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Preface

The main topic of this habilitation thesis are nonparametric regression methods, briefly introduced in
Chapter 1. The most important author’s results related to nonparametric regression may be found in
the papers attached in the Appendix. Apart of these attached papers, the same results are summarized
in a unified manner in Chapters 2—4 where we also propose some extensions that were necessary in
order to unite these papers smoothly into a single publication.

The main body of this habilitation thesis is divided into three chapters corresponding, respectively,
to the three most important stages of a data-analytical process:

1. design of the experiment (Chapter 2),
2. estimation (Chapter 3),
3. verification of assumptions (Chapter 4).

The Appendix contains five papers written by the author and various coauthors during the years
2006-2011. These papers discuss successively the three stages of the data-analytical process and
represent most important author’s results related to nonparametric regression models during this
period:

e The first paper, Hldvka (2011): On nonparametric estimators of location of maximum,
concerns the planning of a nonparametric regression experiment and it proposes an experimental
design that is optimal for the estimation of a location of maximum of an unknown regression
function. In Chapter 2, we extend this result also to estimation of zeros under more general
assumptions.

e The second paper, Hardle and Hlavka (2009): Dynamics of state price densities, con-
cerns a complex application in option pricing, where the nonparametric regression estimator must
be adapted in order to account for correlated data and constrained regression function. The third
and the fourth paper, Hlavka (2006a): Fast algorithm for nonparametric arbitrage-free
SPD estimation and Hldvka and Svojik (2009): Application of extended Kalman fil-
ter to SPD estimation, discuss some computational aspects of the proposed estimator. The
contents of these three papers is summarized in Chapter 3.

e Finally, the fifth paper, Hlavka et al. (2011): Tests for independence in non-parametric
heteroscedastic regression models, proposes a new approach to a verification of assumptions
of a nonparametric regression model. In Chapter 4, this approach is modified, compared to other
tests proposed in the literature, and used to test the validity of assumptions of the constrained
nonparametric regression model described in Chapter 3.

The support of my family, my colleagues, and grants MSM0021620839, GA201/08/0486, SFB 373,
SFB 649, and 1K04018 is gratefully acknowledged.

Prague, October 2011 Zdenek Hlavka
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Chapter 1

Introduction

Regression analysis is certainly one of the most useful and widely applicable statistical techniques. In
general, it allows to investigate the dependency of the so-called dependent variable on one (or more)
explanatory or independent variables.

Linear model The regression analysis comes in many flavors. In the classical linear model, the
symbol Y denotes the dependent variable such that its conditional expectation is a linear function of
the observed value = of the explanatory variable or its arbitrary transformation, i.e.,

BE(Y|X =) = f(x)'B,

where f(z) = (fi(2),..., fp(z))" is a known function of z, 3 is a p-dimensional vector of unknown
parameters, and Var(Y|X = x) = 02 > 0. Often, we introduce an artificial random variable &, the
so-called random error, in order to write the linear model in the most popular way:

Y =f(z) B+, (1.1)

where the unobservable random error ¢ is centered and has variance o2, i.e., Ee = 0 and Ee? = 2.
In the linear model (1.1), we assume that the functional form of the dependency is known in
advance and it remains to estimate only the vector of unknown parameters 5. For example, by setting
f(x) = (1,2) " we obtain a straight line with intercept given by 3y and slope equal to 3;. Parabolic and
cubic function may be obtained by choosing f(x) = (1,z,2%)" or f(z) = (1,z,22,2%) 7, respectively.
An estimator B of the unknown parameter g is usually calculated from n observations of pairs
(Y;, ;) satisfying (1.1), i.e.,
Y= f(z;) " B+e, i=1,...,n, (1.2)

assuming that the random errors ¢;, ¢ = 1,...,n, are independent and identically distributed. The n
equations (1.2) are often rewritten in a matrix notation:

Y =XpfB +e, (1.3)
where Y = (Y1,...,Y,) " is the response vector, Xr is the so-called design matriz with rows f(x;),
and € = (g1, ... ,En)T is a centered random vector with variance matrix ¢2Z,,.

Assuming that the design matrix Xr has full rank, equation (1.3) allows to express the Least
Squares (LS) estimator of § as:

BES = (X T Xp) T AT Y, (1.4)

see, e.g., Zvéara (2008).

An illustration of a linear, parabolic and cubic function fitted by the Least Squares estimator (1.4)
is given in Figure 1.1. Notice that these parametric estimators do not fully capture the shape of the
true regression function. In such situation, standard regression diagnostic tools (Belsley et al.; 1980;
Zvara; 2008) may be used to diagnose the lack-of-fit but it may not be possible to improve the model
if the true shape of the regression function is not known or if the function f(.) is misspecified.
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Figure 1.1: Simulated example (50 observations): the dashed line is the true regression function, thick
lines denote various parametric linear regression estimators.
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Figure 1.2: Simulated example (50 observations): the dashed line is the true regression function, thick
line denotes the nonparametric regression estimator.
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Nonparametric regression Removing the parametric assumptions from (1.1), we obtain the non-
parametric regression model:
Y=EY|X =2)+e=m(z)+¢, (1.5)

where Y is the response, ¢ the random error, and m(.) denotes the unknown regression function. An
example of a nonparametric regression estimator of m(.) is plotted in Figure 1.2.

Compared to the linear model (1.1), the nonparametric regression model (1.5) is more flexible.
On the other hand, the nonparametric regression estimator is not as easily interpretable and it is
often used only as a graphical tool. Additionally, one also has to choose an appropriate value of some
smoothing parameters that typically control the smoothness of the estimator.

An overview of nonparametric regression (or smoothing) methods may be found, e.g., in Hardle
(1990); Simonoft (1996); Fan and Gijbels (1996); Héardle et al. (2004). The standard “smoothing”
approaches include splines, wavelets, moving averages, running medians, local polynomials, regression
trees, neural networks, and other methods. From now on, we concentrate on the kernel method: the
kernel regression estimators are defined as locally weighted averages and its properties may be derived
quite easily.

1.1 Kernel regression

Let us now concentrate on the kernel approach. In this section, we introduce basic notation and
provide a short review of some well-known results concerning the kernel regression estimator based
on the nonparametric regression model (1.5).

In practice, it is important to distinguish fixed and random design experiments. In a fixed design
experiment, we choose the values of the explanatory variable according to a certain rule, e.g., as a
quantiles of certain probability distribution. In a random design experiment, we may control only the
probability distribution of the explanatory variable but the observed values are random.

Random design We assume that model (1.5) holds and that we observe pairs of random variables
(X;,Y:),i=1,...,n, such that:

where Ee; = 0 and Vare; = 02. The unknown regression function m(.) may be estimated, for example,
by using the classical Nadaraya- Watson estimator (Nadaraya; 1964; Watson; 1964):

_ S K@ - X)Yi s K- X))
= Z?zl Kb(x — XJ) o ; Z?=1 Kb(.’b . Xj))/lv (17)

my " (x)

where Kp(x) = K(x/b)/b, K(.) is a kernel function, and b > 0 is a bandwidth.

Under some assumptions, it may be shown that the Nadaraya-Watson estimator m{)V Wi(x) is
asymptotically normally distributed (Hérdle; 1990, Theorem 4.2.1) with variance depending on o2,
[ K?(u)du, and fx(.), the density of the explanatory variable X. The bias of the Nadaraya-Watson
estimator is proportional to the second moment of the kernel, ie., [ u?K?(u)du, and a measure of
local curvature of the regression function. Interestingly, the variance is a decreasing function and
the bias an increasing function of the bandwidth and, therefore, the choice of the optimal bandwidth
always involves a certain bias-variance trade-off. Some further remarks concerning the choice of the
bandwidth and the kernel function may be found at the end of this section.

The Nadaraya-Watson estimator (1.7) may be written as a ratio with a kernel estimator of the
probability density fx(x) in the denominator:

W (2) = i n 1Ky (r — X;) v — S nT Ky (z — X0)Y; (1)

— n-1 Z?:l Kb(x — Xj) ! fx(’x)

and, clearly, it may be significantly simplified if the density fx(.) is known.

Fixed design In some real life applications, we may have the opportunity to choose all values of
the explanatory variable in advance. More precisely, in an experiment with fized design given by a
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probability density function fx(x), we observe the response Y;, i = 1,...,n, in fixed design points
1 < --- < x, such that fﬁ“’l fx(u)du = 1/n, i.e.,

Replacing the weights Kp(z—X;)/ > Kp(x—X;) in (1.8) by f;:l Ky (x—u), we avoid the estimator

fx (z) in the denominator of (1.8) and obtain the fixed design Gasser-Miiller estimator (Gasser and
Miiller; 1984):

mgM () = Z/ 1 Kp(x — u)duY;, (1.10)
i=1"YSi—-1

where s; = (z; + 2;41)/2. Notice that, similarly as in (1.8), the sum of the weights is equal to one
because >, :71 Ky(z —u)du = [ K(z)dz = 1.

The properties of the Gasser-Miiller estimator are investigated in Gasser and Miiller (1984) and
we will summarize it under more general assumptions in Section 2.1.2. Notice that if the design
points are uniformly distributed, then f;‘;l Ky(z —u)du = n 1 Ky(x — r(;)) and the Nadaraya-Watson
estimator (1.8) may be interpreted as an approximation of the Gasser-Miiller estimator (1.10) (or the
other way around).

Similarly as in the random design situation, the bias and the variance of the Gasser-Miiller esti-
mator depend on the kernel function and on the bandwidth. In order to choose appropriate values
of these tuning parameters, we need a simple statistics (measure of accuracy) that would allow us to
compare two or more competing nonparametric regression estimators.

Asymptotic MSE The most often used measure of accuracy of a nonparametric regression estima-
tor my(x) is the Mean Squared Error (MSE):

MSE{my(z)} = E{my(x) — m(z)}>.

If a random variable X; is uniformly distributed on (0,1) then “under certain assumptions” (Hardle
et al.; 2004, Theorem 4.3) we have for the random design Nadaraya-Watson estimator:

MSE{mi"W (z)} = %02/[(2(5”5 + ib4{m"(x)}2.

Interestingly, exactly the same asymptotic result holds, “under certain assumptions” (Hardle et al.;
2004, Theorem 4.2), also for the fixed design Gasser-Miiller estimator, i.e.,

MSE{m&M (2)} = %02 / K2(s)ds + %b‘*{m”(x)}?.

It follows that the precision of the random and fixed design estimators is very similar. In practice,
the type of design is usually implied by the setup of the experiment and it cannot be changed.

Choice of tuning parameters In order to calculate the nonparametric regression estimator (1.7)
or (1.10), we have to choose the kernel function K (.) and the bandwidth parameter b. Both theoretical
findings and practical recommendations may be summarized by saying that the choice of the kernel
function is much less important than the choice of the bandwidth parameter (Hérdle et al.; 2004,
Section 4.3). By minimizing the asymptotic MSE, it may be shown that the asymptotically optimal
value of the bandwidth parameter is b o« n~'/®. Unfortunately, the optimal value of the bandwidth
involves also a constant depending on some unknown parameters, e.g., the second derivative of the
unknown regression function and the unknown variance of the unobserved random errors. Therefore,
a more practical recommendation is to use the so-called leave-one-out (or cross-validation) approach.
The choice of the bandwidth parameter is crucial and it is thoroughly discussed in the relevant
literature, see, e.g., Nadaraya (1989); Hardle (1990); Ruppert and Wand (1994); Wand and Jones
(1995); Simonoff (1996); Fan and Gijbels (1996); Efromovich (1999); Hérdle et al. (2004); Tsybakov
(2009) among many others.
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Figure 1.3: Simulated example (50 observations): the dashed line is the true regression function,
dotted horizontal lines denote the horizontal axis and the maximum of the regression function, thick
vertical lines denote the zero and the location of maximum of the regression function.

1.2 Some non-standard problems

The statistical analysis should consist of careful planning of each experiment, of proper statistical
analysis of collected data, and of verification of assumptions of the statistical methodology. In some
situations, the standard methodology has to be modified in order to accommodate for some addi-
tional constraints or requirements. In Chapters 2-4, we will present some modifications of standard
approaches concerning each stage of a nonparametric regression experiment.

Optimal design Optimality of a nonparametric regression experiment is most often discussed from
the point of view of proper choice of the bandwidth, the kernel function of the type of nonparametric
regression estimator. Concerning the problem of the choice of the density fx(.) of the design points,
Miiller (1984b) derived the distribution of design points minimizing the Asymptotic Integrated Mean
Squared Error (AIMSE), defined as the limit of IMSE = E|[ [{r(z) — m(z)}dH (z)] for n — oo.

Unfortunately, the results of Miiller (1984b) lack clear interpretation because the definition of
AIMSE involves a probability measure H(.) that does not have any clear interpretation. In Chapter 2,
we will try to overcome this obstacle by looking at a different criterion of optimality. More precisely,
we will try to find designs minimizing the variability of estimators of location of some interesting points
on the unknown regression curve, see Figure 1.3 for an illustration of a zero (i.e., the z-coordinate of
the point, where the regression curve meets the horizontal axis) and the location of maximum.

In Chapter 2, we investigate asymptotic properties of estimators of zero and location of maximum
under general conditions. The optimal design density, minimizing MSE or Mean Absolute Deviation
(MAD) of the nonparametric regression estimator of the zero and the location of maximum, is then
derived by applying standard calculus of variations. Chapter 2 generalizes results from Hlavka (2011)
that were obtained only for the location of maximum with constant bandwidth and independent and
identically distributed random errors.

Constraints Chapter 3 is devoted mainly to a constrained estimation with motivation coming from
option pricing: we are interested in nonparametric estimation of the state price density (SPD) that
may be expressed as the second derivative of the option pricing function, i.e., the prices of European
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Call or Put options expressed as a function of the strike price. This setup naturally implies some
no-arbitrage constraints on the nonparametric regression function describing this relationship and
a covariance structure of the observed option prices (Hardle and Hlavka; 2009). In Chapter 3, we
discuss this application as a special case of nonparametric regression. Some computational aspects of
the proposed SPD estimator are discussed in two related papers (Hldvka; 2006a; Hldvka and Svojik;
2009).

Specification tests After collecting and analyzing data, it is a good statistical practice to check
the validity of the model assumptions. In the nonparametric regression model (1.5), the assumptions
are usually expressed in terms of the random errors €;, ¢ = 1,...,n. Typically, we assume that these
random errors are independent and identically distributed but, in certain situations, the nonparametric
regression model may require that the random errors are heteroscedastic or correlated.

In Chapter 4, we modify some recently proposed specification tests (Hldvka et al.; 2011; Neumeyer;
2009) in order to test the appropriateness of the correlation structure of the observed option prices
proposed in Chapter 3.

1.3 Results

The Appendix contains the most important author’s papers related to the above topics. The pa-
per Hlavka (2011) concerning the optimal design for nonparametric estimation of location of maximum
may be found on page ??7. Some problems related to SPD estimation are solved in papers Hlavka
(2006a); Hérdle and Hldvka (2009); Hldvka and Svojik (2009) included, respectively, on pages 77, 72,
and ?7. A specification test usable for homo- and heteroscedastic nonparametric regression models is
described in the paper Hldvka et al. (2011) starting on page ?7?.

All these papers concern nonparametric regression models. However, some extensions and modifi-
cations, mainly in Chapters 2 and 4, were necessary in order to unite these results in this habilitation
thesis.
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Chapter 2

Nonparametric estimators of
location

In this chapter, we investigate a nonparametric estimator of the zero and the location of maximum of
a regression function (or its derivative) and we derive the distribution of design points minimizing the
expected variance of the location estimator. We concentrate on fixed-design nonparametric regression
models that allow a natural interpretation of the proposed experiment design.

The problem of nonparametric estimation of the location of maximum is somewhat related to
nonparametric estimation of the mode of a probability distribution (i.e., the value at which the prob-
ability density function attains its maximum), see Parzen (1962), Eddy (1980), Eddy (1982), Romano
(1988b). Asymptotic normality of the random-design Nadaraya-Watson nonparametric estimator of
the location of maximum of an unknown regression function (regression mode) is derived in Ziegler
(2003). The mean squared error (MSE) of both random and fixed design estimators (Nadaraya-
Watson, Gasser-Miiller, Priestly-Chao) of the location of maximum under a-mixing assumptions is
investigated in Wieczorek and Ziegler (2010). In this chapter, we complement these results by proving
asymptotic normality of both the empirical zero and of the empirical location of maximum using the
Gasser-Miiller estimator and assuming that the random errors are strongly mixing. In addition, we
review and generalize the asymptotically optimal distribution of design points obtained in Hldvka
(2011) to estimators of zeros and locations of extrema of derivatives of regression functions.

In Sections 2.1-2.3, we extend the results of Miiller (1985) and establish asymptotic normality
of the empirical zero (the value at which the nonparametric regression estimator meets the horizon-
tal axis) and the empirical location of mazimum (the value at which the nonparametric regression
estimator attains its maximum) under strongly mixing assumptions. In Section 2.4, we discuss the
bandwidth choice. The asymptotically optimal distribution of design points is derived in Section 2.5,
see also Miiller (1984c); Hlavka (2011). The small sample properties of the proposed experiment
design are investigated in a simulation study in Section 2.6.

2.1 Introduction

In this chapter, the basis of our investigation is the fixed design nonparametric regression model (1.9),
ie.,
Y:=m(x;) +¢e, fori=1,...,n, (2.1)

where Y;’s are observations of the response variable, 0 < 1 < -+ < x,, < 1 are fixed values of the
explanatory variable defined by a probability density function fx(.) (i.e., Fx(z;) = Owi fxw)du =
i/n+ O(n~?)), and €;’s are random errors.

Recall that the Gasser—Miiller (GM) kernel regression estimator (1.10) of the regression function

m(x) is defined as:
. L= [ T —u
Tin,b, (T) = b ;/81 K ( b ) du;, (2.2)

where s;_1 = %(ml + Xi—1), by, is the bandwidth and K(.) a kernel function.

9
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Similarly, we may estimate derivatives of the regression function:

Moy b, 0 (X b”'H Z/ < > duY; = Zan b (T (2.3)

where ay, ;p, () are (non-random) weights, b,, is the bandwidth, and K,(.) is a kernel function of

ns

order (v, k) (Gasser and Miiller; 1984), i.e., the support of the Lipschitz continuous function K, (.) is
the interval (—1,1) and

(=1)w! for j = v,
0 0<j<kj#v,
J
/ Ky(@)aldr =4 _ 1)% k! By 1 for j = k, (2:4)
(— 1)"+1(k;+1)'B;€ ki1 for j=k+1.

For example, the quartic kernel K (z) = I(|z| < 1)15(1 — 2?)?/16 is of order (0,2) with By = 1/14
because [ K(z)dx =1, [ K(z)zdz =0, and [ K(z)z*dz = 1/7.

The properties of 7, s, () and 1, p, »(2) are described in detail in Gasser and Miiller (1984).
We review and extend some of these results in Section 2.1.2.

Empirical location of maximum The natural estimator of the location of maximum is the so-
called empirical location of maximum defined as the x-coordinate of the point in which the non-
parametric regression estimator reaches its maximum. In the following, the symbol 6, , denotes
the (unknown) true location of maximum of the v-th derivative of the regression function m(.), i.e.,
0, = argmax,eo,1 m®)(z) and én,bmy denotes the location of maximum of the nonparametric re-
gression estimator (") (.), ie., 0, , = arg max,c(o,1] Mn,b, (). The value of the nonparametric
regression estimator in the empirical location of maximum, mmbmy(én,w) is an estimator of the
maximum of the v-th derivative of the regression function m(.), i.e., m®)(6,) = max (o 1y m™ (z)

Empirical zero Along the same lines, we define énybm,,, the empirical zero of v-th derivative of m(.)

as a solution of the equation mn,bmu(én,bmu) = 0. The empirical zero estimates the zero, &,, of m®)(.)
defined as a solution of the equation m(®)(&,) = 0. The zero ¢ is sometimes also called a root of the
equation m)(&,) = 0.

2.1.1 Notation and assumptions

Let us fix the parameters v and k and the kernel function K, (.) of order (v, k). We start by establishing
asymptotic properties of the nonparametric regression estimator 7y, 5, ., (.) defined by (2.3). Later on,
in Sections 2.2 and 2.3, these properties are used to establish the asymptotic normality of én,bn,uv
the nonparametric estimator of the zero of m()(.) and én,bm,,, the nonparametric estimator of the
location of maximum of m®)(.). For simplicity, the indices k, v, or b, may be omitted whenever it is
convenient. For example, we may write a,, ; or a, ;(x) instead of ay ; s, ().

The following assumptions are used in order to derive the asymptotic distribution of the nonpara-
metric regression function estimator:
Al. Regression function: m(*)(.) is Lipschitz continuous.

A2. Kernel: The Lipschitz continuous kernel function K, (.) with support (—1,1) is of order (v, k),
where v > 0, k > v + 1 and the difference k — v is even.

A3. Bandwidth: b, — 0, nb2—o0, nb2’ 1 — occ.

A4. Design: The density f(z) > 65 > 0 is Lipschitz (s)-continuous with 0 < vy <1, ie., |f(u) —
f(v)] < L¢lu— |77 for all w and v € [0,1] and for some Ly > 0.

A5. Random errors: Denoting &; = ,(z;) , where &, () is defined for all z € [0, 1], we assume:

FEep(z) = O(n™') uniformly in = € [0, 1],
Cov{en(z),en(z;)} = 0*(2:)I(i = j) + O(n~ ') uniformly in {z;,z,} € [0, 1]?,
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the function 02(.) is Lipschitz continuous, there exist 0 < J, and D, < 4oco such that 6, <
0?(x) < D, for all x € [0,1]. Assume that El|e;|” < oo for some r > 2 and that &,; = (g; —
Ee;)/(Vare;)'/? is a strictly stationary strongly mixing sequence of random variables such that
{€2 ;} is a uniformly integrable family and limy_, o pf = limg 00 [sup,, {SUPaist (7, 5>k (0 (&nsir i €
T),0(n.j,7 € 5))}] <1, where the symbol p(.,.) denotes the maximal coefficient of correlation,
ie., p(A, B) = Supser,(a),ger,8) lcorr(f, g)|. For eachn, let ay,(.) denote the mixing coefficients
of the sequence £I(|¢;| < n'/") and assume that lim }"5°, a, (i) = af, < 00, lim,: = o, and

oy r—1y]Hr=1)/(27)
lim sup;_, [1 + 662 {a, (/)2 < M < .

2.1.2 Asymptotic properties of the Gasser-Miiller estimator

In this section, we summarize some basic asymptotic properties of the nonparametric regression esti-
mator My, p, ,(x) that are needed later on.

Assuming independent and identically distributed (iid) random errors, the asymptotic distribution
of the Gasser-Miiller estimator is given, e.g., in Gasser and Miiller (1984). The consistency of the fixed-
design nonparametric regression estimator under various mixing assumptions is investigated in Roussas
(1989), the uniform strong consistency of the Nadaraya-Watson regression estimator is established in
Roussas (1990b), and the asymptotic normality of the fixed-design nonparametric regression estimator
under mixing assumptions is investigated in Roussas et al. (1992).

Let us now establish the asymptotic normality of the Gasser-Miiller estimator for weakly depen-
dent sequences of random errors (Lin and Lu; 1996) by using a Central Limit Theorem (CLT) for
nonstationary weakly dependent triangular arrays of random variables (Peligrad; 1996).

Lemma 2.1. Assume A1-A5. Then

By, o(x) = m®(z) + 5B m®™ (z) + o(1)} + O(n~10,"), (2.5)
2
Var m, p, () = b21u+1 f(( )) {V 4+ 0(b,) + O(n b, %)}, (2.6)

where V = f K2(t)dt and

mnb u(x) *Emnb V(I) D
e e N(0,1). 2.7
[Var i 5, o (2)}1/2 0.0 27
If m* () is continuous then
Ergp, (@) = mY) (z) + 05 { B xom™ (2) 4 by By g 1m Y 4 0(bp)} 4+ O(n =10 7). (2.8)

Proof. Equations (2.5) and (2.8) follow exactly as in Gasser and Miiller (1984); Miiller (1984b, 1985)
using Taylor expansion of m(.) and

s (s

Next, similarly as in Miiller (1985), we show that for the design points x; defined in Section 2.1.1 it
holds:

min(%,1)

) du = /K < > du = / K,,(t)bndt = O(bn). (2.9)

max -1,%

R il o Bl e AP
sims= g = 5 +0(n7?)
1F ( 1)—F71 (%) n_2 - 1 n_2
= 2/n O™ = iy T O
= s 0 = s+ O (2.10)
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for some u} € ((i —1)/n, (i + 1)/n) and F~!(u}) = 2} = 2;+O(n~?2). Similarly, for a,,; = anip, ()
defined in (2.3), we have that:

1% T —u I T - 1y
oni = /K< = >du_bz+1 / {KV (bn )+0(n 1bn1)}du
1 T — T 1,
= bzﬁ(sz — 81_1) {KV ( b ) +O(n 1bn1)}

- i e (52 v )

_ 1 {(x i)/bn} n-2p-1y| = Bvll@—2i)/bu} =22
Wl[ (@) +0(n""b, )]— BT +0(n 72,773, (2.11)

By the Lipschitz continuity of K, (.) and (2.10) we have that:

n S: 2 n S5 2
E Tr—u . ‘ xr—x; _9,_1
; {/Sl K, <bn du} = ; {/51 K, <bn ) du+ O(n™“b, )}

)
= > {nfzxi)K” (w _nxi) +0(n—25;1)}2 = zj; [{nf(lxi)}QKZ (x ;f) +O(n‘3b;1)}

b
n S;i . 1 B

= / ;Kf(t)bndt + 0721 = 0(n ') (2.12)
1

nf(x — tby,)

because by our assumptions nb? — co.
Using A5, (2.9), and (2.12) and proceeding similarly as in (2.12), we obtain that:

Var i, p, o (T) = b2”+2 Z {/ K, (Ib—HU> du}z{(ﬂ(a:i) +0(n 1Y)}

b2u+ Zn;i: {/ K, (mb_n“) du} {/ K, (mb_n“) du} o)
i

-

2
1 n Si T —u o o

mm(bi
1 a*(x = thn) . 2,1 2, 2u1 12
= — —K2(t)b,,dt b b b Y
b%u+2 / nf(a:—tbn) u( ) +O(n n ) +O(TL n )+O(n n )
_ 1 Uz(x) Kf(t)dt—kO(n’lb;z”) + O(n’%;zl”?’) +O(n’2b;2”’l) + O(nflb;m/)
nby’ Tt f(x) )
1

_ 02(55) 1K2 dt + O(n—tp=2v O(n—2p-2v—3
- nbgLqul f(-fE) . V(t) i+ (n n )+ (n n )

- ”f(f)) [V +0(ba) + O~ 1672)}.

Defining;:

mn sbn, 1/ Zan 1{m x’L Vargl)l/Qfl} Zan z{m $1)+62 Esz} mnb 1/ Zan 2E517

i=1
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it is easy to see that My p, »(2) = M, o (2) + O(1/n), Efnp, () = Etige, o(2) + O(1/n), and
Var i, b, () = Var iy, (z). Hence, in order to establish the asymptotic normality result (2.7),
it suffices to show the asymptotic normality of

mn7bn7y(x) — Emnybnay('x)
{Var g p,, . (x)}/2

which immediately follows by Peligrad (1996, Corollary 2.1) from assumption A5 because:
|an; (Var ;)2
1<i<n {Var my p,, , (z)}1/?

by (2.11) and (2.6), and

=0~ V2p71/2) "2

—2v—-2 n Si T—u 2
Ezl 1 n1 Vare; < bn D, Zi:l {fs“l K, ( bn )du}
sup ———————————— su
P Var M by, () np n1b,2" " to2(2){V + O(b,) + O(n=1b;,%)}/ f(2)
min(z/by,,1)
{DoKZ(t)/ f(z — thy) }dt + O(n=2b, )
_ supmax{—l,(w—l)/bn} < +00
n a2(2){V + O(by) + O(n=10:%)}/ f(2)
by (2.12) and (2.6). O

After establishing the pointwise asymptotic normality of 1, s, ,(.), we investigate the uniform
convergence rate.

Lemma 2.2. Assume A1-A5. Then

Sup | B, (2) = m) ()] = 0L ™) + O(n~"0,.")
z€[6,1-46]

for any fized § € (0,1/2).
Proof. By the Taylor expansion:

m® (z . “thn () (g 44 _
ﬂ( )(—tbn)J+A (k(_l)! ) (<t — u)~du.

Recalling that m(k)(.) is Lipschitz continuous with constant Lj by Al, we obtain:

k—1

m(z — thy) = Z

=0

k—1 (1/

sup |m(x — tby,) Z m thy )’
MSl j=0 '
—tb, (k)( + ) b
_ mr T u E—1 (k) E—1
= sup ————2(—th, —u du Sisup T+ u)(th,
<1 /0 (k—1)! ( ) (k=D <1 ( ()
bE bE|m ) ()| + Lybk+t
n (k) n kY — bk
CES A () (k — 1) Olbn)-

Similarly as in the proof of Lemma 2.1, using the assumption that K, (.) is a kernel function of
order (v, k), we have uniformly in [d,1 — J] that:

By p, 0 (r) = b;;“ Z / ( )du{m( )+ Eei}

) mln(r/bn,l)
= m(x — tb,) K, (t)dt +O(n~'b,")
" max{—1,{z—1)/bn}
1 min(z/by,,1) b1 (y)( )
= 1 e— k K —1p—v
b / ZO ;i (=tba)? +O(by) ¢ K, () dt +O(n”'b,")
max{—1,(z—1)/b,} J=
= m (@) + O ) +0(n™'b,"). (2.13)

O
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Corollary 1. The optimum rate of convergence in Lemma 2.2 is O(b~V) and it is achieved for
b, =n-1/k.

Proof. The statement follows directly by comparing the rates in Lemma 2.2. O

In order to deal with correlated random variables, we apply a Hoeffding type exponential inequality
for strongly mixing sequences of random variables, see Roussas (1996).

Lemma 2.3. Assume A1-A5. Then

R B B logn 1/2
sup |iftn,p, 0(2) — m () = O {b%’“ D2y <g+>
z€[6,1-46] nby

for any fized § € (0,1/2).

Proof. Without loss of generality, we assume that b,, < §. Another possible approaches to the bound-
ary effects would be to introduce circularity assumptions or to use a boundary kernel (Miiller; 1984a).
The proof is organized similarly as the proof of Lemma 2.2 in Miiller (1985) or the proof of the
second Lemma in Miiller (1984a), see also Cheng and Lin (1981), Mack and Silverman (1982), or
Roussas (1990Db).
Similarly as in the proof of Lemma 2.1 we define 1y, 5, ,(z) = >, ani(z){m(z;) + (Vare;)1/2¢;}
and recall that:

sup | Mpp, o (x) — Mpp, o(x)] = O(nil). (2.14)
z€[6,1-4]

In order to establish the uniform convergence rate of 7, 4, ,(.), we define estimators h,, 5 , () =
> iy @ni(x)(Var ei)/2¢;, and b () = D20 ani(x) (Var )26 1(|&] < B).

Let R, C (0,1) denote a set with cardinality O(n?) such that for all z € (0,1) there exists
7(z) € 