
NMAI059 Probability and statistics
Lecture notes.

15. listopadu 2018

Aim of the notes. The aim of the lecture notes is not to replace the attendance of the lectures.
The main goal is to summarize all definitions and theorems in correct form while the complemen-
tary text (remarks, examples, detailed discussion) is rather limited.

The definitions and theorems should be numbered as they are during the lecture. I hope this
makes the study easier. Some parts of the text are typed using small size font. These parts are
mostly complementary parts to the inevitably simplified text. Their role is to show mathematical
background and context to those who are interested. These parts are not necessary for the exam.

1. Axioms; Probability space; Random events

1.1. Axioms of probability. Our everyday experience is that the results of our actions or ex-
periments cannot be completely predicted. The result depends on many factors which cannot be
completely measured or even observed. Therefore the result is considered to be random. Proba-
bility of the result is some measure of

”
frequency“: intuitively we believe that repeating the same

experiment under the same conditions (if the result of one experiment doesn’t change the results of
the other experiments) the relative ratio of the results is getting close to some value if the number
of experiments is increasing to infinity. This limiting ratio is (intuitively) the probability.

Such intuitive frequentist definition of probability is, however, hardly useful for mathematical
theory. Rigorous mathematical model of probability was introduces by Andrei N. Kolmogorov in
1933.

Definition 1 (Probability space). Let Ω be a nonempty set and let F be a system of subsets of Ω.
We consider a probability measure P defined for all F ∈ F such that the mapping P : F → [0, 1]
satisfies

(1) P(Ω) = 1
(2) for any pairwice disjoint A1, A2, . . . ,∈ F it holds

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

(countable or σ-aditivity)

.

We have skipped the conditions for F so far. We may see in Definition 1:(2)that the union of pairwise disjoint

sets form F should be again in F . But for rigorous theory we need bit more. We need that F is a σ-algebra.

Definition (σ-algebra). Necht’ Ω je neprázdná množina. Tř́ıdu podmnožin Ω označená F nazveme σ-algebrou

pokud

(1) ∅ ∈ F , Ω ∈ F .
(2) A ∈ F ⇒ Ω \A ∈ F .
(3) A1, A2, · · · ∈ F ⇒

⋃∞
i=1 Ai ∈ F .

So beside the countable union the closure to complements and Ω ∈ F are needed conditions.

Definition 2 (Classical probability space). Let Ω be nonempty finite set, F = 2Ω. Define P (A) =
|A|
|Ω| ∀A ⊂ Ω. Then (Ω,F ,P) is called classical probability space.

Definition 3 (Discrete probability space). Let Ω be nonempty finite or at most countable set,
F = 2Ω. Let p : ω → R be a function such that p(ω) ∈ [0, 1] ∀ω ∈ Ω, and

∑
ω∈Ω p(ω) = 1. Define

P(A) =
∑

ω∈A p(ω). Then (Ω,F ,P) is called discrete probability space.

Definition 4 (Real continuous probability space). Let Ω be bounded or unbounded real interval,
F contains all open and closed subintervals of Ω and their ciuntable unions and complements.
Let f : ω → R be a function such that f(ω) ≥ 0, and

∫
Ω
f(ω)dω = 1. For any A ∈ F define

P(A) =
∫
A
f(ω)dω. Then (Ω,F ,P) is called real continuous probability space.
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The real interval Ω in the above definition may be an interval in k-dimensional reals space. In such case we need

to replace the integral by the multiple integral in the definition.

1.2. Theorems for computing the probability.

• ω ∈ Ω is called elementary event. A ∈ F is called random event.
• If P(A) = 1, then A is almost sure event.
• If P(A) = 0, then A is null event.
• If A is a random event then AC = Ω \A is complementary event of A.

Theorem 1 (Elemetary calculation). Let P be a probability measure defined on F .

(1) P(Ac) = 1− P(A) ∀A ∈ F
(2) If A,B ∈ F : A ⊂ B then P(A) ≤ P(B) a P(B \A) = P(B)− P(A)

D̊ukaz. Immediately form the definition

(1) P(A ∪ Ac) = P(A) + P(Ac). Since A ∪ Ac = Ω then the properties of the probability P
imply P(Ω) = 1, P(A) + P(Ac) = 1.

(2) Clearlz A ⊂ B ⇒ B = A ∪ (B ∩ Ac) the union of two disjoint set. Hence P(B) =
P(A) + P(B \A) ≥ P(A).

�

Allprobability measures have one important property: continuity. As the continuity is used only for the proof of

right continuity of distribution functions we give this definition only as a remark.
Consider a system of sets {Ai}∞i=1 ⊂ F such that Ai ⊂ Ai+1. Then we denote by Ai ↗ A the intersection

A =
⋃∞

i=1 Ai a and we say that the system {Ai}∞i=1 converges monotonically to A.

The system Ai ⊃ Ai+1 converges monotonically to A =
⋂∞

i=1 Ai, what is denoted by Ai ↘ A. Note that in
both cases A ∈ F since F is a σ-algebra.

Theorem (Continuity of probability measure). Let {Ai}∞i=1 ⊂ F be such that Ai ↘ ∅. Then

lim
i→∞

P(Ai) = 0.

D̊ukaz. Clearly P(
⋂∞

i=1 Ai) = P(∅) = 0 which is equivalent to 1 − P((
⋂∞

ı=1 Ai)
c) = 1 − P(

⋃∞
i=1 A

c
i ) = 1. Further

Ac
i ⊆ Ac

i+1 foolows form Ai ⊇ Ai+1 and Ac
i ↗ Ω. Let us define a sequence B1 = Ac

1, Bi+1 = Ac
i+1 \Ac

i . Clearly Bi

are disjoint such that
⋃∞

i=1Bi = Ω and P(
⋃∞

i=1Bi) = P(ω) = 1. Therefore
∑∞

i=1 P(Bi) = 1. The last sum may be

decomposed into two parts

1 =

n∑
i=1

P(Bi)︸ ︷︷ ︸
→1

+
∞∑

i=n+1

P(Bi)︸ ︷︷ ︸
→0

since P is bounded and σ-aditive. The definition of Bi and the properties of Ai give P(
⋃n

i=1Bi) = P(
⋃n

i=1 A
c
i ) =

1− P(
⋂n

i=1 Ai) = 1− P(An). Since the left hand side converges to 1 it follows that P(An)→ 0. �

Theorem 2 (Inclusion adn exclusion principle). Let A1, . . . , An be random events. Then

P(

n⋃
i=1

Ai) =

n∑
i=1

P(Ai)−
∑

1≤i≤j≤n

P(Ai∩Aj)+
∑

1≤i≤j≤k ≤n

P(Ai∩Aj ∩Ak)−· · ·+(−1)n−1P(

n⋂
i=1

Ai)

D̊ukaz. Mathematical induction.

First step: for n = 2 clearly A = (A \B) ∪ (A ∩B), B = (B \A) ∪ (A ∩B), hence

P(A ∪B) = P(A) + P(B)− P(A ∩B).

Induction step n− 1→ n:

P(

n⋃
i=1

Ai) =P((

n−1⋃
i=1

Ai) ∪An) = P(

n−1⋃
i=1

Ai) + P(An)− P(

n−1⋃
i=1

(Ai ∩An))

=

n−1∑
i=1

P(Ai)−
∑

1≤i≤j≤n−1

P(Ai ∩Aj) + . . .+ (−1)n−2P(

n−1⋂
i=1

Ai) + P(An)

−
∑

1≤i≤j≤n−1

P(Ai ∩An) + . . .+ (−1)n−2P(

n⋂
i=1

Ai).
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Rearranging the sum and adding the appropriate terms together we get
n∑

i=1

P(Ai)−
∑

1≤i≤j≤n

P(Ai ∩Aj) + . . .+ (−1)n−1P(

n⋂
i=1

Ai)

�

The next theorems deal with an inportant concept of conditional probability.
Consider random event A occuring with the probability P(A). So before the experimant is made

we know that the random event A will be the result of the experiment with probability P(A). Let
us consider that there is an aditional information about the event B, namely that event B occurs
in the experiment. May this information be used to improve our knowledge about the probability
of the event A? Yes it may. An trivial example is a dice. Before we throw a dice the probability
of 6 is 1/6. But if we know that the result is even the probability of 6 is 1/3 and if we know that
the result is odd the probability of 6 is clearly 0. So the knowledge of parity of the result changes
the probability of 6 substantially.

Definition 5 (Conditional probability). Let A,B ∈ F ,P(B) > 0 be a two random events. The

conditional probability of A given B is P(A|B) = P(A∩B)
P(B) .

Problem. Show that the conditional probability satisfies the conditions for probability measure.
In general P(A|B ∪ C) 6= P(A|B) + P(A|C). Find an example.

Note that P(A|Ω) = P(A). Clearly the information that Ω occurs brings no new information.

Theorem 3 (On product of probabilities). Let A1, . . . , An be random events such that P(
⋂n

i=1Ai) >
0. Then

P(

n⋂
i=1

Ai) = P(A1|
n⋂

i=2

Ai) · P(A2|
n⋂

i=3

Ai) · · ·P(An−1|An) · P(An).

D̊ukaz. Mathematical induction. �

Definition 6 (Disjount partition). Any finite or countable system of random events {Bi}i∈I ⊂ F
is called disjoint partition Ω if:

(1) Bi ∩Bj = ∅ ∀i 6= j
(2)

⋃
iBi = Ω (or sufficiently P(

⋃
iBi) = 1).

(3) P(Bi) > 0 ∀i

Theorem 4 (On total probability). Let A be a random event and {Bi} a disjoint partition. Then

P(A) =
∑
i

P(A|Bi) · P(Bi)

D̊ukaz. Clearly A ∩ Bi, i = 1, 2, . . . are pairwise disjoint set. Hence
⋃

iA ∩ Bi = A ∩
⋃

iBi =
A ∩ Ω = A and it follows that

P(A) = P(
⋃
i

A ∩Bi) =
∑
i

P(A ∩Bi) =
∑
i

P(A|Bi) · P(Bi)

�

Theorem 5 (Bayes). Let A be a random event and {Bi}i a disjoint partition of Ω, and let
moreover P(A) > 0. Then

P(Bi|A) =
P(A|Bi) · P(Bi)∑
j P(A|Bj) · P(Bj)

.

D̊ukaz. Immediately by the definition of conditional probability and the total probability theorem.
�

Theorem 3 gives the exact probability of a simultaneous occurence of n random events. The
computation of conditional probabilities in Theorem 3 may be sometimes too difficult. Therefore
different estimates of the probabilities of complex events are used. One of them is the Bonferroni
inequality.
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Theorem 6 (Bonferroni inequality). Let A1, . . . , An be random events. Then

P (

n⋂
i=1

Ai) ≥ 1−
n∑

i=1

(1− P (Ai))

D̊ukaz. P (
⋂n

i=1Ai) = 1− P
(

(
⋂n

i=1Ai)
C
)

= 1− P (
⋃n

i=1A
C
i ) ≥ 1−

∑n
i=1 P (AC

i ) = 1−
∑n

i=1(1−
P (Ai)). �

1.3. Independence. Independence (stochastical independence) of random events means that the
occurence of some of the random events doesn’t modify the probability of the other.

Definition 7 (Independence). Two random events A,B ∈ F are independent if P(A ∩ B) =
P(A) · P(B).

The definition of independence easily follows from the definition of conditional probability. If
the events A,B are independent then

P(A|B) =
P(A)P(B)

P(B)
= P(A)

and vice-versa this identity defines the independence. Independence may be defined also for null
sets (which are so far excluded from the conditioning).

The independence must be defined for arbitrary number of random events.

Definition 8 (Mutual independence). Let A1, . . . An be random events. Then Ai are mutually
independent if it holds ∀i1, . . . , ik ⊂ {1, . . . , n}

P

 k⋂
j=1

Aij

 =

k∏
j=1

P (Aij ).

Note that the equality must hold for all subsets of indexes.

Problem. Find a triple of random events A, B, and C such that all pairs form independent random
events while P(A ∩B ∩ C) 6= P(A)P(B)P(C).

It is sufficient to consider classical probability space Ω = {ω1, . . . , ωn} and find appropriate A,
B, and C. What is the minimal sufficient number n?

Sometimes it is necessary to extend the notion of independence to arbitrary set of random events. However we

cannot use infinite (even uncountable) intersections of sets in the definition of independence. The independence

is correctly defined via all finite subsets of the index set as we shall see later in the definition of independence of

random variables.

Note that the assumption of independence is quite strong and computation of probabilities of
independent events is much simpler—try to apply the theorems above to independent random
events.

2. Random variables and vectors

2.1. Random variable and its distribution. Random variable is a tool how to work with
apriori unknown values which are results of experiments aith random outcome.

Definition 9. Let (Ω,F ,P) be a probability space. A mappingX : Ω→ R such thatX−1(−∞, a] =
{ω,X(ω) ≤ a} ∈ F ∀a ∈ R is called random variable.

The definition of random variable is very general. Note that the condition on the pre-images
and the properties of probability measure P allow to compute for any real interval the probability
that the result (realisation) of the random variable will be the interval. This fact is reflected in
the next definition.

This property of mapping is called measurability of the mapping X. Measurability allows to prove many different

properties of the mapping although it is much weaker then, e.g., continuity. Nevertheless, when working woth only

finite or countable number of possible outcomes of random variable the measurability is always satisfied. Hence,

the measurability is not needed for the first reading.
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Definition 10 (Distribution of random variable). Let X : Ω → R be a random variable. Proba-
bility measure PX defined on all open and cloed subsets of R such that for any a ∈ R it holds
PX(−∞, a] = P[X ≤ a] is called the distribution of random variable X.

Note that the probability PX is a translation of the original probability P from the space Ω to
the real line.

A random variable is a model of realisation of randomness in real numbers. It is important to
note that there may be several random variables with different or the same distribution
defined on the same probability space. One may use canonical construction of probabiolity
space and random variables if only one or few random variables are needed, see below. However,
in general it is more convenient to work with an abstract probability space when one needs to
consider many different random variables.

Example. Canonical construction: consider

Ω = {1, 2, 3, 4, 5, 6}2,F = 2Ω,P({ω}) =
1

36
and define

X1(ω1, ω2) = ω1, X2(ω1, ω2) = ω2, Y (ω1, ω2) = ω1 + ω2.

Then the distributions of X1 and X2 are the same while the random variables are not identical.
Find the distributions of Xi and Y . Since Xi have 6 different possible values, the distribution

is defined as a probability measure on 26 = 64 different sets. The distribution of Y is defined on
211 = 2048 different sets! Simpler description is needed for the distribution.

What are the sets A ⊂ R for which their probability PX may be defined?

(1) (∞, a]

(2) (a, b], a < b = (−∞, b] \ (−∞, a]

(3) (a, b) =
⋃∞

n=1(a, b− 1
n

]

(4) All open sets

(5) A ∈ B ⇒ X−1 ∈ F for all A ∈ B, X is Borel measurable

Definition (Random events generated by X). Consider a random variable X and denote by FX a system of sets
such that FX = {B : B = X−1(A) for some A ∈ B}.

Theorem. The system Fx is the σ-algebra of random events generated by X.

FX is a σ-algebra, and FX ⊂ F . Then

PX(A) = P[X ∈ A] = P
(
X−1(A)︸ ︷︷ ︸
∈FX⊂F

)
.

The measure PX is defined on (R,B) while the measure P is defined on (Ω,F).

It follows from Definition 10 that the (probability) distribution PX of a random variable X
is uniquelly defined by the probabilities of the sets (−∞, a] for all a ∈ R. Hence we shall define
distribution function of probabilities.

Definition 11. Let X be a random variable and PX be its distribution. The function FX : R→
[0, 1] defined by FX(x) = PX [−∞, x] = P[X ≤ x] is called cummulative distribution function
(CDF) of the random variable X.

Cummulative distribution function F characterises the distribution P in the sense that FX = FY

implies PX = PY .

Theorem 7 (Properties of cdf). Consider a random variable X and its cdf FX . Then

(1) limx→−∞ FX(x) = 0
(2) limx→∞ FX(x) = 1
(3) FX is nondecreasing and right continuous.

D̊ukaz. Follows for the properties of probability measure.
The continuity of probability measure in empty set is needed for correct proof of the right continuity. So we

shall just say that probability measure is continuous in empty set, see the remark above. �

There is also a reverse result. Any funciton which has the properties of cdf is a cdf of some
random variable.
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Theorem 8. Assume that F satisfies the properties in Theorem 7. Then there is a probability
space (Ω,F ,P) and a random variable X such that F is the cdf of X.

To prove the theorem it is sufficient to construct some probability space and random variable X
and show that F is the cdf of X.

D̊ukaz. Denote Ω = R, F the system containing all open sets, and their countable unions and
intersections and complements. Define P a probability measure on F such that P (−∞, x] = F (x)
(such measure is unique).

Define further X : Ω → R such that X(ω) = ω. Then FX(a) = P [X ≤ a] = P (−∞, a] =
F (a). �

2.2. Random vector and its distribution. In what follows the notation

a ≤ b⇔ ai ≤ bi ∀i = 1, 2, . . . , d

a < b⇔ ai ≤ bi ∀i = 1, 2, . . . , d, a existuje j : aj < bj .

is used for any two vectors a, b ∈ Rd.

Definition 12 (Random vector). A mappingX : Ω→ Rd such that {ω : X(ω) ≤ a} ∈ F ∀a ∈ Rd

is called random vector. (Ω,F ,P) is some probability space and d ∈ N, d ≥ 2 is the dimension of
the random vector.

Mathematically: Random vector must be measurable like the random variable is.

Definition 13 (Distribution and cummulative distribution function of random vector). Let X be
a d-dimensional random vector. Probability measurte PX defined on (all open and closed subsets
of) Rd such that

PX

( d∏
i=1

(−∞, ai]
)

= P[X ≤ a] = P
( d⋂
i=1

[Xi ≤ ai]
)

is called the distribution of random vector X.
The function FX : Rd → [0, 1] defined by FX(a) = P [X ≤ a] is called the cummulative

distribution function of random vector X.

The probability measure PX must be defined obviously also on all countable unions and intersections of open

and closed sets, etc. Such extension is, however, unique, so the cummulative distribution function is sufficient to

fully characterise the distribution of random vector. The cdf of random vectors may be still quite complex.

Notation: for any a < b denote by ∆k(a, b) the set of all c such that there is exactly k indexes
i1, i2, . . . , ik satisfying cij = aij , and cl = bl for the other indexes.

For example, let a = (a1, a2, a3), b = (b1, b2, b3) then ∆1(a, b) = {(a1, b2, b3), (b1, a2, b3), (b1, b2, a3)}.

Theorem 9 (Properties of cdf). Let FX be the cdf of a random vector X. Then:

(1) limai→−∞ FX(a) = 0 for any i.
(2) limai→∞ ∀i FX(a) = 1.
(3) The cdf FX is rigth continuous and non-decreasing in all arguments.

(4) ∀a < b it holds
∑d

k=0(−1)k
∑

c∈∆k(a,b) FX(c) ≥ 0.

What does the last property mean in two dimensions? Consider a = (a1, a2), b = (b1, b2). Then
if a < b it holds that FX(b1, b2)−FX(a1, b2)−FX(b1, a2)+FX(a1, a2) ≥ 0. Clearly this corresponds
to probability of the rectangle (a1, b1]× (a2, b2] and probability must be clearly non-negative.

For random vectors the theorem may be also reversed in the sense that any function satisfying (1)–(4) of

Theorem 9 is the cdf of some random vector. Note that property (4) doesn’t follow from (3) and is crucial. A

function satisfying just (1)–(3) needs not to correspond to any probability measure since it may lead to negative

probability.

Definition 14 (Marginal distribution). Let X be a random vector, and PX its distribution. The
distribution PXi

(−∞, a] = limaj→∞,j 6=i PX(Xd
j=1(−∞, aj ]) is called the marginal distribution of

Xi, and FXi = limaj→∞,j 6=i FX(a) is called the marginal cdf of Xi.
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Terminology: A random vector (variable) X, is discrete, if it attains up to countable many
possible value only. There exists at most countable set S and non-negative values ps, s ∈ S such
that P[X = s] = ps, and P[∈A] =

∑
s∈A ps. In other words X(ω) ∈ S ∀ω.

A random vector (variable) X is absolutely continuous if for any a it holds P[X = a] = 0, and
if there exists a non-negative function f such that P[X ∈ A] =

∫
A
f(x)dx.

Agreemnet: For the sake of simplicity we shall assume that a discrete random vector attains
values in a subset of Nd

0 if not stated otherwise.
The distribution of a discrete random vector X is fully characterised by the set of values

{ps}s∈S while the distribution of a (absolutely) continuous random vector is fully characterised y
the function f . Both the values ps (for dicrete r.v.) and the function f (for continuous r.v.) are
called probability density function (pdf) of the random vector X.

Problem. Clearly ∑
x∈S

px = 1,

∫
Rd

f(x)dx = 1.

Note that we are working with multiple integrals. Multiple integrals are similar to multiple
sums in the sense that the most inner integral must be evaluated first and the most outer integral
is the last to be calculated.

Also note that the density f may be changed in finitely many púoints without changing the
distribution.

Example. Basic discrete distributions of random variable:

(1) Alternative (Bernoulliho). X is {0, 1} valued, P[X = 1] = Px({1}) = p ∈ (0, 1), and
P[X = 0] = 1−p. Parameter p is interpreted as the probablity of success. The distribution
is usually denoted Alt(p).

(2) Binomiial. X is the number of successes in n independent trials (result of one trial doesn’t
influence the other trials) with the same probability p of success. P[X = k] =

(
n
k

)
pk(1 −

p)n−k, the distribution is denoted Bi(n, p).
(3) Geometric. X is the number of failures up to the first success in independent trials with

the same probability p of success. P[X = k] = p(1 − p)k, this distribution is denoted
Geom(p).

(4) Poisson. X is the number of events appearing in a unit time interval. P[X = k] =
exp(−λ)λk/k!, where λ > 0, k = 0, 1, . . . . This distribution is denoted Po(λ)

Example. Basic continuous distributions of random variable:

(1) Uniform distribution on the interval (a, b), −∞ < a < b <∞. The pdf is

f(x) =

{
1

b−a x ∈ (a, b)

0 x 6∈ (a, b).

This distribution is denoted U(a, b) and it models random variable with values in the
given interval without preferring any subinterval (all subitervals of the same length have
the same probability).

(2) Exponential distribution is defined by the pdf

f(x) =

{
λ exp(−λx) x > 0

0 x < 0,

where λ > 0 is the parameter of the distribution. This is the basic model for “time to
event” random variable. It is denoted Exp(λ).

(3) Gaussian (normal) distribution is characterised by the pdf

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

The parameters are µ ∈ R (location), and σ2 > 0 (scale). It is denoted N(µ, σ2).
The Gaussian distribution is called “standard” if µ = 0, and σ2 = 1. The name em-

phasizes the importance of the distribution in probability and statistics.
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Example. The basic one discrete and continuous distribution of random vectors are the multinomial
and the multivariate normal distributions.

(1) Multinomial distribution is a generalisation of the binomial distribution. Let n denotes
the number of trials in which one of the k possible outcomes occurs where the outcome

i occurs with the probability pi,
∑k

i=1 = 1 and the trials are independent. The random
vector X = (X1, X2, . . . , Xk) contains the numbers of the respective results in n trials and
its distribution is given by the pdf

P[X = (n1, n2, . . . , nk] =

{
n!

n1!n2!...nk!p
n1
1 pn2

2 . . . pnk

k ni ∈ N0,
∑k

i=1 ni = n

0 else.

This distribution is denoted by Mult(n, p1, . . . , pk).
(2) The multivariate (here the d-variate) Gaussian or normaldistribution is given by the pdf

f(x) =
1

(2π)d/2
√

det Σ
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
, x ∈ Rd.

The parameters of the distribution are µ ∈ Rd, and Σ a symmetric positive definite d× d
matrix. The distribution is denoted Nd(µ,Σ).

In what follows we shall restrict to bivariate random vectors since everything may be easily
extended to higher dimensions. The bivariate normal distribution is an important example.

Example (Bivariate normal distribution). Let us show three basic version of this distribution.

(1) Standard normalised bivariate normal (Gaussian) distribution is given by µ = 0, and
Σ = I2 the identity matrix. The pdf is very simpple, namely

f(x) =
1

2π
exp

(
−1

2
(x2

1 + x2
2)

)
.

(2) If µ = 0, and the matrix Σ is

Σ =

(
1 ρ
ρ 1

)
, kde |ρ| < 1

then the distribution is called also normalised (but not standard) and the pdf is

f(x) =
1

2π
√

1− ρ2
exp

(
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

)
.

(3) The general case is given by the pdf

f(x) =
1

2π
√

det Σ
exp

(
−1

2
(x1 − µ1, x2 − µ2)Σ−1

(
x1 − µ1

x2 − µ2

))
.

2.3. Independence, random sample and empirical distribution. The following theorem is
only a simple observation.

Theorem 10 (On marginal distribution). Consider a random vector X and PX be its distribution.
Then all marginal distributions of the coordinates X1, . . . , Xd are uniquelly determined by the
distribution PX .

D̊ukaz. Immediate. �

Problem. The joint distribution is not given by the marginals.
Throw two dices. The results are two random variables A,B. Define further C = A−1 if B sudé

a C = A+ 1 pro B liché, where 0 is replaced by 6 and 7 is replaced by 1. The joint distributions
of (A,B), and of (A,C) are:
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A\B 1 2 3 4 5 6
1 1/36 1/36 1/36 1/36 1/36 1/36 1

6
2 1/36 1/36 1/36 1/36 1/36 1/36 1

6
3 1/36 1/36 1/36 1/36 1/36 1/36 1

6
4 1/36 1/36 1/36 1/36 1/36 1/36 1

6
5 1/36 1/36 1/36 1/36 1/36 1/36 1

6
6 1/36 1/36 1/36 1/36 1/36 1/36 1

6

1/6 1/6 1/6 1/6 1/6 1/6

A\C 1 2 3 4 5 6
1 0 1/12 0 0 0 1/12 1

6
2 1/12 0 1/12 0 0 0 1

6
3 0 1/12 0 1/12 0 0 1

6
4 0 0 1/12 0 1/12 0 1

6
5 0 0 0 1/12 0 1/12 1

6
6 1/12 0 0 0 1/12 0 1

6

1/6 1/6 1/6 1/6 1/6 1/6
Hence it si clear that the marginal distributions of (A,B), and (A,C) are the same while the

joint distributions are completely different.

There is a beautiful mathematical theorem that any multivariate joint cdf is combined form its marginal cdf’s
by a function called copula. Such copula is unique for continuous distributions and unique up to the null sets for

discrete distributions. Namely, if FX is a joint cdf, and FXi
, i = 1, . . . , d its marginal cdf’s then there is (in some

sense unique) function C : [0, 1]d → [0, 1] such that

FX(x) = C
(
F1(x1), F2(x2), . . . , Fd(xd)

)
.

The function C is a cdf itself, and all marginal cdf’s of C are uniform on (0, 1). There is a lot of interest and research

related to copulas.

The joint distribution of a random vector X completely determines the stochastic relation
between the components of the vector. There is a special case of the relation for which the joint
distribution is uniuqelly given by the marginals.

Definition 15 (Independence of random variables). Let X1, X2, . . . , Xk be random variables
defined on (Ω,F ,P). These variables are (stochasticaly) independent if

FX(x) =

k∏
i=1

FXi
(xi) ∀x = (x1, . . . , xk) ∈ Rk

holds for X = (X1, . . . , Xk).

Theorem 11 (Distribution of independent random variables). Random variables X1, . . . , Xk are
independent iff

P

(
k⋂

i=1

[Xi ∈ Ai]

)
=

k∏
i=1

P [Xi ∈ Ai] ∀A1, . . . , Ak.

D̊ukaz. Immediately from the characterisation of the distribution by the cdf. �

We should restrict to Ai ∈ B only since we must work with measurable sets.

Theorem 12 (Equivalent conditions for independence). Discrete random variables X1, . . . , Xk

are independent iff pX(a1, . . . , ak) =
∏k

i=1 pXi
(ai).

Continuous random variables X1, . . . , Xk are independent iff fX(x1, . . . , xk) =
∏k

i=1 fXi
(xi).

D̊ukaz. Fóıllows form the definition of probability density function and its relation to cdf. �

Problem: Model of distribution of random variable or vector is a theoretical description and
simplification. The model may be very precise (like binomial distribution if the independence
and identical success probability p are—somehow—ensured for al trials) some models are just

”
reasonably good“.

We usually try to fit, propose or test model based on some empirical observations. Of course,
we must get some empirical experience before. This may be achieved if the random event (trial,
experiment) is observed under the “same” conditions repeatedly.

The basic setting for observations is random sample. The essential feature of a random sample-
Jeho podstatou is that the same

”
random phenomenon“ is observed in independent trials which

allow generalisation (mathematical induction).

Definition 16 (Random sample). The sequence X1, X2, . . . , Xn of independent random variables
or vectors such that the distribution of each Xi is the same distribution P is called random sample
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from the distribution P of sample size n. We shartly say that X1, . . . , Xn are iid (independent and
identically distributed).

Compare the independence of random events and independence of random variables. For random events we
need to check that the probability of intersection is the product of probabilities for all subsets of indexes. This

requirement (all subsets of indexes) is replaced by the fact that we need equality for the joint cdf and product of

marginal distribution functions in all points.

We may need to define independence of infinitely many random variables. We say that random variables (inde-

xed by arbitrary set) are independent iff for any finite subset of indexes the corresponding random variables are

independent. We shall need only one special case, in particular the independence of X1, X2, . . . . This is equivalent

to independence of X1, . . . , Xn for all finite n.

The random sample is the basic stone for model selection, estimates of distributions, characte-
ristics, parameters, etc. Especially the estimate of the cummulative distribution function is simlpe
and straightforward.

Definition 17 (Empirical distribution function). Let X1, . . . , Xn be a random sample from
distribution P and with the cdf F . Then we define empirical distribution function (edf) as

F̂n(x) = 1
n

∑n
i=1 χ(Xi ≤ x), where χ is the indicator of a set.

The empirical distribution function is quite good estimator of the real (and typically unknown)
cummulative distribution function. We need more characteristics of random variables before we
may specify what good estimate means.

Remark. Note that the edf is a sum of random variables, hence it is random variable itself (you
should know why). We have obtained a formula which contains apriori unknown values (random
variables) and it gives different results in repeated experiments. Naturally, the random results have
some distribution which may be, hopefully, described.

Theorem 13 (Distribution of edf I). Let X1, . . . , Xn be a random sample from distribution with

cdf F and fix some x. Then the distribution of F̂n(x) is given by

P

[
F̂n(x) =

k

n

]
=

(
n

k

)(
F (x)

)k(
1− F (x)

)n−k
.

D̊ukaz. Obviously nF̂n(x) = k iff exactly k out of n values in the random sample are at most x.
All random variables Xi in the sample satisfy

P[χ(Xi ≤ x) = 1] = P[Xi ≤ x] = F (x) = 1− P[χ(Xi ≤ x) = 0],

hence the sum
∑n

i=1 χ(Xi ≤ x) follows the binomial distribution. The rest of the proof is obvious.
�

3. Mean value and other moments

We shall define numerical characteristics of the distribution and corresponding random varia-
bles. The behaviour of random variable is fully described by its distribution or cdf or pdf. But the
cdf is a function and it is not easy to understand what does it say exactly and how may be two
or more random variables compared based on their distribution functions. The numerical charac-
teristics allow to say some features of the random variables in few numbers. Other applications of
these characteristics will be shown later.

Definition 18 (Mean value, mathematical definition). Let X be a random variable defined on
probability space (Ω,F ,P). The value

EX :=

∫
Ω

X(ω)dP(ω)

is called mean value of X if the integral exists.

The mean value is also called (mathematical) expectation of X.
The mean value is calculated using the density function in practice.
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Theorem 14 (Mean value of discrete random variable). Let X be a discrete random variable with
values in S and with density function pXs. Then

EX =
∑
s∈S

sP[X = s] =
∑
s∈S

=
∑
s∈S

spX(s),

if the right hand side exists.

D̊ukaz. Use the definition of EX. Sets As := {ω : X(ω) = s} form disjoint partition of Ω.
Therefore

EX =

∫
⋃

As

X(ω)dP(ω) =
∑
s∈S

∫
As

X(ω)dP(ω)

=
∑
s∈S

s

∫
As

dP(ω) =
∑
s∈S

sP(As)

=
∑
s∈S

sP[X = s].

�

Theorem 15 (Mean value of continuous random variable). Let X be a continuous random variable
with density dunction fXx. Then

EX =

∫ ∞
−∞

xfX(x)dx

if the integral exists.

Remark. The mean may exists although being infinite. The random variable X has infinite
mean if the integral in Definition 18 is infinite (±∞). The integral is meaningless if if it is of type

”
∞−∞“. In particular

∫
R 1dx does exists (although being infinite) while

∫
R x
−1dx doesn’t exist.

Problem. Find a function pX(s), s ∈ Z such that:

(1) pX(s) ≥ 0
(2)

∑
s∈Z pX(s) = 1

(3)
∑

s>0 spX(s) =∞,
∑

s<0 spX(s) = −∞
There is no mean for such probaboility density function since the sum is not well defined (∞−∞).
Finding of probability density fX of a continuous random variable such that the mean doesn’t
exist is also easy.

Remark (Terminology and trivial facts). • If EX exists and is finite then we say that X has
finite mean.

• If P [X ≥ b] = 1 for some finite constant b then EX does exist and EX > b. In particular
non-negative random variable has non-negative mean. (And vice-versa for the reverse
inequality.)

• If ∃a, b <∞ and P [a ≤ X ≤ b] = 1 then EX exists and is finite. Moreover a ≤ EX ≤ b.
• Define E |X| =

∫
Ω
|X(ω)| dP (ω) (exists always). If E |X| < ∞ then X ∈ L1(P) and there

is a finite mean of X, |EX| <∞.

We may define also moment of a function of random variable and higher order moments.

Definition 19 (General moments of random variable). LetX be a random variable and g : R→ R.
Then Eg(X) =

∫
Ω
g(X(ω))dP(ω) if the integral exists.

Theorem 16 (Calculation of the mean). Let X be a discrete S-valued random variable and pXs
its probability density, g : R→ R. Then

E g(X) =
∑
s∈S

g(s)P[X = s] =
∑
s∈S

=
∑
s∈S

g(s)pX(s),

if the sum exists.
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Let X be a continuous random variable and fXx its probability density function. Then

E g(X) =

∫ ∞
−∞

g(x)fX(x)dx,

if the integral exists.

Theorem 17 (Linearity of the mean value). Let X be a random variable with finite mean. Then

E(a+ bX) = a+ bEX,∀a, b ∈ R.

D̊ukaz. Follows directly form the definition. �

Theorem 18 (Jensen inequality). Let X be a random variable with finite mean EX. Let ϕ be a
convex function. Then Eϕ(x) ≥ ϕ(EX).

D̊ukaz. Since the function ϕ is convex for any a there exists a constant λ such that ϕ(x) ≥
ϕ(a) + λ(x− a). Choosing a = EX we get

ϕ(X) ≥ ϕ(EX) + λ(X − EX).

Since the mean of non-negative random variable is non-negative and since E(X − EX) = 0 the
proof follows easily. �

Note that (real) function of a random variable is a random variable itself iff the conditions of Definition 9 hold.

However, all common functions are such. In measure theroy such funcitons are called measurable.

Definition 20 (Important moments and moment generating function). Let X be a random vari-
able and consider r ∈ N. Then

(1) EXr is the r-th moment of X.
(2) E |X|r is the r-th absolut moment of X.
(3) For r ∈ N E(X − EX)r is the r-th central moment of X.
(4) For r = 2 the varx = E(X − EX)2 is variance of X.

(5) µ3 = E(X−EX)3

(E(X−EX)2)
3
2

is the skewness of the distribution of X (measure of the asymmetry).

(6) ΨX(t) = E etX is the moment generating function defined for those t for which the ex-
pectation does exist. For any random variable X we have ΨX(0) = 1.

All moments are defined if the integrals and sums do exists.

Remark (Basic properties of moments). Moments numerically characterise some features of ran-
dom variables and their distributions. There are also some interesting relations between moments.

• The mean EX characterises the location of random variable.
• The variance characterises the dispersion. Namely it is the mean squared deviation of

random variable.
• There are other characteristics of dispersion like the absolute central moment E |X−EX|.
• Let 0 < s < r. If E |X|r < ∞ then E |X|s < ∞ and |EXr| < ∞ if the integral exists

(e.g. r ∈ N). Moreover
(
E |X|s

)1/s ≤(E |X|r
)1/r

, in particular E |X| ≤
(
E |X|2

)1/2 ≤(
E |X|3

)1/3
.

• If there is δ > 0 such that the moment generating function ψX(t) exists finite ∀|t| < δ

then ∀r ∈ NEXr = ψ
(r)
X (0) (r-th derivative of ψX(t) at 0).

Theorem 19 (Computation and properties of variance). Let X be a random variable with finite
variance. Then

varX = EX2 − (EX)2 = E(X(X − 1))− EX(EX − 1).

Let a and b be any constants. Then

var(a+ bX) = b2 varX.

D̊ukaz. Direct calculation. �

Remark. The variance is the mean of non-negative function hence it is non-negative itself. In
particular EX2 ≥ (EX)2. as follows also from the Jensen inequality.
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Let us define moments of random vector. Namely we need just one moment characterising the
joint behaviour of two components or random vector the other moments we know already.

Definition 21 (Mean value of random vector). Let X be a random vector. Then we define:

(1) EX = (EX1, . . . ,EXd)T

(2) Let g : Rd → R (such that g(X) is a random variable). Then define E g(X) =
∫

Ω
g(X(ω)) dP (ω)

if all integrals exist.

Theorem 20. Let X be a discrete Nd
0 valued random vector. Then E g(X) =

∑
z∈Nd

0
g(z)P [X =

z] if the sum exists.
Let X be a continuous (Rd/valued) random vector and fX its probability density function. Then

E g(X) =
∫
Rd g(z)fX(z)dz if the integral exists.

In both cases we have multiple sums and integrals.


