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1. Axioms; Probability space; Events

Definition 1 (σ-algebra). Let Ω be a nonempty set. System F of subsets of Ω is called σ-algebra
if

(1) ∅ ∈ F , Ω ∈ F .
(2) A ∈ F ⇒ Ω \A ∈ F .
(3) A1, A2, · · · ∈ F ⇒

⋃∞
i=1Ai ∈ F .

For any Ω the set ∅,Ω is trivial σ-algebra. Another simple example is ∅, A,Ω \A,Ω for any
A ⊂ Ω. Also the system 2Ω of all subsets of Ω is σ-algebra. However, this system is useful mostly
for finite or countable Ω.

For any finite or countable system A of subsets of Ω there exists unique σ-algebra FA which is
the smallest σ-algebra containing A.

Problem 1. Intersection of (countably many) σ-algebras is again σ-algebra. Union of σ-algebras
need not to be σ-algebra. Find proof or examples.

Definition 2. Consider nonempty set Ω and some σ-algebra F on it. Let P : F → [0, 1] be
mappings such that

(1) P(Ω) = 1
(2) For any pairwise disjoint A1, A2, · · · ∈ F it holds

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

Then P is called probability measure on F . The triple (Ω,F ,P) is called probability space.

We say that probability measure is countably additive. If Ω is finite or countable then it is
usually possible to use F = 2Ω. For uncountable Ω it may be impossible to define probability
measure on 2Ω and strictly smaller σ-algebra is usually needed.

Theorem 1. Let (Ω,F ,P) be a probability space. Then

(1) P(∅) = 0.
(2) For any A ∈ F it holds P(Ω \A) = 1− P(A).
(3) For any A,B ∈ F it holds A ⊂ B ⇒ P(A) ≤ P(B) and P(B \A) = P(B)− P(A).

Definition 3 (Classical probability space). Let Ω be a nonempty finite set, F = 2Ω and for any
A ⊂ Ω set

P(A) =
|A|
|Ω|

,

where | · | is the cardinality of set. (Ω,F ,P) is called classical or elementary probability space.

Each ω ∈ Ω is called elementary event. Each A ∈ F is called random event.

Theorem 2 (Continuity of prabability measure). Let P be a probability measure on (Ω,F).

(1) If {Ai} ⊂ F is a sequence of random events such that An ↗ A then limn→∞ P(An) = P(A)
1
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(2) If {Ai} ⊂ F is a sequence of random events such that An ↘ A then limn→∞ P(An) = P(A)
(3) If {Ai} ⊂ F is a sequence of random events such that An ↘ ∅ then limn→∞ P(An) = 0

In fact, (1)–(3) are equivalent.

Problem 2. Let P be positive finately additive function defined on Ω,F). If (3) of Theorem 2
holds then P is probability measure (i.e., P is also countably measurable).

Problem 3. Show that classical probability space is probability space. Consider three dices. There
are more possible classical probability spaces describing this random experiment.

Problem 4. Throw two dices and take sum of the results. Find classical probability space for the
outcome sum.

Definition 4 (Discrete probability space). Let Ω be nonempty finite or countable set. Let F = 2Ω

and consider for each ω ∈ Ω value pω such that

∀ωpω ≥ 0, and
∑
ω∈Ω

pω = 1.

Define

P(A) =
∑
ω∈A

pω for any A ∈ F .

Then (Ω,F ,P) is discrete probability space.

Problem 5. Throw two dices and take sum of the results. Find discrete probability space for the
outcome sum.

Definition 5 (Conditional probability I). Consider (Ω,F ,P). Let B ∈ F be random event such
that P(B) > 0. Then

P(A|B) =
P(A ∩B)

P(B)

is called conditional probability of A given B.

Problem 6. Show that P(·|B) is probability measure on Ω and F . Conditional probability is
probability of a random event given that the random event B occurred.

Definition 6 (Independence I). Random events A,B are independent if P(A ∩B) = P(A)P(B).

Problem 7. Show that random events A and B are independent if

(1) P(A) or P(B) is either 0 or 1.
(2) P(A) = P(A|B).

Show that disjoint events cannot be independent unless (1) holds.
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Definition 7 (Independence II). Random events A1, A2, . . . are (mutually) independent if for any
n ∈ N and any finite subset of indices Λ = {i1, . . . , in} it holds

P

 n⋂
j=1

Aij

 =

n∏
j=1

P(Aij ).

Remark: Independence may be defined for any number of random event, even uncountably many
random events, in the same way as in Definition 7.

Problem 8. Random events A1, A2, . . . are pairwise independent if P(Ai ∩ Aj) = P(Ai)P(Aj) for
any pair i 6= j. Show that if A1, A2, . . . are mutually independent then the random events are
pairwise independent but the opposite implication is not true.

Theorem 3 (Gradual conditioning). Let E1, E2, . . . , En be random events such that P(E1 ∩ · · · ∩
En−1) > 0. Then

P(E1 ∩ E2 ∩ · · · ∩ En) = P(En|E1 ∩ · · · ∩ En− 1)P(En−1|E1 ∩ · · · ∩ En−2) . . .P(E2|E1)P(E1).

Theorem 4 (Inclusion and exclusion). Let A1, A2, . . . , An be random events. Then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai∩Aj)+
∑

1≤i<j<k≤n

P(Ai∩Aj∩Ak)−· · ·+(−1)n−1P

(
n⋂
i=1

Ai

)
.

Definition 8 (Disjoint decomposition). System (finite or countable) of random events E1, E2, . . .
is called disjoint decomposition of Ω if P(Ei) > 0 for all i, Ei∩Ej = ∅ for any i 6= j and Ω =

⋃
iEi.

By
⋃
i we mean union (sum, product, . . . ) over all indices i, both finite or countable.

Theorem 5 (Total probability). Let A1, A2, . . . be disjoint decomposition of Ω. Then for any
random event B

P(B) =
∑
i

P(B|Ai)P(Ai).

Theorem 6 (Bayes theorem). Let A1, A2, . . . be disjoint decomposition of Ω. Then for any
random event B,P(B) > 0 and for any i

P(Ai|B) =
P(B|Ai)P(Ai)∑
i P(B|Ai)P(Ai)

.

Theorems 2—4 are essential for classical probability problems.

Problem 9 (Pólya urn scheme). Consider an urn with balls of different colours. Each time we draw
exactly one ball from the urn randomly, i.e. each ball has the same chance to be drawn (classical
probability space). When we see the colour of the ball we return the ball to the urn together with
∆ additional balls of the same colour. Special cases are

• ∆ = −1 corresponds to the case that the ball is not returned to the urn. We call this
sampling without replacement.

• ∆ = 0 corresponds to the situation that only the drawn ball is replaced back to the urn.
This is called sampling with replacement.

Consider classical urn scheme starting with n black balls and m white balls in the urn. Calculate
the probability, that white ball is drawn in the second round if

(1) ∆ = 0
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(2) ∆ = −1
(3) ∆ = 2

Calculate this probability also for further rounds of sampling.

Theorem 7 (Bonferroni inequality). Let A1, . . . , An be random events. Then

P

(
n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

(
1− P(Ai)

)
.

2. Diskrete random variables and their distributions

Definition 9 (Random variable). Let Ω,F ,P) be a probability space. Function

X : Ω→ R such that X−1(−∞, a] = {ω ∈ Ω;X(ω ≤ a} ∈ F for all a ∈ R
is called random variable.

If X takes at most countably many values we say that X is discrete random variable. In such
case it is usually poissible to consider only set Z (whole numbers) as values of X.

Definition 10 (Distribution of r.v.). Probability measure PX defined on R by

PX
(
(−∞, a]

)
= P

(
{ω;X(ω) ≤ a}

)
is called distribution of random variable X.

Notation remark: For simpler notation we adopt the convention

[X ∈ A] = {ω ∈ Ω;X(ω) ∈ A} for A ∈ B.
Here B is the smallest σ-algebra (see Definition 1) of subsets of R containing all open and closed
sets. Hence, (−∞, a] ∈ B for any a ∈ R. Definition of the distribution may be written using this
notation as

PX(A) = P[X ∈ A].

Clearly, [X ∈ A] is a random event for any A ∈ B.

Definition 11. Let X be a random variable defined on probability space (Ω,F ,P). The σ-algebra

FX = {X−1(A), A ∈ B}
is the σ-algebra of random events generated by the r.v. X

Problem 10. Show that FX is indeed a σ-algrebra, and FX ⊂ F .

If the random variable X is clear from the context we may write simply P for its distribution.
We try to distinguish the probability measure P on probability space Ω and the distribution P as
measure on R.

Example 1. Consider fair six-sided dice. Throw the dice two times independently. Then we may
choose the probability space as Ω = {(i, j); i = 1, . . . , 6, j = 1, . . . , 6}, F = 2Ω and P(i, j) = 1/36
for all (i, j) ∈ Ω. Random variable X(i, j) = i + j describes the sum of the two results. The
distribution PX of X is a probability measure on set {2, 3, . . . , 12}.

Problem 11. Find the distribution PX from the last Example.
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Definition 12 (Distributrion function and density I). Let PX be a distribution of discrete random
variable X (integer valued). Function

FX(x) = PX
(
(−∞, x]

)
= P[X ≤ x]

is called distribution function of r.v. X. Function

p(x) = PX({x}) = P[X = x]

is called density with respect to the arithmetic measure of discrete r.v. X.

Note: Clearly, p(x) = 0 for any x 6∈ N if X is integer-valued (here N = {0, 1, 2, . . . }. For
i = 0, 1, . . . we often denote pi = p(i) and the set of probabilitites {pi, i = 0, 1, . . . uniquelly
determines the distribution Px and distribution function

FX(x) =
∑
i≤x

pi.

Both distribution function and density uniquelly determine the distribution of random veriable.

Bernoulli (alternative) distribution Let p ∈ (0, 1). Distribution given by

p0 = 1− p, p1 = p

is called alternative, or Bernoulli distribution. Corresponding random variable is two-valued.
X = 1 denotes success and X = 0 denotes failure in the experiment. Abbreviation is usually
Alt(p). Such experiment (with success or failure outcome with success probability p) is called
Bernoulli trial.

Binomial distribution Let n > 0, n ∈ N, and p ∈ (0, 1). Distribution on the set {0, 1, . . . , n}
given by

pi =

(
n

i

)
pi(1− p)n−i

is called binomial with parameters n and p, abbreviated as Bi(n, p). Binomail distribution is the
distribution of number of successes in n independent Bernoulli trials Alt(p).

Geometric distribution Let p ∈ (0, 1). Distribution on the set {0, 1, . . . } given by

pi = p(1− p)i

is called geometric distribution with parameter p. Geometric distribution is the distribution of
number of failures preceding the first success in a serie of independent Bernoulli trials. Abbrevia-
tion for this distribution is Geom(p).

Negative binomial distribution Let n > 0, n ∈ N, and p ∈ (0, 1). Distribution on the set
{0, 1, . . . } given by

pi =

(
n+ i− 1

i

)
pn(1− p)i

is called negative binomial with parameters n and p abbreviated as NBi(n, p). It is the distribution
of number of failures preceding the n-th success in a serie of independent Bernoulli trials.

Hypergeometric distribution Let n,M,N be integers such that 0 < n < N , 0 < M < N .
Distribution

pm =

(
M
m

)(
N−M
n−m

)(
N
n

) ,m = max 0, n+M −N, . . . ,minn,M

is called hypergeometric distribution. Consider two sets of object (white and black balls), M is
the number of white balls, N is the total number of balls. Exactly n balls are drawn without
replacement from the set of balls. Then pm is the probability that exactly m white balls are
drawn in the sample.
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Poisson distribution Let λ > 0. Distribution on the set {0, 1, . . . } given by

pi = e−λ
λk

k!

is called Poisson distribution. Poisson distribution is a limit case of Bi(n, πn) distribution if
nπn → λ ∈ (0,∞) as n→∞.

For arbitrary integer-valued (or diskrete) random variable X it is possible to define its canonical
probability space

Ω = N (or S), F = 2Ω, P = PX ,

where S is the set of all possible values of r.v. X. S is often called sample space.

Definition 13 (Independence). Random variables X1, X2, . . . are mutually independent if for
any n ∈ N and any finite subset of indices Λ = {i1, . . . , in} and any x1, . . . , xn ∈ R it holds

P

 n⋂
j=1

[Xij ≤ xj ]

 =

n∏
j=1

P[Xij ≤ xj ].

In other words, Xi, i = 1, 2, . . . are mutually independent if and only if any random events A1

generated by X1, A2 generated by X2 etc. are mutually independent.
In particular, integer-valued random variables are independent iff for any n ∈ N and any finite

subset of indices Λ = {i1, . . . , in} and any x1, . . . , xn ∈ R it holds

P

 n⋂
j=1

[Xij = xj ]

 =

n∏
j=1

P[Xij = xj ].

Theorem 8 (Properties of distribution function). Let X be a random variable and FX its distri-
bution function. Then

(1) FX is right continuous and non-decreasing.
(2) limx→∞ FX(x) = 1.
(3) limx→−∞ FX(x) = 0.

Theorem 9 (Characterisation of distribution function). Let F : R → R be a function satisfying
(1)–(3) of Theorem 8. Then there exists probability space (Ω,F ,P) and random variable X defined
on it such that F is the distribution function of X.

3. Expectation and higher moments

Distribution function fully describes the distribution of random variable and its random be-
haviour. However, simpler numerical characteristics are often needed.

Definition 14 (Mean value of random variable (general)). Let X be random variable defined on
probability space (Ω,F ,P). The mean value (or expectation) of X is defined as

EX =

∫
Ω

X(ω)dP(ω)

if the integral on the right hand side exists. If the mean value of X exists and it is finite, then we
say that the random variable X has finite expectation (or finite mean value).

Notation: In what follows we fix (at most countable) discrete set S to be the sample space, i.e.
the set of all possible values of random variable X. If needed, we will use SX to specify the random
variable.
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Theorem 10 (Mean value of discrete random variable). Let X be an S-valued random variable
with finite mean value and distribution PX . Then

EX =
∑
s∈S

sP[X = s] =
∑
s∈S

sPX(s) =
∑
s∈S

sps.

The mean value (expectation) characterises the location of random variable. It is also called
first moment of X. Theorem 10 gives simple computation rule for expectation of random variable
with given distribution (or simply expectation of given distribution).

Problem 12. Calculate the expectation of random variables with distributions Bernoulli, binomial,
geometric, negative binomial, hypergeometric and Poisson.

Remark: Let X be non-negative random variable, i.e. P[X ≥ 0] = 1. Then its expectation
always exists and may be either finite or +∞.

If E|X| (defined naturally as
∫

Ω
|X(ω)|dP(ω)) is finite, then EX exists and is finite.

Problem 13. It is not difficult to find distribution P on Z such that expectatoin of P does not
exists. (Hint: look for distribution such that both

∑∞
s=1 sps =∞ and

∑−∞
s=−1 sps = −∞ hold.)

Definition 15 (Other moments). Let X be random variable and g : R → R function such that
g(X) is again random variable. Then we define

Eg(X) =

∫
Ω

g
(
X(ω)

)
dP(ω)

if the integral exists (finite or infinite). If X is a discrete S-valued random variable, then

Eg(X) =
∑
s∈S

g(s)PX(s)

if the sum exists.

Definition 16 (Higher moments and moment generating function). Let X be a random variable.
Then

(1) EXr is called r-th moment of X (if it exists).
(2) E(X − EX)r is called r-th central moment of X (if it exists).
(3) var(X) := E(X − EX)2 is called variance (or dispersion) of X (if it exists).

(4) µ3(X) = E(X − EX)3/
(
var(X)

)3/2
is called skewness of X (if it exists).

(5) ψX(t) = EetX is called moment generating function of X (needs not exist for all t).

Theorem 11 (Moments from moment generating function). Let X be a random variable and ψX
its moment generating function. If ψX does exist on an open neighbourhood of 0 then for any
r ∈ N

EXr =
drψX(t)

dtr
(0),

i.e. the r-th moment of X is the r-th derivative of ψX at 0.

Problem 14. Calculate the moments of known discrete distributions using the moment generating
function.
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Theorem 12 (MGF and characterisation of distribution). Let X and Y be random variables and
ψX and ψY their moment generating functions. Assume that both ψX and ψY exist and are finite
on some open neighbourhood of zero, and that for some δ > 0

ψX(t) = ψY (t) for all |t| < δ.

Then FX = FY , i.e. the two random variables are identically distributed.

Theorem 13 (Jenssen’s inequality). Let X be a random variable and f be a convex function. If
both EX and Ef(X) exist then

f(EX) ≤ Ef(X)

Theorem 14 (Expectation of non-negative r.v.). Let X be an N0-valued random variable. Then

EX =
∞∑
n=0

(
1− FX(n)

)
.

4. Discrete random vectors and their distributions

Definition 17 (Random vector). Let Ω,F ,P) be a probability space. Function

X : Ω→ Rd such that X−1

(
d∏
i=1

(−∞, ai]

)
= {ω ∈ Ω;Xi(ω ≤ ai} ∈ F for all a = (a1 . . . , ad) ∈ R

is called d-dimensional random vector.

If X takes at most countably many values we say that X is discrete random vector (d.r.v.).
In such case it is usually poissible to consider only set Nd0 (non-negative integers) as values of X.
From now on we shall always consider d.r.v. X to be Nd0-valued unless we specify
another sample space!

Definition 18 (Distribution of random vector). Probability measure PX defined on Rd by

PX

(
d∏
i=1

(−∞, ai]

)
= P

(
d⋂
i=1

{ω;Xi(ω) ≤ ai}

)
is called (joint) distribution of random vector X.

Special case is again a discrete random vector.

Theorem 15 (Probabilities of d.r.v.). Let X be a d-dimensional d.r.v. with distribution PX .
Then there exist non-negative function p : Nd0 → [0, 1] such that

PX

(
d∏
i=1

(−∞, ai]

)
=
∑
z≤a

p(z),

where z ≤ a if zi ≤ ai, i = 1, . . . , d. It holds P[X = z] = p(z) for all z ∈ Nd0.

Therefore p(z) fully characterise the distribution PX and we also may call the set {p(z), z ∈ Nd0}
the distribution ofX. Sometimes we call it also density od d.r.v. with respect to arithmetic measure
(see Definition 12).

Also for random vectors we may define its distribution function which fully characterises the
distribution.
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Definition 19 (Distribution function of random vector). Let PX be a distribution of random
vector X. Function FX : Rd → [0, 1] defined as

FX(x) = PX

(
d∏
i=1

(−∞, xi]

)
= P[X ≤ x]

is called (joint) distribution function of d.r.v. X.

Definition 20 (Marginal distribution). Let X be random vector with distribution PX and dis-
tribution function FX . Then

PXi
(−∞, a] = lim

aj→∞,j 6=i
PX

 d∏
j=1

(−∞, aj ]


is the marginal distribution of Xi, and

FXi(x) = lim
xj→∞,j 6=i

FX(x)

is called marginal distribution function of Xi.

Clearly, X = (X1, . . . , Xd), and Xi is a discrete random variable and Pxi
is its distribution,

and FXi
its distribution function. In a similar way it is possible to define random subvector of X

and its distribution and distribution function.

Theorem 16 (Marginal distribution determined). Let X be d.r.v. with distribution PX then all
its marginal distributions PXi

, i = 1, . . . , d are uniquelly determined by PX (and the same holds
for the distribution function and “density”).

Reverse implication does not hold at all!

Problem 15 (Infinitely many possibilities). Consider two discrete marginal distribution p1(n) and
p2(n), n ∈ N0. Find at least two d.r.v. (X1, X2) and (Y1, Y2) such that the marginal distributions
of both d.r.v are p1 and p2, but the joint distributions differ!

Notation: a < b ∈ Rd iff ai < bi for all i = 1, . . . , d. For 1 ≤ k ≤ d denote ∆k(a, b) the set of all
c ∈ Rd such that there is exist 1 ≤ i1 < · · · < ik ≤ d and

ci =

{
bi if i = ij for some j = 1, . . . , k

ai otherwise.

Clearly ∆0(a, b) = a. In other words ∆k(a, b) denotes those vertices of a d-dimensional cube
[a, b] for which exactly k coordinates belong to b.

Theorem 17 (Properties of distribution function). Let X = (X1, . . . , Xd) be a random vector
and FX its distribution function. Then

(1) For any i ∈ {1, . . . , d} it holds limxi→−∞ FX(x) = 0.
(2) lim∀i xi→∞ FX(x) = 1.
(3) FX is nondecreasing and right continuous in all variables.
(4) For any a < b it holds

d∑
k=0

(−1)k
∑

c∈∆k(a,b)

FX(c) ≥ 0.

Theorem 18 (Characterisation of distribution function). Let F : Rd → [0, 1] satisfy (1)–(4) of
Theorem 17. Then there exist probability space (Ω,F ,P) and random vector X such that F is the
distribution function of X.
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Condition (4) cannot be removed since condition (3) itself is not sufficient to assure that any
nondegenerated d-dimensional cube [a, b] has non-negative probability.

Theorem 19 (Characterisation of independence). Let X = (X1, . . . , Xn) be a random vector.
The random variables X1, . . . , Xn are independent iff for any x = (x1, . . . , xn)

FX(x) =

n∏
i=1

FXi
(xi).

If X is a discrete random vector then this is equivalent to

pX(z) =

n∏
i=1

pXi(zi) ∀ z = (z1, . . . , zn) ∈ Nn0 .

Note: The joint distribution is crucial! It fully describes the relation between the elements of the
random vector, their dependence (or independence), the form of the dependence. This important
information is not available form the marginal distributions.

From this point of view a random vector X is more than just mere set of random variables
X1, X2, . . . , Xd. It is also the model describing the mutual relations between the random variables
X1, . . . , Xd (and also subvectors of X).

5. (Discrete) Random vectors: Moments and transformations

Definition 21 (Expectation of random vector). Let X be a d.r.v. and g : Rd → R. Then

(1) EX = (EX1,EX2, . . . , §Xd) if all expectations on the right hand side exist.
(2) Eg(X) =

∑
z∈Zd g(z)pX(z) if the sum exists.

If X is a discrete random vector then the expectation may be calculated as

Eg(X) =
∑
z∈Nd

g(z)P[X = z] =
∑
z∈Nd

g(z)p(z)

Theorem 20 (Linearity of expectation). Let X be a d.r.v. with finite EX, a ∈ R, b ∈ Rd. Then

Ea+

d∑
i=1

biXi = a+

d∑
i=1

biEXi.

Theorem 21 (Independence and expectation). Let Xi, i = 1, . . . , d be independent random vari-
ables and let EXi exists finite for all i. Then

E

d∏
i=1

Xi =

d∏
i=1

EXi.

Definition 22. Let X and Y be random variables (defined on the same probability space) such
that both EX2 <∞ and EY 2 <∞ . Then define their covariance as

cov(X,Y ) = E(X − EX)(Y − EY ).

Theorem 22 (Variance of sum). Let Xi, i = 1, . . . , d be random variables with finite second
moment. Then

var

(
d∑
i=1

Xi

)
=

d∑
i=1

d∑
j=1

cov(Xi, Xj) =

d∑
i=1

var(Xi) +
∑
i,j
i 6=j

cov(Xi, Xj)

=

d∑
i=1

var(Xi) + 2
∑

1≤i<j≤d

cov(Xi, Xj).
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Definition 23 (Variance and correlation matrix). Let X be a d-dimensional random vector such
that EX2

i <∞ for all i = 1, . . . , d. Denote

cov(Xi, Xj) = E
(
(Xi − EXi)(Xj − EXj)

)
the covariance of random variables Xi and Xj . Denote

%i,j = corr(Xi, Xj) =
cov(Xi, Xj)√
varXi varXj

the correlation of random variables Xi and Xj . The matrix

VarX = {cov(Xi, Xj)}di,j=1

is called the variance matrix of random vector X and the matrix

CorrX = {corr(Xi, Xj)}di,j=1

is called the correlation matrix of random vector X.

Notice that var(X) = cov(X,X).

Theorem 23 (Properties of covariance and correlation). Let X be a random vector VarX its
variance matrix and CorrX its correlation matrix. Let X and Y be random variables with finite
second moment. Then

(1) −1 ≤ corr(X,Y ) ≤ 1, corr(X,X) = 1.
(2) | corr(X,Y )| = 1 iff there exist a 6= 0 and b such that P[X = aY + b] = 1.
(3) cov(aX + b, cY + d) = ac cov(X,Y ).
(4) corr(aX + b, cY + d) = sign(ab) corr(X,Y ).
(5) If X and Y are independent then cov(X,Y ) = corr(X,Y ) = 0.
(6) VarX and CorrX are positively semidefinite.
(7) Var(AX + b) = A Var(X)AT for any l × d matrix A and l-dimensional vector b.

Definition 24 (Uncorrelated random variables). Random variables X and Y with finite second
moments are called uncorrelated if corr(X,Y ) = 0.

Problem 16. Find uncorrelated random variables which are not independent.

Theorem 24 (Transformation of random vector). Let X be a d-dimensional random vector and
φ : Rd → Rl (measurable1) function. Then Y = φ(X) is a l-dimensional random vector and its
distribution is given by

PY (B) = P[Y ∈ B] = P[X ∈ φ−1(B)] = PX

(
φ−1(B)

)
for any B ∈ B(Rl).
If X is a discrete random vector, then Y is also discrete random vector (not necessary Nl-valued)
and

P[Y = y] = pY (y) =
∑

x;φ(x)=y

pX(x).

1By measurable we mean here that the pre-image of Borel set is again Borel, i.e. {x;φ(x) ∈ B} ∈ B(Rd) for
any B ∈ B(Rl).
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Theorem 25 (Distribution of sum and product I). Let X = (X1, X2) be discrete (N2-valued)
random vector.Let Y = X1 +X2 and Z = X1X2. Then

P[Y = y] =
∑
n∈N

P[X1 = n,X2 = y − n],

P[Z = z] =
∑
n∈N

P[X1 = n,X2 = z/n].

The first distribution (or formula) is called convolution of distribution of X1 and X2.

Theorem 26 (Moment generating function of sum). Let X and Y be independent random vari-
ables and ψX and ψY their moment generating functions. Then

ψX+Y (t) = ψX(t)ψY (t).

Problem 17. It is possible to extend the formula for the distribution of sum and product also to
more general discrete random vectors. Consider random vector X = (X1, X2). Find formula for

(1) distribution of X1 +X2 if X is Z2-valued random vector.
(2) distribution of X1X2 if X is Z2-valued random vector (work carefully with zero and the

fact that z/n = (−z)/(−n)).
(3) distribution of X1 −X2 and X1/X2 if X is Z2-valued random vector.

Problem 18. Throw two dices and denote (X1, X2) the result. Find the distribution of transformed
random vector (X1 + X2, X2) and show that the first marginal distribution of the transformed
random vector is exactly the same as the one you get from the convolution formula. Try also the
transformation to random vector (X1 +X2, X1 −X2) and its marginal distribution.
Repeat the exercise for the product X1X2.

6. Absolutely continuous random vectors

Definitions 17, 18, 19 and 20 hold also for continuous random vectors.

Definition 25 (Absolutely continuous random vector). Random vector X : Ω → Rd is called
absolutely continuous (AC) if there exists a non-negative function fX : Rd → R such that

FX(a) =

a1∫
−∞

· · ·
ad∫
−∞

fX(x1, . . . , xd)dxd . . . dx1 for any a ∈ Rd.

Function f is called (joint) probability density function, or just joint density, of random vector X.

Theorem 27 (Density of absolutely continuous random vector). Let X = (X1, . . . , Xd) be an AC
random vector with density fX . Then for its marginal distribution holds

FXi
(a) =

∫ a

−∞
fXi

(x)dx,

where

fXi
(x) =

∞∫
−∞

· · ·
∞∫
−∞

fX(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd

is the marginal density of Xi.
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Theorem 28 (Characterisation of independence II). Let X = (X1, . . . , Xd) be an AC random
vector with density fX . Then the random variables X1, . . . , Xd are independent iff for any a =
(a1, . . . , ad)

fX(a) =

d∏
i=1

fXi
(ai)

Theorem 29 (Moments of AC random vector). Let X = (X1, . . . , Xd) be an AC random vector
with density fX . Then for any suitable function g : Rd → R such that Eg(X) exists it holds

Eg(X) =

∞∫
−∞

· · ·
∞∫
−∞

g(x1, . . . , xd)fX(x1, . . . , xd)dx1 . . . dxd.

The distribution of a transformation of AC random vector may be always determined by Theo-
rem 24. There are also specific formulas for particular cases.

Theorem 30 (Convolution formula for density). Let X = (Y,Z) be absolutely continuous random
vector with joint density f(y, z). Then the sum V = Y + Z is an absolutely continuous random
variable with density

fV (v) =

∫ ∞
−∞

fX(y, v − y)dy.

Theorem 31 (Density of ratio and product). Let X = (Y,Z) be absolutely continuous random
vector with joint density f(y, z) and such that P[Z > 0] = 1. Then the ratio V = Y/Z is an
absolutely continuous random variable with density

fV (v) =

∫ ∞
0

fX(vz, z)zdz,

and the product U = Y · Z is an absolutely continuous random variable with density

fU (u) =

∫ ∞
0

fX

(v
z
, z
) 1

z
dz.

Uniform distribution Let −∞ < a < b < ∞. Random variable X has uniform distribution on
the interval (a, b) if the density fX is constant on (a, b) and zero elsewhere. Clearly,

fX(x) =

{
1
b−a for x ∈ (a, b),

0 elsewhere.

Let B ∈ Rd be a connected set with nonzero volume λ(B). Random vector X has uniform
distribution on B if the density fX is constant on B and zero elsewhere. Clearly

fX(x) =

{
1

λ(B) for x ∈ B,
0 elsewhere.

Typical examples are uniform distribution on rectangles, triangles, circles, etc.

Normal (Gaussian) distribution Let µ ∈ R, and σ2 > 0. Random variable X has normal
distribution (also called Gaussian distribution) if its density has form

fX(x) =
1(

2πσ2)
)1/2 exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

For X it holds EX = µ and varX = σ2.
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Let µ ∈ Rd and Σ be d×d symmetric positive definite matrix. Random vector X has d-variate
normal ditribution if its density is

fX(x) =
1(

2π det(Σ)
)d/2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
, x ∈ Rd.

For X it holds EX = µ and VarX = Σ.
Random variable (vector) with normal distribution is also called Gaussian r.v. Note that

marginal distribution of Gaussian distribution is again Gaussian.

Theorem 32 (Independence in Gaussian distribution). Let (X,Y ) is normally distributed random
vector. Then X and Y are independent iff cov(X,Y ) = 0. Let X = (X1, . . . , Xd be a d-dimensional
Gaussian r.v. Then X1, . . . , Xd are independent iff the variance matrix Σ is diagonal.

Exponential distribution Let µ > 0. Random variable X has exponential distribution with
parameter µ if it has density

fX(x) =

{
1
µ exp

(
− x
µ

)
for x > 0,

0 elsewhere.

7. Conditional distribution and conditional expectation

We restrict the full definition only to discrete random vectors.

Definition 26 (Conditional distribution of d.r.v). Let X = (Y ,Z) be a d-dimensional discrete

random vector, where Y = (X1, . . . , Xp) and Z = (Xp+1, . . . , Xd). For any z ∈ Nd−p0 such that
P[Z = z] > 0 define the conditional distribution of Y given Z = z (or simply “given z”) by

pY |Z(y|z) = P[Y = y|Z = z] =
p(Y ,Z)(y, z)

pZ(z)
=

P[(Y ,Z) = (y, z)]

P[Z = z]
, y ∈ Nd0.

The conditional distribution is probability distribution. Hence, we may define its moments.

Definition 27 (Conditional expectation of d.r.v.). Let X = (Y ,Z) be a d-dimensional discrete

random vector, where Y = (X1, . . . , Xp) and Z = (Xp+1, . . . , Xp). For any z ∈ Nd−p0 such that
P[Z = z] > 0 and random variable S = g(Y Y ,Z) define the conditional expectation of S given
Z = z (or simply “given z”) by

E(S|Z = z) =
∑

y∈Nd−p
0

g(y, z)pY |Z(y|z)

if the sum on the right hand side is defined. In particular, if p = d − 1, i.e. Y = X1 is one-
dimensional random variable we define conditional expectation and conditional variance as

E(Y |Z = z) =
∑
y∈N0

ypY |Z(y|z),

var(Y |Z = z) = E
(
(Y − E(Y |Z = z)2|Z = z

)
.

Theorem 33 (“Total expectation”). Let X = (Y,Z) be a discrete random vector such that Y is
a random variable and E|Y | is finite. Then

EY =
∑

z∈Nd−1
0

P[Z=z]>0

E(Y |z)P[Z = z]

Compare this theorem with the “law of total probability”. Conditional expectation may be
defined also as a random variable.
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Definition 28 (Conditional expectation as random variable). Let (X,Y ) be a bivariate discrete
random vector such that E|X| is finite. Then random variable E(X|Y ) : Ω→ R defined as

E(X|Y )(ω) = E
(
X|Y = Y (ω)

)
is well defined random variable. (The definition may be simply generalised to more-dimensional
random vectors).

Theorem 34 (Expectation of conditional expectation). Let (Y,Z) be a discrete random vector
such that E|Y | is finite. Then

E
(
E(Y |Z)

)
= EY.

Problem 19. Throw two dices, denote X and Y the results, respectively. Find

(1) Joint and marginal distributions of random vector (X,X + Y,X − Y ).
(2) Var(X,X + Y,X − Y ), Corr(X,X + Y,X − Y ).
(3) Are these variables independent? Is there any pair of independent r.v.’s?
(4) E(X|X + Y = z), E(X|X + Y = z,X − Y = w]).
(5) E(X + Y |X = x), E(X + Y |X − Y = w).
(6) Values and distribution of random variable E(X|X + Y ).
(7) E(X + Y ) using Theorem 33.

For absolutely continuous random vectors we may correctly define conditional density. The
main problem is that we need to condition by random event [Z = z] which probability is zero.

Definition 29 (Conditional density of AC r.v.). Let X = (Y ,Z) be an absolutely continuous
random vector with density function fX . Denote fZ the (marginal) density of the absolutely
continuous random vector Z. The conditional density of Y given Z = z is defined as

fY |Z(y|z) =

{
f(Y ,Z)(y,z)

fZ(z) if fZ(z) > 0,

0 otherwise.

Definition 30 (Conditional expectation of AC r.v.). LetX = (Y ,Z) be an absolutely continuous
random vector and let S = g(Y ,Z) be random variable. The conditional expectation of S given
Z = z is defined as

E(S|Z = z) =

∞∫
−∞

· · ·
∞∫
−∞

g(y, z)fY |Z(y|z)dy1 . . . dyp

if the integral exists.

8. Inequalities and bounds

Theorem 35 (Markov inequality I). Let X be a non-negative random variable. Then for any
a > 0

P[X ≥ a] ≤ EX

a
.

Theorem 36 (Markov inequality II). Let X be a non-negative random variable. Then for any
a > 0 and for k > 0

P[X ≥ a] ≤ EXk

ak
.
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Theorem 37 (Chebyshev inequality). Let X be random variable with finite expectation EX. Then
for any ε > 0

P[|X − EX| ≥ ε] ≤ varX

ε2
.

Theorem 38 (Kolmogorov inequality). Let X1, X2, . . . , Xn be independent random variables with
finite expectations EXi and finite variances varXi. Then for any ε > 0

P

[
max

1≤k≤n
|
k∑
i=1

Xi − EXi| ≥ ε

]
≤
∑n
i=1 varXi

ε2
.

Problem 20. Supose we toss a fair dice 100 times. Denote X1, . . . , X100 the results, denote Sk =∑k
i=1Xi and use Chebyshev and Kolmogorov inequalities to find upper bounds for

P[|S100 − 350| ≥ l], P

[
max

1≤k≤n
|Sk − 3.5k| ≥ m

]
for different values of l and m.

Problem 21. Given positive integer k find a non-negative random variable X such that

P[X ≥ k] =
EX

k
.

(Looking for non-negative random variable with given properties is equivalent to problem of finding
probability measure on R+ satisfying these conditions.)

Theorem 39 (Chernoff bounds). Let X be a random variable and ψX its moment generating
function. Then

P[X ≥ a] ≤ min
t>0

ψX(t)

exp(ta)

P[X ≤ a] ≤ min
t<0

ψX(t)

exp(ta)

Definition 31 (Poisson trials). Let X1, X2, . . . be independent random variables such that

P[Xi = 1] = pi = 1− P[Xi = 0], pi ∈ (0, 1).

Such random variables are called Poisson trials.

Note: Bernoulli trials are special case of Poisson trials for which pi = p for all i = 1, 2, . . . .

Theorem 40 (Upper Chernoff bounds for Poisson trials). Let X1, . . . , Xn be independent Poisson
trial with P[Xi = 1] = pi. Let Sn =

∑n
i=1Xi and µs =

∑n
i=1 pi. Then

(1) For δ > 0

P [Sn ≥ (1 + δ)µS ] ≤
(

eδ

(1 + δ)1+δ
)

)µS

.

(2) For 0 < δ ≤ 1

P [Sn ≥ (1 + δ)µS ] ≤ e−µSδ
2/3.

(3) For δ > 6µS
P[Sn ≥ δ] ≤ 2−δ.
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Theorem 41 (Lower Chernoff bounds for Poisson trials). Let X1, . . . , Xn be independent Poisson
trial with P[Xi = 1] = pi. Let Sn =

∑n
i=1Xi and µs =

∑n
i=1 pi. Then

(1) For 0 < δ < 1

P [Sn ≤ (1− δ)µS ] ≤
(

e−δ

(1− δ)1−δ )

)µS

.

(2) For 0 < δ ≤ 1

P [Sn ≤ (1− δ)µS ] ≤ e−µSδ
2/2.

Problem 22. Consider n independent Bernoulli trials X1, . . . , Xn with (unknown) probability of
success p ∈ (0, 1). Let

p̂ =
1

n

n∑
i=1

Xi

be your guess about p. For given α ∈ (0, 1) use Chebyshev and Markov inequalities and Chernoff
bounds to find smallest possible δ such that

P[p ∈ (p̂− δ, p̂+ δ)] ≥ 1− α.

9. Random samples and limit theorems

Definition 32 (Set limsup and liminf). Let An, n = 1, 2, . . . be sets (random events). Define

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
i=n

Ai, lim inf
n→∞

An =

∞⋃
n=1

∞⋂
i=n

Ai.

Clearly, if a ∈ lim supn→∞An then there exists infinitely many sets Ai such that a ∈ Ai. If
b ∈ lim infn→∞An then there is at most finite number of sets Ai such that b 6∈ Ai.

Theorem 42 (Borel-Cantelli 0-1 law). (1) Let An, n = 1, 2, . . . be random events. Then
∞∑
i=1

P(Ai) <∞⇒ P

(
lim sup
n→∞

An

)
= 0.

(2) Let An, n = 1, 2, . . . be independent random events. Then
∞∑
i=1

P(Ai) =∞⇒ P

(
lim sup
n→∞

An

)
= 1.

Note that lim inf An =
(
lim supACn

)C
. Hence, Theorem 42 may be used both for lim supAn

and for lim inf An

Definition 33 (Random sample). A sequence X1, X2, . . . , Xn of independent and identically
distributed (iid) random variables (vectors) is called random sample of (sample) size n (from
distribution PX .

Definition 34 (Sample moments). Let X1, . . . , Xn be a random sample. Then

(1) Xn = 1
n

∑n
i=1Xi is called sample mean.

(2) S2
n = 1

n−1

∑n
i=1(Xi −Xn)2 is called sample variance.

(3) F̂n(x) = 1
n

∑n
i=1 χ(Xi ≤ x), where χ(·) is the indicator function, is called empirical

distribution function.
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Theorem 43 ((weak) Law of large numbers). Let X1, X2, . . . be independent and identically
distributed random variables with finite mean EX1 = µ and finite variance varX1 = σ2. Then

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
→ 0 as n→∞,

This property is called (weak) consistency of sample mean. The assumption σ2 < ∞ may be
relaxed but the proof is then much more difficult. This is denoted as

Xn − µ
P−→ 0, or Xn

P−→ µ

Theorem 44 (Consistency of empirical d.f.). Let X1, X2, . . . be independent and identically dis-
tributed random variables with c.d.f. FX . Then for any x

P
[∣∣∣F̂n(x)− FX(x)

∣∣∣ > ε
]
→ 0 as n→∞.

The previous Theorem holds even uniformly, i.e. P
[
supx

∣∣∣F̂n(x)− FX(x)
∣∣∣ > ε

]
→ 0

Theorem 45 (Central limit theorem). Let X1, X2, . . . be independent and identically distributed
random variables with finite mean EX1 = µ and finite positive variance 0 < varX1 = σ2. Then

P

[√
n
Xn − µ
σ

≤ x
]
→ Φ(x),

where Φ· is the distribution function of standard nornal distribution (with zero mean and unit
variance). Equivalently we write

√
n
Xn − µ
σ

d−→ N(0, 1),

or ∑n
i=1Xi − nµ√

nσ2

d−→ N(0, 1),

or
√
n
(
Xn − µ

) d−→ N(0, σ2).

This is really very important theorem!!! It is also written that

Theorem 46 (Delta theorem). Let Y1, Y2, . . . be a sequence of random variables such that

√
n (Yn − µ)

d−→ N(0, σ2)

and let g be a differentiable function. Then

√
n (g(Yn)− g(µ))

d−→ N
(
0, (g′(µ))2σ2

)
There exist multivariate and more general versions of both CLT and Delta theorem.

Theorem 47 (Cramér–Slutskij theorem). Let Xn
d−→ N(µ, σ2), Un

P−→ a, and Zn
P−→ s > 0. Then

ZnXn + Un
d−→ N(sµ+ a, s2σ2)

The Cramér–Slutskij and Delta theorems are essential tools for asymptotic estimation tech-

niques based on Central limit theorem. From C–S theorem follows that the convergence
d−→ is

weaker than the convergence
P−→.
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10. Point and interval estimates, hypotheses

Definition 35. Parametric family of distributions Let P = {Pθ, θ ∈ Θ} be a family of distributions
such that

(1) All Pθ are distributions on the same sample space (here R or Rd).
(2) Pθ are explicitely defined with unknown parameter θ.
(3) Θ is the set of all possible parameters.

Example 2. Examples of parametric families Parameric families are usually given by the density
function or by the distribution function.

• Bernoulli distribution: The parameter is p ∈ (0, 1), the unknown probability of success.
• Univariate normal distribution: The parameter is two-dimensional: (µ, σ2), where µ is the

expectation and σ2 is the variance.

Note that there may be more equivalent parametrisations of given family of distribution.

Definition 36. Point estimator Let X1, . . . , Xn be independent and identically distributed ran-
dom variables (vectors) following distribution Pθ from some parametric family P. This is called
random sample from the distribution Pθ. The point estimation problem is the problem to find
statistics T : Rn → Θ, T (X1, . . . , Xn), where T does not depend on the unknown parameter θ
such that T is “good” approximation of θ.

(1) The point estimator T is called unbiased if for all θ ∈ Θ holds ET = θ provided θ is the
true value of the parameter.

(2) The point estimator T is called consistent if for all θ ∈ Θ holds T
P−→ θ provided θ is the

true value of the parameter.

Consistency and unbiasedness are usually considered as the desirable propetries for any esti-
mator. Having two consistent or unbiased estimators the one with smaller variance is preffered.

There are several methods how to find estimator.

Definition 37. Method of moments Consider X1, . . . , Xn random sample from distribution Pθ,
θ being unknown parameter. Suppose the moments of X1 are functions of θ (which is usually the

case), say EXj
1 = τj(θ). Define sample moments

µ̂k =
1

n

n∑
i=1

Xk
i .

The moment estimator is then defined as solution to equations

τj(θ) = µ̂j , j = 1, . . . , l,

where l is (usually) the dimension of θ.

Law of large numbers, central limit theorem, delta theorem, Cramér–Slutsky theorem are often
useful to determine the properties of point estimators.

Problem 23. Consider following parametric families, and random samples form these distributoins.
Use method of moments to find the point estimation of the parameter. Are these estimates
unbiased and consistent?

(1) P [X = 1] = p ∈ (0, 1), P [X = 0] = 1− p.
(2) P [X ≤ y] = 1− exp(λy) for y > 0, where λ > 0 is unknown parameter.
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(3) X has density

f(x) =

{
λ exp{−λ(x− a)} x > a,

0 x < a,

where a ∈ R and λ > 0 are unknown parameters.
(4) X has normal distribution with σ2 = 1 and µ ∈ R is parameter.
(5) X has normal distribution with unknown parameters µ ∈ R and σ2 > 0.

Definition 38. Interval estimator Let X1, . . . , Xn be independent and identically distributed
random variables (vectors) following distribution Pθ from some parametric family P, where Θ ⊂ R.
The interval estimation problem is the problem to find two statistics L,U : Rn → R, where L and
U do not depend on the unknown parameter θ, such that

P[L ≤ θ ≤ U ] ≥ 1− α
if θ is the true value of the parameter. We call the interval [L,U ] interval estimate (or confidence
interval) with significance level 1− α.

There is no general algorithm how to find interval estimate. However, this procedure may be
often successful:

(1) Find function H : Θ × Rn → R such that H(θ;X1, . . . , Xn) is random variable whose
distribution PH doesn’t depend on θ (it is sufficient in asymptotic sense).

(2) Find appropriate quantiles of PH , i.e. values ql and qu such that

P[ql ≤ H ≤ qu] ≥ 1− α.
Usually qα/2 and q1−α/2 defined as

qα/2 = inf{q : P[H ≤ q] > α/2}, q1−α/2 = inf{q : P[H ≤ q] > 1− α/2}
are used as ql and qu, respectivelly. (Show that indeed P[qα/2 ≤ H ≤ q1−α/2] ≥ 1− α.)

(3) Find L(X1, . . . , Xn; qα/2, q1−α/2) and U(X1, . . . , Xn; qα/2, q1−α/2) such that the inequali-
ties

qα/2 ≤ H(θ;X1, . . . , Xn ≤ q1−α/2

hold if and only if

L(X1, . . . , Xn; qα/2, q1−α/2) ≤ θ ≤ U(X1, . . . , Xn; qα/2, q1−α/2)

(4) Then, since
P[L ≤ θ ≤ U ] = P[qα/2 ≤ H ≤ q1−α/2] ≥ 1− α

we have found the confidence interval.

Interval estimates may be used for test of statistical hypothesis. Assume we have two claims
about the parameter:

(1) H0 : θ = t is the hypothesis.
(2) H1 : θ 6= t is the alternative.

Such H0 is called simple hypothesis, H1 is called both-sided alternative. The value t is given before
the experiment and it is hypothetical value of the unknown parameter θ.

Having interval estimator [L,U ] of θ with significance level 1− α we may do this decision:

(1) We reject the hypothesis H0 if t 6∈ [L,U ]. The hypothesis is rejected at statistical signifi-
cance level α.

(2) We do not reject the hypothesis H0 if t ∈ [L,U ]. The hypothesis is not rejected at statistical
significance level α.

Note that we do not accept the hypothesis. It is either rejected or not rejected. The decision
depends on the significance level.


