ∈ N}. Since Bx =
⋃
Ax by the equality B =

⋃
{Ua ×Wa : a ∈ I}, we have

µ(x,Bx) = sup{µ(x,A) : A ∈ Ax}. Therefore µ(x,Bx) > r if and only if there
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are a1, . . . , ak ∈ I such that x ∈ Ua1
∩ · · · ∩ Uak

and µ(x,Wa1
∪ · · · ∪Wak

) > r.
Put U(a1, . . . , ak, r) = {x ∈ Ua1

∩ · · · ∩ Uak
: µ(x,Wa1

∪ · · · ∪ Wak
) > r}. The

family {U(a1, . . . , ak, r) : k ∈ N, a1, . . . , ak ∈ I} forms a σ-discrete cover of the set
π∗µ(B, r) by sets from Σ0

α0
(X) (this easy fact follows from the remark before the

lemma). Thus π∗µ(B, r) is in Σ0
α0
(X), which is our claim for α = 1.

Let α > 1 and the claim be valid for all Borel sets C of additive class β for every
1 ≤ β < α. Let B ⊂ X × Y be in Σ0

α(X × Y ). Thus there are Bn ∈ Π
0
βn
(X × Y ),

Bn ⊂ Bn+1, 1 ≤ βn < α such that B =
⋃

n∈N
Bn. Now

π∗µ(B, r) =

∞⋃

n=1

π∗µ(Bn, r)

=

∞⋃

n=1

{x ∈ X : µ(x, (Bc
n)x) < 1− r}

=
∞⋃

n=1

∞⋃

p=1

{x ∈ X : µ(x, (Bc
n)x) ≤ 1− r −

1

p
}

=

∞⋃

n=1

∞⋃

p=1

X \ {x ∈ X : µ(x, (Bc
n)x) > 1− r −

1

p
}.

By the induction hypothesis, {x ∈ X : µ(x, (Bc
n)x) > 1 − r − 1

p
} ∈ Σ0

β∗
n

(X). It

follows that π∗µ(B, r) is a countable union of sets of classes Π0
β∗

n

(X) ⊂ Σ0
α∗(X). ¤

We use the notion Baire space in the sense of [4, Definition 8.2], i.e., it is a
topological space with no meager nonempty open subset. Thus the empty space
is a Baire space and let us consider ∅ to be meager even in the empty space from
formal reasons.
The symbol P(Y ) denotes the power set of the set Y . The multivalued mapping

F : (X,A) → P(Y ), where Y is a topological space, is lower A-measurable means
that the sets F−1(H) := {x ∈ X : F (x) ∩ H 6= ∅} ∈ A for every open H ⊂ Y .
Here A might be a family of subsets of X or a family of subsets of some superspace
of X etc. Later on, we use also that F is upper A-measurable if F−1(H) := {x ∈
X : F (x) ⊂ H} ∈ A for every open H ⊂ Y . Similarly, we say that f : X → Y is
A-measurable if f−1(H) ∈ A for every open subset H of Y (H ∈ Σ0

1(Y )). The set
graphF := {(x, y) ∈ X×Y : y ∈ F (x)} is the graph of the multivalued mapping F .

Lemma 2.2. Let X be a metrizable space, Y be a separable metrizable space.
Let F : X → P(Y ) be lower Σ0

α0
-measurable (1 ≤ α0 < ω1), with F (x) a Baire

subspace of Y for every x ∈ X, and B ⊂ graphF of the type Σ0
α in X × Y ,

1 ≤ α < ω1.
Then the set {x ∈ X : Bx is not meager in F (x)} is in Σ0

α∗ , where α∗ has the
same meaning as in Lemma 2.1.

The appearance of F here is related to the modification of the proof of the
Montgomery and Novikov Theorem suggested in the hint to [4, Exercise 18.20(iii)].

Proof. Let us show first the following claim.
Claim. π∗F (B,W ) := {x ∈ X : F (x) ∩Bx ∩W is not meager in F (x) ∩W} is in

Σ0
α∗(X), if B is in Σ

0
α(X × Y ), for every open set W ⊂ Y .
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We proceed by induction over α. If B =
⋃
{Ua ×Wa : a ∈ I}, where Ua and Wa

are open in X and Y , respectively, and if {Ua}a∈I is σ-discrete, then π∗F (B,W ) =⋃
{{x ∈ Ua : F (x)∩Wa ∩W 6= ∅} : a ∈ I} =

⋃
{Ua ∩F−1(W ∩Wa) : a ∈ I}, which

is in Σ0
α0
(X) by our assumptions. Here we used that every nonempty relatively

open subset of F (x) is not meager in F (x). Thus our claim for α = 1 is proved.
Let α > 1 and the claim be valid for every β ≥ 1 less than α. Let B ⊂ X×Y be

in Σ0
α(X×Y ). Thus there are Bn ∈ Π

0
βn
(X×Y ), βn < α such that B =

⋃
n∈N

Bn.
For a fixed open set W ⊂ Y we get

π∗F (B,W ) =
⋃

n∈N

π∗F (Bn,W )

=
⋃

n∈N

⋃

W ′∈W

W ′⊂W

{x ∈ X : F (x) ∩ (Bn)x ∩W ′ is residual in F (x) ∩W ′ 6= ∅}

=
⋃

n∈N

⋃

W ′∈W

W ′⊂W

{x ∈ X : F (x) ∩ (Bc
n)x ∩W ′ is meager in F (x) ∩W ′} ∩ F−1(W ′),

where W is a countable base of Y consisting of nonempty open sets. Here we used
the fact that a subset with the Baire property of a Baire space is nonmeager if and
only if it is residual in some nonempty open subset (see, e.g., [4, Proposition 8.26]).
Since the sets F−1(W ′) are in Σ0

α0
(X) and the sets

π∗F (B
c
n,W

′) = X \ {x ∈ X : F (x) ∩ (Bc
n)x ∩W ′ is meager in F (x) ∩W ′}

are in Σ0
β∗

n

(X) by the induction assumption, π∗F (B,W ) is in Σ0
α∗(X). ¤

3. Uniformizations of sets with large sections

We use in the proof of the uniformization theorems below the existence of a
scheme of subsets of a Borel set in a complete metric space. Our requirements on
it will be similar but weaker than that of a Luzin scheme in [4, Theorem 22.21]
because they will be sufficient for our purpose and the existence of such a scheme
follows from published results even in the case of α = 1 for general Polish spaces X
and Y , as well as in the case of nonseparable complete metric space X and α ≥ 1.
We recall some notation first.
If D is any set, D<ω denotes the set

⋃∞
n=1 D

n∪{∅} of finite sequences of elements
of D. For s ∈ D

<ω, the symbol |s| stands for the length of s. We also write s′ Â s
if s′ is a strict extension of s′ (i.e., if s′ extends s and s′ 6= s). The abbreviation
σ|n stands for the sequence of first n members of any sequence, finite or infinite,
σ of elements of D and we write s∧d for the sequence which begins by the finite
sequence s ∈ D

<ω followed by d ∈ D.
Let us recall that we use the notation N for the set of positive integers and use the

notation C = {0, 1}N in what follows. We shall write Ci for the set {ι ∈ C : ι|n = i},
where i ∈ {0, 1}n.
We denote by πX , or πY , the projection mapping of X × Y to X, or Y , respec-

tively.

Lemma 3.1. Let B be a Borel subset of additive class Σ0
α, α ≥ 1, in the product

Z = X × Y of a complete metric space X and a Polish space Y . Then there are a
set D (of sufficiently large cardinality) and sets Bs, s ∈ D

<ω, of the additive class
Σ0

α in Z such that
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(a) B∅ = B and {Bs∧d : d ∈ D} is a (σ-discrete) cover of Bs for s ∈ D
<ω such

that the family {πX(Bs∧d) : d ∈ D} is σ-discrete;
(b)

⋂
{Bσ|n : n = 0, 1, . . . } ⊂ B for every σ ∈ D

N;

(c) diamBs ≤ 2
−|s| for s ∈ D

<ω.

(We consider some fixed complete metrics on X and Y , which are bounded by 1,
and the corresponding maximum metric on X × Y .)

Proof. If X is separable, the existence of such a (countable) scheme of B follows
from [4, Theorem 22.21] for α > 1. In the general case of X and α ≥ 1, it follows
from [7, Theorem 2.2], (a) implies (b), that there is a complete sequence of σ-discrete
covers Cn of B by sets from Σ

0
α(Z). (We need only to notice that B belongs to the

multiplicative class α + 1 in Z to get Bs ∈ Σ
0
α(B) from the quoted result. Then

Bs ∈ Σ
0
α(Z) since B ∈ Σ0

α(Z).) Let us recall that the completeness means that
each filter F in B, which fulfils F ∩ Cn 6= ∅ for every n ∈ N, has an accumulation
point, i.e.,

⋂
{F : F ∈ F} ∩ B 6= ∅, where the closures may be understood in B

or, equivalently, in Z. Replacing each cover by an arbitrary refinement we obtain
a complete sequence of these refinements. Since the cover of the metric space Z by
open balls of diameter at most 2−n has a σ-discrete open refinement Rn, the covers
Cn ∧ Rn are σ-discrete refinements of Cn, they consist of sets of diameter at most
2−n, and their elements belong to Σ0

α(Z). Due to [3, Lemma 2.1], we may also
achieve that even the projections of elements of each cover form a σ-discrete family
of sets of the same additive class. Let C∗n be such refinements of covers Cn ∧ Rn.
We may index each such cover by elements of a set D such that C∗n = {C

n
d : d ∈ D}

(we may repeat some of the sets many times if the cardinality of C∗n is smaller
than that of D). Put Bd1,...,dn

= C1
d1
∩ · · · ∩ Cn

dn
. Note that the projections to X

of the finite intersections C1
d1
∩ · · · ∩ Cn

dn
are contained in the finite intersections

πX(C
1
d1
) ∩ · · · ∩ πX(C

n
dn
), which form a σ-discrete family in X due to our remark

before Lemma 2.1. Thus (a) holds. The condition (c) is obvious. The completeness
of the sequence (C∗n) implies the condition (b). The condition (b) means, due to
(c), that if all the sets Bσ|n, n ∈ N, are nonempty, then the intersection of their
closures is a singleton in B. ¤

Note that our requirements above are weaker than those on a Luzin scheme in
[4, Theorem 22.21], in particular we do not require the injectivity of the mapping
σ ∈ D

N 7→
⋂

n∈N
Bσ|n.

We need the reduction theorem for families of Borel sets of an additive class in
metric spaces.

Lemma 3.2. Let Xa, a ∈ I, be a σ-discrete family of Borel sets of additive class
Σ0

α, α > 1, in a metric space X. Then there are Borel sets X∗
a ⊂ Xa for a ∈ I of

class Σ0
α in X which form a partition of

⋃
a∈I Xa. The same holds for α = 1 if X

is 0-dimensional.

Proof. For countable families it is proved in [5, Section 30, Subsection 7, Theorem
1 and Section 26, Subsection 2, Theorem 1]. If I =

⋃
n∈N

In with {Xa : a ∈ In},
discrete, we may consider the family of X(n) =

⋃
{Xa : a ∈ In}, which belong to

Σ0
α(X), and choose a reduction X∗(n) ⊂ X(n). Finally put X∗

a = Xa ∩X∗(n) for
a ∈ In. ¤

We are going to prove our main uniformization theorems now. The first one
shows the existence of a selection, the next one shows that under a bit stronger
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assumptions there are continuum many disjoint uniformizations parametrized in a
particular way. Although the proof of the first theorem can be understood from the
second one, we prove the existence of one selection first to point out the main idea
how we get our uniformization. The same procedure will be repeated in the proof of
the subsequent theorem with some more technicalities. We point out that although
we prove our uniformization results for sets of an additive class in a complete metric
space, we get selections defined on a metric space which needs not to be complete

in general. We need this observation in the proof of Corollary 3.10. We use X̂ to
denote a completion of X in what follows.

Theorem 3.3. Let X be a metric space and Y be a Polish space. Let Ix, x ∈ X,
be σ-ideals of subsets of Y such that

(1) π∗(A) := {x ∈ X : Ax /∈ Ix} ∈ Σ
0
α∗(X)

for A ⊂ X × Y in Σ0
α(X × Y ), where 2 ≤ α ≤ α∗ < ω1 are fixed. In case that X

is 0-dimensional, we may assume 1 ≤ α ≤ α∗ < ω1.
Assume that

(2) B ⊂ X × Y is in Σ0
α(X̂ × Y ), and that Bx /∈ Ix for every x ∈ X∗ := πX(B).

Then there is a Σ0
α∗(X)-measurable selection ξ : X∗ → Y of the mapping x 7→ Bx.

Its graph is a Π0
α∗-measurable uniformization of B in X × Y .

Proof. Let us consider some fixed complete metrics on X̂ and Y such that the
diameters of X and Y are at most 1 for the corresponding metric and let us consider

the maximum metric on X×Y . Let Bs, s ∈ D
<ω, be a scheme of the set B ⊂ X̂×Y

from Lemma 3.1 which exists due to the assumption (2).
We are now going to define a sequence of σ-discrete partitions Pn−1 = {X

∗
s : s ∈

D
n−1}, n ∈ N, of X∗ by induction. We require the following properties for every

n ∈ N.

(i) {X∗
s∧d : d ∈ D} is a σ-discrete partition of X∗

s for s ∈ D
n−1,

(ii) Pn−1 ⊂ Σ
0
α∗(X),

(iii) (Bs)x /∈ Ix for x ∈ X∗
s and s ∈ D

n−1.

Put P0 = {X∗
∅}, where X∗

∅ = π∗(B) = πX(B) due to (2). The property (i) is
obviously fulfilled for P0, which also fulfils (ii) and (iii) due to assumptions (1) and
(2).
Given the partition Pn−1 = {X

∗
s : s ∈ D

n−1} of X∗ fulfilling (i) to (iii) for some
n ∈ N, we consider a fixed s ∈ D

n−1. We realize that the setsXs∧d = X∗
s∩π

∗(Bs∧d),
d ∈ D, form a σ-discrete cover of X∗

s by Σ
0
α∗(X) sets using that (iii) is fulfilled, each

Ix is a σ-ideal, and the sets (Bs∧d)x, d ∈ D, form a countable cover of the separable
set (Bs)x (since they form a σ-discrete family, only countably many of them have
a nonempty intersection with (Bs)x). Using Lemma 3.2, we find pairwise disjoint
sets X∗

s∧d ⊂ Xs∧d, d ∈ D, which cover X∗
s and put Pn = {X

∗
s∧d : s ∈ D

n−1, d ∈ D}.
It is clearly σ-discrete. Thus the existence of Pn−1’s fulfilling (i) to (iii) is proved.
Now, given x ∈ X∗, there is a uniquely determined sx ∈ D

N such that x ∈ X∗
sx|n

for all n ∈ N. Define ξ(x) ∈
⋂
{(Bsx|n)x : n ∈ N} for x ∈ X∗. The definition

is correct and ξ(x) ∈ Bx for every x ∈ X∗. Indeed, the sets (Bsx|n)x, n ∈ N,
form a descreasing sequence of nonempty (by (iii)) closed sets in Y with diameter
converging to zero by the property (c) of Lemma 3.1. By the completeness of the
considered metric, the value ξ(x) is uniquely defined. By the property (b) of the
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scheme Bs, s ∈ D
n, we get ξ(x) ∈ Bx. To verify that ξ is Σ0

α∗(X)-measurable,
define ξn to be constant on each X∗

s , s ∈ D
n. Put, e.g., ξn(x) for x ∈ X∗

s (= X∗
sx|n)

to be an arbitrarily chosen element of the projection of Bs(= Bsx|n) to Y . Then

each ξn is Σ
0
α∗(X)-measurable and it converges uniformly to ξ due to the condition

(c) on the diameters of the sets Bs from the scheme of Lemma 3.1. So ξ is Σ0
α∗(X)-

measurable as well (see [5, Section 31, Subsection 8, Theorem 2]). The graph of ξ is
in Π0

α∗ by [5, Section 31, Subsection 7, Theorem 1]. This concludes the proof. ¤

The next theorem is a strengthening of the previous one under the assumption
that the σ-ideals Ix contain singletons. It is inspired by and might be compared
with Mauldin’s [8, Theorem 1.1].

Theorem 3.4. Let X, Y , Ix for x ∈ X, and B ⊂ X × Y fulfil the assumptions of
Theorem 3.3.
If, moreover, Ix contains all singletons in Bx for each x ∈ X, then there is a

Borel isomorphism Ξ of X∗ × C onto R ⊂ B, with X∗ := πX(B), which is of the
form Ξ(x, ι) = (x,Φ(x, ι)), such that

(a) Φ(·, ι) is a Σ0
α∗(X)-measurable selection of x ∈ X∗ 7→ Bx for every ι ∈ C;

(b) Φ(x, ·) is a homeomorphism of C onto Rx for every x ∈ X∗;
(c) Ξ : X∗ × C → R is Σ0

α∗(X × Y )-measurable and Ξ−1 : R → X × C is
Σ0

α∗(R)-measurable;
(d) F : x ∈ X∗ 7→ Rx is both upper and lower Σ

0
α∗(X)-measurable;

(e) R = Ξ(X∗ × C) is in Π0
α∗(X × Y ).

Proof. The notions of distance and diameter are related to the maximum metric,

defined using complete metrics on X̂ and Y giving diameter less than one as in the
proof of Theorem 3.3. Let Bs, s ∈ D

<ω, be a scheme of the set B ⊂ X × Y from
Lemma 3.1 which exists due to the assumption (2).
We are now going to define a sequence of partitions of X∗ by induction. The

elements of the n-th partition will be indexed by the elements of the set Tn of
mappings (”strategies”) τ of {0, 1}≤n to D

<ω satisfying the properties

(A) τ(i∧j) Â τ(i) for i ∈ {0, 1}<n and j ∈ {0, 1} if n ∈ N, and
(B) the sets Bτ(i), i ∈ {0, 1}

n, are pairwise disjoint.

We write T0 for the singleton which contains just the mapping τ0 : ∅ 7→ ∅. The
elements of the n-th partition will be denoted by X∗

n(τ), where τ ∈ Tn. We denote
by Tn(τ) the set of elements of Tn which extend τ ∈ Tn−1, i.e.,

Tn(τ) := {τ
′ ∈ Tn, τ ′ ¹ {0, 1}≤(n−1) = τ}

for n ∈ N. We require the following properties for every τ ∈ Tn and n = 0, 1, . . . .

(i) Each X∗
n(τ) is in Σ

0
α∗(X);

(ii) X∗
n(τ) =

⋃
{X∗

n+1(τ
′) : τ ′ ∈ Tn+1(τ)};

(iii) (Bτ(i))x /∈ Ix for x ∈ X∗
n(τ) and i ∈ {0, 1}n.

Put X∗
0 (τ0) = π∗(B) (cf. (1) from Theorem 3.3 for the notation). It is in Σ0

α∗(X)
and it is equal to X∗ by our assumptions (1) and (2). Thus the partition {X∗

0 (τ0)}
of X∗ fulfils (i) and (iii). Condition (ii) requires nothing for n = 0.
Given the partition {X∗

n−1(τ) : τ ∈ Tn−1} fulfilling (i) to (iii) for some n ∈ N,
we will consider a cover of each X∗

n−1(τ) with τ ∈ Tn−1 fixed. For every τ ′ ∈ Tn(τ),
put

Xn(τ
′) = X∗

n−1(τ) ∩
⋂
{π∗(Bτ ′(i)) : i ∈ {0, 1}

n}.
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Observe that the family {Xn(τ
′) : τ ′ ∈ Tn(τ)} is a cover of X

∗
n−1(τ) for every

τ ∈ Tn−1. Indeed, let x ∈ X∗
n−1(τ). So, by (iii) and (B), (Bτ(i))x /∈ Ix for

every i ∈ {0, 1}n−1 and the sets Bτ(i), i ∈ {0, 1}
n−1, are pairwise disjoint. Since

(Bτ(i))x /∈ Ix, there are two distinct points y0(x, i), y1(x, i) ∈ (Bτ(i))x, for each

fixed i ∈ {0, 1}n−1, such that U ∩ (Bτ(i))x /∈ Ix for every neighbourhood U of
y0(x, i), and y1(x, i), respectively. (Otherwise, if there is at most one such point,
there would be a cover of the separable metric space (Bτ(i))x by countably many
elements of Ix, namely countably many neighbourhoods of some points in (Bτ(i))x
and at most one singleton in Bx, a contradiction with (Bτ(i))x /∈ Ix. Here we
use the extra assumption on Ix.) Let us choose open neighbourhoods Uj(x, i) of
yj(x, i) for j = 0, 1 of diameters less than 1

3dist (y0(x, i), y1(x, i)). Since the sets
(Bτ(i))x ∩ Uj(x, i), j = 0, 1, are not in Ix and they are covered by the countably

many sets (Bs)x ⊂ (Bτ(i))x with s Â τ(i) for which (Bs)x ⊂ Uj(x, i) and 2
−|s| ≤

1
3dist (y0(x, i), y1(x, i)) by Lemma 3.1, (a) and (c), we find τx(i

∧j) Â τ(i) such that

2−|τx(i
∧j)| ≤ 1

3dist (y0(x, i), y1(x, i)), (Bτx(i∧j))x ⊂ Uj(x, i), and (Bτx(i∧j))x /∈ Ix for

j = 0, 1 . The sets Bτx(i∧j) are disjoint, since Bτx(i∧j) ⊂ Bτ(i), the sets Bτ(i) form a

pairwise disjoint family, and dist (Bτx(i∧0), Bτx(i∧1)) ≥
1
3dist (y0(x, i), y1(x, i)) > 0.

Put τx ¹ {0, 1}(n−1) = τ . Now x ∈ Xn(τx) and τx ∈ Tn(τ).
Let us check that Xn(τ

′) ∈ Σ0
α∗(X) for all τ

′ ∈ Tn. Having that X∗
n−1(τ) ∈

Σ0
α∗(X) for τ ∈ Tn−1 by (i), we see that each Xn(τ

′) = X∗
n−1(τ) ∩

⋂
{π∗(Bτ ′(i)) :

i ∈ {0, 1}n} is in Σ0
α∗(X) as a finite intersection of elements of Σ

0
α∗(X) by (1) for

τ ′ ∈ Tn(τ).
By Lemma 3.1(a) the family D = {π(Bs) : s ∈ D

<ω} is σ-discrete (it is not
difficult to show by induction that all {π(Bs) : s ∈ D

n} are σ-discrete using (a)
and realize that D is the countable union of these families). Since π∗(Bs) ⊂ π(Bs),
also the family D∗ = {π∗(Bs) : s ∈ D

<ω} is σ-discrete. Therefore also D1 = D
∗,

D2 = D
∗ ∧ D∗,D3 = D

∗ ∧ D∗ ∧ D∗, ... are σ-discrete as well as their (countable)
union E =

⋃
n∈N

Dn. The family {
⋂
{π∗(Bτ ′(i)) : i ∈ {0, 1}

n} : τ ′ ∈ Tn(τ)} is
σ-discrete as a subfamily of E . Finally, the family {X∗

n−1(τ) ∩
⋂
{π∗(Bτ ′(i)) : i ∈

{0, 1}n} : τ ′ ∈ Tn(τ)} is σ-discrete. We proved above that it is a cover of X
∗
n−1(τ).

Hence we may find a σ-discrete partition {X∗
n(τ

′) : τ ′ ∈ Tn(τ)} of X∗
n−1(τ)

consisting of elements of Σ0
α∗(X) applying Lemma 3.2 to the family {Xn(τ

′) : τ ′ ∈
Tn(τ)}.
Thus we have for every τ ∈ Tn an X∗

n(τ) such that the conditions (i)-(iii) are
satisfied.
The requirement on τ ∈ Tn to satisfy x ∈ X∗

n(τ) defines uniquely a τ = τxn ∈ Tn
for x ∈ X∗. Due to (ii) there is a uniquely determined τx : {0, 1}<ω → D

<ω

with τxn = τx ¹ {0, 1}≤n for every n = 0, 1, . . . . We define the required mapping
Ξ : X × C → B by the relation Ξ(x, ι) ∈

⋂∞
n=0 Bτx(ι|n). This defines indeed a

mapping of X × C to B due to the fact that the sets Bτx(ι|n) form a decreasing

sequence of nonempty sets (by (iii)) with
⋂∞

n=0 Bτx(ι|n) a singleton in B by the
properties (b) and (c) of our scheme from Lemma 3.1. Moreover, all the sets Bτx(ι|n)

have nonempty x-section (Bτx(ι|n))x by (iii), i.e., the intersection of Bτx(ι|n) with

the closed set {x}×Y ⊂ X×Y is nonempty, and so
⋂

n∈N
Bτx(ι|n)∩ ({x}×Y ) 6= ∅.

Thus this intersection is equal to the singleton {Ξ(x, ι)} =
⋂

n∈N
Bτx(ι|n), and

Ξ(x, ι) ∈ {x} × Bx. So Ξ is of the form Ξ(x, ι) = (x,Φ(x, ι)) with Φ : X × C → Y

uniquely determined by Φ(x, ι) ∈
⋂

n∈N
(Bτx(ι|n))x = (

⋂
n∈N

Bτx(ι|n))x.
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It remains to show that Ξ has the required properties (a) - (e).
We prove (a) by constructing a sequence of Σ0

α∗ -measurable mappings Φn which
converges uniformly to Φ. We define Φn to attain a constant value from πY (Bτ(i))
on X∗

n(τ) × Ci for every τ ∈ Tn and i ∈ {0, 1}n. This is possible since each
(Bτ(i))x /∈ Ix if x ∈ X∗

n(τ) by (iii) and so Bτ(i) 6= ∅.
Let W be open in Y . Then

Φ−1n (W ) =
⋃
{X∗

n(τ)× Ci : τ ∈ Tn, i ∈ {0, 1}n, Φn(X
∗
n(τ)× Ci) ⊂W}

because the mapping Φn is constant on the sets X∗
n(τ) × Ci. Since the σ-discrete

union of sets X∗
n(τ) × Ci over any subset of pairs of τ ∈ Tn and i ∈ {0, 1}n is

in Σ0
α∗(X × C), the mapping Φn is Σ

0
α∗(X × C)-measurable. The mappings Φn

converge to Φ uniformly (in both x and ι) since the diameter of each πY (Bτ(i)) is

at most 2−n. By [5, Section 31, Subsection 8, Theorem 2], Φ is also Σ0
α∗(X × C)-

measurable. In particular, (a) is proved.
The mapping Φ(x, ·) is one-to-one and continuous since Bτx(i) ∩ Bτx(i′) = ∅ for

i 6= i′, i, i′ ∈ {0, 1}n, and since diamπY (Bτx(i)) ≤ 2
−n for i ∈ {0, 1}n. Hence (b)

follows by the compactness of C.
Let U be open inX andW be open in Y . Then Ξ−1(U×W ) = (U×Y )∩Φ−1(W ).

Thus, to prove that Ξ is Σ0
α∗(X × C)-measurable, it is enough to show that Φ is

Σ0
α∗(X ×C)-measurable. However, this was proved above. So the first claim of (c)
is verified.
We have that Ξ is injective by (b). To show that Ξ−1 is Σ0

α∗(R)-measurable,
note that Ξ(U×Ci) = (U×Y )∩Ξ(X∗×Ci) for U open in X and i ∈ {0, 1}n. Thus
we need to prove that Ξ(X∗ × Ci) is in Σ

0
α∗ in R for each n ∈ N and i ∈ {0, 1}n.

The point (x, y) ∈ R belongs to Ξ(X∗ × Ci) if and only if (x, y) ∈ Bτx(i) and

x ∈ X∗
n(τ

x
n ). Thus Ξ(X

∗ × Ci) = R ∩
⋃
{(X∗

n(τ))× Y ) ∩ Bτ(i) : τ ∈ Tn}. This is a
union of a σ-discrete family of elements of Σ0

α∗(X × Y ) intersected with R, and so
an element of Σ0

α∗ in R. This concludes the verification of (c).
Let W ⊂ Y be open and nonempty. If x ∈ F−1(W ) then there is a y =

Φ(x, ι) ∈ W for some ι ∈ C. Thus the distance δ of y and W c is positive and
{y} =

⋂
n∈N
(Bτx(ι|n))x ⊂ W . So there is an n ∈ N such that the diameter of

Bτx(ι|n) is less than δ and (x, y) ∈ Bτx(ι|n) ⊂ X × W . Having n and ι such

that Bτx(ι|n) ⊂ X ×W , we have {y} =
⋂

n∈N
(Bτx(ι|n))x ⊂ W , and thus y ∈ W .

Therefore x ∈ F−1(W ) if and only if there are n ∈ N and i ∈ {0, 1}n such that
πY (Bτx(i)) ⊂W . Thus

F−1(W ) =
⋃
{X∗

n(τ) : n ∈ N, τ ∈ Tn, i ∈ {0, 1}n, πY (Bτ(i)) ⊂W}.

So F is lower Σ0
α∗(X)-measurable.

Let the compact set Φ(x,C) be a subset of W . Thus it has a positive distance
from W c and so Bτx(ι|n) ⊂ W for sufficiently large n ∈ N and every ι ∈ C.
Obviously, if the latter condition holds, then Φ(x,C) ⊂W . Thus

F−1(W ) =
⋃
{X∗

n(τ) : n ∈ N, τ ∈ Tn, πY (Bτ(i)) ⊂W for every i ∈ {0, 1}n}.

This is again a σ-discrete union of elements of Σ0
α∗(X) and so F is also upper

Σ0
α∗(X)-measurable, and (d) is proved.
Let W be a countable base for the topology of Y . We may easily check that

(x, y) /∈ R if and only if there is aW ∈ W such that y ∈W , F (x) ⊂ Y \W since F (x)
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is closed. As F is upper Σ0
α∗(X)-measurable, the set R

c =
⋃

W∈W F−1(Y \W )×W

is in Σ0
α∗(X × Y ), and (e) is also proved. ¤

As corollaries of Theorems 3.3 and 3.4, and Lemmas 2.1 and 2.2 on the ”gen-
eralized projections” π∗µ and π∗F from the previous section, we get the following
results.

Theorem 3.5. Let X be a metrizable space, Y be a Polish space, µ : X ×B(Y )→
[0, 1] be such that

(a) µ(x, ·) is a Borel probability on Y for every x ∈ X, and
(b) {x ∈ X : µ(·, H) > r} is in Σ0

α0
(X) (1 ≤ α0 < ω1) for every open H ⊂ Y

and r ∈ R.

Let B ⊂ X × Y be in Σ0
α(X̂ × Y ), 2 ≤ α < ω1, or 1 ≤ α < ω1 if X is

0-dimensional. Let µ(x,Bx) > 0 for every x ∈ πX(B).
Let α∗ be as in Lemma 2.1. In particular, if µ(x, ·) = µ, then α∗ = α.
Then there is a Σ0

α∗(X)-measurable mapping ξ : πX(B)→ Y such that its Π0
α∗-

measurable graph is a uniformization of B.
If, moreover,

(c) µ(x, ·) does not have atoms for every x ∈ X,

then there is a mapping Ξ : πX(B)× Y → B as in Theorem 3.4.

Proof. Put Ix = {N ⊂ Bx : µ(x,N) = 0} for every x ∈ X. By Lemma 2.1, we
have π∗(A) = π∗µ(A, 0) ∈ Σ0

α∗(X) for every A ∈ Σ0
α(X × Y ), so we may apply

Theorems 3.3 and 3.4. ¤

Theorem 3.6. Let X be a metrizable space, Y be a Polish space.
Let F : X → P(Y ) be such that

(a) F (x) is a Baire subspace of Y for every x ∈ X, and
(b) F is lower Σ0

α0
-measurable (1 ≤ α0 < ω1).

Let B ⊂ graphF be in Σ0
α(X̂ × Y ), 2 ≤ α < ω1, or 1 ≤ α < ω1 and X

0-dimensional. Let Bx be non-meager in F (x) for x ∈ πX(B).
Let α∗ be as in Lemma 2.1. In particular, if F (x) = Y , then α∗ = α.
Then there is a Σ0

α∗(X)-measurable mapping ξ : πX(B)→ Y such that its Π0
α∗-

measurable graph is a uniformization of B.
If moreover

(c) F (x) has no isolated point for every x ∈ X,

then there is a mapping Ξ : πX(B)× C → B as in Theorem 3.4.

Proof. Put Ix = {N ⊂ Bx : N is meager in Bx} for x ∈ X. Now π∗(A) =
π∗F (A, Y ) ∈ Σ0

α∗(X) for every A ∈ Σ0
α(X × Y ) by Lemma 2.2. Finally, we ap-

ply Theorems 3.3 and 3.4. ¤

As a particular case, we point out a refinement of the theorem of Srivastava for
uniformizations of Borel sets with Gδ sections ([12, Theorem 4.1]).

Corollary 3.7. Let X be a metric and Y a Polish space. Assume that B ⊂ X ×Y

is a Borel subset of additive class Σ0
α in X̂ × Y , 2 ≤ α < ω1, or 1 ≤ α < ω1 if

X is 0-dimensional. Let the sections Bx, x ∈ X, be Gδ in Y and the mapping
F : x 7→ Bx be lower Σ

0
α0
(X)-measurable. Then there is a Σ0

α∗(X)-measurable
selection of F , where α∗ is as in Lemma 2.1.
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Proof. As Gδ subsets of the Polish space Y , the sets Bx are Baire spaces and, in
particular, they are not meager in themselves for x ∈ πX(B). So we may put
F (x) = Bx and apply Theorem 3.6. ¤

We show in the following example that the class of the selection mapping ξ in
Theorems 3.5 and 3.6 cannot be improved, even its graph (the uniformization)
cannot be of a lower multiplicative class for sets of nonlimit ambiguous class higher
than 1.

Example 3.8. There is a ∆0
α+1 subset B of R

2 for every α ∈ [1, ω1) such that
λ(Bx) > 0 and Bx is nonmeagre for every x ∈ R, but there is no Π0

α uniformization
of B.

Proof. We use the notation X = Y = Z = R. Let α ∈ [1, ω1).
Put U ⊂ X × (Y × Z) to be a Π0

α universal set for Π
0
α sets in Y × Z (e.g.,

U ⊂ C× (Y ×Z) in Π0
α(C×Y ×Z) by Kechris, Theorem 22.3 is Π0

α in X ×Y ×Z
as well).
Let A = {(x, x) ∈ X × Y : λ(U c

(x,x)) > 0 and U c
(x,x) is nonmeagre in R}. It

is Σ0
α in D = {(x, x) : x ∈ X} by the lemmas on generalized projections. Put

B = ([A× Z] \ U) ∪ ([D \A]× Z).
B is in ∆0

α+1(D × Z) and λ(B(x,x)) > 0 and Bx is nonmeagre for every x ∈ R

by the definition of B.
Let G be a uniformization of B in Π0

α(D × Z).
By the definition of a uniformization, G(x,x) 6= ∅ for every (x, x) ∈ D since

B(x,x) 6= ∅ for every (x, x) ∈ D.
Since U is universal, there is x ∈ X such that Ux = πY×Z(G). So U(x,y) = G(y,y)

for every y ∈ Y , and in particular U(x,x) = G(x,x) is a singleton. Thus (x, x) ∈ A.
Therefore G(x,x) ⊂ B(x,x) ⊂ U c

(x,x).

It follows that ∅ 6= G(x,x) = U(x,x) ⊂ U c
(x,x), a contradiction.

As D can be identified with R, B is our example. ¤

We give still a trivial example showing that we cannot get a selection with Π0
1

measurable graph for all sets of the multiplicative classΠ0
1 which have large sections

neither in the case of µ being the normalized Lebesgue measure on Y := [−2, 2],
nor in the case of sections of second category in Y , for 0-dimensional X. So, to get
a uniformization of B in Π0

1, the assumption that B is of class Σ
0
1 seems to be the

optimal one.

Example 3.9. Let X = {0} ∪ { 1
n
: n ∈ N}, Y = [−2, 2]. The set B = {( 1

n
, y) ∈

X × Y : n ∈ N, y ∈ [(−1)n− 1
n
, (−1)n+ 1

n
]}∪ ({0}× [−1, 1], is closed, the space X

is 0-dimensional, and there is no closed uniformization. The sets Bx are intervals
in Y , so they are of positive measure µ and nonmeager in Y .

Our result gives also an estimate, probably not the best possible one, on the Borel
class for selectors of partitions to ”relatively large sets”. The first assumption (a)
gives an improvement of Srivastava’s theorem on selectors for partitions to Gδ sets
(see [12, Theorem 5.1]).

Corollary 3.10. Let Y be a Polish space and P be a partition of Y such that either

(a) P is a nonempty set which is residual in P for every P ∈ P, or
(b) µ(P ) > 1

2µ(P ) for every P ∈ P, with respect to some fixed Borel probability
on Y
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such that the set W ∗ :=
⋃
{P ∈ P : P ∩W 6= ∅} is in ∆0

α for every W ∈ W, where
W is a countable open base of Y and 1 ≤ α < ω1 is fixed.
Then there is a selector mapping s : Y → Y (s(P ) = {y} ⊂ P , for every P ∈ P)

which is Σ0
α+α+1-measurable.

There is also a selector set S ⊂ Y (the cardinality of each S ∩ P for P ∈ P is
one) of class Π0

α+α+1.

Proof. Let W = {Wn : n ∈ N}. Let f : Y → C = {0, 1}N be the characteristic
function of the family (W ∗

n : n ∈ N), i.e., f(y) = (i1, i2, . . . ), where in = 1 if
and only if y ∈ W ∗

n . This mapping is clearly Σ
0
α-measurable, so its graph is in

Π0
α(Y × C), and thus also in Σ0

α+1(Y × C). We observe that the following claim
holds.
Claim. The equality f(y) = f(y′) is equivalent to y and y′ lying in the same

element of P.
Indeed, if y, y′ ∈ P ∈ P, then f(y) = f(y′). If y ∈ P ∈ P and y′ ∈ P ′ ∈ P,

where P 6= P ′, then P ′ \ P 6= ∅ or P \ P ′ 6= ∅ since otherwise P or P ′ is meager in
P = P ′ in the case (a), and P or P ′ is of measure at most 1

2µ(P ) =
1
2µ(P

′) in the
other case (b), which is a contradiction with (a), or (b), respectively. Thus there is
a Wn ∈ W such that P ′ ⊂ W ∗

n and P ∩W ∗
n = ∅, or vice versa. This implies that

f(y) and f(y′) have distinct n-th coordinates.
To prove the case (a) we consider the inverse f−1 : f(Y ) → P(Y ). It is a

multivalued mapping which is lower semicontinuous (lowerΣ0
1-measurable) onX :=

f(Y ) because f(Wn) = f(W ∗
n) = {ι ∈ f(Y ) : ιn = 1} for every n ∈ N. This follows

easily by the previous Claim. Thus the multivalued mapping F : X → P(Y )

defined by F (x) = f−1(x) is also lower semicontinuous on X. The subspaces F (x)
are closed (and nonempty) in the Polish space Y for x ∈ X, so they are Baire spaces.
Let Ix denote the σ-ideal of meager subsets of F (x) for every x ∈ X. Lemma 2.2
gives that the condition (1) of Theorem 3.3 holds for every 1 ≤ α = α∗ < ω1.
We put B = graph f−1. It is in Σ0

α+1(C × Y ) since graph f ∈ Σ0
α+1(Y × C).

The sets Bx = f−1(x) are nonempty residual in F (x) for every x ∈ X by (a). So
the assumption (2) of Theorem 3.3 is fulfilled with α+ 1 instead of α.
To prove the case (b) put B = graph f−1 ∈ Σ0

α+1(C × Y ) again and Ix = I to
be the σ-ideal of µ = µ(x, ·) null sets for x ∈ X = f(Y ). Using Lemma 2.1, we get
(1) of Theorem 3.3 for all 1 ≤ α = α∗ < ω1 again. Each Bx is of positive measure
µ = µ(x, ·) for x ∈ X = f(Y ) by (b). Thus (2) of Theorem 3.3 is also satisfied, and
we may use its conclusion also in this case with α+ 1 instead of α.
In both cases, due to Theorem 3.3, there is a selection ξ for f−1(x) = Bx which

is Σ0
α+1(X)-measurable. The mapping s : y 7→ ξ(f(y)) is Σ0

α+α+1-measurable by
[5, Section 31, Subsection 3, Theorem 2].
The point s(y) is an element of the set P ∈ P which contains y by the above

Claim. Thus s is a selector for the partition and the set S = {y ∈ Y : y = s(y)} is a
selector set for the partition P which is of class Π0

α+α+1 in Y . Indeed, the mapping
(y, z) ∈ Y × Y 7→ (s(y), z) ∈ Y × Y is Σ0

α+α+1(Y × Y )-measurable (it suffices to
check it on the preimages of sets of the form Wn ×Wn′) and S is the preimage of
the closed diagonal {(y, y) : y ∈ Y } under it. ¤

In the case α = 2 and for partitions toGδ sets, a theorem by Miller [9, Theorem 1]
gives a finer result, namely the existence of a Σ0

2-measurable selector s : Y → Y of
the partition, i.e., a mapping such that s(P ) is a singleton in P . This indicates that
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our last corollary might not give the optimal estimates on the classes of selector
mappings and selector sets even for higher classes α.
I thank Piotr Borodulin-Nadzieja for the interesting question and Roman Pol for

his hospitality and stimulating remarks during the preparation of this note during
my stay in Warsaw in June 2008.
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