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1. AXIOMS; PROBABILITY SPACE; EVENTS

Definition 1 (o-algebra). Let Q be a nonempty set. System F of subsets of € is called o-algebra
if

(1) e F, Qe F.

(2) Ace F=Q\AecF.

(3) A, Ay, € F = U;OilAl e F.

For any € the set 0, is trivial o-algebra. Another simple example is (), A,Q\ A, for any
A C Q. Also the system 2% of all subsets of Q is o-algebra. However, this system is useful mostly
for finite or countable Q.

For any finite or countable system A of subsets of {2 there exists unique o-algebra Fa which is
the smallest o-algebra containing A.

Problem 1. Intersection of (countably many) o-algebras is again o-algebra. Union of o-algebras
need not to be g-algebra. Find proof or examples.

Definition 2. Consider nonempty set 2 and some o-algebra F on it. Let P : F — [0,1] be
mappings such that

(1) P() =1

(2) For any pairwise disjoint Ay, A, -+ € F it holds

Then P is called probability measure on F. The triple (Q, F,P) is called probability space.

We say that probability measure is countably additive. If 2 is finite or countable then it is
usually possible to use F = 2. For uncountable it may be impossible to define probability
measure on 22 and strictly smaller o-algebra is usually needed.

Theorem 1. Let (2, F,P) be a probability space. Then
(1) P(@) =0.
(2) For any A € F it holds P(Q\ A) =1 —P(A).
(3) For any A, B € F it holds A C B= P(A) <P(B) and P(B\ A) =P(B) — P(A).

Definition 3 (Classical probability space). Let € be a nonempty finite set, F = 2 and for any
A C Q set

Al
P(A) = ,
=g
where | - | is the cardinality of set. (2, F,P) is called classical or elementary probability space.

Each w € Q is called elementary event. Each A € F is called random event.

Theorem 2 (Continuity of prabability measure). Let P be a probability measure on (2, F)

(1) If{A;} C F is a sequence of random events such that A, /A then lim,_, o P(4,) = P(A)
1



(2) If{A;} C F is a sequence of random events such that A, \, A then lim,,_, - P(4,) =
(3) If {A;} C F is a sequence of random events such that A, \ 0 then lim, ., P(A,) =0

In fact, (1)—(3) are equivalent.

Problem 2. Let P be positive finately additive function defined on Q,F). If (3) of Theorem 2
holds then P is probability measure (i.e., P is also countably measurable).

Problem 3. Show that classical probability space is probability space. Consider three dices. There
are more possible classical probability spaces describing this random experiment.

Problem 4. Throw two dices and take sum of the results. Find classical probability space for the
outcome sum.

Definition 4 (Discrete probability space). Let € be nonempty finite or countable set. Let F = 2
and consider for each w € Q value p,, such that

Ywp, > 0, and pr =1.
weN
Define
P(A) = pr for any A € F.
w€eA
Then (2, F,P) is discrete probability space.

Problem 5. Throw two dices and take sum of the results. Find discrete probability space for the
outcome sum.

Definition 5 (Conditional probability I). Consider (2, F,P). Let B € F be random event such
that P(B) > 0. Then

_ P(ANB)
P(A|B) = W
is called conditional probability of A given B.

Problem 6. Show that P(:|B) is probability measure on © and F. Conditional probability is
probability of a random event given that the random event B occurred.

Definition 6 (Independence I). Random events A, B are independent if P(AN B) = P(A)P(B).

Problem 7. Show that random events A and B are independent if
(1) P(A) or P(B) is either 0 or 1.
(2) P(A) =P(A|B).

Show that disjoint events cannot be independent unless (1) holds.
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Definition 7 (Independence II). Random events Ay, Ao, ... are (mutually) independent if for any
n € N and any finite subset of indices A = {iy,...,4,} it holds

o (Aa) T
j=1 j=1

Remark: Independence may be defined for any number of random event, even uncountably many
random events, in the same way as in Definition 7.

Problem 8. Random events Ay, Ay, ... are pairwise independent if P(A; N A;j) = P(A;)P(4;) for
any pair ¢ # j. Show that if Ay, Ao, ... are mutually independent then the random events are
pairwise independent but the opposite implication is not true.

Theorem 3 (Gradual conditioning). Let Ey, Es, ..., E, be random events such that P(E;N---N
E,_1)>0. Then

P(EyNEsN---NE,) =P(E,JEyN---NEn—1)P(Ep_y|Ey NN Ey_s)...P(Ey|E)P(E).

Theorem 4 (Inclusion and exclusion). Let Ay, As, ..., A, be random events. Then
P (U Ai> =Y P(A)— > PANA)+ > PANANA)— -+ (-1)" P (ﬂ Ai> .
i=1 i=1 1<i<j<n 1<i<j<k<n i=1

Definition 8 (Disjoint decomposition). System (finite or countable) of random events Ey, Eo, . ..
is called disjoint decomposition of Q if P(E;) > 0 for all i, E;NE; = () for any i # j and Q = |, E;.

By (J; we mean union (sum, product, ...) over all indices 7, both finite or countable.

Theorem 5 (Total probability). Let Ay, As,... be disjoint decomposition of Q. Then for any
random event B

P(B) = ZP<B|AZ->P<AZ->.

Theorem 6 (Bayes theorem). Let Ay, As,... be disjoint decomposition of Q. Then for any
random event B,P(B) > 0 and for any i

_ P(BJA)P(4))
PAIB) = =5 BIA P A

Theorems 2—4 are essential for classical probability problems.

Problem 9 (Pdlya urn scheme). Consider an urn with balls of different colours. Each time we draw
exactly one ball from the urn randomly, i.e. each ball has the same chance to be drawn (classical
probability space). When we see the colour of the ball we return the ball to the urn together with
A additional balls of the same colour. Special cases are
e A = —1 corresponds to the case that the ball is not returned to the urn. We call this
sampling without replacement.
e A = 0 corresponds to the situation that only the drawn ball is replaced back to the urn.
This is called sampling with replacement.

Consider classical urn scheme starting with n black balls and m white balls in the urn. Calculate
the probability, that white ball is drawn in the second round if

(1) A=0



(2) A=-1
(3) A=2
Calculate this probability also for further rounds of sampling.

Theorem 7 (Bonferroni inequality). Let Ay,..., A, be random events. Then
P (ﬂ Ai> > 1= (1-P(4y).
i=1 i=1

2. DISKRETE RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Definition 9 (Random variable). Let Q, F,P) be a probability space. Function
X : Q — R such that X !(—o0,a] = {w € X (w<a} € FforallacR
is called random variable.

If X takes at most countably many values we say that X is discrete random variable. In such
case it is usually poissible to consider only set Z (whole numbers) as values of X.

Definition 10 (Distribution of r.v.). Probability measure Py defined on R by
PX((foo,cL]) = P({w;X(w) < a})
is called distribution of random variable X.
Notation remark: For simpler notation we adopt the convention
X eAl={we X (w)e A} for A € B.

Here B is the smallest o-algebra (see Definition 1) of subsets of R containing all open and closed
sets. Hence, (—o0,a] € B for any a € R. Definition of the distribution may be written using this
notation as

Px(A) =P[X € A].
Clearly, [X € A] is a random event for any A € B.

Definition 11. Let X be a random variable defined on probability space (2, F,P). The o-algebra
Fx ={XY(A),AcB}

is the o-algebra of random events generated by the r.v. X

Problem 10. Show that Fx is indeed a o-algrebra, and Fx C F.

If the random variable X is clear from the context we may write simply P for its distribution.
We try to distinguish the probability measure P on probability space Q2 and the distribution P as
measure on R.

Ezample 1. Consider fair six-sided dice. Throw the dice two times independently. Then we may
choose the probability space as Q = {(i,5);i =1,...,6,7 =1,...,6}, F = 2% and P(i,j) = 1/36
for all (i,7) € Q. Random variable X (4,j) = i + j describes the sum of the two results. The
distribution Px of X is a probability measure on set {2,3,...,12}.

Problem 11. Find the distribution Py from the last Example.



Definition 12 (Distributrion function and density I). Let Px be a distribution of discrete random
variable X (integer valued). Function

Fx(z) = Px((—o0,2]) = P[X < 2]
is called distribution function of r.v. X. Function
p(x) = Px({z}) = P[X = 4]
is called density with respect to the arithmetic measure of discrete r.v. X.
Note: Clearly, p(z) = 0 for any =z ¢ N if X is integer-valued (here N = {0,1,2,...}. For

1 =0,1,... we often denote p; = p(i) and the set of probabilitites {p;,¢ = 0,1,... uniquelly
determines the distribution P, and distribution function

Fx(z) =) p

i<z
Both distribution function and density uniquelly determine the distribution of random veriable.
Bernoulli (alternative) distribution Let p € (0,1). Distribution given by
po=1-=p, p1=p

is called alternative, or Bernoulli distribution. Corresponding random variable is two-valued.
X =1 denotes success and X = 0 denotes failure in the experiment. Abbreviation is usually
Alt(p). Such experiment (with success or failure outcome with success probability p) is called
Bernoulli trial.

Binomial distribution Let n > 0, n € N, and p € (0,1). Distribution on the set {0,1,...,n}

given by
(™) i — )i
pi=|,|p(1=p)

is called binomial with parameters n and p, abbreviated as Bi(n,p). Binomail distribution is the
distribution of number of successes in n independent Bernoulli trials Alt(p).

Geometric distribution Let p € (0, 1). Distribution on the set {0, 1,...} given by

pi =p(l—p)’
is called geometric distribution with parameter p. Geometric distribution is the distribution of
number of failures preceding the first success in a serie of independent Bernoulli trials. Abbrevia-
tion for this distribution is Geom(p).

Negative binomial distribution Let n > 0, n € N, and p € (0,1). Distribution on the set
{0,1,...} given by
n+i—1\ , i
pz-:( ; >p (1-p)

is called negative binomial with parameters n and p abbreviated as NBi(n, p). It is the distribution
of number of failures preceding the n-th success in a serie of independent Bernoulli trials.
Hypergeometric distribution Let n, M, N be integers such that 0 <n < N, 0 < M < N.
Distribution
() G
m n—m

)

n

,m=max0,n+ M — N,... minn, M

is called hypergeometric distribution. Consider two sets of object (white and black balls), M is
the number of white balls, NV is the total number of balls. Exactly n balls are drawn without
replacement from the set of balls. Then p,, is the probability that exactly m white balls are
drawn in the sample.
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Poisson distribution Let A > 0. Distribution on the set {0, 1,...} given by
k
A
k!
is called Poisson distribution. Poisson distribution is a limit case of Bi(n,n,) distribution if
nm, — A € (0,00) as n — oo.

pi=¢€

For arbitrary integer-valued (or diskrete) random variable X it is possible to define its canonical
probability space
Q=N (orS), F=2% P=Px,

where S is the set of all possible values of r.v. X. S is often called sample space.

Definition 13 (Independence). Random variables Xi, Xo,... are mutually independent if for
any n € N and any finite subset of indices A = {iy,...,4,} and any z1,...,2, € R it holds

n n

P (X, <o | = [[PIX, <l

j=1 j=1

In other words, X;,i =1,2,... are mutually independent if and only if any random events A,
generated by X7, A generated by X5 etc. are mutually independent.

In particular, integer-valued random variables are independent iff for any n € N and any finite
subset of indices A = {i1,...,i,} and any z1,..., 2z, € R it holds

j=1 j=1

Theorem 8 (Properties of distribution function). Let X be a random variable and Fx its distri-
bution function. Then

(1) Fx is right continuous and non-decreasing.

(2) limy o0 Fix(x) = 1.

(3) limg— oo Fx(x) =0.

Theorem 9 (Characterisation of distribution function). Let F': R — R be a function satisfying
(1)-(3) of Theorem 8. Then there exists probability space (Q, F,P) and random variable X defined
on it such that F' is the distribution function of X.

3. EXPECTATION AND HIGHER MOMENTS

Distribution function fully describes the distribution of random variable and its random be-
haviour. However, simpler numerical characteristics are often needed.

Definition 14 (Mean value of random variable (general)). Let X be random variable defined on
probability space (2, F,P). The mean value (or expectation) of X is defined as

EX = [ X(w)dP(w)
Q
if the integral on the right hand side exists. If the mean value of X exists and it is finite, then we
say that the random variable X has finite expectation (or finite mean value).

Notation: In what follows we fix (at most countable) discrete set S to be the sample space, i.e.
the set of all possible values of random variable X. If needed, we will use Sx to specify the random
variable.
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Theorem 10 (Mean value of discrete random variable). Let X be an S-valued random variable
with finite mean value and distribution Px. Then

EX = ZSP[X =s]= ZSP)((S) = Zsps.

s€ES s€ES s€ES

The mean value (expectation) characterises the location of random variable. It is also called
first moment of X. Theorem 10 gives simple computation rule for expectation of random variable
with given distribution (or simply expectation of given distribution).

Problem 12. Calculate the expectation of random variables with distributions Bernoulli, binomial,
geometric, negative binomial, hypergeometric and Poisson.

Remark: Let X be non-negative random variable, i.e. P[X > 0] = 1. Then its expectation
always exists and may be either finite or +oo.
If E|X| (defined naturally as [, | X (w)|dP(w)) is finite, then EX exists and is finite.

Problem 13. Tt is not difficult to find distribution P on Z such that expectatoin of P does not
exists. (Hint: look for distribution such that both > oo | sps = 0o and Y., ", sps = —o0 hold.)

Definition 15 (Other moments). Let X be random variable and ¢ : R — R function such that
g(X) is again random variable. Then we define

Bg(X) = [ 9(X(2))dP()
Q
if the integral exists (finite or infinite). If X is a discrete S-valued random variable, then

Eg(X) =Y g(s)Px(s)

seS

if the sum exists.

Definition 16 (Higher moments and moment generating function). Let X be a random variable.
Then

) EX7 is called r-th moment of X (if it exists).

) E(X — EX)" is called r-th central moment of X (if it exists).

) var(X) := E(X — EX)? is called variance (or dispersion) of X (if it exists).
)

)

Theorem 11 (Moments from moment generating function). Let X be a random variable and v x
its moment generating function. If 1x does exist on an open neighbourhood of 0 then for any
reN

- d"Yx(t)
X = X (),

i.e. the r-th moment of X is the r-th derivative of ¥x at 0.

Problem 14. Calculate the moments of known discrete distributions using the moment generating
function.



8

Theorem 12 (MGF and characterisation of distribution). Let X and Y be random variables and
Px and Yy their moment generating functions. Assume that both v x and vy exist and are finite
on some open neighbourhood of zero, and that for some § > 0

bx(t) = Py (t) for all [t] < 6.

Then Fx = Fy, i.e. the two random variables are identically distributed.

Theorem 13 (Jenssen’s inequality). Let X be a random variable and [ be a convex function. If
both EX and Ef(X) exist then
f(EX) <Ef(X)

Theorem 14 (Expectation of non-negative r.v.). Let X be an No-valued random variable. Then

EX =) (1- Fx(n)).

n=0

4. DISCRETE RANDOM VECTORS AND THEIR DISTRIBUTIONS

Definition 17 (Random vector). Let Q, F,P) be a probability space. Function
d

X : Q — R? such that X! (H(oc,ai]) ={weLXi(w<a}eFforalla=(a;...,aq) €ER
i=1

is called d-dimensional random vector.

If X takes at most countably many values we say that X is discrete random vector (d.r.v.).
In such case it is usually poissible to consider only set N¢ (non-negative integers) as values of X.
From now on we shall always consider d.r.v. X to be N¢-valued unless we specify
another sample space!

Definition 18 (Distribution of random vector). Probability measure Px defined on R? by

d d
Px (H(ooaJ) =P (ﬂ{w,X,(w) < aL}>

i=1
is called (joint) distribution of random vector X.

Special case is again a discrete random vector.

Theorem 15 (Probabilities of d.r.v.). Let X be a d-dimensional d.r.v. with distribution Px.
Then there exist non-negative function p : N¢ — [0, 1] such that

d
Px (H(_Oovai]> = Zp(z)v

=1 z<a
where z < a if z; < a;,i = 1,...,d. It holds P[X = z] = p(z) for all z € Nd.

Therefore p(z) fully characterise the distribution Px and we also may call the set {p(z), z € N¢}
the distribution of X. Sometimes we call it also density od d.r.v. with respect to arithmetic measure
(see Definition 12).

Also for random vectors we may define its distribution function which fully characterises the
distribution.
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Definition 19 (Distribution function of random vector). Let Px be a distribution of random
vector X. Function Fx : RY — [0,1] defined as
d
Fx(x) = Px (H(oc,w,-,}> = P[X < ]
i=1

is called (joint) distribution function of d.r.v. X.

Definition 20 (Marginal distribution). Let X be random vector with distribution Px and dis-
tribution function F'x. Then
d

Px. (— = 1 P —00, a;
(ool = i P | [[(-a)

Jj=
is the marginal distribution of X;, and

Fx,(x)= lim Fx(x)

@ —00,j#i
is called marginal distribution function of X;.
Clearly, X = (Xi,...,X4), and X; is a discrete random variable and P,, is its distribution,

and Fy, its distribution function. In a similar way it is possible to define random subvector of X
and its distribution and distribution function.

Theorem 16 (Marginal distribution determined). Let X be d.r.v. with distribution Px then all
its marginal distributions Px,, i = 1,...,d are uniquelly determined by Px (and the same holds
for the distribution function and “density”).

Reverse implication does not hold at all!

Problem 15 (Infinitely many possibilities). Consider two discrete marginal distribution p;(n) and
p2(n), n € Ny. Find at least two d.r.v. (X3, X5) and (Y7, Y2) such that the marginal distributions
of both d.r.v are p; and po, but the joint distributions differ!

Notation: a <bec R?iff a; < b; foralli=1,...,d. For 1 <k < d denote Ag(a,b) the set of all
¢ € R4 such that there is exist 1 < iy < -+ < i < d and

b; ifi=i;forsomej=1,...,k
C; = .
a; otherwise.

Clearly Ag(a,b) = a. In other words Ag(a,b) denotes those vertices of a d-dimensional cube
[a, b] for which exactly k coordinates belong to b.

Theorem 17 (Properties of distribution function). Let X = (Xy,...,X4) be a random vector
and Fx its distribution function. Then

1) For any i€ {1,...,d} it holds lim,, , _~ Fx(x)=0.

2) limw Zi—00 Fx(m) =1.

3) Fx is nondecreasing and right continuous in all variables.

4) For any a < b it holds

(
(
(
(

d
Z(*l)k Z Fx(c) =2 0.

k=0 cEAL(a,b)

Theorem 18 (Characterisation of distribution function). Let F': R — [0,1] satisfy (1)-(4) of
Theorem 17. Then there exist probability space (2, F,P) and random vector X such that F is the
distribution function of X.
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Condition (4) cannot be removed since condition (3) itself is not sufficient to assure that any
nondegenerated d-dimensional cube [a, b] has non-negative probability.

Theorem 19 (Characterisation of independence). Let X = (Xi,...,X,,) be a random wvector.
The random variables Xy, ..., X, are independent iff for any © = (x1,...,2,)

Fx(z) =[] Fx, ().
i=1
If X is a discrete random vector then this is equivalent to
px(z) = pr(zz) Vz=(z,...,2) € N{.
i=1

Note: The joint distribution is crucial! It fully describes the relation between the elements of the
random vector, their dependence (or independence), the form of the dependence. This important
information is not available form the marginal distributions.

From this point of view a random vector X is more than just mere set of random variables
X1, Xo,..., X . It is also the model describing the mutual relations between the random variables
X1,...,X4 (and also subvectors of X).

5. (DISCRETE) RANDOM VECTORS: MOMENTS AND TRANSFORMATIONS

Definition 21 (Expectation of random vector). Let X be a d.r.v. and g : R? — R. Then

(1) EX = (EX1,EX,,...,8X,) if all expectations on the right hand side exist.
(2) Eg(X) =3, cz4 9(2)px () if the sum exists.

If X is a discrete random vector then the expectation may be calculated as

Eg(X)= ) g(x)P[X =2]= ) g(z)p(2)

z€Nd z€Nd

Theorem 20 (Linearity of expectation). Let X be a d.r.v. with finite EX, a € R, b € R%. Then

d d
Ea+ ) bX;=a+ ) bEX;.
i=1 i=1
Theorem 21 (Independence and expectation). Let X;, i = 1,...,d be independent random vari-

ables and let EX; exists finite for all i. Then
d d
EJ]x: =[] ExX..
i=1 i=1

Definition 22. Let X and Y be random variables (defined on the same probability space) such
that both EX? < 0o and EY? < 0o . Then define their covariance as

cov(X,Y) = E(X — EX)(Y — EY).

Theorem 22 (Variance of sum). Let X;, i = 1,...,d be random wvariables with finite second
moment. Then

d d d d
var (Z X,») = Z Zcov(Xi, X)) = Zvar(Xi) + Zcov(Xi,Xj)

i=1 j=1 ij
i#j

d
:Zvar(Xi)JrQ Z cov(X;, X;).
i=1

1<i<j<d
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Definition 23 (Variance and correlation matrix). Let X be a d-dimensional random vector such
that EX? < oo for all i = 1,...,d. Denote

COV(X,;,X]‘) = E((X, — EX,)(XJ — EXJ))
the covariance of random variables X; and X;. Denote
COV()(i7 X7)
V/var X; var X

the correlation of random variables X; and X;. The matrix

0i,; = corr(X;, X;) =

Var X = {cov(X;, X;)}¢

ij=1
is called the variance matriz of random vector X and the matrix

Corr X = {corr(X;, X;)}¢

ij=1

is called the correlation matriz of random vector X.

Notice that var(X) = cov(X, X).

Theorem 23 (Properties of covariance and correlation). Let X be a random vector Var X its
variance matriz and Corr X its correlation matriz. Let X and Y be random variables with finite
second moment. Then
(1) =1 <corr(X,Y) <1, corr(X,X) = 1.
) |corr(X,Y)| =1 iff there exist a # 0 and b such that P[X = aY + b = 1.
) cov(aX +b,cY +d) = accov(X,Y).
) corr(aX + b, cY + d) = sign(ab) corr(X,Y).
) If X and Y are independent then cov(X,Y) = corr(X,Y) = 0.
) Var X and Corr X are positively semidefinite.
) Var(AX +b) = A Var(X)AT for any | x d matriz A and [-dimensional vector b.

Definition 24 (Uncorrelated random variables). Random variables X and Y with finite second
moments are called uncorrelated if corr(X,Y) = 0.

Problem 16. Find uncorrelated random variables which are not independent.

Theorem 24 (Transformation of random vector). Let X be a d-dimensional random vector and
¢ : RT — R (measurable') function. Then'Y = ¢(X) is a l-dimensional random vector and its
distribution is given by

Py(B) = PY € B] = P[X € 6" 1(B)] = Px (6"'(B))
for any B € B(RY).

If X is a discrete random vector, then'Y is also discrete random vector (not necessary N'-valued)
and

PlY =y =py(y) = Z px ().
z;h(@)=y

1By measurable we mean here that the pre-image of Borel set is again Borel, i.e. {z;¢(x) € B} € B(R?) for
any B € B(RY).
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Theorem 25 (Distribution of sum and product I). Let X = (X1, Xs) be discrete (N?-valued)
random vector.Let Y = X1 + Xo and Z = X1 X5. Then

PY =y => P[X1=nX,=y—nl,
neN
P(Z =z =) P[X;=n,X,=z/n].
neN
The first distribution (or formula) is called convolution of distribution of X1 and Xs.

Theorem 26 (Moment generating function of sum). Let X and Y be independent random vari-
ables and v x and Yy their moment generating functions. Then

Yxy (t) = Px (t)y (t).

Problem 17. It is possible to extend the formula for the distribution of sum and product also to
more general discrete random vectors. Consider random vector X = (X7, X2). Find formula for
(1) distribution of X + X5 if X is Z?-valued random vector.
(2) distribution of X; X5 if X is Z?-valued random vector (work carefully with zero and the
fact that z/n = (—z)/(—n)).
(3) distribution of X; — Xy and X;/X, if X is Z2-valued random vector.

Problem 18. Throw two dices and denote (X7, X3) the result. Find the distribution of transformed
random vector (X7 + Xo, X5) and show that the first marginal distribution of the transformed
random vector is exactly the same as the one you get from the convolution formula. Try also the
transformation to random vector (X7 + X2, X7 — X2) and its marginal distribution.

Repeat the exercise for the product X X5.

6. ABSOLUTELY CONTINUOUS RANDOM VECTORS

Definitions 17, 18, 19 and 20 hold also for continuous random vectors.

Definition 25 (Absolutely continuous random vector). Random vector X :  — R? is called
absolutely continuous (AC) if there exists a non-negative function fx : R? — R such that

aq

aq
Fx(a)= /.../f’X(xl,...7xd)dxd...dx1 for any a € R%.

— 00

Function f is called (joint) probability density function, or just joint density, of random vector X .

Theorem 27 (Density of absolutely continuous random vector). Let X = (Xq,...,Xy) be an AC
random vector with density fx. Then for its marginal distribution holds

(= [ ret,

where
oo o0
fxl(l‘) = / s fx(xl, ey L1, Ly L1y e e - ,xd)dxl .. .dxi,1d$i+1 .. .d.’l?d
—00 — 00

is the marginal density of X;.
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Theorem 28 (Characterisation of independence II). Let X = (X1,...,Xq) be an AC random
vector with density fx. Then the random variables X1, ..., Xq are independent iff for any a =

(a1y...,aq)

Theorem 29 (Moments of AC random vector). Let X = (Xy,...,Xq4) be an AC random vector
with density fx. Then for any suitable function g : R? — R such that Eg(X) exists it holds

oo oo

Eg(X) = /---/g(xl,...,xd)fx(xh...,xd)dxl...dxd.

The distribution of a transformation of AC random vector may be always determined by Theo-
rem 24. There are also specific formulas for particular cases.

Theorem 30 (Convolution formula for density). Let X = (Y, Z) be absolutely continuous random
vector with joint density f(y,z). Then the sum V =Y + Z is an absolutely continuous random
variable with density

fv(v) = /_OO Ix(y,v —y)dy.

Theorem 31 (Deunsity of ratio and product). Let X = (Y, Z) be absolutely continuous random
vector with joint density f(y,z) and such that P[Z > 0] = 1. Then the ratio V. = Y/Z is an
absolutely continuous random variable with density

fv(v) = /0Oo fx(vz,2)zdz,

and the product U =Y - Z s an absolutely continuous random variable with density
e v 1
fu(uw) :/ Ix (az) —dz.
0 z z

Uniform distribution Let —co < a < b < co. Random variable X has uniform distribution on
the interval (a,b) if the density fx is constant on (a,b) and zero elsewhere. Clearly,

1

frla) = {ba for z € (a,b),

0 elsewhere.

Let B € R? be a connected set with nonzero volume A\(B). Random vector X has uniform
distribution on B if the density fx is constant on B and zero elsewhere. Clearly

fx(z) = {A(lB)

0 elsewhere.

for x € B,

Typical examples are uniform distribution on rectangles, triangles, circles, etc.

Normal (Gaussian) distribution Let ¢ € R, and ¢? > 0. Random variable X has normal

distribution (also called Gaussian distribution) if its density has form

1 x — )2
o) = e (—( - ) reR

For X it holds EX = p and var X = 2.
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Let u € R? and ¥ be d x d symmetric positive definite matrix. Random vector X has d-variate
normal ditribution if its density is
1

x(z) = W exp (—%(i'3 — ) (- N)) , wER?

For X it holds EX = p and Var X = 3.
Random variable (vector) with normal distribution is also called Gaussian r.v. Note that
marginal distribution of Gaussian distribution is again Gaussian.

Theorem 32 (Independence in Gaussian distribution). Let (X,Y") is normally distributed random
vector. Then X andY are independent iff cov(X,Y) = 0. Let X = (X1,..., X4 be a d-dimensional
Gaussian T.v. Then X1,..., Xy are independent iff the variance matrix 3 is diagonal.

Exponential distribution Let u > 0. Random variable X has exponential distribution with
parameter g if it has density

0 elsewhere.

Fx(z) = {ﬁexp (—ﬁ) for z > 0,

7. CONDITIONAL DISTRIBUTION AND CONDITIONAL EXPECTATION

We restrict the full definition only to discrete random wvectors.

Definition 26 (Conditional distribution of d.r.v). Let X = (Y, Z) be a d-dimensional discrete
random vector, where Y = (X,...,X,) and Z = (Xp41,...,Xg). For any z € Ng_p such that
P[Z = z] > 0 define the conditional distribution of Y given Z = z (or simply “given z”) by
Pv.z)(Y:2) _PlY,Z) = (y.2)]
pz(z) P[Z = z]

The conditional distribution is probability distribution. Hence, we may define its moments.

py|z(ylz) =PY =y|Z = 2] = y € Ng.

Definition 27 (Conditional expectation of d.r.v.). Let X = (Y, Z) be a d-dimensional discrete
random vector, where Y = (Xi,...,X,) and Z = (X,41,...,X,). For any z € Ng_" such that
P[Z = z] > 0 and random variable S = g(YY, Z) define the conditional expectation of S given

Z = z (or simply “given z”) by
E(S|Z=2)= Y g(y,2)py|z(yl?)
yENﬁ”’
if the sum on the right hand side is defined. In particular, if p = d — 1, i.e. Y = X is one-
dimensional random variable we define conditional expectation and conditional variance as
E(Y|Z=2) = upviz(yl2),
yE€Ng
var(Y|Z = 2) =E((Y —E(Y|Z = 2)*|Z = 2).

Theorem 33 (“Total expectation”). Let X = (Y, Z) be a discrete random vector such that' Y is
a random variable and E|Y| is finite. Then
EY = Y  E(Y[2)P[Z =z

zeNg™!
P[Z=z]>0

Compare this theorem with the “law of total probability”. Conditional expectation may be
defined also as a random variable.
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Definition 28 (Conditional expectation as random variable). Let (X,Y") be a bivariate discrete
random vector such that E|X| is finite. Then random variable E(X]Y") : © — R defined as

B(X[Y)(w) = B(X|Y = Y(w))

is well defined random variable. (The definition may be simply generalised to more-dimensional
random vectors).

Theorem 34 (Expectation of conditional expectation). Let (Y, Z) be a discrete random vector
such that E|Y| is finite. Then
E(E(Y|Z)) = EY.

Problem 19. Throw two dices, denote X and Y the results, respectively. Find
(1) Joint and marginal distributions of random vector (X, X +Y, X —Y).

(2) Var(X, X +Y, X -Y), Corr(X, X +Y, X -Y).

(3) Are these variables independent? Is there any pair of independent r.v.’s?
4) EX|IX+Y =2), EX|X+Y =2,X-Y =w)).

5) EX+Y|X=2), EX+Y|X -Y =w).

(6) Values and distribution of random variable E(X|X +Y).

(7) E(X +Y) using Theorem 33.

For absolutely continuous random vectors we may correctly define conditional density. The
main problem is that we need to condition by random event [Z = z| which probability is zero.

Definition 29 (Conditional density of AC r.v.). Let X = (Y, Z) be an absolutely continuous
random vector with density function fx. Denote fz the (marginal) density of the absolutely
continuous random vector Z. The conditional density of Y given Z = z is defined as

Jr m W2 e )5
fY‘Z(y|Z) = {0 fz(z) fZ( ) ,

otherwise.

Definition 30 (Conditional expectation of AC r.v.). Let X = (Y, Z) be an absolutely continuous
random vector and let S = ¢g(Y, Z) be random variable. The conditional expectation of S given
Z = z is defined as

oo oo

B(S|Z = 2) = / - / oy, 2) fy 1z (yl2)dur ... dy,

— 00 — 00

if the integral exists.

8. INEQUALITIES AND BOUNDS

Theorem 35 (Markov inequality I). Let X be a non-negative random variable. Then for any

a>0 EX
P[X >a] < —.
a

Theorem 36 (Markov inequality II). Let X be a non-negative random variable. Then for any
a >0 and for k>0
EXF

P[X >a] < e
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Theorem 37 (Chebyshev inequality). Let X be random variable with finite expectation EX. Then

for any e >0

X
PlX —EX| > < 22
13

Theorem 38 (Kolmogorov inequality). Let X1, Xo, ..., X, be independent random variables with
finite expectations EX; and finite variances var X;. Then for any e > 0

k n

S X,

P[max 1S Xi—EXi|zg] < &=t T
1<k<n | £

Problem 20. Supose we toss a fair dice 100 times. Denote X1,..., X g9 the results, denote S =
Z,]le X, and use Chebyshev and Kolmogorov inequalities to find upper bounds for

P[|S100 — 350 > 1], P { max |Sk — 3.5k| >m
1<k<n

for different values of | and m.

Problem 21. Given positive integer k find a non-negative random variable X such that
EX
P[X > k| = —.
k
(Looking for non-negative random variable with given properties is equivalent to problem of finding
probability measure on R satisfying these conditions.)

Theorem 39 (Chernoff bounds). Let X be a random wvariable and vx its moment generaling
function. Then

x(t)

P[X < a] < min
t<0 exp(ta)

Definition 31 (Poisson trials). Let X7, Xo,... be independent random variables such that
PIX;=1]=p; =1-P[X; =0], p;i€(0,1).
Such random variables are called Poisson trials.

Note: Bernoulli trials are special case of Poisson trials for which p; = p for all i =1,2,....

Theorem 40 (Upper Chernoff bounds for Poisson trials). Let X1,..., X, be independent Poisson
trial with P[X; = 1] = p;. Let S, = i, X; and ps =Y ., pi. Then

(1) For >0

o ws
Pls, 2 (+ans] < (55m0))
(2) For0<d§<1
P (S, > (1+ 8)ug) < e #s5/3,
(3) Ford > 6us
P[S, > 4] <27°.
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Theorem 41 (Lower Chernoff bounds for Poisson trials). Let Xi,..., X,, be independent Poisson
trial with P[X; = 1) = p;. Let S, =Y i X; and ps = > pi. Then
(1) For0<d<1

e_5 Hs
Pis, < (1-osl < (=5 -

(2) For0<d§ <1
P[S, <(1-0)us] < e s/,

Problem 22. Consider n independent Bernoulli trials X,..., X,, with (unknown) probability of
success p € (0,1). Let

be your guess about p. For given « € (0, 1) use Chebyshev and Markov inequalities and Chernoff
bounds to find smallest possible ¢ such that

Plpe (p—06,p+0)]>1—a.

9. RANDOM SAMPLES AND LIMIT THEOREMS

Definition 32 (Set limsup and liminf). Let A,,n =1,2,... be sets (random events). Define

limsup A,, = ﬁ G A;, linrgingn = G ﬁAi.

oo n=11i=n n=1i=n
Clearly, if a € limsup,,_,., A, then there exists infinitely many sets A; such that a € A;. If
b € liminf,,_, . A, then there is at most finite number of sets A; such that b € A;.

Theorem 42 (Borel-Cantelli 0-1 law). (1) Let Ay,,n=1,2,... be random events. Then

ZP(Ai) <oo=P <limsupAn) =0.
i=1

n— oo

(2) Let A,,n=1,2,... be independent random events. Then

ZP(AZ-) =oc0o=P (limsupAn> =1.
i=1

n— o0

Note that liminf A,, = (lim sup Ag)c. Hence, Theorem 42 may be used both for limsup A4,
and for liminf A4,,

Definition 33 (Random sample). A sequence Xi, Xs,..., X, of independent and identically
distributed (iid) random variables (vectors) is called random sample of (sample) size n (from
distribution Px.

Definition 34 (Sample moments). Let X1,...,X,, be a random sample. Then
(1) X, =230, X; is called sample mean.
(2) 82 =-L-5" (X;—X,)? is called sample variance.

n—1

(3) Fo(z) = LS x(Xi < x), where x(:) is the indicator function, is called empirical
distribution function.



18

Theorem 43 ((weak) Law of large numbers). Let X1, Xo,... be independent and identically

distributed random variables with finite mean EX, = p and finite variance var X1 = 2. Then

1 n
P[H;Xi—u

This property is called (weak) consistency of sample mean. The assumption o2 < co may be
relaxed but the proof is then much more difficult. This is denoted as

>e| =0 asn — oo,

X0 — 1250, or Xn, = p

Theorem 44 (Consistency of empirical d.f.). Let X1, Xo,... be independent and identically dis-
tributed random variables with c.d.f. Fx. Then for any x

P[A

F,(z) —FX(x)’ > 5] — 0 as n — oo.

The previous Theorem holds even uniformly, i.e. P [supm

Fo(z) —FX(:c)’ > e} =0

Theorem 45 (Central limit theorem). Let X1, Xo,... be independent and identically distributed
random variables with finite mean EX| = p and finite positive variance 0 < var X1 = 2. Then

plyne=t ool o
VAT <o) S a),

where ®- is the distribution function of standard nornal distribution (with zero mean and unit
variance). Equivalently we write

X, —p

NG < N(0,1),
g
or
"X,
Lioy Xi —npe PR 4N (0, 1),
no?
or

Vi (X = 1) % N(0,0%).

This is really very important theorem!!! It is also written that

Theorem 46 (Delta theorem). Let Y1,Ya,... be a sequence of random wvariables such that

Vi (Y, — 1) & N(0,0%)

and let g be a differentiable function. Then

Vi (g(Ya) = g(1) % N(0, (g (1)%0%)

There exist multivariate and more general versions of both CLT and Delta theorem.

Theorem 47 (Cramér-Slutskij theorem). Let X, 4, N(p,0?), U, LI a, and Zy, P s>0. Then
d 2 2
ZnXn + U, = N(sp+a,s°07)

The Cramér—Slutskij and Delta theorems are essential tools for asymptotic estimation tech-
niques based on Central limit theorem. From C-S theorem follows that the convergence 4

P
weaker than the convergence —.
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10. POINT AND INTERVAL ESTIMATES, HYPOTHESES

Definition 35. Parametric family of distributions Let P = {Py, 0 € ©} be a family of distributions
such that

(1) All Py are distributions on the same sample space (here R or R?).

(2) Py are explicitely defined with unknown parameter 6.

(3) © is the set of all possible parameters.

Ezxample 2. Examples of parametric families Parameric families are usually given by the density
function or by the distribution function.
e Bernoulli distribution: The parameter is p € (0, 1), the unknown probability of success.
e Univariate normal distribution: The parameter is two-dimensional: (u,0?), where y is the
expectation and o2 is the variance.

Note that there may be more equivalent parametrisations of given family of distribution.

Definition 36. Point estimator Let Xi,..., X, be independent and identically distributed ran-
dom variables (vectors) following distribution Py from some parametric family P. This is called
random sample from the distribution Py. The point estimation problem is the problem to find
statistics T : R* — ©, T(X4,...,X,), where T does not depend on the unknown parameter 6
such that T is “good” approximation of 6.
(1) The point estimator 7' is called unbiased if for all € © holds ET' = 6 provided 6 is the
true value of the parameter.
(2) The point estimator 7' is called consistent if for all € © holds T L, ¢ provided 6 is the
true value of the parameter.

Consistency and unbiasedness are usually considered as the desirable propetries for any esti-
mator. Having two consistent or unbiased estimators the one with smaller variance is preffered.
There are several methods how to find estimator.

Definition 37. Method of moments Consider X1,...,X,, random sample from distribution Py,
¢ being unknown parameter. Suppose the moments of X; are functions of 0 (which is usually the
case), say EX{ = 7;(0). Define sample moments

1 n
~ k
Hre = — Z X5
n -

i=1

The moment estimator is then defined as solution to equations
Tj(0> - ﬁj’j - 1;"'317

where [ is (usually) the dimension of 6.

Law of large numbers, central limit theorem, delta theorem, Cramér—Slutsky theorem are often
useful to determine the properties of point estimators.

Problem 23. Consider following parametric families, and random samples form these distributoins.
Use method of moments to find the point estimation of the parameter. Are these estimates
unbiased and consistent?

(1) PIX =1]=pe (0,1), P[X =0 =1 —p.

(2) P[X <y]=1—exp(\y) for y > 0, where A > 0 is unknown parameter.
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(3) X has density
fz) = {)\exp{/\(l. —a)} x>a,

0 z < a,

where ¢ € R and A > 0 are unknown parameters.
(4) X has normal distribution with 02 = 1 and p € R is parameter.
(5) X has normal distribution with unknown parameters z € R and o2 > 0.

Definition 38. Interval estimator Let Xi,...,X,, be independent and identically distributed
random variables (vectors) following distribution P from some parametric family P, where © C R.
The interval estimation problem is the problem to find two statistics L,U : R™ — R, where L and

U do not depend on the unknown parameter 6, such that
PL<O<U]>1—-«

if 0 is the true value of the parameter. We call the interval [L, U] interval estimate (or confidence
interval) with significance level 1 — c.

There is no general algorithm how to find interval estimate. However, this procedure may be
often successful:

(1) Find function H : ©® x R" — R such that H(#; X;,...,X,) is random variable whose
distribution Py doesn’t depend on 6 (it is sufficient in asymptotic sense).
(2) Find appropriate quantiles of Py, i.e. values ¢, and ¢, such that

Plg<H<q]>1-a
Usually g, /2 and q;_q/2 defined as
Gaj2 = inf{q: P[H < q] > a/2}, qi_aj2 =inf{q:P[H <q] >1—a/2}
are used as ¢; and gy, respectivelly. (Show that indeed Plg, /o < H < q1_n)0] > 1 — )
(3) Find L(X1,...,Xniqa/2,q1-ay2) and U(X1,..., Xy qa/2, ¢1—a/2) such that the inequali-
ties
Gajz < H(O; X1, ..., X0 < qi_ay2
hold if and only if
L(X1,. s X0 Gay2, Qi—ay2) <O S UX1, -0, Xai a2, G1—ay2)
(4) Then, since
PILLO<SU]=Plgaeo <HZquqp]>1-a
we have found the confidence interval.
Interval estimates may be used for test of statistical hypothesis. Assume we have two claims
about the parameter:
(1) Hy: 0 =t is the hypothesis.
(2) Hy : 0 #tis the alternative.
Such Hy is called simple hypothesis, H; is called both-sided alternative. The value t is given before
the experiment and it is hypothetical value of the unknown parameter 6.
Having interval estimator [L, U] of § with significance level 1 — @ we may do this decision:
(1) We reject the hypothesis Hy if ¢ ¢ [L,U]. The hypothesis is rejected at statistical signifi-
cance level .
(2) We do not reject the hypothesis Hy if t € [L, U]. The hypothesis is not rejected at statistical
significance level c.
Note that we do not accept the hypothesis. It is either rejected or not rejected. The decision
depends on the significance level.



