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Chapter 1

Preliminary Notions

In this introductory chapter, we intend to provide an overview of the methods for construction
of fixed-width confidence intervals. The sequential procedures based on sample mean will be
systematically presented in Section 1.1 whereas Section 1.2 concerns M -estimators and exist-
ing robust sequential methods. These methods will be further investigated and developed in
Chapters 4–6.

1.1 Sequential Methods

The problem of constructing fixed-width confidence intervals is often studied in the literature.
Suppose that we have i.i.d. observations X1, X2, . . . , Xn with common distribution function
F (., θ). The estimate θ̂n of the unknown parameter θ has typically asymptotically normal
distribution and its variance depends on the sample size n. The calculation of the confidence
intervals (1.1) based on the asymptotic normal distribution is very easy.

In order to obtain a 1−α confidence interval shorter than some prescribed length 2d, we basi-
cally need enough observations in order to get sufficiently small variance of θ̂n. Thus the problem
of constructing fixed width confidence intervals reduces usually to the problem of determining
sufficient sample size.

The most popular sequential methods for construction of fixed-width confidence sets for the
parameter of location will be described in this section.

1.1.1 Chow-Robbins Procedure

Consider a random sample X1, . . . , Xn from Normal distribution N(θ, σ2). Suppose that the
parameter σ2 is known. The 1− α confidence interval for θ is given by(

X̄n − u1−α/2
σ√
n
, X̄n + u1−α/2

σ√
n

)
, (1.1)

where X̄n is the sample mean of X1, . . . , Xn and where u1−α/2 denotes the 1− α/2 quantile of
the standard Normal distribution. The length of the confidence interval (1.1) is

2u1−α/2
σ√
n
. (1.2)

1



2 CHAPTER 1. PRELIMINARY NOTIONS

It is immediate that in order to obtain 1 − α confidence interval shorter than 2d, we need the
number of observations to exceed

c(d) =
(u1−α/2σ

d

)2

. (1.3)

The Chow-Robbins procedure concerns the situation with the unknown variance. The num-
ber of observations (stopping rule) N is given as the smallest integer exceeding c(d), i.e.,

N = inf

{
n ≥ m : n ≥

(
u1−α/2Sn

d

)2
}
, (1.4)

where m ≥ 2 is the initial sample size and S2
n =

∑n
i=1(Xi− X̄n)2/(n− 1) is the sample variance

of Xi’s.
Basic asymptotic properties are given in the following Theorem 1.1.1.

Theorem 1.1.1 For the Chow-Robbins procedure (1.4), if 0 < σ2 <∞, then

(i) Pµ,σ2(N <∞) = 1; (1.5)
(ii) Eµ,σ2(N) = n0 + 1 + c; (1.6)

(iii) N ≡ N(d) ↓ a.s. in d;N →∞ a.s. as d→ 0+;
Eµ,σ2(N)→∞ as d→ 0+; (1.7)

(iv) N/c→ 1 a.s. as d→ 0+; (1.8)
(v) lim

d→0+
Eµ,σ2(N/c) = 1; (1.9)

(vi) lim
d→0+

Pµ,σ2(X̄N − d ≤ µ ≤ X̄N + d) = 1− α. (1.10)

Proof: The proof is given in Ghosh, Mukhopadhyay, and Sen (1997), among others.
2

In Theorem 1.1.1, the comparison between Chow-Robbins stopping time N(d) and the op-
timal fixed-sample size c(d) given by the formula (1.3) is carried out. The last part of Theo-
rem 1.1.1 asserts that the asymptotic coverage probability of the resulting confidence interval is
really 1− α.

Notation: The symbols Pµ,σ2 and Eµ,σ2 denote respectively the probability and the expected
value calculated for any fixed µ and σ2. For simplicity of notation, the subscript µ, σ2 will be
omitted in the following text. We will also write N instead of N(d) and c instead of c(d). The
full notation N(d) and c(d) will be used, rather arbitrarily, whenever we decide to stress the
dependence of the sample size on the desired length of the confidence interval.

1.1.2 Two-stage Procedures

In some situations, Chow-Robbins procedure can not be recommended and a different procedure
has to be considered. Sometimes, the data are obtained in batches (and very often the price is
proportional to the number of batches instead to the number of observations) and it might be
more appropriate to use methods which do not require to include only one new observation at
time. Stein’s method which will be shortly described in this section requires only two batches
of data.
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Suppose the same setup as before with the optimal fixed-sample size c(d) defined in (1.3).
A procedure consisting of two steps has been suggested by Stein (1945,1949). In the first

step, observations X1, . . . , Xm from N(µ, σ2) are drawn, giving the sample mean X̄m and the
sample variance S2

m.
In the second step, N −m additional observations are drawn,

N = N(d) = max

{
m,

[(
tm−1(α)Sm

d

)2
]◦

+ 1

}
, (1.11)

where [x]◦ denotes the integer part of x and tm−1(α) is the 1 − α/2 quantile of the Student’s
t-distribution with m− 1 degrees of freedom.

Theorem 1.1.2 For Stein’s two-stage procedure (1.11), we have

(i)
tm−1(α)σ2

d2
≤ E(N) ≤ m+

tm−1(α)σ2

d2
; (1.12)

(ii) lim
d→0+

E

(
N

c

)
=
t2m−1(α)
u2

1−α/2
; (1.13)

(iii) P (X̄N − d ≤ µ ≤ X̄N + d) ≥ 1− α for all µ and σ2; (1.14)
(iv) lim

d→0+
P (X̄N − d ≤ µ ≤ X̄N + d) = 1− α for all µ and σ2. (1.15)

Proof: The proof can be found in Ghosh, Mukhopadhyay, and Sen (1997).
2

Theorem 1.1.2 states that Stein’s two-stage procedure tends to overestimate the optimal
sample size, even asymptotically. This negative feature is due to the fixed starting-sample size
m, because for small d can a small change in the estimate of σ2 cause big differences in the final
sample size N . A modified two-stage procedure which improves this feature was suggested by
Mukhopadhyay (1980).

The modified two-stage procedure varies the starting-sample size m according to the desired
width of the confidence interval 2d.

We choose a real number γ > 0, and define

m = m(d) = max
{

2,
[(u1−α/2

d

)2/(1+γ)
]◦

+ 1
}
. (1.16)

We start the experiment with this number of observations and continue as in the Stein’s pro-
cedure (1.11) to obtain N and confidence interval (X̄N − d, X̄N + d). The asymptotic properties
of this procedure are stated in Theorem 1.1.3. Recall that c = c(d), defined by (1.3), denotes
the asymptotically optimal number of observations.

Theorem 1.1.3 The following statements hold for the modified two-stage procedure.

(i) lim
d→0

(
N

c

)
= 1 a.s. (1.17)

(ii) lim
d→0

E

(
N

c

)
= 1 (1.18)

(iii) P{(X̄N − d, X̄N + d) 3 µ} ≥ 1− α, for all µ and σ2, (1.19)
(iv) lim

d→0
P{(X̄N − d, X̄N + d) 3 µ} = 1− α, for all µ, σ2. (1.20)
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Proof: See Ghosh, Mukhopadhyay, and Sen (1997).
2

Theorem 1.1.3 shows the good properties of the modified two-stage procedure, namely the
first order asymptotic efficiency in (1.18). An unpleasant property is given in Theorem 1.1.4.

Theorem 1.1.4 For the modified two-stage procedure, we have

lim inf
d→0+

E(N − c) =∞. (1.21)

Proof: The proof is given in Ghosh, Mukhopadhyay, and Sen (1997).
2

This undesirable property led Ghosh and Mukhopadhyay (1981) to define the second or-
der asymptotic efficiency. The procedure is called asymptotically second order efficient if
limd→0+E(N − c) is a finite constant.

1.1.3 Three-stage Procedure

The asymptotic behaviour of Stein’s procedure can be improved by adding one additional sam-
pling stage to the algorithm. The three-stage method goes as follows.

In the first stage we draw

m = m(d) = max
{

2,
[(u1−α/2

d

)2/(1+γ)
]◦

+ 1
}

(1.22)

observations. The number of observations m(d) is controlled by the tuning parameter γ > 0. The
exponent 2/(1 + γ) has to lie in the interval (0, 2) in order to guarantee the desired asymptotic
properties. We obtain the sample variance S2

m which is used to determine the intermediate
sample size N1.

N1(d) = max

{
m,

[(
k
u1−α/2Sm

d

)2
]◦

+ 1

}
, (1.23)

where 0 < k < 1 is a parameter controlling the sample size in this stage.
Additionally, we draw N2 −N1 observations, where

N2(d) = max

{
N1,

[(
u1−α/2SN1

d

)2
]◦

+ 1

}
(1.24)

and obtain the 1− α confidence interval (X̄N2 − d, X̄N2 + d).
The three-stage procedure has better asymptotic properties than the two-stage procedure.

Namely, it is asymptotically second order efficient.

Theorem 1.1.5 For the three-stage procedure defined by (1.22)— (1.24), we have that

lim
d→0+

E(N2 − c) =
1
2
− 2k−1. (1.25)

Proof: See Section 6.3 in Ghosh, Mukhopadhyay, and Sen (1997).
2
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1.1.4 Three-stage Procedure Based on Bootstrap

All methods presented in the previous sections heavily depend on the accuracy of the normal
approximation. It is useful to consider approach based on bootstrap which was introduced by
Swanepoel, van Wijk, and Venter (1984). They generalized the Chow-Robbins procedure in the
following way.

Given X1, . . . , Xn we have the empirical distribution function Fn(x). We draw the bootstrap
sample X∗1 , . . . , X

∗
n from Fn(x) and calculate the sample mean X̄∗n. Denote by P ∗n the conditional

probability measure corresponding to the empirical distribution function Fn(x), i.e.,

P ∗n(A∗) = P (A∗|X1, X2, . . . , Xn). (1.26)

Then we can calculate the conditional coverage probability

P ∗n(d) = P ∗n(X̄∗n − d < X̄n < X̄∗n + d). (1.27)

which leads to the stopping time

N(d) = inf(n ≥ m;P ∗n(d) ≥ 1− α). (1.28)

Three-stage procedure based on bootstrap method was considered by Aerts and Gijbels
(1993). They use standardized and studentized bootstrap method.

• In the standardized bootstrap, the normal approximation u1−α/2 of the upper 1 − α/2
quantile of the standardized distribution of the parameter of interest is substituted by the
1− α quantile of the (centered and standardized) conditional distribution of

√
n
|X̄∗n − X̄n|

Sn
. (1.29)

• In the studentized version of the bootstrap method, the normal quantile u1−α/2 is replaced
by the 1− α quantile of the (centered and studentized) conditional distribution of

√
n
|X̄∗n − X̄n|

S∗n
. (1.30)

The intermediate sample size N1 and the final sample size N2 are calculated similarly as in
the formulas (1.23) and (1.24), with the bootstrap critical points replacing the quantile u1−α/2.
The asymptotic properties of this three-stage procedure are established in Theorem 1.1.6. Recall
that c(d) denotes the asymptotically optimal stopping time, see formula (1.3).

Theorem 1.1.6 Suppose that E(X2) < ∞ and σ2 > 0. Then the three-stage procedure based
on bootstrap has the following properties:

(i) lim
d→0+

N2(d) =∞ [P ] a.s., (1.31)

(ii) lim
d→0+

N2(d)
c(d)

= 1 [P ] a.s., (1.32)

(iii) lim
d→0+

P (X̄N2(d) − d < µ < X̄N2(d) + d) = 1− α, (1.33)

(iv) if moreover E|X|2+δ <∞ for some δ > 0 then also (1.34)

lim
d→0+

E

(
N2(d)
c(d)

)
= 1. (1.35)

Proof: See Aerts and Gijbels (1993).
2
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1.2 M-estimators

Our intention is to robustify the three-stage methods. One possiblity is to consider the M -
estimators which are very well described in the literature. In this section we will give the
definition and state basic properties of M -estimators.

1.2.1 Definition and Basic Properties

Let X1, X2, . . . , Xn be independent, identically distributed (iid) random variables with common
unknown distribution function F (x) = Fθ(x) = F0(x− θ) and let us assume that

θ = M(F ) = arg min
t∈R

∫
ρ(x− t)dF (x). (1.36)

Assume that the distribution function F0(x) is symmetric about 0 and that the function ρ(x) is
convex and symmetric. These conditions imply that the parameter θ corresponds to the centre
of symmetry of F (.). The natural estimator for θ based on the observations X1, . . . , Xn is then

Mn = M(Fn) = arg min
t∈R

∫
ρ(x− t)dFn(x) = arg min

t∈R

n∑
i=1

ρ(Xi − t), (1.37)

where Fn(.) is the empirical distribution function of X1, . . . , Xn, Fn(x) = (1/n)
∑n

i=1 I(Xi ≤ x).
The random variable M(Fn) is called the M -estimator of the parameter θ.

If the function ρ(.) admits a derivative ρ′(.) = ψ(.), then the M -estimator defined in (1.37)
solves the equation

n∑
i=1

ψ(Xi − t) = 0. (1.38)

However, it can happen that the equation (1.38) has more than one solution. with only one
solution corresponding to the desired global minimum. If this is the case and if the function
ψ(.) is nondecreasing, we may define Mn in a unique way as

Mn =
1
2

(M+
n +M−n ), (1.39)

where

M−n = sup

{
n∑
i=1

ψ(Xi − t) > 0

}
, (1.40)

M+
n = inf

{
n∑
i=1

ψ(Xi − t) < 0

}
. (1.41)

The assumed convexity of function ρ implies that the function ψ is non-decreasing.
There is a huge amount of work on M -estimators. Huber (1981) is the classical reference.

Jurečková and Sen (1995), Hampel, Ronchetti, Rousseeuw, and Stahel (1990) and Rieder (1994)
are more recent monographies connected with this subject. An introduction to the theory of
M -estimators is given e.g. in Serfling (1980).

Basic asymptotic properties of M -estimators are stated in Theorems 1.2.1 and 1.2.2 below.
Theorem 1.2.2 states sufficient conditions for asymptotic normality of the M -estimator generated
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by non-decreasing score function ψ(.). Theorem 1.2.1 concerns strong consistency of the M -
estimator. We use the notation

λF (t) = λFθ(t) =

∞∫
−∞

ψ(x− t)dF (x), for −∞ < t <∞. (1.42)

We use the subscript θ and write Fθ(.) instead of F (.) whenever we want to stress (or fix) the
value of the parameter.

Theorem 1.2.1 Let θ be an isolated root of λF (t) = 0. Let ψ(x− t) be monotone in t. Then θ
is unique and any solution sequence {Mn} of the empirical equation λFn(t) = 0 converges to θ
almost surely. If, further, ψ(t) is continuous in t in a neighborhood of θ, then there exists such
a solution sequence.

Proof: See Serfling (1980).
2

Theorem 1.2.2 Let θ be an isolated root of λF (t) = 0. Let ψ(x− t) be monotone in t. Suppose
that λF (t) is differentiable at t = θ, with λ′F (θ) 6= 0. Suppose that

∫
ψ2
F (x− t)dF (x) is finite for

t in a neighborhood of θ and is continuous at t = θ. Then any solution sequence {Mn} of the
empirical equation λFn(t) = 0 is asymptotically normal, AN(θ, σ2(ψ, F )), where

σ2(ψ, F ) =
∫
ψ2(x− θ)dF (x)

[λ′F (θ)]2
. (1.43)

Proof: See Serfling (1980).
2

1.2.2 Robust Sequential Procedure

Robust sequential procedure has been suggested by Jurečková and Sen (1978).
Let X1, X2, . . . , Xn be a sequence of independent random variables with a common contin-

uous distribution function Fθ(x). Fix some function ψ(.) which defines the M -estimator and
assume that the conditions which will be given in Section 4.1 are fulfilled.

Define

θ̂−n = sup

{
t : r̂−1

n n−1/2
n∑
i=1

(Xi − t) > u1−α/2

}

θ̂+
n = inf

{
t : r̂−1

n n−1/2
n∑
i=1

(Xi − t) < u1−α/2

}
,

where

r̂2
n =

1
n

n∑
i=1

ψ2(Xi − X̄n)−

(
n∑
i=1

ψ(Xi − X̄n)

)2

.

The sequential procedure is defined as follows: for fixed d > 0, let N(d) be the first integer
n ≥ n0 (initial sample size) for which

Ln = θ̂+
n − θ̂−n ≤ 2d.
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The corresponding confidence interval is
(
θ̂−N(d), θ̂

+
N(d)

)
based on X1, . . . , XN(d).

Similarly, as for the sample mean, we define the asymptotically optimal sample size cM (d)
for the M -estimator:

cM (d) =
(
u1−α/2σ(ψ, F )

d

)2

, (1.44)

where σ2(ψ, F ) is the variance of the asymptotic normal distribution of the M -estimator given
by (1.43). Jurečková and Sen (1978) proved the following properties of their fully sequential
procedure.

Theorem 1.2.3 We have the following for the sequential procedure based on M -estimators.

(i) lim
d→0

(
N(d)
cM (d)

)
= 1 a.s. (1.45)

(ii) lim
d→0

P{(X̄N(d) − d, X̄N(d) + d) 3 µ} = 1− α, for all µ, σ2. (1.46)

(iii)
√
n
(
θ̂−n − θ

)
∼ N(−σ(ψ, F )u1−α/2, σ

2(ψ, F )), (1.47)
√
n
(
θ̂+
n − θ

)
∼ N(σ(ψ, F )u1−α/2, σ

2(ψ, F )). (1.48)

Proof: See Theorem 3.1 and Lemma 3.1 in Jurečková and Sen (1978).
2



Chapter 2

Aim of Thesis

The sequential methods based on the sample mean which are presented in Section 1.1 are non-
robust and can produce misleading results if the real distribution does not fulfil assumptions of
normality. One possibility is to consider M -estimators which may work better in some situations.

The fully sequential methods based on M -estimators are computationally very intensive. On
the other hand, the two-stage procedure has some undesirable asymptotic properties. Therefore,
we focus on the three-stage procedure. We will generalize the sequential procedure based on
bootstrapping sample mean suggested by Aerts and Gijbels (1993). We suggest to base the
sequential method on the more general and more robust M -estimators. We suggest (and com-
pare) three types of approximations of the distribution of the M -estimator: approach based
on asymptotic normality, approach based on standardized bootstrap, and approach based on
studentized bootstrap.

Asymptotic properties will be established in order to provide a theoretical background for
the suggested methods. This includes the description of the behaviour of the bootstrap for M -
estimators and the description of the behaviour of the stopping time of the sequential procedure
based on the bootstrap critical points.

In Chapter 4, the three-stage procedure based on bootstrap critical points for fixed-width
confidence intervals will be defined for M -estimators of the location parameter. Theorem 4.3.3
states that the asymptotic distribution of the bootstrap M -estimator is the same as the asymp-
totic distribution of the original M -estimator. The robust three-stage procedure is defined in
Section 4.4 and its basic asymptotic properties are stated in Theorem 4.4.1.

Under additional assumptions, we are able to investigate the asymptotics for the three-stage
procedure in more detail. The asymptotic distribution of the final sample size will be derived
for the procedure based on sample mean in Section 4.5 and for the robust procedure based on
bootstrap for M -estimators in Section 4.6.

In order to investigate the behaviour of our method for smaller sample size, we will carry
out also the simulations. In Chapter 5, we will simulate random samples from standard Normal,
Cauchy, Double Exponential, and from a mixture of Normal distributions. On the simulations
from Normal distribution we want to see how well do the confidence intervals based on the
normal critical points compare to the confidence intervals based on bootstrap critical points
— we expect than in this case they should behave very similarly. On the other hand, for
the heavy-tailed Cauchy and Double Exponential distributions, we expect to see some difference
between the methods based on the asymptotic normality and the methods based on the bootstrap
approximation. We expect that the coverage probability of the 1−α confidence intervals based
on bootstrap will be closer to the desired value of 1− α, especially for small sample sizes.

9
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We do not intend to restrict ourselves only to the estimation of the parameter of location.
In Chapter 6, we will generalize our method and define the fixed-width confidence intervals
based on the bootstrap for the least squares regression parameters and we will discuss also other
possible future generalizations, namely robust regression and generalized M -estimators.

In Appendix B, we present some useful tables. In Tables B.2 and B.3, we tabulate the values
of the starting sample size m(d) defined by (1.22) for different values of d and γ for α = 0.05
(Table B.2) and α = 0.01 (Table B.3). In Tables B.4–B.9, we list the asymptotically optimal
sample sizes for the fixed-width confidence intervals based on M -estimators for α = 0.05 and
α = 0.01 and for different score (Huber’s type) score functions.



Chapter 3

Methods and Tools

Our main aim is to construct robust fixed-width confidence intervals. It can be easily shown
that, if the scale of the observations is unknown, there is no method for constructing fixed-width
confidence interval with fixed number of observations. Therefore, sequential methods are a very
important area of research. Systematic overview of sequential analysis is given for instance in
Ghosh, Mukhopadhyay, and Sen (1997). We present shortly some of the sequential methods in
Chapter 1. These methods will be robustified by considering both M -estimators and bootstrap
critical points.

M -estimators are a generalization of the least squares and the maximum likelihood estima-
tors. They have some very appealing properties. M -estimators are usually defined as a solution
of an implicit equation involving the score function ψ(.), see Section 1.2. The properties of
M -estimators can be tuned by choosing appropriate score function. By choosing ψ(x) = x, we
obtain the usual least squares estimator.

It is well known (see e.g. Huber (1981) or Jurečková and Sen (1995)) that M -estimators are
(under some conditions) asymptotically normal. It is possible to base the construction of the
confidence intervals on the asymptotic normality. However, the approach based on the bootstrap
critical points seems to be in this situation more appropriate, especially for small sample sizes.

The bootstrap method was invented by Efron (1979) and it has become standard statistical
tool because of its usefulness and the ease of its implementation. A nice overview of the theory
of bootstrap can be found in Shao and Tu (1995). There are many types of bootstrap critical
points, but we will concentrate only on the standardized and studentized version. In the future,
it is possible to refine our methods by considering some bias-corrections, smoothed bootstrap or
some other refinement of the naive Efron’s bootstrap.

The main results are Theorem 4.3.3 which says that bootstrap works under quite general as-
sumptions, Theorem 4.4.1 which states the basic asymptotic properties of our robust three-stage
procedure based on bootstrap, and Theorems 4.5.6 and 4.6.4 which describe the asymptotic dis-
tribution of

√
N2 for the three-stage procedure based on the sample mean by Aerts and Gijbels

(1993) and for the robust three-stage procedure proposed in Chapter 4, respectively. The main
tools which were used in the proofs of these theorems are collected in Appendix A. These are
namely the basic probability inequalities (Markov, Hoeffding), inequalities connected with Cen-
tral Limit Theorem (Edgeworth expansions), and random Central Limit Theorem by Anscombe
(1952). The asymptotic linearity for M -estimators as well as other results by Jurečková and Sen
(1982) are restated and generalized in Section 4.2 and used in the proof of Theorem 4.4.1. Re-
sults of Hall (1992) and Lahiri (1992) concerning the Edgeworth expansion of bootstrap critical
points are used in the proofs of Theorems 4.5.6 and 4.6.4.

11
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Chapter 4

Location Parameter

In this chapter, we will introduce the robust three-stage procedure for fixed-width confidence
intervals. The assumptions are stated in Section 4.1. Some interesting and useful properties
of M -estimators based on results of Jurečková and Sen (1982) can be found in Section 4.2. In
Section 4.3, we will describe the “naive” bootstrap for M -estimators, we show that it “works”,
and we prove some lemmas which will be used in the proof of Theorem 4.4.1. In Section 4.5, we
will turn our attention back to the (non-robust) procedure based on bootstrap for sample mean
by Aerts and Gijbels (1993) and we will investigate the asymptotic distribution of its stopping
time. Section 4.6 contains results on asymptotic distribution of the stopping time for the robust
three-stage procedure based on bootstrap critical points.

4.1 Assumptions

Let us now formulate the regularity conditions on the score function ψ(.) and on the distribution
function F (.) = Fθ(.) = F0(.− θ) of the observations Xi.

Assumptions on F : F0(.) = F (.+ θ) has an absolutely continuous density f0(.) such that

f0(x) = f0(−x), ∀x ∈ < (4.1)

and

f0(x) is decreasing in x for x ≥ 0. (4.2)

Moreover, F (.) has the finite Fisher information, i.e.,

0 < I(F ) =

∞∫
−∞

{f ′(x)/f(x)}2dF (x) <∞ (4.3)

and there exists l > 0 such that

E|X1|l =

∞∫
−∞

|x|ldF (x) <∞. (4.4)

Put

cl(x) = |x|lF (x)(1− F (x)), x ∈ <, (4.5)

13
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c∗l = sup
x∈<

cl(x), (4.6)

where l is given by (4.4). Then

c∗l <∞, lim
x±∞

cl(x) = 0, and

∞∫
−∞

{F (x)(1− F (x))}b dx <∞ ∀b > 1
l
> 0. (4.7)

Assumptions on ψ: The score function ψ(.) is nondecreasing and skew–symmetric, i.e.

ψ(x) = −ψ(−x) is ↗ in x ∈ [0,∞), (4.8)

and that there exists a positive number h such that

ψ(x) = ψ(h) sign(x) for |x| ≥ h. (4.9)

ψ(.) can be decomposed into the absolutely continuous and the step components,

ψ(x) = ψ1(x) + ψ2(x) ∀x ∈ <, (4.10)

where ψ1(x) and ψ2(x) are respectively the absolutely continuous and the step component.
Assume that the step component ψ2 can be written as

ψ2(x) = βj for aj−1 < x < aj , (4.11)

where j = 1, . . . ,m+ 1, a0 = −h, am+1 = h.

Assumptions on λFθ(t): The function λFθ(t) is differentiable at t = θ,

λFθ(θ) = 0, (4.12)

γ(ψ, Fθ) ≡ λ′Fθ(θ) 6= 0, (4.13)

and its derivative λ′Fθ(t) is a continuous function of t in some neighbourhood of θ. Notice that,
under our assumptions on the function ψ(.), we have

λ′Fθ(θ) =
∫ ∞
−∞

ψ′1(x)dFθ(x) +
m+1∑
j=1

(βj − βj−1)f(aj). (4.14)

4.2 Useful Properties of M-estimators

Jurečková and Sen (1982) investigated various asymptotic properties of M -estimators. The-
orem 4.2.1 below deals with the asymptotic linearity of the M -estimator. For simplicity of
notation we define, similarly as in (1.42),

λFn(t) =

∞∫
−∞

ψ(x− t)dFn(x) =
n∑
i=1

ψ(Xi − t), for −∞ < t <∞. (4.15)

The asymptotic linearity for M -estimator is very useful because it allows us to investigate
the behaviour of the M -estimators with the same methods which are usually used for the sample
mean.
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Theorem 4.2.1 (Asymptotic Linearity for M-estimator) Let us assume that the conditions of
Section 4.1 hold. Then, for every fixed K <∞, for every ε > 0 and δ > 0, there exists n0 such
that

P

{
sup
|t|<K

|n−1/2

[
n∑
i=1

ψ(Xi − θ − tn−1/2)−
n∑
i=1

ψ(Xi − θ)

]
− tλ′F (θ)| > ε

}
≤ cn−1−δ, ∀n > n0.

(4.16)

Proof: See Jurečková and Sen (1982).
2

Theorem 4.2.1 immediately implies the almost sure convergence of the supremum inside the
probability in (4.16) to zero. This result is stated in the following Corollary 4.2.1.

Corollary 4.2.1 Under the assumptions of Section 4.1, we have for every fixed 0 < K <∞

sup
|t|<K

|n1/2
[
λFn(θ + tn−1/2)− λFn(θ)

]
− tλ′F (θ)| → 0 [P ] a.s. (4.17)

Proof: By Theorem 4.2.1, for every fixed K < ∞, for any fixed δ > 0 and ε > 0 there exists
n0 such that

∞∑
n=n0+1

P

{
sup
|t|<K

|n1/2
[
λFn(θ + tn−1/2)− λFn(θ)

]
− tλ′F (θ)| > ε

}
≤

∞∑
n=n0+1

cn−1−δ.

This yields that the series on the left hand side is convergent and this implies (by Theorem 1.3.4
in Serfling (1980)) the almost sure convergence of the sequence

sup
|t|<K

|n1/2
[
λFn(θ + tn−1/2)− λFn(θ)

]
− tλ′F (θ)|

in (4.17).
2

For proving the asymptotic properties of the bootstrap procedure under our conditions, we
will need stronger version of Theorem 4.2.1.

Lemma 4.2.1 Under the assumptions of Section 4.1, for every fixed 0 < K <∞, ε > 0, δ > 1/4,
and η > 0, there exists n0 such that

P

{
sup

|t|<K logn
|n1−δ

[
λFn(θ + tn−1/2)− λFn(θ)

]
− n1−δ

[
λF (θ + tn−1/2)− λF (θ)

]
| ≥ ε

}

≤ cn−1−η, ∀n > n0. (4.18)

Proof: We assume, without loss of generality, that θ = 0 and we define equidistant grid points
−K log n = t1 < t2 < · · · < tLn = K log n. We denote the number of the grid points by Ln. For
all t ∈ 〈t1, t2〉 we have that

n1−δ
[
λFn(tn−1/2)− λF (tn−1/2)− λFn(0)

]
≤ n1−δ

[
λFn(t1n−1/2)− λF (t2n−1/2)− λFn(0)

]
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≤ n1−δ
[
λFn(t1n−1/2)− λFn(0)−

{
λF (t1n−1/2)− λF (0)

}
+ λF (t1n−1/2)− λF (t2n−1/2)

]
= n1−δ

[
λFn(t1n−1/2)− λFn(0)−

{
λF (t1n−1/2)− λF (0)

}]
+ n1−δ

[
λF (t1n−1/2)− λF (t2n−1/2)

]
≤ n1−δ

[
λFn(t1n−1/2)− λFn(0)−

{
λF (t1n−1/2)− λF (0)

}]
+ ε/2, (4.19)

for all n greater than some n0 if we choose t1 and t2 such that

(t2 − t1)n−1/2+1−δ = 2Kn1/2−δ log n/Ln → 0

as n → ∞. This can be achieved by choosing e.g. Ln = n1/2−δ/2. It follows from (4.19) and
from the Markov inequality that

P

{
sup

|t|<K logn
|n1/2

[
λFn(tn−1/2)− λFn(0)

]
− n1/2

[
λF (tn−1/2)− λF (0)

]
| ≥ εn−1/2+δ

}

≤ P
{

max
ti,i∈1,...,Ln−1

|n1/2
[
λFn(tin−1/2)− λFn(0)

]
− n1/2

[
λF (tin−1/2)− λF (0)

]
| ≥ εn−1/2+δ/2

}

≤
Ln−1∑
i=1

P
{
|n1/2

[
λFn(tin−1/2)− λFn(0)

]
− n1/2

[
λF (tin−1/2)− λF (0)

]
| ≥ εn−1/2+δ/2

}

≤
Ln−1∑
i=1

nq−2qδ

(ε/2)2q
E
(√

n
[
λFn(tin−1/2)− λFn(0)− λF (tin−1/2)

])2q

=
nq−2qδ

(ε/2)2q
n−q

Ln−1∑
i=1

E

 n∑
j=1

Zj(ti, n)

2q

for q = 1, 2, . . . , (4.20)

where Zj(ti, n) denotes ψ(Xj − tin−1/2) − ψ(Xj) − Eψ(Xj − tin−1/2). Clearly, we have that
EZj(ti, n) = 0 and |Zj(ti, n)| ≤ 2K for all i and j.

E

 n∑
j=1

Zj(ti, n)

2q

=
n∑

j1=1

n∑
j2=1

· · ·
n∑

j2q=1

EZj1(ti, n)Zj2(ti, n) . . . Zj2q(ti, n)

Notice that Zj(ti, n), j ∈ 1, . . . , n are independent and bounded random variables. It follows
that

EZj1(ti, n)Zj2(ti, n) . . . Zj2q(ti, n) = 0

if there exists index jk different from all other indeces and

EZj1(ti, n)Zj2(ti, n) . . . Zj2q(ti, n) ≤ [EZ2
1 (ti, n)]jK2q−2j

if there are j different indeces among j1, . . . , j2q, each of them appearing at least twice. This
gives that

E

 n∑
j=1

Zj(ti, n)

2q

≤
q∑
j=1

nj
[
EZ2

1 (ti, n)
]j
K2q−2j = nq

[
EZ2

1 (ti, n)
]q +O(nq−1) (4.21)
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Let’s now investigate establish the asymptotic properties of EZ2
1 (ti, n). We have

EZ2
1 (ti, n) = E

[
ψ(X1 − tin−1/2)− ψ(X1)− Eψ(X1 − tin−1/2)

]2

= E
[
ψ(X1 − tin−1/2)− ψ(X1)

]2
−
[
Eψ(X1 − tin−1/2)

]2

≤ 2ψ(h)E
[
ψ(X1 − tin−1/2)− ψ(X1)

]
−
[
λ′F (θ)tin−1/2 + o(tin−1/2)

]2

= 2ψ(h)λ′F (θ)tin−1/2 + o(tin−1/2) = O(tin−1/2). (4.22)

Combining (4.20) with (4.21) and (4.22) gives that there exists n1 such that for all n > n1

we have that

P

{
sup

|t|<K logn
|n1−δ

[
λFn(tn−1/2)− λFn(0)

]
− n1−δ

[
λF (tn−1/2)− λF (0)

]
| ≥ ε

}

≤ nq−2qδ

(ε/2)2q
n−q

Ln−1∑
i=1

nq
[
EZ2

1 (ti, n)
]q =

nq−2qδ

(ε/2)2q

Ln−1∑
i=1

[
EZ2

1 (ti, n)
]q

= LnO(nq/2−2qδ log n) = O(nq/2−2qδ+1−δ/2 log n), (4.23)

where the number of grid points was set to Ln = n1/2−δ/2. Notice that it is necessary to have
δ > 1/4 if we want that the term on the right hand side of (4.23) converges to 0.

To finish the proof we choose

q >
3/2 + η + δ/2

2δ − 1/2

which, together with δ > 1/4, guarantees that

q/2− 2qδ + 1− δ/2 < −1− η

which gives that the term on the right hand side of (4.23) converges to zero faster than n−1−η.
Notice that the supremum in the lemma is taken over the set {t : |t| < K log n}, because we

need tn−1/2 → 0 in order to have the property (4.22).
2

The following Lemma 4.2.2 gives us exponential upper bound for the probability that the
M -estimator is far from the true parameter θ.

Lemma 4.2.2 Let us assume that the conditions of Section 4.1 hold. Then, for every c1 > 0
and 0 < t <

√
nc1, we have that

Pθ{
√
n|Mn − θ| > t} ≤ 2e−c2t

2
, (4.24)

where

c2 ≥ 2[f(K + c1)]2. (4.25)



18 CHAPTER 4. LOCATION PARAMETER

Proof: See Lemma 3.1 in Jurečková and Sen (1982).
2

Combining Lemmas 4.2.1 and 4.2.2, we get the following Corollary 4.2.2 which we will use
in the proof of Theorem 4.3.3.

Corollary 4.2.2 Under the assumptions of Section 4.1, we get for every t ∈ < fixed and for
every sequence of random variables {Sn}nn=1, Sn → S, [P ] a.s. that

lim
n→∞

n1/2λFn(Mn + Sntn
−1/2) = Stλ′F (θ) [P ] a.s. (4.26)

Proof: Notice that
n1/2λFn(Mn + Sntn

−1/2)

= n1/2
[
λFn

(
θ +

{√
n(Mn − θ) + (Sn − S)t+ Stn−1/2

})
− λFn(θ + (Mn − θ))

]
.

We can use Lemma 4.2.2 with c1 = 1, because there always exists n0 such that for all n > n0

we have

0 <
√

2
c2

log n <
√
n.

In this situation, Lemma 4.2.2 leads that

Pθ

{√
n(Mn − θ) >

√
2
c2

log n
}
< 2 exp {−2 log n} = 2n−2

which further implies that there exists n0 such that for all n > n0 we have, [P ] a.s.,

√
n(Mn − θ) <

√
2
c2

log n < log n.

Using the assumptions, we can establish similar result for tn−1/2(Sn − S). This means that we
can use Lemma 4.2.1. We get that there exists n0 such that for all n > n0

P
{

sup |n1/2
[
λFn(Mn + Sntn

−1/2)− λFn(Mn)
]
− n1/2

[
λF (Mn + Sntn

−1/2)− λF (Mn)
]
| ≥ ε

}
< n1−δ

which implies that, [P ] a.s.,

|n1/2
[
λFn(Mn + Sntn

−1/2)− λFn(Mn)
]
− n1/2

[
λF (Mn + Sntn

−1/2)− λF (Mn)
]
| → 0 (4.27)

Using the differentiability of λF (.) in some neighbourhood of θ, the almost sure convergence of
Mn and Sn, and the Taylor expansion for the second difference in (4.27), and letting n tend to
infinity concludes the proof.

2

In order to investigate the asymptotic properties of the M -estimators, we have to establish
also some basic properties of estimators of the asymptotic variance of the M -estimator. Some
of these properties (under our assumptions) were investigated in Jurečková and Sen (1982).
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Lemma 4.2.3 Let us assume that the conditions of Section 4.1 hold. For any ε > 0 and δ > 0,
there exist positive constants c and n0 such that

P

| 1n
n∑
i=1

ψ2(Xi −Mn)−
∞∫
−∞

ψ2(x− θ)dF (x)| > ε

 ≤ cn−1−δ ∀n > n0 (4.28)

Proof: See Lemma 3.6 in Jurečková and Sen (1982).
2

For being able to prove that bootstrap for M -estimators works, we need the following mod-
ification of Lemma 4.2.3.

Lemma 4.2.4 Let us assume that the conditions of Section 4.1 hold. For any ε > 0 and δ > 0
and for any sequence of random variables {Sn} such that Sn → S, [P ] a.s., there exist positive
constants c and n0 such that

P

| 1n
n∑
i=1

ψ2(Xi −Mn − zSnn−1/2)−
∞∫
−∞

ψ2(x− θ)dF (x)| > ε

 ≤ cn−1−δ ∀n > n0.

(4.29)

Proof: This can be seen immediately after a straightforward minor modification of the proof
of Lemma 3.6 in Jurečková and Sen (1982).

2

Let’s define

S2
n =

1
n

n∑
i=1

ψ2(Xi −Mn), (4.30)

the following corollary gives us the almost sure convergence of this estimator to
∫
ψ2(x−θ)dF (x).

Corollary 4.2.3 Let us assume that the assumptions of Section 4.1 are fulfilled and that {Sn}
is sequence of random variables such that Sn → S, [P ] a.s.. Then we have

lim
n→∞

Sn = lim
n→∞

1
n

n∑
i=1

ψ2(Xi −Mn) =

∞∫
−∞

ψ2(x− θ)dF (x) [P ] a.s. (4.31)

and

lim
n→∞

1
n

n∑
i=1

ψ2(Xi −Mn − zSnn−1/2) =

∞∫
−∞

ψ2(x− θ)dF (x) [P ] a.s. (4.32)

Proof: It follows from Lemmas 4.2.3 and 4.2.4. The proof is exactly the same as the proof of
Corollary 4.2.1.

2
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4.3 Bootstrap for M-estimators

The bootstrap for M -estimators goes along the same lines as the bootstrap for the sample mean
introduced in section 1.1.4. As before, the unknown exact distribution of the M -estimator Mn is
approximated by the distribution of M∗n which is the M -estimator calculated from the bootstrap
sample X∗1 , . . . , X

∗
n.

The M -estimator Mn is calculated from the measurements X1, X2, . . . , Xn. Denote by Fn
the empirical distribution function of Xi’s, Fn(x) = (1/n)

∑n
i=1 I(Xi ≤ x) and let us denote by

P ∗ the corresponding probability measure (conditional on X1, . . . , Xn).
Now random sample X∗1 , . . . , X

∗
n from the distribution with d.f. Fn is drawn. Let us denote

by M∗n the M-estimator calculated from X∗1 , . . . , X
∗
n. In a number of situations, the distribution

of
√
n(M∗n−Mn) approximates the distribution of

√
n(Mn−θ) with great accuracy. Sometimes,

explicit formula for the distribution of
√
n(M∗n −Mn) exists, but more often approximations or

simulation approaches are needed.
The critical points of the bootstrap distribution of M∗n can be used as approximation of the

unknown critical points of the distribution of the M -estimator Mn. We will use the bootstrap
critical points which will be defined in Section 4.4 for the construction of the confidence regions
which should be more accurate than the confidence regions based on the asymptotic normal
distribution of Mn.

The properties of bootstrap for M -estimators were already investigated e.g. by Lahiri (1992)
or Shorack (1982). Some results can be found also in Shao and Tu (1995). Unfortunatelly, the
usual assumptions used in the literature do not cover M -estimators with discontinuous score
functions which will be investigated here.

Theorem 4.3.1 below states the almost sure consistency of the conditional distribution of the
bootstrap M -estimator M∗n.

Theorem 4.3.1 Let the assumptions of Section 4.1 be satisfied. Let M∗n be the M-estimator
based on the bootstrap sample from the empirical distribution Fn(x) and let Mn be the M-
estimator based on the random sample from the distribution F (x− θ). Then

lim
n→∞

P ∗ {|M∗n −Mn| > ε} = 0 [P ] a.s. (4.33)

Proof: Let us investigate

lim sup
n→∞

P ∗{M∗n ≤Mn − ε} (4.34)

By monotonicity of ψ(x) and the definition of M∗n, we can write that

lim sup
n→∞

P ∗{M∗n ≤Mn − ε}

= lim sup
n→∞

P ∗

{
1
n

n∑
i=1

ψ(X∗i −Mn + ε) ≤ 1
n

n∑
i=1

ψ(X∗i −M∗n)

}

= lim sup
n→∞

P ∗

{
1
n

n∑
i=1

ψ(X∗i −Mn + ε) ≤ 0

}
. (4.35)
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Tchebyschev’s inequality and standard tools give

P ∗

{
| 1
n

n∑
i=1

[ψ(X∗i −Mn + ε)− E∗ψ(X∗i −Mn + ε)]| > η

}

≤ 1
η2
V ar∗

{
1
n

n∑
i=1

ψ(X∗1 −Mn + ε)

}
=

1
η2n

V ar∗ {ψ(X∗1 −Mn + ε)}

=
1
η2n

{
E∗[ψ(X∗1 −Mn + ε)]2 − [E∗ψ(X∗1 −Mn + ε)]2

}
=

1
η2n

 1
n

n∑
i=1

[ψ(Xi −Mn + ε)]2 −

[
1
n

n∑
i=1

ψ(Xi −Mn + ε)

]2


≤ 1
η2n

{
1
n

n∑
i=1

[ψ(Xi −Mn + ε)]2
}
≤ 1
η2n

K2 → 0, as n→∞. (4.36)

Notice that for ε > 0 small enough, as n→∞,

E∗ψ(X∗i −Mn + ε) =
1
n

n∑
i=1

ψ(Xi −Mn + ε)→ Eψ(X1 − θ + ε) > 0 [P ] a.s. (4.37)

Combining (4.36) and (4.37) gives that the limit considered in (4.35) is 0, [P ] almost surely.
Similarly, it can be shown that also P ∗{M∗n > Mn + ε} → 0, [P ] almost surely. Combining this
and (4.34) yields the desired result in (4.33).

2

4.3.1 Asymptotic Properties of Bootstrap for M-estimators

In Theorem 4.3.2 we will state the almost sure convergence of the estimate of the asymptotic
variance of the M -estimator. Define

σ̂2
n =

(1/n)
∑n

i=1 ψ
2(Xi −Mn)(√

n[λFn(Mn − tn−1/2)− λFn(Mn + tn−1/2)]/2t
)2 . (4.38)

Recall that the numerator of (4.38) has been already denoted by S2
n, see (4.30).

Theorem 4.3.2 Let the assumptions of Section 4.1 be satisfied. Then we have, for any fixed
0 < t <∞,

√
n[λFn(Mn + tn−1/2)− λFn(Mn − tn−1/2)]→ 2tλ′F (θ) [P ] a.s., (4.39)

S2
n =

1
n

n∑
i=1

ψ2(Xi −Mn)→ σ2(ψ, F )λ′F (θ) [P ] a.s., (4.40)

and

σ̂2
n → σ2(ψ, F ) [P ] a.s. (4.41)



22 CHAPTER 4. LOCATION PARAMETER

Proof: The first part (4.39) of the theorem is a direct consequence of the Corollary 4.2.2. The
almost sure convergence in (4.40) and (4.41) follows immediately from Corollary 4.2.3 and (4.39).

2

Remark 1 Assuming that the conditions of Section 4.1 hold with the jump component ψ2(x) ≡
0. Assume that the continuous component ψ1(x) has bounded derivative inside the interval
(−h, h), where h is given by (4.9). Then we have

1
n

n∑
i=1

ψ′(Xi −Mn)→ λ′F (θ) [P ] a.s. (4.42)

This result is valid because of the assumed symmetry. Notice that this remark gives an estimator
of λ′F (θ) for the Huber’s score function.

The main assertion in this section says that the bootstrap “works” in our situation.

Theorem 4.3.3 Let the assumptions of Section 4.1 be satisfied. Let M∗n be the M-estimator
based on the bootstrap sample from the empirical distribution Fn(x) and let Mn be the M-
estimator based on the random sample from the distribution F (x). Then

lim
n→∞

sup
x∈<
|P ∗

{√
n(M∗n −Mn) < x

}
− Φ[x/σ̂n]| = 0 [P ] a.s., (4.43)

lim
n→∞

sup
x∈<
|P ∗

{√
n(M∗n −Mn) < x

}
− Φ[xλ′Fθ(θ)/Sn]| = 0 [P ] a.s., (4.44)

and

lim
n→∞

sup
x∈<
|P ∗

{√
n(M∗n −Mn) < x

}
− P

{√
n(Mn − θ) < x

}
| = 0 [P ] a.s., (4.45)

where Φ(x) denotes the distribution function of the standard normal distribution and where σ̂2
n

is defined by (4.38).

Proof: Let us investigate the behaviour of P ∗(
√
n(M∗n −Mn) < x). First recall the defini-

tion (1.42) of λFθ(.). It immediately follows from the definition of the M−estimators and from
the assumed monotonicity of ψ(x− t) that

{λF ∗n (t) < 0} ⊆ {M∗n ≤ t} ⊆ {λF ∗n (t) ≤ 0}, (4.46)

for all t ∈ <, where F ∗n denotes the empirical distribution function of X∗1 , X
∗
2 , . . . , X

∗
n, which

implies that {
λF ∗n (Mn + zσ̂nn

−1/2) < 0
}

⊆
{
n1/2(M∗n −Mn) ≤ zσ̂n

}
⊆
{
λF ∗n (Mn + zσ̂nn

−1/2) ≤ 0
}
.
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In order to simplify notation, we denote

Tz,n = Mn + zσ̂nn
−1/2. (4.47)

We investigate the limit of

P ∗
{
λF ∗n (Tz,n) < 0

}
= P ∗

{√
nλF ∗n (Tz,n) < 0

}
= P ∗

{
1√
n

n∑
i=1

ψ(X∗i − Tz,n) < 0

}

= P ∗

{
1√
n

n∑
i=1

ψ(X∗i − Tz,n)− λFn(Tz,n)√
V ar∗ψ(X∗1 − Tz,n)

< −
√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)

}
(4.48)

We start with separate treatment of the term

−
√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)
. (4.49)

Concerning the numerator of (4.49), we have

√
n (λFn(Tz,n)− λFn(Mn)) =

√
n
(
λFn(Mn + zσ̂nn

−1/2)− λFn(Mn)
)
. (4.50)

Now we use the Corollary 4.2.2 and the a.s. convergence of σ̂2
n guaranteed by Theorem 4.3.2 to

claim that the limit of (4.50) is equal to

zσ(ψ, F )λ′F (θ) [P ] a.s. (4.51)

It remains to find the limit of the denominator of (4.49)

V ar∗ψ(X∗1 − Tz,n)

=
1
n

n∑
i=1

ψ2(Xi − Tz,n)−

[
1
n

n∑
i=1

ψ(Xi − Tz,n)

]2

=
1
n

n∑
i=1

ψ2(Xi − Tz,n)− [λFn(Tz,n)]2 . (4.52)

The first term on the right hand side of (4.52) has been already investigated in the Corollary 4.2.3
and it has been shown that it converges to Eψ2(X1 − θ), [P ] a.s. The second part on the right
hand side of (4.52) converges to 0 (see formulas (4.50) and (4.51)). Therefore, we can write

lim
n→∞

V ar∗ψ(X∗1 − Tz,n) = Eψ2(X1 − θ) =
∫
<

ψ2(x− θ)dF (x− θ) = [λ′F (θ)]2σ2(ψ, F ) [P ] a.s.

(4.53)
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Combining (4.51) and (4.53) (notice that λ′F (θ) is negative) yields that

lim
n→∞

−
√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)
= z [P ] a.s. (4.54)

This gives that

|P ∗
{

1√
n

n∑
i=1

ψ(X∗i − Tz,n)− λFn(Tz,n)√
V ar∗ψ(X∗1 − Tz,n)

< −
√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)

}

−P ∗
{

1√
n

n∑
i=1

ψ(X∗i − Tz,n)− λFn(Tz,n)√
V ar∗ψ(X∗1 − Tz,n)

< z

}
|

≤ P ∗
{

1√
n

n∑
i=1

ψ(X∗i − Tz,n)− λFn(Tz,n)√
V ar∗ψ(X∗1 − Tz,n)

∈

(
z − |z +

√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)
|,

z + |z +
√
nλFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)
|

)}
(4.55)

This means that in order to establish the asymptotic properties of (4.48), it is sufficient to
investigate the properties of

P ∗

{
1√
n

n∑
i=1

ψ(X∗i − Tz,n)− λFN (Tz,n)√
V ar∗ψ(X∗1 − Tz,n)

< z

}
. (4.56)

The summands in (4.56) are i.i.d. random variables with mean 0 and variance 1. We may use
the Lindeberg–Feller Triangular Array Central Limit Theorem. Let us verify the Lindeberg’s
condition

lim
n→∞

∫
|
ψ(x−Tz,n)−λFn (Tz,n)√

V ar∗ψ(X∗1−Tz,n)
|>ε
√
n

[
ψ(x− Tz,n)− λFn(Tz,n)√

V ar∗ψ(X∗1 − Tz,n)

]2

dFn(x) = 0 (4.57)

or equivalently using (4.53)

lim
n→∞

∫
|ψ(x−Tz,n)−λFn (Tz,n)|>ε

√
n

[ψ(x− Tz,n)− λFn(Tz,n)]2dFn(x) = 0. (4.58)

It is easy to see that this condition is fulfilled, because the function ψ is bounded by the
assumptions. Thus the Lindeberg’s condition is fulfilled and

P ∗{
√
n(M∗n −Mn) ≤ zσ̂n} → Φ(z) [P ] a.s.

for every z fixed. By the monotonicity of

P ∗{
√
n(M∗n −Mn) ≤ zσ̂n}
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as a function of z together with the continuity, monotonicity and existence and boundedness of
the derivative of its limit Φ(z) we get that

lim
n→∞

sup
x∈<
|P ∗{
√
n(M∗n −Mn) ≤ zσ̂n} − Φ(z)| = 0 [P ] a.s. (4.59)

and we obtain formula (4.43) if we put x = zσ̂n. 2

Remark 2 The estimate σ̂2
n can be replaced by any estimate of the form

S2(ψ, Fn) =
∫
ψ2(x− θ)dFn(x)[

λ̂′n

]2 , (4.60)

where λ̂′n is some strongly consistent estimator of λ′F (θ), see formula (4.39) above.

Remark 3 Theorem 4.3.3 concerns the standardized bootstrap. A similar theorem for the stu-
dentized bootstrap can be proved only with minor modification of the proof of Theorem 4.3.3. We
get that

lim
n→∞

sup
x∈<
|P ∗

(√
n
M∗n −Mn

S(ψ, F ∗n)
< x

)
− Φ(x)| = 0 [P ] a.s., (4.61)

where

S(ψ, F ∗n) =

√√√√√ 1
n

∑n
i=1[ψ(X∗i −M∗n)]2[
λ̂′F ∗n (M∗n)

]2 . (4.62)

Proof: Theorem 4.3.1 implies that

lim
n→∞

P ∗ {|S(ψ, F ∗n)− σ̂n| > ε} = 0 [P ] a.s. (4.63)

Thus we can write that

lim
n→∞

P ∗
(√

n
M∗n −Mn

S(ψ, F ∗n)
< x

)
= lim

n→∞
P ∗
(√

n
M∗n −Mn

σ̂n
< x

)
, (4.64)

notice that the properties of right hand side of (4.64) have been already established in Theo-
rem 4.3.3.

2

Remark 4 It is also easy to prove similar theorem for the studentized M-estimator. The stu-
dentization ensures that the M-estimator is not scale dependent. This is achieved by calculating
the scale estimate, e.g. the Mean Absolute Deviation (MAD),

Sn,MAD = MADn/Φ−1(0.75) = medi {|Xi −medj(Xj)|} /Φ−1(0.75) (4.65)

and by defining the M -estimator as the solution of the studentized equation
n∑
i=1

ψ

(
Xi − t
Sn,MAD

)
= 0. (4.66)
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The following two lemmas will be useful in the next section in the proof of Theorem 4.4.1
which will give the basic asymptotic properties of the robust three-stage procedure.

Lemma 4.3.1 Under the assumptions of Section 4.1, for every 0 < c1 < ∞, 0 < α < 1, and
c3 < t <

√
mc4, we have

P [P ∗(
√
m|M∗m −Mm| > t) > α] ≤ 2 exp

{
−
[
−
√
− logα√
2ψ(h)

−
√
c2

2
t

]2
}

+ 4 exp{−c2t
2/4},

where c2 = 2[f(h+ c1)]2 > 0, and where the constant ψ(h) is given by (4.9),

c3 =
√
− logα√
c2/2ψ(h)

, (4.67)

and

c4 = min

{
2c1,

√
2c1√

c2ψ(h)

}
. (4.68)

Proof:

P ∗(
√
m|M∗m −Mm| > t) = P ∗(M∗m > Mm + tm−1/2) + P ∗(M∗m < Mm − tm−1/2) (4.69)

We investigate only the first term on the right hand side of (4.69), the treatment of the other term
is similar and it gives the same result. Using the definition of the M -estimator and Theorem 2
of Hoeffding (1963) (see Lemma A.2.5 in Appendix) we have that

P ∗(M∗m > Mm + tm−1/2)

≤ P ∗m

{
1
m

m∑
i=1

ψ(X∗i −M∗m) ≤ 1
m

m∑
i=1

ψ(X∗i −Mm − tm−1/2)

}

= P ∗m

{
1
m

m∑
i=1

ψ(X∗i −Mm − tm−1/2) ≥ 0

}

= P ∗m

{
1
m

m∑
i=1

[
ψ(X∗i −Mm − tm−1/2)− E∗mψ((X∗i −Mm − tm−1/2)

]

≥

[
− 1√

m

m∑
i=1

ψ(Xi −Mm − tm−1/2)

]
/
√
m

}

≤ exp

−
[

1√
m

m∑
i=1

ψ(Xi −Mm − tm−1/2)

]2
 ,

for all 0 ≤ t ≤ c1
√
m. This means that

P [P ∗(M∗m > Mm + t) > α]
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≤ P

exp

−
[

1√
m

m∑
i=1

ψ(Xi −Mm − tm−1/2)

]2
 > α


= P

[
− 1√

m

m∑
i=1

ψ(Xi −Mm − tm−1/2) <
√
− logα

]

≤ P

[{
− 1√

m

m∑
i=1

ψ(Xi − θ − tm−1/2/2) <
√
− logα

}⋂{√
m|Mm − θ| < t/2

}]

+P

[{
− 1√

m

m∑
i=1

ψ(Xi −Mm − tm−1/2) <
√
− logα

}⋂{√
m|Mm − θ| ≥ t/2

}]

≤ P

[
− 1√

m

m∑
i=1

ψ(Xi − θ − tm−1/2/2) <
√
− logα

]
+ P

[√
m|Mm − θ| ≥ t/2

]
(4.70)

Using Lemma 4.2.2, the second probability in (4.70) is bounded by

P
[√
m|Mm − θ| ≥ t/2

]
≤ 2 exp

{
−c2t

2/4
}
. (4.71)

for 0 < t < 2c1
√
m. It remains to investigate the behaviour of the first term in (4.70). The

following inequality was established in the proof of Lemma 3.1 in Jurečková and Sen (1982):

−Eψ(X1 − θ −
t

2
m−1/2) ≥

√
2c2ψ(h)

t

2
m−1/2. (4.72)

Using (4.72) and the Hoeffding inequality, we have that

P

[
− 1√

m

m∑
i=1

ψ(Xi − θ −
t

2
m−1/2) <

√
− logα

]

= P

[
1
m

m∑
i=1

ψ(Xi − θ −
t

2
m−1/2)− Eψ(Xi − θ −

t

2
m−1/2)

> −
√
− logα

m
− Eψ(Xi − θ −

t

2
m−1/2)

]

≤ P

[
1
m

m∑
i=1

ψ(Xi − θ −
t

2
m−1/2)− Eψ(Xi − θ −

t

2
m−1/2) > −

√
− logα

m
+
√

2c2ψ(h)
t

2
m−1/2

]

≤ exp

{
−2
[
−
√
− logα+

√
2c2ψ(h)t/2

]2
[2ψ(h)]2

}
= exp

{
−
[
−
√
− logα√
2ψ(h)

+
√
c2

2
t

]2
}

(4.73)

for all t such that
0 < t < 2c1

√
m

and
0 < −

√
− logα+

√
2c2ψ(h)t/2 < c1

√
m,

where h (and ψ(h)) are given by (4.9). Combining (4.69), (4.70), (4.71), and (4.73) leads the
desired result.

2
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Lemma 4.3.2 Under assumptions of Section 4.1, there exists m0 such that for all m > m0 and
t > 2hm1/2

P
(
P ∗
{√

m|M∗m −Mm| > t
}
> α

)
≤ 3

[
4F (θ − tm−1/2 − h)(1− F (θ − tm−1/2/2− h))

]m
,

where h is given by (4.9).

Proof: Using the technique of proof of Lemmas 3.2 and 3.3. in Jurečková and Sen (1982), we
can write

P ∗
{√

m|M∗m −Mm| > t
}
≤ 2P ∗

{
X∗m,m/2+1 ≥Mm + tm−1/2 − h

}
≤ 2

[
4Fm(Mm + tm−1/2 − h){1− Fm(Mm + tm−1/2 − h)}

]m
It follows that

P
(
P ∗
{√

m|M∗m −Mm| > t
}
> α

)
≤ P

([
4Fm(Mm + tm−1/2 − h){1− Fm(Mm + tm−1/2 − h)}

]m
> α/2

)
≤ P

[
1− Fm(Mm + tm−1/2 − h) >

1
4

(α
2

)1/m
]

≤ P
[
1− Fm(θ + tm−1/2/2− h) >

1
4

(α
2

)1/m
]

+ P
[√
n|Mm − θ| ≥ t/2

]
= P

[
Fm(θ + tm−1/2/2− h) < 1− 1

4

(α
2

)1/m
]

+ P
[√
n|Mm − θ| ≥ t/2

]
≤ P

[
X(m:[m(1−ε)]◦) > θ + tm−1/2/2− h

]
+ P

[√
n|Mm − θ| ≥ t/2

]
(4.74)

for all m > m0, where 0 < ε < 1/4 and m0 are such that

1− 1
4

(α
2

)1/m0

< 1− ε.

Jurečková and Sen (1982) investigated the behaviour of the second probability in (4.74). They
showed that, for t > 2hm1/2, it is bounded by

2
[
4F (θ − tm−1/2/2− h)(1− F (θ − tm−1/2/2− h))

]m
. (4.75)

Using their technique, we investigate also the first probability in (4.74). For the simplicity of
notation, we denote

a = F (θ + tm−1/2/2− h).

Notice that a > 1/2 for t > 2hm1/2. Using Theorem 1 of Hoeffding (1963) with the bounds for
a > 1/2, we have

P
[
X(m:[m(1−ε)]◦) > a

]
≤ P

[
1
m
Bi(m,a)− a > 1− ε

]

≤ exp
{
−m(1− ε)2

2a(1− a)

}
≤ [exp {−1/4a(1− a)}]m ≤ [4a(1− a)]m (4.76)

Combining (4.74), (4.75), and (4.76) yields the lemma.
2
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4.4 Three-stage Procedure Based on Bootstrap

For the sequential procedure, we need to estimate quantiles of the distribution of the parameter
of interest. The easiest approach is to use the normal approximation. The asymptotic normal
critical point ξN (α) is defined as the 1− α/2 quantile of the standard Normal distribution (i.e.
u1−α/2 in the above used notation).

Using bootstrap approximations, we can estimate the quantiles of the distribution of the
standardized (or studentized) M -estimator more closely. The standardized bootstrap critical
point ξAm(α) is defined as 1 − α quantile of the (centered and standardized) conditional distri-
bution of

√
m
|M∗m −Mm|

σ̂m
, (4.77)

where σ̂2
m is the estimate of the asymptotic variance of the M -estimator which has been already

defined in the formula (4.38).
The studentized bootstrap critical point ξUm(α) is defined as 1− α quantile of the (centered

and studentized) conditional distribution of

√
m
|M∗m −Mm|

σ̂∗m
. (4.78)

These critical points can be used to define the following three-stage procedure. In the first
stage we fix the parameter which controls the sample size in the first stage γ > 0, and we draw

m = m(d) = max
{

2,
[(u1−α/2

d

)2/(1+γ)
]◦

+ 1
}

(4.79)

observations. These observations are used to determine σ̂2
m and the standardized bootstrap

critical points ξAm(α) given by (4.77).
The intermediate sample size N1(d) based on the standardized bootstrap critical points is

then given as

N1(d) = max

{
m,

[
k

(
ξAm(α)σ̂m

d

)2
]◦

+ 1

}
, (4.80)

where 0 < k < 1 is the parameter controlling the sample size in this stage.
Finally, we draw next N2(d)−N1(d) observations, where

N2(d) = max

N1(d),

(ξAN1
(α)σ̂N1

d

)2
◦ + 1

 (4.81)

and obtain the 1−α confidence interval (MN2−d,MN2 +d) based on the standardized bootstrap
critical points.

The construction of fixed-width confidence intervals based on studentized bootstrap critical
points (4.78) is analogous.
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4.4.1 Basic Properties

Theorem 4.4.1 states basic asymptotic properties of the robust three-stage procedure (4.79)–
(4.81) based on the standardized bootstrap critical points.

Theorem 4.4.1 Suppose that the conditions of Section 4.1 hold. Then the three-stage procedure
based on bootstrapping M-estimators has following asymptotic properties:

(i) lim
d→0+

N2(d) =∞ [P ] a.s., (4.82)

(ii) lim
d→0+

N2(d)
cM (d)

= 1 [P ] a.s., (4.83)

(iii) lim
d→0+

P (MN2(d) − d < θ < MN2(d) + d) = 1− α, (4.84)

(iv) lim
d→0+

E

(
N2(d)
cM (d)

)
= 1, (4.85)

where cM (d) is the asymptotically optimal number of observations for fixed-width confidence
intervals based on M -estimators given by (1.44).

Proof: Denote by

LAn (x) = P ∗n

{√
n
|M∗n −Mn|
S(ψ, Fn)

≤ x
}

(4.86)

the distribution function of the absolute value of the standardized bootstrap statistics. By
Theorem 4.3.3 we have that

lim
n→∞

LAn (x) =
{

2Φ(x)− 1, if x ≥ 0
0 otherwise.

[P ] a.s. (4.87)

Recall that ξAn (α) denotes the 1− α quantile of LAn . By the strict monotonicity and continuity
of Φ(x) and by e.g. Lemma 1.5.6 in Serfling (1980) we have for all t ∈ (0, 1)

lim
n→∞

ξAn (t) = u1−t/2 [P ] a.s. (4.88)

where the symbol u1−t/2 denotes the 1−t/2 quantile of the standard normal distribution. Notice
that limd→0+m(d) =∞ and therefore

lim
d→0+

ξAm(d)(α) = u1−α/2 [P ] a.s. (4.89)

This, together with consistence of σ̂2
m(d) and the definition of N1(d) implies that

lim
d→0+

N1(d) =∞ [P ] a.s. (4.90)

which in turn implies that also

lim
d→0+

N2(d) =∞ [P ] a.s. (4.91)

The definition (4.81) of the stopping time N2(d) implies following inequalities.[
ξAN1

(α)σ̂N1

d

]2

< N2(d) ≤

[
ξAN1

(α)σ̂N1

d

]2

+ 1
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+N1(d)I
[
(ξAN1

(α)σ̂N1)2 ≤ k(ξAm(α)σ̂m)2 +md2 + d2
]

(4.92)

Next, by the strong consistency of ξAn σ̂n as an estimator of u1−α/2σ(ψ, F ) we have for every
ε > 0

lim
m→∞

P (|ξAn σ̂n − u1−α/2σ| < ε,∀n > m) = 1, (4.93)

where we abbreviate σ(ψ, F ) by σ. Let us fix δ > 0. We can choose d0 > 0 such that

P

{
|(ξAn (α)S(ψ, Fn))2 − (u1−α/2σ)2| <

(1− k)(u1−α/2σ)2

3
,∀n > m(d0)

}
≥ 1− δ (4.94)

and

m(d0)d2
0 + d2

0 ≤
(1− k)(u1−α/2σ)2

3
. (4.95)

Now, using the facts that N1 ≥ m(d) and k ∈ (0, 1) we have

P
{
I
[
(ξAN1

(α)σ̂N1)2 ≤ k(ξAm(α)σ̂m)2 +md2 + d2
]

= 0,∀d > d0

}
= P

{
(ξAN1

(α)σ̂N1)2 > k(ξAm(α)σ̂m)2 +md2 + d2,∀d > d0

}
≥ P

{
(u1−α/2σ)2 −

(1− k)(u1−α/2σ)2

3
≥ k

[
(u1−α/2σ)2 +

(1− k)(u1−α/2σ)2

3

]

+
(1− k)(u1−α/2σ)2

3

}
× P

{
|(ξAn S(ψ, Fn))2 − (u1−α/2σ)2| <

(1− k)(u1−α/2σ)2

3
,∀n > m(d0)

}

≥ 1− δ (4.96)

This says that

P
{
I
[
(ξAN1

(α)σ̂N1)2 ≤ k(ξAm(α)σ̂m)2 +md2 + d2
]

= 0,∀d < d0

}
→ 1

as d0 → 0+ and that is equivalent to

lim
d→0

I
[
(ξAN1

(α)σ̂N1)2 ≤ k(ξAm(α)σ̂m)2 +md2 + d2
]

= 0 [P ] a.s.

which in turn implies that there exists d0 such that for all d > d0

I
[
(ξAN1

(α)σ̂N1)2 ≤ k(ξAm(α)σ̂m)2 +md2 + d2
]

= 0 [P ] a.s. (4.97)

Combining (4.92) and (4.97) leads part (ii) of the theorem.
Part (iii) of the theorem follows from the Slutzky Theorem, Anscombe Theorem and part

(ii).
To verify part (iv) of the theorem it is sufficient to prove uniform integrability of the set

{N2(d)d2}d>0. It suffices to show that there exists d0 > 0 such that

∞∑
l=1

sup
0<d<d0

P{N2(d)d2 > l} <∞. (4.98)
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We can choose d0 such that for every 0 < d < d0 we have([(u1−α/2

d

)2/(1+γ)
]◦

+ 1
)
d2 ≤ l (4.99)

and

2d2 ≤ l (4.100)

which implies that
P (N2(d)d2 > l)

≤ P

{([
(ξAN1

(α)σ̂N1)2

d2

]◦
+ 1

)
d2 > l

}
+ P

{([
k(ξAm(α)σ̂m)2

d2

]◦
+ 1

)
d2 > l

}

= P1,l(d) + P2,l(d). (4.101)

Let us first deal with the second probability.

P2,l(d) ≤ P

{
ξAm(α)σ̂m >

√
l − d2

k

}
≤ P

{
ξAm(α)σ̂m >

√
l

2k

}

= P

{
LAm

(√
l

2kσ̂m

)
< 1− α

}
= P

{
PAm

(
|
√
m(M∗m −Mm)| ≤

√
l

2k

)
< 1− α

}

= P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}
(4.102)

Using Lemma 4.3.1 we have, for all 0 < d < d0,

∞∑
l=1

P2,l(d) =
∞∑
l=1

P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}

=
c3∑
l=1

P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}

+

√
mc4∑

l=c3+1

P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}

+
∞∑

l=
√
mc4

P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}
, (4.103)

where c3 and c4 are given by (4.67) and (4.68), respectively. The first term on the right hand
side of (4.103) is clearly finite (smaller than c3), the finiteness of the second term follows from
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Lemma 4.3.1. It remains to investigate the properties of the third term on the right hand side
of (4.103). Using Lemma 4.3.2, we get that

∞∑
l=
√
mc4

P

{
P ∗m

(
|
√
m(M∗m −Mm)| >

√
l

2k

)
> α

}

≤
∞∑

l=
√
mc4

3

[
4F

(
θ −

√
2l
km
− h

)(
1− F

(
θ −

√
2l
km
− h

))],
(4.104)

where h is given by (4.9). Notice that, for t > 0,

[F (θ − t)(1− F (θ − t))]′ = f(θ − t)[2F (θ − t)− 1] ≤ 0.

Hence, it follows that the term inside the sum in (4.104) is non-increasing in l. This allows us
to show the finiteness of the sum in (4.104) by showing the finiteness of the following integral
for which we have

∞∫
c5m1/2

{
4F
(
θ − t

( x
m

)1/2
− h
)[

1− F
(
θ − t

( x
m

)1/2
− h
)]}m

dx

=
2m
t2

∞∫
tc

1/2
5 m1/4

u {4F (θ − u− h) [1− F (θ − u− h)]}m du

≤ 2
t2

(4c∗l )
1/lm {4F (θ − h) [1− F (θ − h)]}m−1−b

×
∞∫

tc
1/2
5 m1/4

{4F (θ − u− h) [1− F (θ − u− h)]}b du, (4.105)

where c∗l is given by (4.6) and b is any number satisfying b > 1/l. Notice that F (θ − h) < 1/2
which implies that

4F (θ − h) [1− F (θ − h)] < 1.

It follows that
m {4F (θ − h) [1− F (θ − h)]}m−1−b

is uniformly bounded in m and tends to 0 as m→∞.
Finally,

∞∫
tc

1/2
5 m1/4

{4F (θ − u− h) [1− F (θ − u− h)]}b du <∞

by condition (4.7). Hence, the sum in (4.104) is finite. It remains to investigate the convergence
of

∞∑
l=1

sup
0<d<d0

P1,l(d).
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Notice that, by definition, N1(d) ≥ m(d) for all d > 0 which immediately implies that

sup
0<d<d0

P

(
ξAN1(d)(α)σ̂N1(d) >

√
l

2

)
< sup

0<d<d0

P

(
ξAm(d)(α)σ̂m >

√
l

2

)
. (4.106)

Notice that the term on the left hand side is P1,l(d) and the term on the right hand side is exactly
P2,l(d), where k is set to 1. The convergence of the term on the right hand side of (4.106) has
already been established. This proves the desired uniform integrability result and concludes the
proof of the part (iv) of the theorem.

2

4.4.2 Alternative Procedure

We can simplify the procedure by omitting the denominator λ̂′F (θ) of the estimate of the asymp-
totic standard deviation σ̂n, and by standardizing the estimates only with the term Sn,

Sn =

√√√√ 1
n

n∑
i=1

ψ2(Xi −Mn) = λ̂′F (θ)σ̂n,

see the formulas (4.30) and (4.38).
The advantage of this procedure would be its simplicity and greater speed of calculation.

The disadvantage is that we cannot define, without knowledge of the value of the λ′(F, θ), similar
procedure based only on quantiles of normal distribution. Thus, the method considered in this
section cannot be compared with the method based only on normal critical points as directly as
the methods considered in previous sections.

We define the standardized bootstrap critical point ζAm(α) as 1−α quantile of the (centered
and standardized) conditional distribution of

√
m
|M∗m −Mm|

Sm
. (4.107)

The studentized bootstrap critical point ζUm(α) is defined as 1− α quantile of the (centered
and studentized) conditional distribution of

√
m
|M∗m −Mm|

S∗m
. (4.108)

These critical points can be used to define the following three-stage procedure analogously
as in (4.81). In the first stage we draw

m = m(d) = max
{

2,
[(u1−α/2

d

)2/(1+γ)
]◦

+ 1
}

(4.109)

observations.
The intermediate sample size N s

1 (d) based on the standardized bootstrap critical points is
then given as

N s
1 (d) = max

{
m,

[
k

(
ζAm(α)Sm

d

)2
]◦

+ 1

}
, (4.110)
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where 0 < k < 1 is the parameter controlling the sample size in this stage.
Finally, we draw next N s

2 (d)−N s
1 (d) observations, where

N s
2 (d) = max

N s
1 (d),

(ζANs
1
(α)SNs

1

d

)2
◦ + 1

 (4.111)

and obtain the 1 − α confidence interval (MNs
2
− d,MNs

2
+ d) based on the standardized boot-

strap critical points. This procedure is not so complicated as the three-stage procedure defined
in (4.81), because it doesn’t involve estimation of the term λ′F (θ).

In the same way, we can construct a fixed-width confidence intervals based on studentized
bootstrap critical points.

From comparison of the definitions (4.107) of ζAm(α) and (4.77) of ξAm(α) we obtain the
following:

1− α = P ∗
(√

m
|M∗m −Mm|

Sm
< ζAm(α)

)
= P ∗

(√
m
|M∗m −Mm|

σ̂m
< ξAm(α)

)
. (4.112)

Recall that σ̂m = Sm/λ̂
′
F (θ). Thus

ζAm(α) = ξAm(α)/λ̂′F (θ). (4.113)

It follows that the sample sizes N1(d) and N2(d) given by formulas (4.80) and (4.81), respectively,
are equal to the sample sizes N s

1 (d) and N s
2 (d) which are given by formulas (4.110) and (4.111).

The sequential procedure (4.81) based on critical points ξAn (α) gives exactly the same results
as the procedure (4.111) which is based on critical points ζAn (α) and which is computationally
simpler.

The critical points ζAm(α) can be calculated more easily than the critical points ξAm(α) because
we do not have to calculate any estimate of λ′F (θ) any more. Notice also that the estimate of
λ′F (θ) does not appear in the calculation of the stopping times in formulas (4.110) and (4.111).
However, keeping in mind the formula (4.113), we see that the asymptotic properties of ζAm(α)
still depend on the asymptotic behaviour of λ̂′F (θ).

The asymptotic properties of the three-stage procedure (4.111) are simple corollary of (4.113)
and we state them in the following Theorem 4.4.2.

Theorem 4.4.2 Suppose that the conditions of Section 4.1 hold. Then the three-stage procedure
based on bootstrapping M-estimators defined by (4.111) has the following asymptotic properties:

(i) lim
d→0+

N s
2 (d) =∞ [P ] a.s., (4.114)

(ii) lim
d→0+

N s
2 (d)

cM (d)
= 1 [P ] a.s., (4.115)

(iii) lim
d→0+

P (MNs
2 (d) − d < θ < MNs

2 (d) + d) = 1− α, (4.116)

(iv) lim
d→0+

E

(
N s

2 (d)
cM (d)

)
= 1 (4.117)

Proof: The proof is corollary of (4.113) and of Theorem 4.4.1.
2
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4.5 More Asymptotics for the Procedure Based on Sample Mean

In this section, we want to investigate the asymptotic behaviour of the three-stage procedure
based on sample mean which was proposed by Aerts and Gijbels (1993) and which we described
in Chapter 1 in Subsection 1.1.4. We will start with calculating the expected value of N2 — the
calculations will follow the proof of Theorem 6.3.1 in Ghosh, Mukhopadhyay, and Sen (1997).
The speed of convergence of the bootstrap critical points, using the results of Hall (1992), will
be established in Subsection 4.5.2. Finally, In Subsection 4.5.3 we derive the most important
result in this section, the asymptotic distribution of

√
N2.

The results obtained for the procedure based on the sample mean will be further generalized
in Section 4.6 where we will investigate the asymptotic properties of the robust procedure.

4.5.1 Expected Value of N2 — Procedure Based on Sample Mean

Here, we will calculate the expected value of the stopping time for the three-stage procedure
based on sample mean and the critical points of normal distribution. We have already established
in the proof of Theorem 4.4.1 that there exists d0 such that for all d > d0 we have

N2 =

[
u2

1−α/2σ̂
2
N1

d2

]◦
+ 1.

Therefore it suffices to investigate the following expression

E

{[
u2

1−α/2σ̂
2
N1

d2

]◦
+ 1

}
= E

{
u2

1−α/2σ̂
2
N1

d2
+ 1 +

[
u2

1−α/2σ̂
2
N1

d2

]◦
−
u2

1−α/2σ̂
2
N1

d2

}

=
u2

1−α/2

d2
Eσ̂2

N1
+ 1 + E

{[
u2

1−α/2σ̂
2
N1

d2

]◦
−
u2

1−α/2σ̂
2
N1

d2

}

=
u2

1−α/2

d2
E

1
N1

N1∑
i=1

[(Xi − θ)2 − (X̄N1 − θ)2] + 1 + E

{[
u2

1−α/2σ̂
2
N1

d2

]◦
−
u2

1−α/2σ̂
2
N1

d2

}
We have that

lim
d→0

E

{
1 +

[
u2

1−α/2σ̂
2
N1

d2

]◦
−
u2

1−α/2σ̂
2
N1

d2

}
= 1/2,

see Ghosh, Mukhopadhyay, and Sen (1997), proof of Theorem 6.3.2. For the remaining part,
notice that using Taylor expansion of N−1

1 around [kc(d)]−1 we have

N−1
1 = [kc(d)]−1 − [kc(d)]−1

(
σ̂2
m

σ2
− 1
)

+ oP (d2). (4.118)

Hence,

E
1
N1

N1∑
i=1

(Xi − θ)2 =

E 1
N1

m(d)∑
i=1

(Xi − θ)2 + E


 1
N1

N1∑
i=m(d)+1

(Xi − θ)2

 |X1, . . . , Xm




= E

{
1
N1

m∑
i=1

(Xi − θ)2 +
N1 −m
N1

σ2

}
= σ2 + σ2E

{
1
N1

m∑
i=1

(Xi − θ)2

σ2
− m

N1

}
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= σ2 + σ2E

{
[kc(d)]−1

(
2− σ̂2

m

σ2

) m∑
i=1

(
(Xi − θ)2

σ2
− 1
)

+ o(d2)

}

= σ2 +
σ2

kc(d)
E

{(
2− σ̂2

m

σ2

)
m

(
σ̂2
m

σ2
− 1
)}

+ o(d2)

= σ2 +
m

kc(d)
E(σ2 + (σ2 − σ̂2

m))(σ̂2
m − σ2) + o(d2) = σ2 − mE(σ̂2

m − σ2)2

kc(d)
+ o(d2). (4.119)

Notice that by Taylor expansion we have

N−2
1 = [kc(d)]−2 − 2[kc(d)]−2

(
σ̂2
m

σ
− 1
)

+ oP (d2).

Hence, denoting by X̄m+1:N1 the sample mean of Xm+1, . . . , XN1 , i.e., X̄m+1:N1 = [1/(N1 −
m)]

∑N1
i=m+1Xi, we may write

E

{
1
N1

N1∑
i=1

(X̄N1 − θ)2

}
= E(X̄N1 − θ)2 = E

{
m

N1
(X̄m − θ) +

N1 −m
N1

(X̄m+1:N1 − θ)
}2

= E

(
E

{
m

N1
(X̄m − θ) +

N1 −m
N1

(X̄m+1:N1 − θ)
}2

|X1, . . . , Xm

)

= E

(
1
N2

1

E
{
m2(X̄m − θ)2 + 2m(N1 −m)(X̄m − θ)(X̄m+1:N1 − θ)

+(N1 −m)2(X̄m+1:N1 − θ)2
}
|X1, . . . , Xm

)
= E

{
1
N2

1

[
m2(X̄m − θ)2 + (N1 −m)σ2

]}
= E

{
σ2

N1
+

1
N2

1

[
m2(X̄m − θ)2 −mσ2

]}
= E

{
σ2[kc(d)]−1

(
2− σ̂2

m

σ2

)
+ [kc(d)]−2

(
3− 2

σ̂2
m

σ

)[
m2(X̄m − θ)2 −mσ2

]
+ o(d2)

}

=
σ2

kc(d)
+ o(d2). (4.120)

Combining (4.119) and (4.120) yields that

E
1
N1

N1∑
i=1

(Xi − X̄N1)2 = σ2 − σ2 +mE(σ̂2
m − σ2)2

kc(d)
+ o(d2).

and it follows that

EN2 =
u2

1−α/2

d2

[
σ2 − σ2 +mE(σ̂2

m − σ2)2

kc(d)

]
+

1
2

+ o(1)

= c(d)−
1 +mE

(
σ̂2
m/σ

2 − 1
)2

k
+

1
2

+ o(1). (4.121)



38 CHAPTER 4. LOCATION PARAMETER

Theorem 4.5.1 Assume that Xi’s are i.i.d. random variables with variance 0 < σ2 <∞. Then
we have for the three-stage procedure defined by (1.22)–(1.24) that

EN2 = c(d)−
1 +mE

(
σ̂2
m/σ

2 − 1
)2

k
+

1
2

+ o(1).

Proof: The proof is given earlier in this subsection.
2

4.5.2 Bootstrap Critical Points — Procedure Based on Sample Mean

The asymptotic behaviour of the bootstrap critical points can be established using the Edgeworth
expansions (see Theorems A.3.2 and A.3.3 in the Appendix). The Edgeworth expansion for the
distribution of the sample mean (Hall 1992) can be written in the following way.

Assume that X1, . . . , Xn are i.i.d. random variables such that E|Xi|ν+2 < ∞ and the char-
acteristic function χ(t) of Xi satisfies Cramer’s condition, i.e.,

lim
t→∞

sup |χ(t)| < 1. (4.122)

Then

P

{√
n
X̄n − µ
σ

≤ x
}

= Φ(x) +
ν∑
j=1

n−j/2πj(x)ϕ(x) + o(n−ν/2) (4.123)

uniformly in x where πj is polynomial of degree of 3j−1 with coefficients depending on moments
of Xi up to order j + 2.

The Edgeworth expansion for the bootstrap distribution (together with the rate of conver-
gence) has been established in Theorems 5.1 and 5.2 in Hall (1992). We present here the versions
of Hall’s theorems which are useful in our situation. We denote by X̄n and S2

n the sample mean
and the sample variance of X1, . . . , Xn, respectively.

Theorem 4.5.2 Let λ > 0 be given, and let l = l(λ) denote a sufficiently large positive number.
Assume that E|X|l <∞ and that Cramer’s condition holds. Let π̂j be the polynomials obtained
from πj in (4.123) by replacing population moments by the corresponding sample moments. Then
there exists a constant C such that

P

 sup
−∞<x<∞

|P ∗
(√

n
X̄∗n − X̄n

Sn
≤ x

)
− Φ(x)−

ν∑
j=1

n−j/2π̂j(x)ϕ(x)| > Cn−(ν+1)/2

 = O(n−λ)

(4.124)

and, [P ] almost surely,

sup
−∞<x<∞

|P ∗
(√

n
X̄∗n − X̄n

Sn
≤ x

)
− Φ(x)−

ν∑
j=1

n−j/2π̂j(x)ϕ(x)| = O(n−(ν+1)/2). (4.125)

Proof: The first part of the theorem is (simplification of) Theorem 5.1 in Hall (1992), the
second part follows from the first part.

2

Theorem 4.5.2 can be restated in terms of the bootstrap critical points defined in Section 4.4
as follows.
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Theorem 4.5.3 Under the conditions of Theorem 4.5.2, and for each δ, λ > 0, there exist
constants C, ε > 0 such that

P

 sup
n−ε≤α≤1−n−ε

|ξAn (α)− u1−α/2 −
ν∑
j=1

n−j/2π̂j(u1−α/2)| > Cn−(ν+1)/2

 = O(n−λ) (4.126)

and, [P ] almost surely,

sup
n−ε≤α≤1−n−ε

|ξAn (α)− u1−α/2 −
ν∑
j=1

n−j/2π̂j(u1−α/2)| = O(n−(ν+1)/2) (4.127)

Proof: See Theorem 5.2 in Hall (1992).
2

We want to show that Theorem 4.5.3 is valid also when we replace the index n by random
variable (stopping time). For this purpose, we present the following Lemma 4.5.1.

Lemma 4.5.1 Assume that Xn is a sequence of random variables such that

Xn = X +O

(
1
n

)
[P ] a.s.

and that Un is integer valued sequence of random variables with the property

Un
n
→ 1 [P ] a.s. as n→∞.

Then also

XUn = X +O

(
1
n

)
[P ] a.s.

Proof: The almost sure convergence of the sequence Xn is equivalent to (Serfling 1980)

lim
n→∞

P
(
|Xm −X| <

ε

m
,∀m ≥ n

)
= 1. (4.128)

Similarly,

lim
n→∞

P

(
|Um
m
− 1| < δ,∀m ≥ n

)
= 1. (4.129)

In order to finish the proof of the lemma, we have to show that

lim
n→∞

P
(
|XUm −X| <

ε

m
,∀m ≥ n

)
= 1.

We have
lim inf
n→∞

P
(
|XUm −X| <

ε

m
,∀m ≥ n

)
= lim inf

n→∞

[
P
({
|XUm −X| <

ε

m
,∀m ≥ n

}
∩ {|Um −m| ≤ mδ,∀m ≥ n}

)
+ P

({
|XUm −X| <

ε

m
,∀m ≥ n

}
∩ {|Um −m| > mδ,∀m ≥ n}

)]
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≥ lim inf
n→∞

[
P
({
|XUm −X| <

ε

m
,∀m ≥ n

}
| {|Um −m| ≤ mδ,∀m ≥ n}

)
×P (|Um −m| ≤ mδ,∀m ≥ n)

]
≥ lim inf

n→∞

[
P

(
|Xm −X| <

ε

m+mδ
,∀m ≥ n−mδ

)
P (|Um −m| ≤ mδ,∀m ≥ n)

]
= lim inf

n→∞

[
P

(
|Xm −X| <

ε/(1 + δ)
m

,∀m ≥ n/(1 + δ)
)
P

(
|Um
m
− 1| ≤ δ,∀m ≥ n

)]
= 1,

as n→∞, by (4.128) and (4.129).
2

Now we are ready to establish the rate of convergence of the bootstrap critical points based
on random number of observations.Recall that N1(d) denotes the intermediate sample size and
that ξAn (α) denotes the bootstrap critical points (1.29).

Theorem 4.5.4 Assume that Xi’s are i.i.d. random variables with variance 0 < σ2 <∞. Con-
sider the three-stage procedure based on bootstrap for sample mean described in Subsection 1.1.4
and assume that the assumptions of Theorem 4.5.2 are satisfied. Then we have

ξAN1(d)(α) = ξ[kc(d)]◦+1(α) +O(d2).

Proof: The theorem follows immediately from the property (ii) in Theorem 1.1.6 restated in
terms of N1, Theorem 4.5.3, and Lemma 4.5.1.

2

4.5.3 Asymptotic Distribution of N2 — Procedure Based on Sample Mean

The next two theorems concern the asymptotic properties of the procedure of Aerts and Gijbels
(1993) described in Subsection 1.1.4.

Theorem 4.5.5 Assume that Xi’s are i.i.d. random variables with variance 0 < σ2 < ∞ and
such that EX4

i <∞. Then, as d→ 0+,

√
N1

[
1
N1

N1∑
i=1

(Xi − X̄N1)2 − σ2

]
D→ N

(
0, E(Xi − EXi)4 − σ4

)
.

Proof: It is a consequence of Anscombe Theorem A.4.2.
2

The main assertion in this section is the following Theorem 4.5.6 which gives the asymptotic
distribution of the square root of the stopping time for the procedure based on sample mean.

Theorem 4.5.6 Consider the three-stage procedure based on a sample mean described in Sub-
section 1.1.4. Under the assumptions of Theorems 4.5.5 and 4.5.4, we have that, as d→ 0+,

√
N2(d)−

√
c(d) D→ N

(
0,

1
4k

[
E(Xi − EXi)4

σ4
− 1
])

.
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Proof: Using the definition of N2(d) in Section 1.1.4, we can rewrite N2(d) equivalently in the
following way

N2(d) =

(
ξAN1

(α)σ̂N1

d

)2

+

(ξAN1
(α)σ̂N1

d

)2

−

(
ξAN1

(α)σ̂N1

d

)2

+ 1

◦

+

max(N1(d),m(d))−

(ξAN1
(α)σ̂N1

d

)2
◦ I [{N1(d) > N2(d)} ∪ {m(d) > N2(d)}] .

(4.130)

The convergence in distribution(ξAN1
(α)σ̂N1

d

)2
◦ −(ξAN1

(α)σ̂N1

d

)2

+ 1 D→ U(0, 1) as d→ 0+, (4.131)

where U(0, 1) denotes the Uniform distribution on interval (0, 1), has been established e.g.
in Ghosh, Mukhopadhyay, and Sen (1997) or Hall (1981). Similarly as in the proof of part (ii)
of Theorem 4.4.1, we can also show that as d→ 0+, [P ] almost surely,max(N1(d),m(d))−

(ξAN1
(α)σ̂N1

d

)2
◦ I [{N1(d) > N2(d)} ∪ {m(d) > N2(d)}]→ 0.

(4.132)

From (4.130), (4.131), and (4.132) it is easy to see that

√
N2 =

ξAN1
(α)σ̂N1

d
+OP (1),

and therefore it remains to find out the asymptotic distribution of the term

ξAN1
(α)σ̂N1

d
. (4.133)

Using simple algebra, Theorem 4.5.4, and Theorem 4.5.5 we have the following

P

{
ξAN1

(α)σ̂N1

d
−
u1−α/2σ

d
< x

}

P

{
(ξAN1

− u1−α/2 + u1−α/2)(α)σ̂N1

d
−
u1−α/2σ

d
< x

}
= P

{
u1−α/2

σ̂N1 − σ
d

< x+ o(1)
}

= P

{
u1−α/2

√
N1 (σ̂N1 − σ)√

N1d
< x+ o(1)

}
= P

{√
N1 (σ̂N1 − σ)√

kσ

(σ̂N1 + σ)
(σ̂N1 + σ)

< x+ o(1)
}

= P

{√
N1

(
σ̂2
N1
− σ2

)
2
√
kσ2

< x+ o(1)

}
= Φ

(
2x
√
kσ2/

√
E(Xi − EXi)4 − σ4

)
+ o(1)



42 CHAPTER 4. LOCATION PARAMETER

It follows that
ξAN1

(α)σ̂N1

d

D→ N

(√
c(d),

E(Xi − EXi)4 − σ4

4kσ4

)
.

2

Corollary 4.5.1 Under the assumptions of Theorem 4.5.6, for the three-stage procedure based
on sample mean, we have that √

N2(d) =
√
c(d) +OP (1).

4.6 More Asymptotics for the Robust Procedure

In this section, we will investigate the asymptotics for the stopping time N2 for the robust three
stage procedure. We will use similar tools as in the previous section, where we established the
asymptotic distribution of N2 for the three-stage procedure based on sample mean.

Some properties of the random variable N2(d) were already established in Theorem 4.4.1.
Now, we will concentrate on the asymptotic distribution of N2(d). Similarly as in the previous
section it follows that it is sufficient to investigate the asymptotic behaviour of

ξAN1
σ̂N1

d
.

In the following subsection, we will establish the asymptotic distribution of the estimate σ̂2
N1

,
see formula (4.38), of the asymptotic variance of the M -estimator.

4.6.1 Distribution of the Variance Estimator — Robust Procedure

The asymptotic distribution of the estimator σ̂2
N1

can be established using results of Jurečková
and Sen (1981). We start with investigating the asymptotic properties of the numerator S2

n of
σ̂2
n,

S2
n =

1
n

n∑
i=1

ψ2(Xi −Mn),

see formulas (4.30) and (4.38).

Lemma 4.6.1 Under the assumptions of Section 4.1, we have for every 0 < ε1 < ε2 <∞ that

max
nε1≤m≤nε2

√
m| 1
m

m∑
i=1

ψ2(Xi −Mm)− 1
m

m∑
i=1

ψ2(Xi − θ)|
P→ 0 as n→∞

Proof: See Lemma 3.1 in Jurečková and Sen (1981).
2

In order to establish the asymptotic distribution of SN1 , it is helpful to introduce the notion
of the uniform continuity in probability, see Definition A.4.1. Theorem A.4.1 allows us to
investigate the properties of randomly stopped sequences of random variables.

The uniform continuity in probability for the sequence
√
nS2

n is established in the following
Lemma 4.6.2. This lemma allows us to apply Theorem A.4.1 in our situation.
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Lemma 4.6.2 Under the assumptions of Section 4.1, the sequences of random variables

√
n
[
Z2
n − Eψ2(Xi − θ)

]
=

1√
n

n∑
i=1

[
ψ2(Xi − θ)− Eψ2(Xi − θ)

]
(4.134)

and

√
n
[
S2
n − Eψ2(Xi − θ)

]
=

1√
n

n∑
i=1

[
ψ2(Xi −Mn)− Eψ2(Xi − θ)

]
(4.135)

are uniformly continuous in probability (u.c.i.p.).

Proof: In view of Definition A.4.1, we have to show that for each ε > 0 there exists δ > 0 such
that for all n ≥ 1 we have

P

{
max

n<m≤n(1+δ)
| 1√
m

m∑
i=1

[
ψ2(Xi − θ)− Eψ2(Xi − θ)

]

− 1√
n

n∑
i=1

[
ψ2(Xi − θ)− Eψ2(Xi − θ)

]
| > ε

}
< ε. (4.136)

For the sake of simplicity, let’s use the notation

Ui = ψ2(Xi − θ)− Eψ2(Xi − θ) = ψ2(Xi − θ)− Eψ2(X1 − θ).

Then we can bound the probability on the left-hand side of (4.136) as follows:

P

 max
n<m≤n(1+δ)

| 1√
m

m∑
i=1

Ui −
1√
n

n∑
j=1

Uj | > ε


≤ P

 max
n<m≤n(1+δ)

√
m

n
| 1√
m

m∑
i=1

Ui −
1√
n

n∑
j=1

Uj | > ε


= P

 max
n<m≤n(1+δ)

| 1√
n

m∑
i=1

Ui −
√
m

n

1√
n

n∑
j=1

Uj | > ε


= P

 max
n<m≤n(1+δ)

| 1√
n

n∑
i=1

Ui +
1√
n

m∑
i=n+1

Ui −
√
m

n

1√
n

n∑
j=1

Uj | > ε


≤ P

 max
n<m≤n(1+δ)

[√m

n
− 1
]
| 1√
n

n∑
j=1

Uj |+ |
1√
n

m∑
i=n+1

Ui|

 > ε


≤ P

 max
n<m≤n(1+δ)

[√
m

n
− 1
]
| 1√
n

n∑
j=1

Uj | > ε/2

+ P

{
max

n<m≤n(1+δ)
| 1√
n

m∑
i=n+1

Ui| > ε/2

}
(4.137)
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Using Tchebyschev’s inequality (see Lemma A.2.3) we have for the first probability on the
right-hand side of (4.137) that

P

 max
n<m≤n(1+δ)

[√
m

n
− 1
]
| 1√
n

n∑
j=1

Uj | > ε/2

 ≤ P

√
n(1 + δ)−

√
n√

n
| 1√
n

n∑
j=1

Uj | > ε/2


= P

|
n∑
j=1

Uj | >
ε
√
n

2
(√

1 + δ − 1
)
 ≤ 4

ε2

(√
1 + δ − 1

)2
Var ψ2(Xi − θ) < ε/2 (4.138)

if we choose δ > 0 sufficiently small. It remains to investigate the second probability on the
right-hand side of (4.137). Using Kolmogorov inequality (see Lemma A.2.4) we obtain that

P

{
max

n<m≤n(1+δ)
| 1√
n

m∑
i=n+1

Ui| > ε/2

}
= P

 max
1<k≤nδ

|
k∑
j=1

Un+j | >
√
nε/2


≤ 4
ε2n

nδVar ψ2(X1 − θ) =
4δ
ε

Var ψ2(X1 − θ) < ε/2 (4.139)

for δ > 0 small enough. Combining (4.137) with (4.138) and (4.139) proves the first part of the
theorem.

The uniform continuity in probability of the sequence
√
n
[
S2
n − Eψ2(Xi − θ)

]
follows imme-

diately from the uniform continuity in probability of the sequence
√
n
[
Z2
n − Eψ2(Xi − θ)

]
and

from Lemma 4.6.1.
2

Lemma 4.6.3 Under the assumptions of Section 4.1 we have for the intermediate sample size
N1(d) defined in (4.80) that

lim
d→0+

N1(d)
kcM (d)

= 1 [P ] a.s.,

where cM (d) denotes the asymptotically optimal sample size (1.44) and where k is the parameter
controling the intermediate sample size N1(d).

Proof: The proof is exactly the same as the proof of the equivalent property for N2(d), see
Theorem 4.4.1 and the inequalities in (4.92).

2

Lemma 4.6.4 Assume that the conditions of Section 4.1 hold and that N1 is the intermediate
sample size defined in (4.80). Then

1√
N1(d)

N1(d)∑
i=1

(
ψ2(Xi − θ)−

∫
ψ2(x− θ)dF (x)

)

D→ N

(
0,
∫
ψ4(x− θ)dF (x)−

[∫
ψ2(x− θ)dF (x)

]2
)

as d→ 0 + .
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Proof: The lemma follows immediately from Anscombe Theorem A.4.2 and from Lemma 4.6.3.
2

Theorem 4.6.1 Assume that the conditions of Section 4.1 hold and that N1 is the intermediate
sample size defined in (4.80). Then

1√
N1(d)

N1(d)∑
i=1

(
ψ2(Xi −MN1)−

∫
ψ2(x− θ)dF (x)

)

D→ N

(
0,
∫
ψ4(x− θ)dF (x)−

[∫
ψ2(x− θ)dF (x)

]2
)

as d→ 0 + .

Proof: Lemma 4.6.1 implies that the asymptotic distribution of

1√
n

n∑
i=1

(
ψ2(Xi −Mn)−

∫
ψ2(x− θ)dF (x)

)
(4.140)

is the same as the asymptotic distribution of

1√
n

n∑
i=1

(
ψ2(Xi − θ)−

∫
ψ2(x− θ)dF (x)

)
which is N

(
0,
∫
ψ4(x− θ)dF (x)

)
, see proof of Lemma 4.6.4. Hence, we have the limit distribu-

tion of the random variables in (4.140) for non-random number of observations. The theorem
now follows from Theorem A.4.1 using Lemma 4.6.3 and from the second part of Lemma 4.6.2.

2

Lemma 4.6.5 Under the assumptions of Section 4.1 we have, for every ε > 0, that there exists
δ > 0 and n0 such that

P

{
max

n≤m≤n(1+δ)
|
√
n(Mn −Mm)| > ε

}
< ε

for all n ≥ 0.

Proof: See Jurečková and Sen (1981), proof of Lemma 3.1.
2

Remark 5 Notice that Lemma 4.6.5 immediately implies that the sequence
√
n(Mn − θ) is

uniformly continuous in probability.

We have to investigate also the properties of the denominator of the estimate σ̂2
n of the

asymptotic variance of the M -estimator which is defined in (4.38). We denote

Dn(Mn) =
√
n[λFn(Mn − tn−1/2)− λFn(Mn + tn−1/2)]. (4.141)

Notice that the denominator of σ̂2
n is then [Dn(Mn)/2t]2.
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Lemma 4.6.6 Let’s assume that the assumptions of Section 4.1 hold. Then for every ε > 0
there exists δ0 > 0 and n0 such that for all 0 < δ < δ0 and for all n > n0 we have

P

 sup
−K logn<t<K logn

n−1/4|
n(1+δ)∑
i=n

[
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− λF (θ + tn−1/2)

]
> ε

 < ε

and, under the additional assumption that ψ2(.) ≡ 0 and that ψ1(.) has a bounded derivative
ψ′1(.) inside the interval (−h, h), also

P

 sup
−K logn<t<K logn

|
n(1+δ)∑
i=n

[
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− λF (θ + tn−1/2)

]
> ε

 < ε.

Proof: The proof of the first part is very similar to the proof of Lemma 4.2.1. The only
difference is that we can control one more parameter δ which allows us to make the righthand
side of (4.23) arbitrarily small.

The second part of the lemma can be proven, using Taylor expansion and Hoeffding inequal-
ity A.2.5, in the same way as Lemma 4.6.2.

2

Remark 6 Lemma 4.6.6 yields that the sequence

n−1/4

n(1+δ)∑
i=n

[
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− λF (θ + tn−1/2)

]
is u.c.i.p. and that also the sequence

n(1+δ)∑
i=n

[
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− λF (θ + tn−1/2)

]
,

is u.c.i.p. under the additional assumption that ψ2 ≡ 0 and that ψ1(.) has a bounded derivative
ψ′1(.) inside the interval (−h, h).

Remark 7 Notice that Lemma 4.2.2 allows us to replace θ by Mn in Lemma 4.6.6. Therefore,
we get also the uniform continuity in probability for the sequence n1/4Dn(Mn) (and n1/2Dn(Mn)
if ψ2 ≡ 0).

In order to establish the asymptotic normality for the sequence Dn(θ), defined in (4.141),
we have to introduce additional assumptions.

J1: Recall that the step component ψ2 can be written as

ψ2(x) = βj for aj−1 < x < aj , (4.142)

where j = 1, . . . ,m + 1, a0 = −h, am+1 = h. Assume that at least two βj ’s are different
and that f ′(.) is bounded in neighbourhoods of a0, . . . , am+1.
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J2: Assume that ψ2 ≡ 0 and that ψ1(.) has two bounded derivatives in the interval (−h, h).

Lemma 4.6.7 Let’s assume that the assumptions of Section 4.1 hold.
(i) Assume that the condition J1 is satisfied. Then

n−1/4
n∑
i=1

{
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− tλ′F (θ)

}
D→ N

(
0, t

m+1∑
i=1

(βj − βj−1)2f(αj)

)
(ii) Assuming that the condition J2 holds, we have that

n∑
i=1

{
ψ(Xi − θ − tn−1/2)− ψ(Xi − θ)− tλ′F (θ)

}
D→ N

(
0, t

{∫
[ψ′(x− θ)]2dF (x)−

[∫
ψ′(x− θ)dF (x)

]2
})

.

Proof: See Theorem 2.2 and the corollary of Theorem 2.3 in Jurečková (1980).
2

Lemma 4.6.8 Assume that the assumptions of Section 4.1 hold.
(i) Assume that the condition J1 is satisfied. Recall that N1(d) is the intermediate sample size
given by (4.80). Then we have that

N
−1/4
1

N1∑
i=1

{
ψ(Xi − θ − tN−1/2

1 )− ψ(Xi − θ)− tλ′F (θ)
}
D→ N

(
0, t

m+1∑
i=1

(βj − βj−1)2f(αj)

)
(ii) Assuming that the condition J2 is satisfied, we have that

N1∑
i=1

{
ψ(Xi − θ − tN−1/2

1 )− ψ(Xi − θ)− tλ′F (θ)
}

D→ N

(
0, t

{∫
[ψ′(x− θ)]2dF (x)−

[∫
ψ′(x− θ)dF (x)

]2
})

.

Proof: It follows from Theorem A.4.1 using Lemma 4.6.7 and Remark 6.
2

From the results of Jurečková (1980) it follows that, if the score function is not continuous,
the order of convergence of the estimator (4.38) of the asymptotic variance of the M -estimator
is n−1/4. Some alternative estimators were considered e.g. by Dodge and Jurečková (1995), but
the rate of convergence n−1/4 was not improved. It would be possible to estimate the asymptotic
variance of the M -estimator also from the length of the confidence interval which can be obtained
similarly as in Section 1.2.2 (Jurečková and Sen 1978). Unfortunatelly, the rate of convergence
of this estimator is also n−1/4 as follows e.g. from the results of Aerts (1988).

This means that the M -estimators with the discontinuous score function have some unde-
sireable properties in the context of the three-stage procedures.

In the following, we will restrict ourselves only to the M -estimators with smooth score
functions.

The next theorem gives us a better estimator for λ′F (θ).
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Theorem 4.6.2 Assume that the conditions of Section 4.1 hold with the jump component
ψ2(x) ≡ 0. Assume that the continuous component ψ1(x) has bounded derivative inside the
interval (−h, h), where h is given by (4.9). Then we have

1
N1

N1∑
i=1

ψ′(Xi −MN1)→ λ′F (θ) [P ] a.s. (4.143)

and

√
N1

[
1
N1

N1∑
i=1

ψ′(Xi −MN1)− λ′F (θ)

]
→ N

(
0, E

[
ψ′(Xi − θ)

]2 − [Eψ′(Xi − θ)
]2) (4.144)

Proof: The proof of the first part follows from the Strong Law of Large Numbers, the second
part can be proven e.g. by the Anscombe Theorem A.4.2.

2

4.6.2 Bootstrap Critical Points — Robust Procedure

The rate of convergence of bootstrap critical points for M -estimators has been investigated only
under assumptions of differentiability of the score function ψ(.). Some results can be found e.g.
in Lahiri (1992).

Let’s assume (in addition to assumptions of Section 4.1) that

L1: there exists a Borel set C ⊂ < such that Pθ(X ∈ C) = 1 for all θ ∈ Θ and the function
ψ(x− t) has continuous ν-th order derivatives in t for 1 ≤ ν ≤ s at each (x, t) ∈ C ×Θ for
some integer s ≥ 3.

L2: E|ψ(ν)|s <∞ for 0 ≤ |ν| ≤ s− 1, and there exists an ε > 0 such that

E

(
sup
|t−θ|<ε

|ψ(s)|s
)
<∞.

Theorem 4.6.3 Assume that the assumptions of Section 4.1 are satisfied and that also the
assumptions L1 and L2 hold with s = 3 and Cramer’s condition is satisfied. Then, [P ] a.s.,

sup
−∞<x<∞

|P ∗n
(√

n
M∗n −Mn

σ̂
< x

)
− P

(√
n
Mn − θ
σ

< x

)
| = o(n−1/2)

Proof: The theorem is proven in more general form in Lahiri (1992). Notice that Lahiri’s
condition (2.3) is satisfied automatically if we define B as intervals (−∞, x].

2

4.6.3 Asymptotic Distribution of N2 — Robust Procedure

The asymptotic distribution of
√
N2 for the robust procedure can be derived similarly as in

Theorem 4.5.6 for the procedure based on sample mean. The only difference is that we have to
take into account also the estimate of λ′F (θ) which makes the situation a little more complicated
and which also increases the variance of the limit distribution of

√
N2 in the following theorem.
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Theorem 4.6.4 Let the assumptions of Theorems 4.6.2 and 4.6.3 be satisfied. Then we have
for the robust three-stage procedure based on standardized bootstrap critical points that√

N2(d)−
√
cM (d) D→

N

(
0,

1
k

{ ∫
ψ4(x− θ)dF (x)

4
[∫
ψ2(x− θ)dF (x)

]2 − ∫
ψ2(x− θ)ψ′(θ)dF (x)

λ′F (θ)
∫
ψ2(x− θ)dF (x)

+
∫

[ψ′(Xi − θ)]2dF (x)
[λ′F (θ)2]

− 1
4

})
as d→ 0+.

Proof: Using Theorem 4.6.3 with Lemma 4.5.1, Theorem 4.6.1, and Theorem 4.6.2, we have
the following

√
N2(d)−

√
cM (d) =

ξAN1

√
1
N1

∑N1
i=1 ψ

2(Xi −MN1)

d 1
N1

∑N1
i=1 ψ

′(Xi −MN1)
−
u1−α/2

√∫∞
−∞ ψ

2(x− θ)dF (x)

dλ′F (θ)

=
u1−α/2

d


√

1
N1

∑N1
i=1 ψ

2(Xi −MN1)
1
N1

∑N1
i=1 ψ

′(Xi −MN1)
−

√∫∞
−∞ ψ

2(x− θ)dF (x)

λ′F (θ)

+ oP (1)

=
u1−α/2

d

 1

2
√∫∞
−∞ ψ

2(x− θ)dF (x)λ′F (θ))

[
1
N1

N1∑
i=1

ψ2(Xi −MN1)−
∫ ∞
−∞

ψ2(x− θ)dF (x)

]

−


√∫∞
−∞ ψ

2(x− θ)dF (x)[
λ′F (θ)

]2
[ 1

N1

N1∑
i=1

ψ′(Xi −MN1)− λ′F (θ)

]+ oP (1)

=

√
N1

k

{
1

2
∫∞
−∞ ψ

2(x− θ)dF (x)

[
1
N1

N1∑
i=1

ψ2(Xi −MN1)−
∫ ∞
−∞

ψ2(x− θ)dF (x)

]

− 1
λ′F (θ)

[
1
N1

N1∑
i=1

ψ′(Xi −MN1)− λ′F (θ)

]}
+ oP (1)

D→ N

(
0,

1
k

{∫
ψ4(x− θ)dF (x)−

[∫
ψ2(x− θ)dF (x)

]2
4
[∫
ψ2(x− θ)dF (x)

]2
−
∫
ψ2(x− θ)ψ′(θ)dF (x)− λ′F (θ)

∫
ψ2(x− θ)dF (x)

λ′F (θ)
∫
ψ2(x− θ)dF (x)

+
∫

[ψ′(Xi − θ)]2dF (x)− [λ′F (θ)]2

[λ′F (θ)2]

})

≡ N

(
0,

1
k

{ ∫
ψ4(x− θ)dF (x)

4
[∫
ψ2(x− θ)dF (x)

]2 − ∫
ψ2(x− θ)ψ′(θ)dF (x)

λ′F (θ)
∫
ψ2(x− θ)dF (x)

+
∫

[ψ′(Xi − θ)]2dF (x)
[λ′F (θ)2]

− 1
4

})
2

If we compare the asymptotic distribution of
√
N2 for the procedure based on sample mean

given in Theorem 4.5.6 with the asymptotic distribution of
√
N2 for the procedure based on

M -estimators provided by Theorem 4.6.4, we see that the formulas agree nicely — the only
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difference is the variance of the estimate of λ′F (θ) which increases the asymptotic variance of√
N2 for the robust procedure.

We see that the asymptotic variance of the asymptotic normal distribution in Theorem 4.6.4
depends both on the score function ψ(.) and on the distribution function of the observations
F (.). It would be very interesting to find the score function which minimizes the asymptotic
variance of

√
N2 −

√
cM (d) for a given distribution function. It might be possible to use some

type of adaptive estimators — however, this area remains open for future research.



Chapter 5

Simulations

In this chapter, we will try to compare the methods based on bootstrap with the method based
on normal approximation via simulation. The hope is that the bootstrap methods will give
better results, especially for small sample sizes.

The advantage of the methods based on bootstrap is closer approximation of the unknown
critical points of the distribution of the M -estimator. Via simulation, for a known distribution
of the random variables, we can get some idea about the real critical points.

We decided to use Huber’s ψh(.) function which is (for h > 0) defined as

ψh(x) =


−h if x < −h
x if |x| ≤ h
h if x > h

(5.1)

This score function has been derived by Huber (1981) as a score function which minimizes the
worst possible variance which can be obtained for ε-contaminated Normal distribution. The
value of h should be chosen accordingly to the level of contamination ε and it can be obtained
as a solution of the equation

2Φ(h)− 1 +
2ϕ(h)
h

=
1

1− ε
, (5.2)

where Φ(·) and ϕ(·) denote the distribution and density function of the Normal distribution,
respectively (Antoch and Vorĺıčková 1992).

We give the values of ε for 0 < h < 3 in Table B.1 in Appendix B.
In Section 5.1, we will try to approximate the exact critical points of the distribution of

the M -estimator for smaller sample sizes. In Sections 5.2–5.5, we will present the results of
simulations for Normal, Cauchy, Double Exponential, and contaminated Normal distributions.
In particular, we will concentrate on the Cauchy distribution which will be investigated in
Section 5.3.

All simulations presented in this chapter were programmed in GNU Fortran. All graphics
was created in XploRe (Härdle, Klinke, and Müller 2000).

5.1 Simulations of Exact Critical Points

In order to investigate the behaviour of our procedure for small sample sizes, we will try to
investigate the magnitude of the error caused by using the asymptotic normal critical points
instead of the unknown exact critical points of the M -estimator.

51
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Figure 5.1: Simulated critical points for Huber’s ψ(.) with parameter h = 1.5 for Normal, Cauchy
and Double Exponential distribution, n = 5, . . . , 30.
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We tried to find the correct critical points by simulation. The results for n = 10, . . . , 30 for

Normal, Cauchy and Double Exponential distributions are presented in Figure 5.1. The values
plotted on each graph were obtained in the following way:

1. we simulated large number (200.000) random samples of the desired size (10, . . . , 30) from
the distribution under consideration (Normal, Cauchy, Double Exponential).

2. we calculated the M -estimate for every generated sample and we find out the 95% (em-
pirical) critical point of the distribution of

√
n|Mn − θ|/σ̂n.

3. we plot the obtained “simulated critical points” in the graph together with the green line
at the bottom of the pictures which corresponds to the limiting u0.975 quantile of the
standard Normal distribution.

The plots show the dependence of the simulated critical points on the sample size.
We see that the critical points converge to u0.975 as the sample size increases. The convergence

to the critical point of the asymptotic normal distribution seems to be fastest for the Cauchy
distribution.

On Figure 5.2, we plotted exactly the same quantities as on Figure 5.1, but for sample sizes
between 5 and 100. Also this plot suggests that the normal approximation works very well for
Cauchy distribution, the convergence to the normal critical point for the Normal and Double
Exponential distributions seems to be a bit slower.

5.2 Simulations for Normal Distribution

For the simulations presented in this section, we simulated data from standard Normal distri-
bution N(0, 1). We denote by Φ(·) and ϕ(·) the distribution function and the density function
of N(0, 1), respectively.

The asymptotically optimal stopping time for normally distributed data and for the sequen-
tial procedure based on M -estimators with Huber’s score function ψh(x) = max {−h,min(x, h)},
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Figure 5.2: Simulated critical points for Huber’s ψ(.) with parameter h = 1.5 for Normal, Cauchy
and Double Exponential distribution, n = 5, . . . , 100.
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see also formula (5.1), depends on

σ2(ψh,Φ) =
∫
ψ2
h(x)dΦ(x)∫
ψ′(x)dΦ(x)

.

Straightforward calculations lead that

∞∫
−∞

ψ2
h(x)dΦ(x) = 1− 2hψ(h) + (2h2 − 2)(1− Φ(h)) (5.3)

and

∞∫
−∞

ψ′h(x)dΦ(x) = 2Φ(h)− 1. (5.4)

This gives that the asymptotically optimal stopping time for observations coming from standard
Normal distribution can be calculated as

cM (d) =
(u1−α/2

d

)2 1− 2ϕ(h) + (h2 − 2)(1− Φ(h))
(2Φ(h)− 1)2

. (5.5)

We carried out the simulations for the desired lenght of interval equal to 1, 0.6, and 0.2,
i.e., for d = 0.5, d = 0.3, and d = 0.1. The tuning parameters γ and k for the three-stage
procedure were chosen as γ = 1/3 and k = 1/2. The calculations were repeated 1000 times. The
results of simulations are presented in Tables 5.1 and 5.2 and in Figures 5.3–5.6. Table 5.1 and
Figures 5.3 and 5.5 show the results of simulations for the robust three-stage procedure described
in Section 4.4. Table 5.2 and Figures 5.4 and 5.6 display the results of simulations for the
“alternative procedure” which has been proposed in Subsection 4.4.2. In each table we compare
the results for the methods based on normal critical points, standardized and studentized critical
points.
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Table 5.1: Normal distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 16 N 15.71 14 0.923

A 18.86 17 0.934
U 23.94 21 0.964

0.30 45 N 39.95 37 0.920
A 48.65 44 0.932
U 55.88 52 0.945

0.10 399 N 392.74 391.5 0.927
A 485.46 457 0.948
U 490.42 465.5 0.943

Table 5.2: Normal distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 16 N 15.57 14 0.922

A 18.28 16 0.944
U 21.83 19 0.965

0.30 45 N 40.73 38 0.912
A 49.93 45 0.925
U 55.39 51 0.930

0.10 399 N 391.71 391 0.920
A 483.46 453 0.943
U 487.44 453 0.942
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Figure 5.3: N2 for Normal distribution.

normal approximation

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
stopping time

0
0.

02
0.

04
0.

06

hi
st

og
ra

m

standardized bootstrap

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
stopping time

0
0.

02
0.

04

hi
st

og
ra

m

studentized bootstrap

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
stopping time

0
0.

01
0.

02
0.

03
0.

04
0.

05

hi
st

og
ra

m

Figure 5.4: N2 for Normal distribution, alternative method.
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Figure 5.5:
√
N2 for Normal distribution.
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Figure 5.6:
√
N2 for Normal distribution, alternative method.
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Notice that the procedures based on normal critical points are exactly the same and that
the procedures based on standardized bootstrap critical points are equivalent in all tables and
figures.

In each table, the first column contains the value of d which is one half of the desired length 2d
of the confidence interval. The (asymptotically) optimal number of observations for the standard
Normal distribution (5.5) is given in the second column. The third column specifies the critical
points which were used for calculations. “N” denotes the normal critical points, “A” stands for
the standardized bootstrap critical points, and “U” denotes the studentized bootstrap critical
points. In the fourth, fifth and sixth column, we present the mean, median and the coverage
probability estimated from 1000 simulations.

We carried out the simulations for the desired lengths of confidence interval equal to 2d = 1,
2d = 0.6, and 2d = 0.2. As expected, d = 0.5 typically leads to a smaller sample size. Comparing
the values of mean and median for all three methods with the optimal sample size given in the
tables, we see that the method “N” tends to underestimate the optimal sample size. The
coverage probability of 95% was reached only for the method based on bootstrap critical points
for d = 0.5, other coverage probabilities lie below the value 0.95. Notice that in all cases, the
coverage probabilites for the bootstrap based methods are closer to 0.95 than the method based
on normal critical points.

In Figures 5.3 and 5.4, you can see the histograms of the stopping times. The first display on
each figure shows histograms for the normal critical points, the second display shows histograms
for the procedure based on the standardized bootstrap critical points and on the third display we
plot the histograms for the procedure based on studentized bootstrap. The blue, green and red
histograms at each display correspond to the stopping times for procedures giving fixed-width
confidence intervals of lengths 2d = 1, 2d = 0.6, and 2d = 0.2, respectively. We can clearly see
the dependence of the mean (and also of the variance) on the desired length of the confidence
interval.

From the theory in Chapter 4 (Theorem 4.6.4) it follows that
√
N2 has asymptotic distribu-

tion whose variance does not depend on d. Therefore we display also the histograms of
√
N2 on

Figures 5.5 and 5.6.

The difference in the magnitude of the stopping times between these three methods is clearly
visible for d = 0.1.

Also the coverage probabilities and stopping times given in Tables 5.1 and 5.2 suggest that
the method based on normal approximation tends to stop too early. It seems that the methods
based on bootstrap tend to correct this feature. On the other hand, the graphics in Figures 5.3–
5.6 suggests that the variance of N2 for the methods based on bootstrap is larger than for the
method based on normal critical points.

From the point of view of the coverage probability, the best results, especially for smaller
sample sizes, are provided by the studentized bootstrap. However, the coverage probabilities
obtained for the method based on standardized bootstrap are not much worse.

We conclude that our method works well for the normal distribution and that its results
correspond to the theoretical values. One possible reason for the bigger variance of N2 for the
bootstrap based methods might be insufficient starting sample size m(d). This phenomenon will
be further investigated in the next section which concerns Cauchy distribution.

More results of simulations for the Huber’s ψh(.) function with h = 1 and h = 0.5 can be
found in Appendix C. The problem of automatic choice of h remains one of the open questions.
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Table 5.3: Cauchy distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 46 N 51.59 42 0.939

A 91.71 54 0.954
U 109.25 50 0.959

0.30 128 N 128.56 126 0.960
A 144.43 128.5 0.963
U 145.56 129 0.962

0.10 1150 N 1142.3 1146.5 0.959
A 1053.7 1047.5 0.944
U 1055.8 1055 0.945

5.3 Cauchy Distribution

Even more interesting are simulations for the Cauchy distribution. In this case, the methods
based on sample mean can not be used at all, because Cauchy distribution has heavy tails. The
possibility to use M -estimators in this situation is therefore of great importance.

We simulated observations from the Cauchy distribution given by density

f(x) =
1
π

1
1 + x2

, x ∈ <. (5.6)

Straightforward calculations lead that

∞∫
−∞

ψ′h(x)dF (x) =
2
π

arctg h

and ∫
ψ2
h(x)dF (x) = h2 +

2
π

[h− (h2 + 1) arctg h].

This leads that the asymptotically optimal stopping time is equal to

cM (d) =
(u1−α/2

d

)2 h2 + 2/π[h− (h2 + 1) arctg h]
(2/π arctg h)2

(5.7)

The results of the simulations are are given in Tables 5.3 and 5.4 and in Figures 5.7—5.10.
Similarly as in the previous section, the plots contain the histograms of the stopping times for
the three-stage procedure based on normal critical points, standardized bootstrap critical points,
and studentized bootstrap critical points displayed on the original and square root scale.

From Figures 5.7–5.10, it seems that here the asymptotics works better than for the Normal
distribution in the previous section. One possible reason is that the confidence intervals of the
same width require approximately two times more observations for the Cauchy than for the
standard Normal distribution, see Tables B.4–B.9.

The coverage probabilities in Tables 5.3 and 5.4 seem to lie very close to the desired value
0.95. The only value which seems to be a bit lower is the coverage probability for the method
based on normal critical points for d = 0.5 in both tables.
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Table 5.4: Cauchy distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 46 N 53.32 42 0.931

A 97.62 53 0.950
U 104.09 52 0.952

0.30 128 N 130.49 124 0.947
A 143.26 127 0.952
U 139.74 125 0.956

0.10 1150 N 1146.9 1142 0.967
A 1056.6 1046 0.949
U 1053.8 1055 0.949

Figure 5.7: N2 for Cauchy distribution.
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Figure 5.8: N2 for Cauchy distribution, alternative method.
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Figure 5.9:
√
N2 for Cauchy distribution.
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Figure 5.10:
√
N2 for Cauchy distribution, alternative method.
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Looking at the values of mean and median, we can notice one unpleasant feature of the
bootstrap based method. The huge difference between the values of the mean and median (the
mean is approximately two times higher than the median) suggests that the distribution of N2

might be skewed. The reason for this behaviour seems to be too small starting sample size m(d).
The methods based on bootstrap tend to overestimate the critical points dramatically if m(d)
is less than 20. We tried to increase the starting sample size and we modified the formula (4.79)
as follows:

m = m(d) = max
{

20,
[(u1−α/2

d

)2/(1+γ)
]◦

+ 1
}
.

This guarantees that the starting sample size is so big that the bootstrap procedure has chance
to work well. The results of simulations using this starting sample size are given in Table 5.5
and in Figure 5.11. Indeed, we can see that the difference between the mean and median is now
much smaller.

In Tables 5.5–5.7 and Figures 5.11–5.13 we tried to pursue another interesting phenomenon.
From Theorem 4.6.4 we know that the variance of the asymptotic normal distribution depends
on the parameter k. We can try to decrease the asymptotic variance of

√
N2 by increasing the

value of k. In Figures 5.11–5.13, we can indeed see a sligth decrease in the variance of the
√
N2.

At the same time it seems that the histograms shift slightly to the right. This is confirmed by
the values in Tables 5.5–5.7. We see that both mean and median of N2 increase with increasing
k. Unfortunatelly, this is true also for the coverage probabilities. Choosing k = 0.9 means that
our procedure overestimates the necessary sample size — this effect is more dramatic for longer
confidence intervals which results in smaller sample sizes.

We conclude that our method works well also for the Cauchy distribution. We can see that
the bootstrap critical points approximate the correct distribution of the M -estimator better than
the normal approximation. We recommend to choose the starting sample size to be at least 20
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Table 5.5: Cauchy distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 0.5, m0 ≥ 20

d cM (d) critical points mean median coverage probability
0.50 46 N 45.39 40 0.944

A 51.95 45 0.959
U 49.68 43 0.952

0.30 128 N 126.54 123 0.940
A 134.34 126 0.950
U 133.66 124 0.953

0.10 1150 N 1144.9 1147 0.955
A 1060.2 1049 0.946
U 1056.2 1043 0.948

Table 5.6: Cauchy distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 0.7, m0 ≥ 20

d cM (d) critical points mean median coverage probability
0.50 46 N 47.89 45 0.951

A 54.83 49 0.957
U 53.89 47 0.965

0.30 128 N 139.71 130 0.960
A 160.50 138.5 0.961
U 164.49 133 0.957

0.10 1150 N 1151.5 1144 0.959
A 1080.4 1066 0.948
U 1075.0 1067.5 0.938

Table 5.7: Cauchy distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 0.9, m0 ≥ 20

d cM (d) critical points mean median coverage probability
0.50 46 N 53.35 49 0.961

A 66.66 54 0.968
U 63.30 53 0.967

0.30 128 N 155.44 140 0.968
A 185.94 153 0.975
U 183.36 146 0.971

0.10 1150 N 1220.4 1177 0.963
A 1185.6 1139 0.955
U 1181.6 1134 0.956
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Figure 5.11:
√
N2 for Cauchy distribution, k = 0.5, m0 ≥ 20.
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Figure 5.12:
√
N2 for Cauchy distribution, k = 0.7, m0 ≥ 20.
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Figure 5.13:
√
N2 for Cauchy distribution, k = 0.9, m0 ≥ 20.
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Table 5.8: Double Exponential distribution, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 23 N 22.29 19 0.930

A 25.00 21 0.957
U 34.22 26 0.962

0.30 63 N 58.76 56 0.933
A 61.18 59 0.942
U 68.81 63 0.949

0.10 563 N 555.31 552.5 0.965
A 504.81 496 0.958
U 505.49 497 0.961

and we recommend to choose k = 0.5, or at most k = 0.7. Higher values should be chosen only
for very small lengths of confidence intervals, where the choice of the value of k does not seem
to have negative impact on the coverage probability of the resulting confidence interval.

Another simulations from the Cauchy distribution with different choice of h in the Huber’s
score function are presented in Appendix C. These simulations for h = 1 and h = 0.5 are
of special interest here because the Tables B.4–B.9 suggest that by choosing smaller value of
h we can decrease the final sample size N2. This is completely different than for the Normal
distribution where we can decrease the final sample size by increasing the value of h.

5.4 Double Exponential Distribution

In this section, we simulated observations from the Double Exponential distribution which is
given by the density

f(x) =
1
2

exp{−|x|}, x ∈ <. (5.8)

Straightforward calculations lead that

∞∫
−∞

ψ′h(x)dF (x) = 1− exp{−h}

and ∫
ψ2
h(x)dF (x) = 2− (2 + 2h) exp{−h}.

This leads the asymptotically optimal stopping time

cM (d) =
(u1−α/2

d

)2 2− (2 + 2h) exp{−h}
(1− exp{−h})2

(5.9)

The values of the optimal stopping time are given in Appendix B in Tables B.4–B.9. Notice
that, similarly as for the Cauchy distribution, the final sample size is decreasing with decreasing
value of h.
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Table 5.9: Double Exponential, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 23 N 21.76 19 0.921

A 24.00 20 0.932
U 26.48 23 0.957

0.30 63 N 58.23 55 0.932
A 60.82 57.5 0.939
U 62.99 59.5 0.947

0.10 563 N 559.40 561 0.964
A 507.81 499 0.956
U 509.16 501 0.955

Figure 5.14: N2 for Double Exponential distribution.
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Figure 5.15: N2 for Double Exponential, alternative method.
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Figure 5.16:
√
N2 for Double Exponential distribution.
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Figure 5.17:
√
N2 for Double Exponential, alternative method.
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The results of simulations for the Double Exponential distribution are given in Tables 5.8
and 5.9 and graphically displayed in Figures 5.14–5.17.

From the tables, it seems that the methods based on bootstrap critical points are more
reliable than the method based on the normal critical points. In all cases, the coverage prob-
abilities for the bootstrap based methods lie closer to the 0.95. The method based on normal
approximation seems to underestimate the optimal sample size for d = 0.5 and d = 0.3 and to
overestimate it for d = 0.1.

The histograms on Figures 5.14–5.17 suggest that (for d = 0.1) the procedures based on
bootstrap tend to stop earlier than the procedure based on normal critical points, even though
the coverage probabilities are better for the bootstrap based procedures. The higher variance
of N2 for the methods based on bootstrap seems to be due to the variation in the bootstrap
critical points.

For Double Exponential distribution, the methods based on bootstrap give better results
than the method based on normal critical points.

5.5 Mixture of Two Normal Distributions

In this section we simulated observations from a mixture of two Normal distributions. We draw
observations from distribution N(0, 1) with probability p and observations from the distribution
N(0, σ2) with probability 1− p.

Straightforward calculations lead, in the same way as in the previous sections, that for the
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distribution N(0, σ2), which has distribution function Φ(x/σ),
∞∫
−∞

ψ2
h(x)dΦ(x/σ) = σ2 − 2hσψ(h/σ) + (2h2 − 2σ2)(1− Φ(h/σ)) (5.10)

and
∞∫
−∞

ψ′h(x)dΦ(x) = 2Φ(h/σ)− 1. (5.11)

Denoting the distribution function of the mixture of the normal distributions by F (.), we have
that

∞∫
−∞

ψ2
h(x)dF (x)

= p(1− 2hψ(h) + (2h2 − 2)(1− Φ(h))) + (1− p)(σ2 − 2hσψ(h/σ) + (2h2 − 2σ2)(1− Φ(h/σ)))
(5.12)

and
∞∫
−∞

ψ′h(x)dΦ(x) = p(2Φ(h)− 1) + (1− p)(2Φ(h/σ)− 1). (5.13)

This gives that the asymptotically optimal stopping time can be calculated as

cM (d) =
(u1−α/2

d

)2

×p(1− 2hψ(h) + (2h2 − 2)(1− Φ(h))) + (1− p)(σ2 − 2hσψ(h/σ) + (2h2 − 2σ2)(1− Φ(h/σ)))
[p(2Φ(h)− 1) + (1− p)(2Φ(h/σ)− 1)]2

.

(5.14)

In our simulations, we have drawn observations from the distribution with distribution func-
tion

F (x) = 0.95Φ(x) + 0.05Φ(x/3),

i.e., observations coming from N(0, 1) were contaminated by 5% of observations which came
from N(0, 3).

The asymptotically optimal sample sizes for this situation are given in Appendix B in Ta-
bles B.4–B.9.

The results of simulations are given, in the same format as before, in Tables 5.10 and 5.11.
The histograms of N2 and

√
N2 are plotted in Figures 5.18–5.21.

From the tables, we see that the coverage probabilities of the method based on normal
approximation lie below the desired value, whereas the coverage probabilities of the bootstrap
based methods lie in all cases closer to 0.95. From the histograms on the figures we can see that
the methods based on bootstrap tend to stop later.

The behaviour of the method based on normal approximations is getting even worse if we
decrease the value of h in the score function as can be seen from the tables and figures in
Appendix C.

We conclude that also for contaminated Normal distribution, the methods based on bootstrap
work better than the method based on normal critical points and can be recommended.
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Table 5.10: Mixture of Normal distributions, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 18 N 17.21 16 0.925

A 20.33 18 0.950
U 26.12 22 0.957

0.30 50 N 45.77 44 0.905
A 54.95 51 0.916
U 62.52 58 0.934

0.10 446 N 438.15 438 0.924
A 526.74 498 0.945
U 532.04 502.5 0.944

Table 5.11: Mixture of Normal Distributions, Huber’s ψ with h = 1.5, γ = 1/3, k = 1/2,
alternative method

d cM (d) critical points mean median coverage probability
0.50 18 N 17.24 16 0.925

A 20.06 18 0.939
U 23.55 20 0.949

0.30 50 N 45.54 44 0.914
A 53.18 49 0.928
U 58.45 54 0.935

0.10 446 N 442.91 443 0.927
A 528.00 501 0.940
U 533.63 505 0.941
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Figure 5.18: N2 for Mixture of Normal Distributions.
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Figure 5.19: N2 for Mixture of Normal Distributions, alternative method.
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Figure 5.20:
√
N2 for Mixture of Normal Distributions.
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Figure 5.21:
√
N2 for Mixture of Normal Distributions, alternative method.
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Chapter 6

Conclusions and Open Questions

The procedure investigated in the previous chapters seems to work well. Unfortunatelly, it can
be used only for the simple case of parameters of location. Some possibilities of adapting the
procedure to some more general and more complicated situations are outlined in this chapter.

6.1 Linear Model

In this section, we will consider the general linear model

Yn = XnΘ˜ + ε˜n, (6.1)

where Yn is the vector of observations of the dependent variable, Xn is the (n × p) design
matrix with rank(Xn) = p < n, Θ˜ is the p−dimensional vector of the (unknown) regression
coefficients, and σ is dispersion parameter of the vector ε˜n of random errors εi which are i.i.d.
random variables with common distribution function F (.).

Least squares estimate Θ̂˜ n of the vector of parameters Θ can be obtained as

Θ̂˜ n = (X′nXn)−1X′nYn. (6.2)

The variance σ2 of the random errors εi can be estimated by

σ̂2
n =

1
n

Y′n
{
In −Xn(X′nXn)−1X′n

}
Yn. (6.3)

Under the assumptions of normality and assuming that the matrix X′nXn is not singular, we
obtain that √

n
(

Θ̂˜ n −Θ
)
∼ N

(
0, σ(X′nXn)−1

)
,

and
(n− p)σ̂2

n

σ2
∼ χ2

n−p,

and Θ̂˜ n is independent of σ̂2
n. Thus the 1− α confidence ellipsoid for Θ is

Ln(α) =

{
x :

(Θ̂˜ n − x)′(X′nXn)(Θ̂˜ n − x)
pσ̂2

n

≤ Fα;p,n−p

}
. (6.4)

73
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The maximum diameter of Ln(α) is equal to

2
√
pFα;p,n−pσ̂n√

n

√
λn,

where λn is the maximum eigenvalue of n(X′nXn)−1. Fixing 0 < d <∞, we can use the following
ellipsoidal confidence region for Θ˜ :

Rn(d) =
{
x : n−1(Θ̂˜ n − x)′(X′nXn)(Θ̂˜ n − x) ≤ d2

}
. (6.5)

The coverage probability of Rn(d) is easily seen to be equal to

P{Rn(d) 3 Θ˜ } = P

{
χ2
p ≤

d2n

σ2

}
.

Equating this probability to 1− α yields the optimal fixed sample size c(d) as

c(d) =
χ2
p(α)σ2

d2
, (6.6)

where χ2
p(α) denotes the critical value of the χ2

p distribution, i.e. P (χ2
p ≤ χ2

p(α)) = 1− α.
The asymptotically optimal fixed sample size c(d) given by (6.6) depends on the unknown

quantity σ2. Similarly as for the parameter of location, we need a sequential procedure in order
to obtain a confidence region of type (6.5) with prescribed coverage probability 1−α. To achieve
this goal, the following three-stage procedure was suggested by Mukhopadhyay and Abid (1986).

In the first stage, we fix parameter γ > 0 which controls the starting sample size, and we
draw

m = m(d) = max

p+ 1,

(χ2
p(α)
d2

)1/1+γ
◦ (6.7)

observations. These observations are used to calculate the estimate σ̂2
m of the parameter σ2

which we use to determine the number N1(d)−m(d) of observations drawn in the second stage
of the sequential procedure,

N1(d) = max

{
m,

[
k
χ2
p(α)σ̂2

m

d2

]◦}
, (6.8)

where 0 < k < 1 is the parameter controlling the sample size. In the third stage we draw
N2(d)−N1(d) observations, where N2(d) is given as

N2(d) = max

{
N1(d),

[
χ2
p(α)σ̂2

N1(d)

d2
+ 3k−1 − 1

2
[p− χ2

p(α)]k−1 − 1
2

]◦}
. (6.9)

This is used to construct the ellipsoidal confidence region RN2(d) given by formula (6.5). The
following properties were proved by Mukhopadhyay and Abid (1986).

Theorem 6.1.1 Under the assumptions of normality and independence of the random errors
εi, we have for the three-stage procedure defined by (6.7)—(6.9) that

(i) P (RN2(d) 3 θ) = 1− α+ o(d2); (6.10)

(ii) EN(d) = c(d) + k−1

(
1− 1

2
[
p− χ2

p(α)
])

+ o(1). (6.11)

Proof: See Mukhopadhyay and Abid (1986) or Ghosh, Mukhopadhyay, and Sen (1997).
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6.1.1 Bootstrap Critical Points

The motivation for using bootstrap critical points instead of the critical points of the asymptotic
χ2 distribution is the same as the motivation for using bootstrap critical points instead of the
asymptotic normal critical points in the estimation of the parameter of location in the previous
chapter.

The χ2 approximation of the true distribution of the estimates Θ̂˜ n does not have to be
accurate if the distribution of errors is not normal or if the sample size is small. In these
situations, it makes sense to consider the bootstrap approximation of the distribution of the
estimates. The bootstrap based on residuals was proposed by Efron (1979). Other, more
sophisticated, approaches to the bootstrap of regression coefficients can be found e.g. in the
monograph Shao and Tu (1995).

Let the unknown vector of the regression coefficients Θ˜ be estimated by the least squares
estimator Θ̂˜ n, see (6.2). Denote by rn = (r1n, r2n, . . . , rnn)′ the vector of residuals, i.e.,

rn = Yn −XnΘ̂˜ n. (6.12)

Define the empirical distribution function of the centered residuals

FC,n(x) =
1
n

n∑
i=1

I(ri − r̄n < x). (6.13)

The true distribution of the estimate Θ̂˜ n is now approximated by the conditional distribution of
the bootstrap estimate Θ̂˜ ∗n, which is obtained as

Θ̂˜ ∗n = (X′nXn)−1X′nY
∗
n, (6.14)

where the vector of observations was obtained as

Y∗n = XnΘ˜ + ε˜∗n, (6.15)

with ε˜∗n denoting the vector of i.i.d. random variables with common distribution function FC,n
given by formula (6.13). It is easy to see that

E∗(Θ̂˜ ∗n) = Θ̂˜ n,
and

V ar∗(Θ̂˜ ∗n) = σ̂2
n(X′nXn)−1,

where σ̂2
n = V ar∗(ε∗i ) = n−1

∑n
i=1(ri − r̄n)2. The asymptotic properties of Θ̂˜ ∗n will be stated in

Theorem 6.1.2, but before that we have to introduce Mallows’ distance (Mallows 1972). The
definition and basic properties can be found also in Bickel and Freedman (1981) and Shao and
Tu (1995). For two distributions H and G, their Mallows’ distance is

ρ̃r(H,G) = inf
TX,Y

(E‖X − Y ‖r)1/r,

where TX,Y is the collection of all possible joint distributions (X,Y ) whose marginal distributions
are H and G, respectively.

The Mallows’ distance has some appealing properties and is often used in order to establish
the consistency of a bootstrap estimator. One of basic results claims that ρ̃r(Gn,G)→ 0 implies
the convergence in distribution Gn

D→ G.
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Theorem 6.1.2 Assume that and that the εi’s are i.i.d. random variables and that also

(X′nXn)→∞, hmax = max
1≤i≤n

x′i(X
′X)xi → 0.

Then

ρ̃2(L∗n,Ln)→ 0 [P ] a.s., (6.16)

where the symbols Ln and L∗n denote the distribution of (Θ̂˜ n − Θ˜ )′(X′nXn)(Θ̂˜ n − Θ˜ ) and the
bootstrap distribution of (Θ̂˜ ∗n − Θ̂˜ n)′(X′nXn)(Θ̂˜ ∗n − Θ̂˜ n), respectively.

Proof: See the proof of Theorem 7.6 in Shao and Tu (1995).
2

6.1.2 Three-stage Sequential Procedure Based on Bootstrap

In the first stage we draw

m = m(d) = max

p+ 1,

(χ2
p(α)
d2

)1/1+γ
◦ (6.17)

observations.
In the next stages of the sequential procedure, we suggest to replace the asymptotic critical

points χ2
p(α) by the bootstrap critical points. Using the critical points of

(Θ̂˜ ∗n − Θ̂˜ n)′
(X′nXn)
σ̂2
n

(Θ̂˜ ∗n − Θ̂˜ n),

we get the standardized bootstrap critical points ξA2
m (α). By using critical points of

(Θ̂˜ ∗n − Θ̂˜ n)′
(X′nXn)
σ̂2∗
n

(Θ̂˜ ∗n − Θ̂˜ n),

we obtain the studentized bootstrap critical points ξU2
m (α).

The intermediate sample size is thus given as

N1(d) = max

{
m,

[
k

(
ξA(α)σ̂m

d

)2
]◦}

, (6.18)

where 0 < k < 1 is the parameter controlling the sample size and where ξ∗(α) denotes the
bootstrap critical point. The final sample size N2(d) is given as

N2(d) = max

N1(d),

(ξA(α)σ̂N1(d)

d

)2
◦ . (6.19)

These observations are used to construct the ellipsoidal confidence region RN2(d) given by for-
mula (6.5).
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Theorem 6.1.3 Assume that and that the εi’s are i.i.d. random variables with zero mean and
variance 0 < σ <∞ and that also

(X′nXn)→∞, hmax = max
1≤i≤n

x′i(X
′X)xi → 0,

and there exists n0 such that for all n ≥ n0 we have

rank
1
n

(X′nXn) = p.

Then we have for the three-stage procedure defined by (6.17)—(6.19) the following:

(i) lim
d→0+

N2(d) =∞ [P ] a.s., (6.20)

(ii) lim
d→0+

N2(d)
c(d)

= 1 [P ] a.s., (6.21)

(iii) lim
d→0+

P (RN2(d) 3 Θ) = 1− α, (6.22)

(iv) lim
d→0+

E

(
N2(d)
c(d)

)
= 1, if there exists δ > 0 such that Eε2+δ

i <∞. (6.23)

Proof: Denote by RAn (x) the distribution function of the standardized bootstrap statistics. By
Theorem 6.1.2 we have that

lim
n→∞

RAn (x) = K2
p(x) [P ] a.s., (6.24)

where K2
p(x) denotes the distribution function of the χ2

p distribution.
Recall that ξA2

n (α) denotes the 1− α quantile of the distribution of

(Θ̂˜ ∗n − Θ̂˜ n)′
(X′nXn)
σ̂2
n

(Θ̂˜ ∗n − Θ̂˜ n).

By the strict monotonicity and continuity of χ2
p(x) and by e.g. Lemma 1.5.6 in Serfling (1980)

we have for all t ∈ (0, 1)

lim
n→∞

ξA2
n (t) = χ2

p(1− t) [P ] a.s. (6.25)

where the symbol χ2
p(1− t) denotes the 1− t quantile of the χ2

p distribution.
Notice that limd→0+m(d) =∞ and therefore

lim
d→0+

ξA2
m(d)(α) = χ2

p(1− α) [P ] a.s. (6.26)

This, together with consistence of σ̂2
m(d) and the definition of N1(d) implies that

lim
d→0+

N1(d) =∞ [P ] a.s. (6.27)

which in turn implies that also

lim
d→0+

N2(d) =∞ [P ] a.s. (6.28)
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The definition of the stopping time N2(d) implies following inequalities.

ξA2
N1

(α)σ̂2
N1

d2
< N2(d) ≤

ξA2
N1

(α)σ̂2
N1

d2
+ 1 +N1(d)I

[
ξA2
N1

(α)σ̂2
N1
≤ kξA2

m (α)σ̂2
m +md2 + d2

]
(6.29)

Similarly, as in the proof of Theorem 4.4.1, it can be shown that

lim
d→0

I
[
ξA2
N1

(α)σ̂2
N1
≤ kξA2

m (α)σ̂2
m +md2 + d2

]
= 0 [P ] a.s. (6.30)

Combining (6.29) and (6.30) proves part (ii).
Part (iii) follows from the Slutzky Theorem, Anscombe Theorem and part (ii).
In order to establish part (iv) of the theorem, it suffices to verify the uniform integrability

of the set {N2(d)d2}d>0. Similarly, as in the proof of the Theorem 4.4.1, it is sufficient to verify
the convergence of the series

∞∑
l=1

sup
0<d<d0

P{N2(d)d2 > l} (6.31)

for some d0 > 0.
We can choose d0 such that for every 0 < d < d0 we have([(u1−α/2

d

)2/(1+γ)
]◦

+ 1
)
d2 ≤ l (6.32)

and

2d2 ≤ l (6.33)

which implies that
P (N2(d)d2 > l)

≤ P

{([
(ξAN1

(α)σ̂N1)2

d2

]◦
+ 1

)
d2 > l

}
+ P

{([
k(ξAm(α)σ̂m)2

d2

]◦
+ 1

)
d2 > l

}

= P1,l(d) + P2,l(d). (6.34)

Let us first deal with the second probability.

P2,l(d) ≤ P

{
ξAm(α)σ̂m >

√
l − d2

k

}
≤ P

{
ξAm(α)σ̂m >

√
l

2k

}

= P

{
P ∗
(

(Θ̂˜ ∗m − Θ̂˜m)′(X′mXm)(Θ̂˜ ∗m − Θ̂˜m) >
l

2k

)
> α

}
≤ P

{
2k
l
E∗
(

(Θ̂˜ ∗m − Θ̂˜m)′(X′mXm)(Θ̂˜ ∗m − Θ̂˜m)
)
> α

}

= P

{
2k
l
σ̂2
m > α

}
≤
(

2k
αl

)q
Eσ̂2q

m . (6.35)
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Choosing q > 1 (while keeping 2q < 2 + δ) guarantees the convergence of the series

∞∑
l=1

sup
0<d<d0

P2,l(d).

The convergence of the series containing terms P2,l(d) follows in the same way as in the proof
of Theorem 4.4.1.

2

6.2 Robust Regression

The results of Chapter 4 can be also extended to the models of robust regression. The procedure
leading to confidence regions with fixed maximal diameter would be very similar to the procedure
for the Least Squares estimates described in the previous Section 6.1.

The existing results on the bootstrap on M -estimators of the parameters of linear model,
see Lahiri (1992) or Karabulut and Lahiri (1997), require very strong conditions. One of the
challenges in this area would be to find some weaker conditions which would be still sufficient for
establishing the Edgeworth expansions which are needed for the proof of the desired asymptotic
properties of the three-stage sequential procedure.

6.3 GM-statistics

Another exciting possibility of developing the ideas of Chapter 4 is to generalize the procedure for
the generalized M -estimators, the so-called GM -statistics, which were first mentioned by Serfling
(1984).

Recall that the M -estimators of location are defined as a solution of the equation

n∑
i=1

ψ(Xi − t) = 0.

In the definition of GM -statistics, the observations Xi are replaced by the U -statistics, i.e., the
GM -statistics is defined as a solution of the equation∑

{i1,...,im}∈Cnm

ψ (h(Xi1 , . . . , Xim)− t) = 0,

where Cnm = {(i1, . . . , im) ∈ Nn|1 ≤ j1 < · · · < jm ≤ n} and where h(.) is the kernel of degree m
of the U -statistics.

Clearly, the GM -statistics cover both the U -statistics and M -estimators. An example of
GM -statistics is the generalized Hodges-Lehmann estimator

med1≤i1<···<im≤n
1
m

(Xi1 + · · ·+Xim).

A systematic account of (fully sequential) fixed-width confidence intervals for GM -statistics is
given in Aerts (1988).
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6.4 Multi-stage Procedures with Lower Bound for Variance

Mukhopadhyay and Duggan (1997) suggested to improve the asymptotic properties of the two-
stage procedure by adding the assumption that there exists a lower band for the variance σ2 of
the observations, i.e.,

0 < σ2
L < σ2.

The procedure goes as follows. In the first stage we draw

m(d) = max

{
2,

[
σ2
Lu

2
1−α/2

d2

]◦
+ 1

}

observations. In the second stage, we add N(d) − m(d) observations, where N(d) is given
by (1.11). Mukhopadhyay and Duggan (1997) showed that this two-stage procedure is second
order efficient.

A drawback of this procedure might be the assumption concerning the lower bound σ2
L. It

is clearly desirable to choose σ2
L as close to the real value of σ2 as possible. On the other hand,

we have to be very careful that we do not choose σ2
L too large as we might easily overestimate

the optimal sample size. The solution of this dilemma can be found by means of three-stage
procedure.

We keep the assumption that σ2
L > σ2 and we draw

m(d) = max

{
2,

[
σ2
Lu

2
1−α/2

d2

]◦
+ 1

}

observations in the first stage as before. In the second stage, we draw N1(d)−m(d) observations,

N1(d) = max

{
m(d),

[
k
σ̂2
mu

2
1−α/2

d2

]◦
+ 1

}
,

where 0 < k < 1 is the parameter controlling the intermediate sample size. In the third stage,
we draw additional N2(d)−N1(d) observations,

N2(d) = max

{
N1(d),

[
k
σ̂2
mu

2
1−α/2

d2

]◦
+ 1

}
.

With this three-stage procedure, we can choose σ2
L very far from σ2 and still obtain good results.

Another advantage of this procedure is that we do not have to take care about the tuning
parameter γ which controls the sample size in the first stage. This parameter is replaced by the
more natural condition σ2 > σ2

L.
The generalization of this procedure to the procedure based on bootstrap critical points and

to M -estimators is straightforward and all theoretical results of Chapter 4 are still valid.



Appendix A

Useful Theorems and Lemmas

In this appendix we collect basic probability inequalities and theorems which were used in the
proofs. Most of them can be found in any textbook concerning theory of probability, see e.g.
Feller (1966), Loève (1977), Serfling (1980), or Štěpán (1987).

A.1 Basic Inequalities

Lemma A.1.1 (cr inequality) E|X + Y |r ≤ crE|X|r + crE|Y |r, where cr = 1 or 2r−1 according
as r ≤ 1 or r ≥ 1.

Lemma A.1.2 (Hölder inequality) E|XY | ≤ E1/r|X|rE1/s|Y |s, where r > 1 and 1/r+ 1/s = 1.

Lemma A.1.3 (Minkowski inequality) If r ≥ 1, then

E1/r|X + Z|r ≤ E1/r|X|r + E1/r|Z|r

Lemma A.1.4 (Schwarz inequality) E2|XY | ≤ E|X|2E|Y |2.

Lemma A.1.5 (Jensen inequality) If g is convex and EX finite, then g(EX) ≤ Eg(X).

A.2 Probability Inequalities

Lemma A.2.1 (Basic inequality) Let X be an arbitrary random variables and let g on < be a
nonnegative Borel function.

If g is even and nondecreasing on [0,+∞), then for every a ≥ 0

Eg(X)− g(a)
a.s. sup g(X)

≤ P [|X| ≥ a] ≤ Eg(X)
g(a)

.

If g is nondecreasing on <, then the middle term is replaced by P [X ≥ a], where a is an arbitrary
number.

81



82 APPENDIX A. USEFUL THEOREMS AND LEMMAS

Lemma A.2.2 (Markov inequality)

P [|X| ≥ a] ≤ E|X|r

ar
.

Lemma A.2.3 (Tchebyschev inequality)

P [|X| ≥ a] ≤ E|X|2

a2
.

Lemma A.2.4 (Kolmogorov inequality) If X1, . . . , Xn are independent and such that EX2
i <∞,

then for every ε > 0

P

(
max

1≤k≤n
|Sk| ≥ ε

)
≤ ε−2

n∑
k=1

Var Xk, (A.1)

where Sk =
∑k

j=1(Xj − EXj).

Lemma A.2.5 (Hoeffding inequality) If X1, . . . , Xn are independent and ai < Xi < bi, then for
t > 0

P
(
X̄ − µ ≥ t

)
≤ exp

{
− 2n2t2∑n

i=1(bi − ai)2

}
(A.2)

Lemma A.2.6 (Dvoretzky, Kiefer, and Wolfowitz) Let F and Fn be the population and sam-
ple distribution function of a sequence of iid random variables {Xi} and let Dn denote the
Kolmogorov-Smirnov distance, i.e.

Dn = sup
x∈<
|Fn(x)− F (x)|.

Then there exists a finite positive constant C (not depending on F ) such that

P (Dn > d) ≤ C exp{−2nd2}, d > 0, (A.3)

for all n = 1, 2, . . . .

A.3 CLT

Theorem A.3.1 (Lindeberg–Feller) Let {Xi} be independent with means {µi}, finite variances
{σi}, and distribution functions {Fi}. Suppose that B2

n =
∑n

1 σi satisfies

σ2
n

B2
n

→ 0, Bn →∞, as n→∞. (A.4)

Then, as n→∞,

1
n

n∑
i=1

Xi
D→ N

(
1
n

n∑
i=1

µi,
1
n2
B2
n

)
(A.5)
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if and only if the Lindeberg condition∑n
i=1

∫
|t−µi|>εBn(t− µi)2dFi(t)

B2
n

→ 0, as n→∞, ∀ε > 0, (A.6)

is satisfied.

Proof: See Serfling (1980).
2

Theorem A.3.2 (Edgeworth expansion) If F is not a lattice distribution and if the third mo-
ment µ3 exists then

Fn(x)− Φ(x)− µ3

6σ3
√
n

(1− x2)ϕ(x) = o(n−1/2)

uniformly for all x, where Fn(.) is the distribution function of
√
n
∑n

i=1(Xi − µ)/σ and where
Xi are iid with mean µ and variance σ2.

Proof: See Feller (1966).

Theorem A.3.3 (Edgeworth expansion) If Cramer’s condition (4.122) holds and if the third
moment µ3 and the fourth moment µ4 exist then

Fn(x)−Φ(x)− µ3

6σ3
√
n

(1− x2)ϕ(x) +
(

µ2
3

72σ6
2

(x2 − 1) +
µ4 − 3σ4

24σ4
(x3 − 3x)

)
n−1ϕ′(x) = o(n−1)

uniformly for all x, where Fn(.) is the distribution function of
√
n
∑n

i=1(Xi − µ)/σ and where
Xi are iid with mean µ and variance σ2.

Proof: See Feller (1966).
2

Theorem A.3.4 (Berry–Esséen) Let {Xi} be iid random variables with mean µ and variance
σ2 > 0. Then

sup
t
|Gn(t)− Φ(t)| ≤ 33

4
E|X1 − µ|3

σ3n1/2
, for all n,

where Gn(.) is the distribution function of the normalized sum∑n
i=1(Xi − E

∑n
i=1Xi)√

V ar
∑n

i=1Xi

Proof: See Theorem 1.9.5 in Serfling (1980).
2
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A.4 Random CLT

Definition A.4.1 We say that Y1, Y2, . . . are uniformly continuous in probability if and only
if for every ε > 0 there exists δ > 0 such that

P

(
max

0<k<nδ
|Yn+k − Yn| ≥ ε

)
< ε (A.7)

for all n ≥ 1.

Theorem A.4.1 Suppose that Y1, Y2, . . . are uniformly continuous in probability. Let Na, (a >
0) be a positive integer-valued random variable for which Na/a converges in probability to a finite
positive constant k. Define na as the integer part of ak. Then

YNa − Yna
P→ 0 as n→∞.

If in addition Yn converges in distribution to a random variable Y as n → ∞ then also YNa
converges in distribution to Y as n→∞.

Proof: See Theorem 2.7.1 in Ghosh, Mukhopadhyay, and Sen (1997).
2

Theorem A.4.2 (Anscombe) Let {Xi} be iid random variables with mean µ and finite variance
σ2 > 0. Let {νn} be a sequence of integer-valued random variables and {an} a sequence of positive
constants tending to ∞, such that

νm
an

P→ c

for some positive constant c. Then∑νn
i=1(Xi − µ)
√
νn

D→ N(0, σ2).

Proof: See Theorem 1.9.4 in Serfling (1980).
2
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Tables

Table B.1: Values of h for Huber’s ψh(.) score function and percentage of contamination.

h ε h ε h ε h ε h ε h ε
0.00 1.000000 0.50 0.441714 1.00 0.142845 1.50 0.037629 2.00 0.008418 2.50 0.001600
0.01 0.987467 0.51 0.432995 1.01 0.139328 1.51 0.036576 2.01 0.008156 2.51 0.001545
0.02 0.974939 0.52 0.424395 1.02 0.135887 1.52 0.035551 2.02 0.007903 2.52 0.001492
0.03 0.962417 0.53 0.415915 1.03 0.132520 1.53 0.034553 2.03 0.007656 2.53 0.001441
0.04 0.949908 0.54 0.407554 1.04 0.129227 1.54 0.033580 2.04 0.007417 2.54 0.001391
0.05 0.937413 0.55 0.399313 1.05 0.126006 1.55 0.032633 2.05 0.007184 2.55 0.001343
0.06 0.924936 0.56 0.391192 1.06 0.122856 1.56 0.031710 2.06 0.006959 2.56 0.001296
0.07 0.912482 0.57 0.383190 1.07 0.119775 1.57 0.030812 2.07 0.006740 2.57 0.001251
0.08 0.900055 0.58 0.375307 1.08 0.116763 1.58 0.029937 2.08 0.006528 2.58 0.001207
0.09 0.887656 0.59 0.367544 1.09 0.113819 1.59 0.029085 2.09 0.006322 2.59 0.001165
0.10 0.875292 0.60 0.359900 1.10 0.110940 1.60 0.028256 2.10 0.006122 2.60 0.001125
0.11 0.862964 0.61 0.352374 1.11 0.108126 1.61 0.027448 2.11 0.005928 2.61 0.001085
0.12 0.850676 0.62 0.344966 1.12 0.105376 1.62 0.026663 2.12 0.005739 2.62 0.001047
0.13 0.838433 0.63 0.337676 1.13 0.102688 1.63 0.025898 2.13 0.005557 2.63 0.001010
0.14 0.826236 0.64 0.330504 1.14 0.100061 1.64 0.025153 2.14 0.005379 2.64 0.000975
0.15 0.814091 0.65 0.323448 1.15 0.097495 1.65 0.024428 2.15 0.005207 2.65 0.000940
0.16 0.801999 0.66 0.316508 1.16 0.094988 1.66 0.023723 2.16 0.005041 2.66 0.000907
0.17 0.789964 0.67 0.309683 1.17 0.092538 1.67 0.023036 2.17 0.004879 2.67 0.000875
0.18 0.777991 0.68 0.302973 1.18 0.090146 1.68 0.022369 2.18 0.004722 2.68 0.000844
0.19 0.766080 0.69 0.296377 1.19 0.087809 1.69 0.021719 2.19 0.004570 2.69 0.000813
0.20 0.754236 0.70 0.289894 1.20 0.085527 1.70 0.021086 2.20 0.004422 2.70 0.000784
0.21 0.742462 0.71 0.283524 1.21 0.083298 1.71 0.020471 2.21 0.004279 2.71 0.000756
0.22 0.730761 0.72 0.277265 1.22 0.081122 1.72 0.019873 2.22 0.004141 2.72 0.000729
0.23 0.719134 0.73 0.271116 1.23 0.078997 1.73 0.019291 2.23 0.004006 2.73 0.000703
0.24 0.707586 0.74 0.265077 1.24 0.076922 1.74 0.018697 2.24 0.003876 2.74 0.000678
0.25 0.696119 0.75 0.259146 1.25 0.074897 1.75 0.018147 2.25 0.003749 2.75 0.000653
0.26 0.684735 0.76 0.253323 1.26 0.072921 1.76 0.017611 2.26 0.003627 2.76 0.000630
0.27 0.673437 0.77 0.247607 1.27 0.070991 1.77 0.017090 2.27 0.003508 2.77 0.000607
0.28 0.662228 0.78 0.241995 1.28 0.069108 1.78 0.016584 2.28 0.003393 2.78 0.000585
0.29 0.651109 0.79 0.236489 1.29 0.067271 1.79 0.016091 2.29 0.003281 2.79 0.000564
0.30 0.640083 0.80 0.231085 1.30 0.065478 1.80 0.015612 2.30 0.003173 2.80 0.000543
0.31 0.629152 0.81 0.225784 1.31 0.063728 1.81 0.015147 2.31 0.003069 2.81 0.000523
0.32 0.618318 0.82 0.220583 1.32 0.062022 1.82 0.014694 2.32 0.002967 2.82 0.000504
0.33 0.607583 0.83 0.215483 1.33 0.060357 1.83 0.014254 2.33 0.002869 2.83 0.000486
0.34 0.596949 0.84 0.210481 1.34 0.058732 1.84 0.013826 2.34 0.002773 2.84 0.000468
0.35 0.586418 0.85 0.205576 1.35 0.057148 1.85 0.013410 2.35 0.002681 2.85 0.000451
0.36 0.575991 0.86 0.200768 1.36 0.055603 1.86 0.013006 2.36 0.002592 2.86 0.000434
0.37 0.565671 0.87 0.196054 1.37 0.054096 1.87 0.012614 2.37 0.002505 2.87 0.000418
0.38 0.555458 0.88 0.191434 1.38 0.052627 1.88 0.012232 2.38 0.002421 2.88 0.000403
0.39 0.545354 0.89 0.186907 1.39 0.051194 1.89 0.011861 2.39 0.002340 2.89 0.000388
0.40 0.535360 0.90 0.182471 1.40 0.049797 1.90 0.011501 2.40 0.002261 2.90 0.000373
0.41 0.525478 0.91 0.178125 1.41 0.048435 1.91 0.011151 2.41 0.002185 2.91 0.000359
0.42 0.515708 0.92 0.173867 1.42 0.047107 1.92 0.010810 2.42 0.002112 2.92 0.000346
0.43 0.506052 0.93 0.169697 1.43 0.045813 1.93 0.010480 2.43 0.002040 2.93 0.000333
0.44 0.496511 0.94 0.165613 1.44 0.044551 1.94 0.010159 2.44 0.001971 2.94 0.000321
0.45 0.487085 0.95 0.161614 1.45 0.043322 1.95 0.009847 2.45 0.001904 2.95 0.000309
0.46 0.477776 0.96 0.157698 1.46 0.042123 1.96 0.009544 2.46 0.001839 2.96 0.000297
0.47 0.468583 0.97 0.153864 1.47 0.040956 1.97 0.009250 2.47 0.001777 2.97 0.000286
0.48 0.459509 0.98 0.150112 1.48 0.039818 1.98 0.008965 2.48 0.001716 2.98 0.000275
0.49 0.450552 0.99 0.146439 1.49 0.038709 1.99 0.008687 2.49 0.001657 2.99 0.000265
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Table B.2: Values of starting sample size for α = 0.05 and different values of γ.

d\γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2
0.95 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2
0.9 5 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
0.85 5 5 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2
0.8 6 5 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 2 2 2
0.75 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2
0.7 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 2
0.65 8 7 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3
0.6 9 8 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3
0.55 11 9 8 7 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3
0.5 12 10 9 8 7 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3
0.49 13 11 9 8 7 6 6 5 5 4 4 4 4 4 4 3 3 3 3 3
0.48 13 11 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
0.47 14 11 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3
0.46 14 12 10 8 7 7 6 6 5 5 4 4 4 4 4 4 3 3 3 3
0.45 15 12 10 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3
0.44 16 13 10 9 8 7 6 6 5 5 5 4 4 4 4 4 4 3 3 3
0.43 16 13 11 9 8 7 6 6 5 5 5 4 4 4 4 4 4 3 3 3
0.42 17 14 11 10 8 7 7 6 6 5 5 5 4 4 4 4 4 4 3 3
0.41 18 14 12 10 9 8 7 6 6 5 5 5 4 4 4 4 4 4 3 3
0.4 18 15 12 10 9 8 7 6 6 5 5 5 4 4 4 4 4 4 3 3
0.39 19 15 12 11 9 8 7 7 6 6 5 5 5 4 4 4 4 4 4 3
0.38 20 16 13 11 9 8 7 7 6 6 5 5 5 4 4 4 4 4 4 3
0.37 21 17 13 11 10 9 8 7 6 6 5 5 5 5 4 4 4 4 4 4
0.36 22 17 14 12 10 9 8 7 6 6 6 5 5 5 4 4 4 4 4 4
0.35 23 18 15 12 10 9 8 7 7 6 6 5 5 5 4 4 4 4 4 4
0.34 25 19 15 13 11 9 8 8 7 6 6 5 5 5 5 4 4 4 4 4
0.33 26 20 16 13 11 10 9 8 7 6 6 6 5 5 5 4 4 4 4 4
0.32 27 21 17 14 12 10 9 8 7 7 6 6 5 5 5 5 4 4 4 4
0.31 29 22 18 14 12 11 9 8 7 7 6 6 5 5 5 5 4 4 4 4
0.3 31 23 18 15 13 11 10 9 8 7 6 6 6 5 5 5 5 4 4 4
0.29 33 25 19 16 13 11 10 9 8 7 7 6 6 5 5 5 5 4 4 4
0.28 35 26 20 17 14 12 10 9 8 7 7 6 6 6 5 5 5 5 4 4
0.27 37 28 22 17 15 12 11 10 9 8 7 7 6 6 5 5 5 5 4 4
0.26 40 29 23 18 15 13 11 10 9 8 7 7 6 6 6 5 5 5 5 4
0.25 43 31 24 19 16 14 12 10 9 8 8 7 6 6 6 5 5 5 5 4
0.24 46 34 26 21 17 14 12 11 10 9 8 7 7 6 6 6 5 5 5 5
0.23 50 36 28 22 18 15 13 11 10 9 8 8 7 6 6 6 5 5 5 5
0.22 54 39 29 23 19 16 14 12 10 9 9 8 7 7 6 6 6 5 5 5
0.21 59 42 32 25 20 17 14 12 11 10 9 8 7 7 6 6 6 5 5 5
0.2 64 45 34 27 21 18 15 13 12 10 9 8 8 7 7 6 6 6 5 5
0.19 70 49 37 29 23 19 16 14 12 11 10 9 8 7 7 7 6 6 5 5
0.18 77 54 40 31 25 20 17 15 13 11 10 9 8 8 7 7 6 6 6 5
0.17 86 59 44 33 27 22 18 16 14 12 11 10 9 8 8 7 7 6 6 6
0.16 96 66 48 36 29 23 20 17 14 13 11 10 9 9 8 7 7 6 6 6
0.15 107 73 53 40 31 25 21 18 15 14 12 11 10 9 8 8 7 7 6 6
0.14 122 82 58 44 34 28 23 19 17 14 13 12 10 10 9 8 8 7 7 6
0.13 139 93 65 49 38 30 25 21 18 16 14 12 11 10 9 9 8 7 7 7
0.12 161 106 74 55 42 33 27 23 19 17 15 13 12 11 10 9 8 8 7 7
0.11 189 122 85 62 47 37 30 25 21 18 16 14 13 12 11 10 9 8 8 7
0.1 224 143 98 71 53 42 34 28 23 20 18 15 14 12 11 10 10 9 8 8
0.09 271 170 115 82 61 48 38 31 26 22 19 17 15 14 12 11 10 10 9 8
0.08 336 207 138 97 72 55 44 35 29 25 22 19 17 15 13 12 11 10 10 9
0.07 428 259 169 117 86 65 51 41 34 28 24 21 19 17 15 13 12 11 10 10
0.06 567 334 214 146 105 79 61 49 40 33 28 24 21 19 17 15 14 13 12 11
0.05 789 453 283 189 134 99 75 59 48 40 33 29 25 22 19 17 16 14 13 12
0.04 1184 657 399 260 180 130 98 76 61 49 41 35 30 26 23 20 18 17 15 14
0.03 1997 1060 621 392 264 186 137 104 82 66 54 45 38 33 29 25 23 20 18 17
0.02 4173 2084 1158 700 452 309 221 164 125 98 79 65 54 46 40 35 30 27 24 22
0.01 14714 6614 3362 1883 1139 734 498 353 259 196 153 122 99 82 69 58 50 44 39 34
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Table B.3: Values of starting sample size for α = 0.01 and different values of γ.

d\γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2
0.95 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2
0.9 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3
0.85 8 7 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3
0.8 9 8 7 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 3
0.75 10 8 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3
0.7 11 9 8 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3 3 3
0.65 13 10 9 8 7 6 6 5 5 4 4 4 4 4 4 3 3 3 3 3
0.6 15 12 10 9 7 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3
0.55 17 14 11 10 8 7 7 6 6 5 5 5 4 4 4 4 4 4 3 3
0.5 20 16 13 11 9 8 7 7 6 6 5 5 5 4 4 4 4 4 4 3
0.49 21 16 13 11 10 8 8 7 6 6 5 5 5 4 4 4 4 4 4 4
0.48 22 17 14 12 10 9 8 7 6 6 5 5 5 5 4 4 4 4 4 4
0.47 23 18 14 12 10 9 8 7 6 6 6 5 5 5 4 4 4 4 4 4
0.46 23 18 15 12 10 9 8 7 7 6 6 5 5 5 4 4 4 4 4 4
0.45 24 19 15 13 11 9 8 7 7 6 6 5 5 5 5 4 4 4 4 4
0.44 25 20 16 13 11 10 8 8 7 6 6 5 5 5 5 4 4 4 4 4
0.43 26 20 16 13 11 10 9 8 7 6 6 6 5 5 5 4 4 4 4 4
0.42 28 21 17 14 12 10 9 8 7 7 6 6 5 5 5 5 4 4 4 4
0.41 29 22 17 14 12 10 9 8 7 7 6 6 5 5 5 5 4 4 4 4
0.4 30 23 18 15 12 11 9 8 8 7 6 6 6 5 5 5 4 4 4 4
0.39 31 24 19 15 13 11 10 9 8 7 7 6 6 5 5 5 5 4 4 4
0.38 33 25 19 16 13 11 10 9 8 7 7 6 6 5 5 5 5 4 4 4
0.37 35 26 20 16 14 12 10 9 8 7 7 6 6 6 5 5 5 4 4 4
0.36 36 27 21 17 14 12 11 9 8 8 7 6 6 6 5 5 5 5 4 4
0.35 38 28 22 18 15 13 11 10 9 8 7 7 6 6 5 5 5 5 4 4
0.34 40 30 23 19 15 13 11 10 9 8 7 7 6 6 6 5 5 5 5 4
0.33 42 31 24 19 16 14 12 10 9 8 8 7 6 6 6 5 5 5 5 4
0.32 45 33 25 20 17 14 12 11 9 9 8 7 7 6 6 5 5 5 5 5
0.31 47 35 26 21 17 15 13 11 10 9 8 7 7 6 6 6 5 5 5 5
0.3 50 37 28 22 18 15 13 11 10 9 8 8 7 7 6 6 5 5 5 5
0.29 54 39 29 23 19 16 14 12 10 9 9 8 7 7 6 6 6 5 5 5
0.28 57 41 31 24 20 17 14 12 11 10 9 8 7 7 6 6 6 5 5 5
0.27 61 43 33 26 21 17 15 13 11 10 9 8 8 7 7 6 6 6 5 5
0.26 65 46 35 27 22 18 15 13 12 10 9 9 8 7 7 6 6 6 5 5
0.25 70 49 37 28 23 19 16 14 12 11 10 9 8 7 7 7 6 6 5 5
0.24 75 53 39 30 24 20 17 14 13 11 10 9 8 8 7 7 6 6 6 5
0.23 81 57 42 32 26 21 18 15 13 12 10 9 9 8 7 7 6 6 6 6
0.22 88 61 45 34 27 22 19 16 14 12 11 10 9 8 8 7 7 6 6 6
0.21 96 66 48 36 29 23 20 17 14 13 11 10 9 9 8 7 7 6 6 6
0.2 105 71 51 39 31 25 21 18 15 13 12 11 10 9 8 8 7 7 6 6
0.19 115 78 56 42 33 27 22 19 16 14 12 11 10 9 9 8 7 7 7 6
0.18 127 85 60 45 35 28 23 20 17 15 13 12 11 10 9 8 8 7 7 6
0.17 141 93 66 49 38 30 25 21 18 16 14 12 11 10 9 9 8 7 7 7
0.16 157 103 72 53 41 33 27 22 19 17 15 13 12 11 10 9 8 8 7 7
0.15 176 115 80 59 45 35 29 24 20 18 15 14 12 11 10 9 9 8 8 7
0.14 200 129 89 65 49 39 31 26 22 19 17 15 13 12 11 10 9 9 8 7
0.13 229 146 99 72 54 42 34 28 24 20 18 16 14 13 11 10 10 9 8 8
0.12 264 166 112 80 60 47 37 31 26 22 19 17 15 13 12 11 10 9 9 8
0.11 310 192 128 91 67 52 41 34 28 24 21 18 16 14 13 12 11 10 9 9
0.1 368 225 149 104 77 59 46 37 31 26 23 20 17 15 14 13 12 11 10 9
0.09 446 268 175 121 88 67 52 42 35 29 25 22 19 17 15 14 12 11 11 10
0.08 552 326 209 143 103 77 60 48 39 33 28 24 21 19 17 15 14 12 11 11
0.07 703 408 257 173 123 91 70 55 45 37 31 27 23 21 18 17 15 14 13 12
0.06 931 527 326 216 151 110 84 66 53 43 36 31 27 23 21 19 17 15 14 13
0.05 1297 714 431 280 192 139 104 80 64 52 43 37 31 27 24 21 19 17 16 14
0.04 1945 1035 607 384 259 183 135 103 81 65 53 45 38 33 28 25 22 20 18 17
0.03 3281 1672 945 579 379 262 189 141 109 86 70 58 49 41 36 31 28 25 22 20
0.02 6858 3285 1762 1034 651 434 304 221 167 129 103 83 69 58 49 42 37 33 29 26
0.01 24182 10428 5119 2781 1639 1032 687 478 345 258 198 156 125 103 85 72 62 53 46 41
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Table B.4: Asymptotically optimal sample size for α = 0.05 for Huber’s ψ0.5(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 5 9 5 6
0.95 6 10 5 6
0.9 6 11 6 7
0.85 7 13 7 8
0.8 8 14 7 9
0.75 9 16 8 10
0.7 10 18 10 11
0.65 12 21 11 13
0.6 14 25 13 15
0.55 17 30 15 18
0.5 20 36 18 21
0.49 21 37 19 22
0.48 22 39 20 23
0.47 22 40 21 24
0.46 23 42 22 25
0.45 24 44 23 26
0.44 26 46 24 28
0.43 27 48 25 29
0.42 28 50 26 30
0.41 29 53 27 32
0.4 31 55 28 33
0.39 32 58 30 35
0.38 34 61 32 37
0.37 36 65 33 39
0.36 38 68 35 41
0.35 40 72 37 43
0.34 42 77 39 46
0.33 45 81 42 49
0.32 48 86 44 52
0.31 51 92 47 55
0.3 54 98 50 59
0.29 58 105 54 63
0.28 62 113 58 67
0.27 67 121 62 72
0.26 72 131 67 78
0.25 78 141 72 84
0.24 85 153 78 92
0.23 92 167 85 100
0.22 101 182 93 109
0.21 110 200 102 119
0.2 122 220 112 132
0.19 135 244 125 146
0.18 150 272 139 162
0.17 168 305 155 182
0.16 190 344 175 205
0.15 216 391 199 234
0.14 248 449 229 268
0.13 287 521 265 311
0.12 337 611 311 365
0.11 401 727 370 434
0.1 485 879 448 525
0.09 599 1086 553 648
0.08 758 1374 700 820
0.07 990 1794 914 1071
0.06 1348 2442 1244 1457
0.05 1940 3516 1791 2098
0.04 3032 5494 2798 3278
0.03 5389 9767 4974 5827
0.02 12125 21975 11192 13109
0.01 48500 87898 44765 52435
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Table B.5: Asymptotically optimal sample size for α = 0.05 for Huber’s ψ1(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 5 10 6 5
0.95 5 11 6 6
0.9 6 13 7 6
0.85 6 14 8 7
0.8 7 16 8 8
0.75 8 18 10 9
0.7 9 20 11 10
0.65 11 24 13 12
0.6 12 28 15 13
0.55 15 33 17 16
0.5 18 40 21 19
0.49 18 41 22 20
0.48 19 43 23 21
0.47 20 45 24 22
0.46 21 47 25 23
0.45 22 49 26 24
0.44 22 51 27 25
0.43 24 53 28 26
0.42 25 56 29 27
0.41 26 59 31 28
0.4 27 62 32 30
0.39 28 65 34 31
0.38 30 68 36 33
0.37 32 72 38 35
0.36 33 76 40 36
0.35 35 80 42 39
0.34 37 85 44 41
0.33 40 90 47 43
0.32 42 96 50 46
0.31 45 102 53 49
0.3 48 109 57 52
0.29 51 117 61 56
0.28 55 125 65 60
0.27 59 135 70 64
0.26 63 145 76 69
0.25 69 157 82 75
0.24 74 170 89 81
0.23 81 185 97 89
0.22 88 203 105 97
0.21 97 222 116 106
0.2 107 245 128 117
0.19 118 271 141 130
0.18 132 302 157 144
0.17 148 339 176 162
0.16 167 383 199 183
0.15 190 435 226 208
0.14 218 500 260 238
0.13 252 579 301 276
0.12 296 680 353 324
0.11 352 809 420 386
0.1 426 979 509 467
0.09 526 1208 628 576
0.08 665 1529 794 729
0.07 869 1997 1037 952
0.06 1182 2718 1412 1296
0.05 1702 3913 2033 1866
0.04 2659 6114 3176 2916
0.03 4726 10870 5646 5183
0.02 10634 24456 12702 11661
0.01 42533 97822 50808 46641
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Table B.6: Asymptotically optimal sample size for α = 0.05 for Huber’s ψ1.5(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 4 12 6 5
0.95 5 13 7 5
0.9 5 15 7 6
0.85 6 16 8 7
0.8 7 18 9 7
0.75 8 21 11 8
0.7 9 24 12 10
0.65 10 28 14 11
0.6 12 32 16 13
0.55 14 39 19 15
0.5 16 46 23 18
0.49 17 48 24 19
0.48 18 50 25 20
0.47 19 53 26 21
0.46 19 55 27 22
0.45 20 57 28 23
0.44 21 60 30 24
0.43 22 63 31 25
0.42 23 66 32 26
0.41 24 69 34 27
0.4 25 72 36 28
0.39 27 76 38 30
0.38 28 80 39 31
0.37 30 84 42 33
0.36 31 89 44 35
0.35 33 94 46 37
0.34 35 100 49 39
0.33 37 106 52 41
0.32 39 113 55 44
0.31 42 120 59 47
0.3 45 128 63 50
0.29 48 137 67 53
0.28 51 147 72 57
0.27 55 158 78 62
0.26 59 171 84 66
0.25 64 184 91 72
0.24 70 200 98 78
0.23 76 218 107 85
0.22 83 238 117 93
0.21 91 261 128 102
0.2 100 288 141 112
0.19 111 319 156 124
0.18 123 355 174 138
0.17 138 398 195 155
0.16 156 450 220 175
0.15 178 511 251 199
0.14 204 587 288 228
0.13 236 681 334 264
0.12 277 799 391 310
0.11 330 951 466 369
0.1 399 1150 563 446
0.09 492 1420 695 551
0.08 623 1797 880 697
0.07 813 2347 1149 910
0.06 1107 3194 1564 1238
0.05 1594 4599 2252 1783
0.04 2490 7186 3519 2785
0.03 4427 12774 6255 4952
0.02 9959 28741 14073 11140
0.01 39836 114964 56289 44560
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Table B.7: Asymptotically optimal sample size for α = 0.01 for Huber’s ψ0.5(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 9 16 8 10
0.95 10 17 9 11
0.9 11 19 10 12
0.85 12 22 11 13
0.8 14 24 13 15
0.75 15 27 14 17
0.7 18 31 16 19
0.65 20 36 19 22
0.6 24 43 22 26
0.55 28 51 26 30
0.5 34 61 31 37
0.49 35 64 33 38
0.48 37 66 34 40
0.47 38 69 36 41
0.46 40 72 37 43
0.45 42 75 39 45
0.44 44 79 40 47
0.43 46 83 42 49
0.42 48 87 44 52
0.41 50 91 46 54
0.4 53 95 49 57
0.39 56 100 51 60
0.38 59 106 54 63
0.37 62 111 57 67
0.36 65 118 60 70
0.35 69 124 64 74
0.34 73 132 67 79
0.33 77 140 71 84
0.32 82 149 76 89
0.31 88 158 81 95
0.3 94 169 86 101
0.29 100 181 92 108
0.28 107 194 99 116
0.27 115 209 107 125
0.26 124 225 115 134
0.25 135 243 124 145
0.24 146 264 135 158
0.23 159 287 147 172
0.22 174 314 160 188
0.21 190 345 176 206
0.2 210 380 194 227
0.19 233 421 215 251
0.18 259 469 239 280
0.17 290 526 268 314
0.16 328 594 303 354
0.15 373 675 344 403
0.14 428 775 395 463
0.13 496 899 458 536
0.12 582 1055 537 629
0.11 693 1255 639 749
0.1 838 1519 774 906
0.09 1035 1875 955 1119
0.08 1309 2373 1209 1416
0.07 1710 3099 1578 1849
0.06 2327 4218 2148 2516
0.05 3351 6073 3093 3623
0.04 5236 9489 4833 5661
0.03 9308 16869 8591 10063
0.02 20942 37954 19329 22642
0.01 83768 151816 77316 90565
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Table B.8: Asymptotically optimal sample size for α = 0.01 for Huber’s ψ1(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 8 17 9 9
0.95 9 19 10 9
0.9 10 21 11 10
0.85 11 24 13 12
0.8 12 27 14 13
0.75 14 31 16 15
0.7 15 35 18 17
0.65 18 40 21 20
0.6 21 47 25 23
0.55 25 56 30 27
0.5 30 68 36 33
0.49 31 71 37 34
0.48 32 74 39 35
0.47 34 77 40 37
0.46 35 80 42 39
0.45 37 84 44 40
0.44 38 88 46 42
0.43 40 92 48 44
0.42 42 96 50 46
0.41 44 101 53 48
0.4 46 106 55 51
0.39 49 112 58 53
0.38 51 118 61 56
0.37 54 124 65 59
0.36 57 131 68 63
0.35 60 138 72 66
0.34 64 147 76 70
0.33 68 156 81 74
0.32 72 165 86 79
0.31 77 176 92 84
0.3 82 188 98 90
0.29 88 201 105 96
0.28 94 216 112 103
0.27 101 232 121 111
0.26 109 250 130 120
0.25 118 271 141 129
0.24 128 294 153 140
0.23 139 320 166 153
0.22 152 350 182 167
0.21 167 384 199 183
0.2 184 423 220 202
0.19 204 469 244 224
0.18 227 522 271 249
0.17 255 585 304 279
0.16 287 660 343 315
0.15 327 751 391 359
0.14 375 863 448 412
0.13 435 1000 520 477
0.12 511 1174 610 560
0.11 608 1397 726 666
0.1 735 1690 878 806
0.09 907 2086 1084 995
0.08 1148 2640 1372 1259
0.07 1500 3449 1791 1645
0.06 2041 4694 2438 2238
0.05 2939 6759 3511 3223
0.04 4592 10560 5485 5035
0.03 8163 18773 9751 8951
0.02 18366 42239 21939 20140
0.01 73462 168956 87754 80557
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Table B.9: Asymptotically optimal sample size for α = 0.01 for Huber’s ψ1.5(.) score function.

d N(0,1) Cauchy Double Exponential 0.95 N(0,1) + 0.05 N(0,9)
1 7 20 10 8
0.95 8 23 11 9
0.9 9 25 13 10
0.85 10 28 14 11
0.8 11 32 16 13
0.75 13 36 18 14
0.7 15 41 20 16
0.65 17 47 24 19
0.6 20 56 28 22
0.55 23 66 33 26
0.5 28 80 39 31
0.49 29 83 41 33
0.48 30 87 43 34
0.47 32 90 45 35
0.46 33 94 46 37
0.45 34 99 49 39
0.44 36 103 51 40
0.43 38 108 53 42
0.42 40 113 56 44
0.41 41 119 58 46
0.4 44 125 61 49
0.39 46 131 64 51
0.38 48 138 68 54
0.37 51 146 72 57
0.36 54 154 76 60
0.35 57 163 80 63
0.34 60 172 85 67
0.33 64 183 90 71
0.32 68 194 95 76
0.31 72 207 102 81
0.3 77 221 109 86
0.29 82 237 116 92
0.28 88 254 125 99
0.27 95 273 134 106
0.26 102 294 144 114
0.25 111 318 156 124
0.24 120 345 169 134
0.23 131 376 184 146
0.22 143 411 201 160
0.21 157 451 221 175
0.2 173 497 244 193
0.19 191 551 270 214
0.18 213 613 301 238
0.17 239 688 337 267
0.16 269 776 380 301
0.15 306 883 433 343
0.14 352 1014 497 393
0.13 408 1175 576 456
0.12 478 1379 676 535
0.11 569 1642 804 637
0.1 689 1986 973 770
0.09 850 2452 1201 951
0.08 1076 3103 1520 1203
0.07 1405 4053 1985 1571
0.06 1912 5516 2701 2138
0.05 2753 7943 3889 3079
0.04 4301 12411 6077 4811
0.03 7645 22063 10803 8552
0.02 17201 49641 24306 19241
0.01 68804 198562 97222 76962
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Table C.1: Normal distribution, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 18 N 17.97 15 0.940

A 19.77 17 0.959
U 36.94 22 0.967

0.30 48 N 44.33 41 0.910
A 51.13 47 0.925
U 65.00 57 0.945

0.10 426 N 419.70 421 0.940
A 497.47 475.5 0.949
U 509.99 487 0.956

Table C.2: Normal distribution, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 18 N 16.77 14 0.924

A 19.42 17 0.947
U 22.03 19 0.948

0.30 48 N 43.84 40 0.922
A 50.49 45 0.934
U 54.76 50 0.951

0.10 426 N 417.51 417 0.932
A 501.13 477 0.947
U 504.90 480 0.948
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Figure C.1: N2 for Normal distribution.
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Figure C.2: N2 for Normal distribution, alternative method.
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Figure C.3:
√
N2 for Normal distribution.
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Figure C.4:
√
N2 for Normal distribution, alternative method.
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Table C.3: Cauchy distribution, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 40 N 55.01 35 0.931

A 80.38 49.5 0.954
U 187.26 48 0.950

0.30 109 N 115.13 101 0.954
A 136.44 119 0.955
U 165.85 112.5 0.954

0.10 979 N 970.43 964 0.958
A 970.39 957 0.951
U 970.74 953 0.958

Table C.4: Cauchy distribution, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 40 N 52.61 34 0.928

A 95.75 49 0.945
U 116.46 49.5 0.948

0.30 109 N 112.38 103.5 0.946
A 142.73 115 0.963
U 140.76 114 0.953

0.10 979 N 977.49 975 0.956
A 969.21 951 0.957
U 970.93 959 0.957
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Figure C.5: N2 for Cauchy distribution.
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Figure C.6: N2 for Cauchy distribution, alternative method.
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Figure C.7:
√
N2 for Cauchy distribution.
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Figure C.8:
√
N2 for Cauchy distribution, alternative method.
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Table C.5: Double Exponential distribution, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 21 N 20.98 17 0.926

A 24.53 19.5 0.950
U 37.05 23 0.958

0.30 57 N 54.61 51 0.934
A 59.64 56 0.938
U 70.18 61 0.968

0.10 509 N 502.06 501 0.954
A 479.00 473 0.946
U 481.67 476 0.940

Table C.6: Double Exponential, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 21 N 20.97 17 0.930

A 24.19 20 0.948
U 25.39 20 0.951

0.30 57 N 54.27 50 0.935
A 58.27 54 0.944
U 59.49 54 0.959

0.10 509 N 501.69 502 0.959
A 478.76 475.5 0.956
U 479.31 477 0.955
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Figure C.9: N2 for Double Exponential distribution.
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Figure C.10: N2 for Double Exponential, alternative method.
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Figure C.11:
√
N2 for Double Exponential distribution.
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Figure C.12:
√
N2 for Double Exponential, alternative method.

normal approximation

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

hi
st

og
ra

m

standardized bootstrap

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

hi
st

og
ra

m

studentized bootstrap

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

hi
st

og
ra

m



105

Table C.7: Mixture of Normal distributions, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 19 N 18.36 15 0.906

A 20.68 18 0.928
U 36.27 21 0.941

0.30 52 N 47.63 44 0.908
A 55.86 52 0.928
U 69.80 61 0.940

0.10 467 N 455.83 454.5 0.932
A 537.42 513 0.939
U 546.98 520 0.952

Table C.8: Mixture of Normal Distributions, Huber’s ψ with h = 1.0, γ = 1/3, k = 1/2,
alternative method

d cM (d) critical points mean median coverage probability
0.50 19 N 18.86 15 0.919

A 20.96 18 0.933
U 23.91 19 0.934

0.30 52 N 48.15 44 0.890
A 55.04 50 0.911
U 59.22 55 0.914

0.10 467 N 462.19 461 0.916
A 546.32 515 0.932
U 551.86 519 0.939
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Figure C.13: N2 for Mixture of Normal Distributions.
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Figure C.14: N2 for Mixture of Normal Distributions, alternative method.
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Figure C.15:
√
N2 for Mixture of Normal Distributions.
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Figure C.16:
√
N2 for Mixture of Normal Distributions, alternative method.
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Table C.9: Normal distribution, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 20 N 21.61 15 0.913

A 23.50 19 0.939
U 91.96 29 0.954

0.30 54 N 50.90 39 0.890
A 56.10 51 0.911
U 111.61 68 0.924

0.10 485 N 473.55 467 0.935
A 531.38 516 0.950
U 551.61 535 0.951

Table C.10: Normal distribution, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 20 N 22.017 16 0.906

A 48.05 18 0.924
U 27.18 20 0.941

0.30 54 N 52.48 39 0.894
A 57.81 49.5 0.918
U 57.71 51 0.923

0.10 485 N 476.39 475 0.920
A 532.88 519 0.936
U 539.15 525 0.927



109

Figure C.17: N2 for Normal distribution.
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Figure C.18: N2 for Normal distribution, alternative method.
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Figure C.19:
√
N2 for Normal distribution.
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Figure C.20:
√
N2 for Normal distribution, alternative method.
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Table C.11: Cauchy distribution, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 36 N 53.15 23 0.897

A 98.49 52.5 0.962
U 331.28 73 0.961

0.30 98 N 118.42 89 0.919
A 138.38 119 0.955
U 296.09 130 0.941

0.10 879 N 871.97 864.5 0.946
A 919.59 902.5 0.961
U 941.52 908.5 0.960

Table C.12: Cauchy distribution, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 36 N 52.32 20 0.906

A 144.15 47 0.945
U 123.10 52 0.946

0.30 98 N 117.58 93 0.929
A 135.66 117.5 0.954
U 158.12 123 0.952

0.10 879 N 874.82 867 0.944
A 910.63 883.5 0.938
U 919.08 904 0.942
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Figure C.21: N2 for Cauchy distribution.
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Figure C.22: N2 for Cauchy distribution, alternative method.
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Figure C.23:
√
N2 for Cauchy distribution.
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Figure C.24:
√
N2 for Cauchy distribution, alternative method.
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Table C.13: Double Exponential distribution, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 18 N 23.281 16 0.921

A 27.67 21 0.951
U 94.75 26 0.963

0.30 50 N 54.145 41 0.931
A 60.945 54 0.947
U 109.1 59 0.947

0.10 448 N 437.8 435 0.946
A 445.61 435 0.946
U 453.68 447 0.947

Table C.14: Double Exponential, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2, alternative method

d cM (d) critical points mean median coverage probability
0.50 18 N 23.10 16 0.933

A 37.57 20 0.949
U 36.59 22 0.959

0.30 50 N 55.52 42 0.943
A 63.29 54 0.954
U 63.23 53 0.950

0.10 448 N 440.46 433 0.943
A 447.35 438 0.952
U 444.90 434 0.949
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Figure C.25: N2 for Double Exponential distribution.
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Figure C.26: N2 for Double Exponential, alternative method.
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Figure C.27:
√
N2 for Double Exponential distribution.
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Figure C.28:
√
N2 for Double Exponential, alternative method.

normal approximation

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

1.
5

2

hi
st

og
ra

m

standardized bootstrap

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

1.
5

2

hi
st

og
ra

m

studentized bootstrap

0 5 10 15 20 25 30
sqrt(stopping time)

0
0.

5
1

1.
5

2

hi
st

og
ra

m



117

Table C.15: Mixture of Normal distributions, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2

d cM (d) critical points mean median coverage probability
0.50 21 N 22.77 16 0.911

A 25.02 20 0.933
U 86.71 33.5 0.947

0.30 59 N 59.62 48 0.904
A 62.90 57.5 0.935
U 133.08 78 0.945

0.10 525 N 518.39 517.5 0.939
A 584.12 561 0.952
U 609.25 589.5 0.954

Table C.16: Mixture of Normal Distributions, Huber’s ψ with h = 0.5, γ = 1/3, k = 1/2,
alternative method

d cM (d) critical points mean median coverage probability
0.50 21 N 22.20 16 0.915

A 34.77 19 0.941
U 31.82 22.5 0.952

0.30 59 N 57.94 43 0.889
A 63.85 56 0.910
U 63.58 58 0.926

0.10 525 N 517.77 517 0.928
A 572.82 552 0.945
U 580.50 554.5 0.945
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Figure C.29: N2 for Mixture of Normal Distributions.
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Figure C.30: N2 for Mixture of Normal Distributions, alternative method.
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Figure C.31:
√
N2 for Mixture of Normal Distributions.
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Figure C.32:
√
N2 for Mixture of Normal Distributions, alternative method.
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