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Preface

The main topic of this habilitation thesis are nonparametric regression methods, briefly introduced in
Chapter 1. The most important author’s results related to nonparametric regression may be found in
the papers attached in the Appendix. Apart of these attached papers, the same results are summarized
in a unified manner in Chapters 2–4 where we also propose some extensions that were necessary in
order to unite these papers smoothly into a single publication.

The main body of this habilitation thesis is divided into three chapters corresponding, respectively,
to the three most important stages of a data-analytical process:

1. design of the experiment (Chapter 2),

2. estimation (Chapter 3),

3. verification of assumptions (Chapter 4).

The Appendix contains five papers written by the author and various coauthors during the years
2006–2011. These papers discuss successively the three stages of the data-analytical process and
represent most important author’s results related to nonparametric regression models during this
period:

• The first paper, Hlávka (2011): On nonparametric estimators of location of maximum,
concerns the planning of a nonparametric regression experiment and it proposes an experimental
design that is optimal for the estimation of a location of maximum of an unknown regression
function. In Chapter 2, we extend this result also to estimation of zeros under more general
assumptions.

• The second paper, Härdle and Hlávka (2009): Dynamics of state price densities, con-
cerns a complex application in option pricing, where the nonparametric regression estimator must
be adapted in order to account for correlated data and constrained regression function. The third
and the fourth paper, Hlávka (2006a): Fast algorithm for nonparametric arbitrage-free
SPD estimation and Hlávka and Svoj́ık (2009): Application of extended Kalman fil-
ter to SPD estimation, discuss some computational aspects of the proposed estimator. The
contents of these three papers is summarized in Chapter 3.

• Finally, the fifth paper, Hlávka et al. (2011): Tests for independence in non-parametric
heteroscedastic regression models, proposes a new approach to a verification of assumptions
of a nonparametric regression model. In Chapter 4, this approach is modified, compared to other
tests proposed in the literature, and used to test the validity of assumptions of the constrained
nonparametric regression model described in Chapter 3.

The support of my family, my colleagues, and grants MSM0021620839, GA201/08/0486, SFB 373,
SFB 649, and 1K04018 is gratefully acknowledged.

Prague, October 2011 Zdeněk Hlávka
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Chapter 1

Introduction

Regression analysis is certainly one of the most useful and widely applicable statistical techniques. In
general, it allows to investigate the dependency of the so-called dependent variable on one (or more)
explanatory or independent variables.

Linear model The regression analysis comes in many flavors. In the classical linear model, the
symbol Y denotes the dependent variable such that its conditional expectation is a linear function of
the observed value x of the explanatory variable or its arbitrary transformation, i.e.,

E(Y |X = x) = f(x)>β,

where f(x) = (f1(x), . . . , fp(x))> is a known function of x, β is a p-dimensional vector of unknown
parameters, and Var(Y |X = x) = σ2 > 0. Often, we introduce an artificial random variable ε, the
so-called random error, in order to write the linear model in the most popular way:

Y = f(x)>β + ε, (1.1)

where the unobservable random error ε is centered and has variance σ2, i.e., Eε = 0 and Eε2 = σ2.

In the linear model (1.1), we assume that the functional form of the dependency is known in
advance and it remains to estimate only the vector of unknown parameters β. For example, by setting
f(x) = (1, x)> we obtain a straight line with intercept given by β0 and slope equal to β1. Parabolic and
cubic function may be obtained by choosing f(x) = (1, x, x2)> or f(x) = (1, x, x2, x3)>, respectively.

An estimator β̂ of the unknown parameter β is usually calculated from n observations of pairs
(Yi, xi) satisfying (1.1), i.e.,

Yi = f(xi)
>β + εi, i = 1, . . . , n, (1.2)

assuming that the random errors εi, i = 1, . . . , n, are independent and identically distributed. The n
equations (1.2) are often rewritten in a matrix notation:

Y = XFβ + εεε, (1.3)

where Y = (Y1, . . . , Yn)> is the response vector, XF is the so-called design matrix with rows f(xi),
and εεε = (ε1, . . . , εn)> is a centered random vector with variance matrix σ2In.

Assuming that the design matrix XF has full rank, equation (1.3) allows to express the Least
Squares (LS) estimator of β as:

β̂LS = (XF>XF )−1XF>Y, (1.4)

see, e.g., Zvára (2008).

An illustration of a linear, parabolic and cubic function fitted by the Least Squares estimator (1.4)
is given in Figure 1.1. Notice that these parametric estimators do not fully capture the shape of the
true regression function. In such situation, standard regression diagnostic tools (Belsley et al.; 1980;
Zvára; 2008) may be used to diagnose the lack-of-fit but it may not be possible to improve the model
if the true shape of the regression function is not known or if the function f(.) is misspecified.

1
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Figure 1.1: Simulated example (50 observations): the dashed line is the true regression function, thick
lines denote various parametric linear regression estimators.

0.0 0.2 0.4 0.6 0.8 1.0

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

NONPARAMETRIC REGRESSION

x

y

Figure 1.2: Simulated example (50 observations): the dashed line is the true regression function, thick
line denotes the nonparametric regression estimator.
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Nonparametric regression Removing the parametric assumptions from (1.1), we obtain the non-
parametric regression model :

Y = E(Y |X = x) + ε = m(x) + ε, (1.5)

where Y is the response, ε the random error, and m(.) denotes the unknown regression function. An
example of a nonparametric regression estimator of m(.) is plotted in Figure 1.2.

Compared to the linear model (1.1), the nonparametric regression model (1.5) is more flexible.
On the other hand, the nonparametric regression estimator is not as easily interpretable and it is
often used only as a graphical tool. Additionally, one also has to choose an appropriate value of some
smoothing parameters that typically control the smoothness of the estimator.

An overview of nonparametric regression (or smoothing) methods may be found, e.g., in Härdle
(1990); Simonoff (1996); Fan and Gijbels (1996); Härdle et al. (2004). The standard “smoothing”
approaches include splines, wavelets, moving averages, running medians, local polynomials, regression
trees, neural networks, and other methods. From now on, we concentrate on the kernel method: the
kernel regression estimators are defined as locally weighted averages and its properties may be derived
quite easily.

1.1 Kernel regression

Let us now concentrate on the kernel approach. In this section, we introduce basic notation and
provide a short review of some well-known results concerning the kernel regression estimator based
on the nonparametric regression model (1.5).

In practice, it is important to distinguish fixed and random design experiments. In a fixed design
experiment, we choose the values of the explanatory variable according to a certain rule, e.g., as a
quantiles of certain probability distribution. In a random design experiment, we may control only the
probability distribution of the explanatory variable but the observed values are random.

Random design We assume that model (1.5) holds and that we observe pairs of random variables
(Xi, Yi), i = 1, . . . , n, such that:

Yi = m(Xi) + εi, (1.6)

where Eεi = 0 and Var εi = σ2. The unknown regression function m(.) may be estimated, for example,
by using the classical Nadaraya-Watson estimator (Nadaraya; 1964; Watson; 1964):

mNW
b (x) =

∑n
i=1Kb(x−Xi)Yi∑n
j=1Kb(x−Xj)

=

n∑
i=1

Kb(x−Xi)∑n
j=1Kb(x−Xj)

Yi, (1.7)

where Kb(x) = K(x/b)/b, K(.) is a kernel function, and b > 0 is a bandwidth.
Under some assumptions, it may be shown that the Nadaraya-Watson estimator mNW

b (x) is
asymptotically normally distributed (Härdle; 1990, Theorem 4.2.1) with variance depending on σ2,∫
K2(u)du, and fX(.), the density of the explanatory variable X. The bias of the Nadaraya-Watson

estimator is proportional to the second moment of the kernel, i.e.,
∫
u2K2(u)du, and a measure of

local curvature of the regression function. Interestingly, the variance is a decreasing function and
the bias an increasing function of the bandwidth and, therefore, the choice of the optimal bandwidth
always involves a certain bias-variance trade-off. Some further remarks concerning the choice of the
bandwidth and the kernel function may be found at the end of this section.

The Nadaraya-Watson estimator (1.7) may be written as a ratio with a kernel estimator of the
probability density fX(x) in the denominator:

mNW
b (x) =

n∑
i=1

n−1Kb(x−Xi)

n−1
∑n
j=1Kb(x−Xj)

Yi =

∑n
i=1 n

−1Kb(x−Xi)Yi

f̂X(x)
(1.8)

and, clearly, it may be significantly simplified if the density fX(.) is known.

Fixed design In some real life applications, we may have the opportunity to choose all values of
the explanatory variable in advance. More precisely, in an experiment with fixed design given by a
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probability density function fX(x), we observe the response Yi, i = 1, . . . , n, in fixed design points
x1 < · · · < xn such that

∫ xi+1

xi
fX(u)du

.
= 1/n, i.e.,

Yi = m(xi) + εi. (1.9)

Replacing the weights Kb(x−Xi)/
∑
Kb(x−Xj) in (1.8) by

∫ si
si−1

Kb(x−u), we avoid the estimator

f̂X(x) in the denominator of (1.8) and obtain the fixed design Gasser-Müller estimator (Gasser and
Müller; 1984):

mGM
b (x) =

n∑
i=1

∫ si

si−1

Kb(x− u)duYi, (1.10)

where si = (xi + xi+1)/2. Notice that, similarly as in (1.8), the sum of the weights is equal to one
because

∑n
i=1

∫ si
si−1

Kb(x− u)du =
∫
K(x)dx = 1.

The properties of the Gasser-Müller estimator are investigated in Gasser and Müller (1984) and
we will summarize it under more general assumptions in Section 2.1.2. Notice that if the design
points are uniformly distributed, then

∫ si
si−1

Kb(x−u)du
.
= n−1Kb(x−x(i)) and the Nadaraya-Watson

estimator (1.8) may be interpreted as an approximation of the Gasser-Müller estimator (1.10) (or the
other way around).

Similarly as in the random design situation, the bias and the variance of the Gasser-Müller esti-
mator depend on the kernel function and on the bandwidth. In order to choose appropriate values
of these tuning parameters, we need a simple statistics (measure of accuracy) that would allow us to
compare two or more competing nonparametric regression estimators.

Asymptotic MSE The most often used measure of accuracy of a nonparametric regression estima-
tor mb(x) is the Mean Squared Error (MSE):

MSE{mb(x)} = E{mb(x)−m(x)}2.

If a random variable Xi is uniformly distributed on 〈0, 1〉 then “under certain assumptions” (Härdle
et al.; 2004, Theorem 4.3) we have for the random design Nadaraya-Watson estimator:

MSE{mNW
b (x)} .= 1

nb
σ2

∫
K2(s)ds+

1

4
b4{m′′(x)}2.

Interestingly, exactly the same asymptotic result holds, “under certain assumptions” (Härdle et al.;
2004, Theorem 4.2), also for the fixed design Gasser-Müller estimator, i.e.,

MSE{mGM
b (x)} .= 1

nb
σ2

∫
K2(s)ds+

1

4
b4{m′′(x)}2.

It follows that the precision of the random and fixed design estimators is very similar. In practice,
the type of design is usually implied by the setup of the experiment and it cannot be changed.

Choice of tuning parameters In order to calculate the nonparametric regression estimator (1.7)
or (1.10), we have to choose the kernel function K(.) and the bandwidth parameter b. Both theoretical
findings and practical recommendations may be summarized by saying that the choice of the kernel
function is much less important than the choice of the bandwidth parameter (Härdle et al.; 2004,
Section 4.3). By minimizing the asymptotic MSE, it may be shown that the asymptotically optimal
value of the bandwidth parameter is b ∝ n−1/5. Unfortunately, the optimal value of the bandwidth
involves also a constant depending on some unknown parameters, e.g., the second derivative of the
unknown regression function and the unknown variance of the unobserved random errors. Therefore,
a more practical recommendation is to use the so-called leave-one-out (or cross-validation) approach.
The choice of the bandwidth parameter is crucial and it is thoroughly discussed in the relevant
literature, see, e.g., Nadaraya (1989); Härdle (1990); Ruppert and Wand (1994); Wand and Jones
(1995); Simonoff (1996); Fan and Gijbels (1996); Efromovich (1999); Härdle et al. (2004); Tsybakov
(2009) among many others.
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Figure 1.3: Simulated example (50 observations): the dashed line is the true regression function,
dotted horizontal lines denote the horizontal axis and the maximum of the regression function, thick
vertical lines denote the zero and the location of maximum of the regression function.

1.2 Some non-standard problems

The statistical analysis should consist of careful planning of each experiment, of proper statistical
analysis of collected data, and of verification of assumptions of the statistical methodology. In some
situations, the standard methodology has to be modified in order to accommodate for some addi-
tional constraints or requirements. In Chapters 2–4, we will present some modifications of standard
approaches concerning each stage of a nonparametric regression experiment.

Optimal design Optimality of a nonparametric regression experiment is most often discussed from
the point of view of proper choice of the bandwidth, the kernel function of the type of nonparametric
regression estimator. Concerning the problem of the choice of the density fX(.) of the design points,
Müller (1984b) derived the distribution of design points minimizing the Asymptotic Integrated Mean
Squared Error (AIMSE), defined as the limit of IMSE = E[

∫
{m̂(x)−m(x)}dH(x)] for n→∞.

Unfortunately, the results of Müller (1984b) lack clear interpretation because the definition of
AIMSE involves a probability measure H(.) that does not have any clear interpretation. In Chapter 2,
we will try to overcome this obstacle by looking at a different criterion of optimality. More precisely,
we will try to find designs minimizing the variability of estimators of location of some interesting points
on the unknown regression curve, see Figure 1.3 for an illustration of a zero (i.e., the x-coordinate of
the point, where the regression curve meets the horizontal axis) and the location of maximum.

In Chapter 2, we investigate asymptotic properties of estimators of zero and location of maximum
under general conditions. The optimal design density, minimizing MSE or Mean Absolute Deviation
(MAD) of the nonparametric regression estimator of the zero and the location of maximum, is then
derived by applying standard calculus of variations. Chapter 2 generalizes results from Hlávka (2011)
that were obtained only for the location of maximum with constant bandwidth and independent and
identically distributed random errors.

Constraints Chapter 3 is devoted mainly to a constrained estimation with motivation coming from
option pricing: we are interested in nonparametric estimation of the state price density (SPD) that
may be expressed as the second derivative of the option pricing function, i.e., the prices of European



6 CHAPTER 1. INTRODUCTION

Call or Put options expressed as a function of the strike price. This setup naturally implies some
no-arbitrage constraints on the nonparametric regression function describing this relationship and
a covariance structure of the observed option prices (Härdle and Hlávka; 2009). In Chapter 3, we
discuss this application as a special case of nonparametric regression. Some computational aspects of
the proposed SPD estimator are discussed in two related papers (Hlávka; 2006a; Hlávka and Svoj́ık;
2009).

Specification tests After collecting and analyzing data, it is a good statistical practice to check
the validity of the model assumptions. In the nonparametric regression model (1.5), the assumptions
are usually expressed in terms of the random errors εi, i = 1, . . . , n. Typically, we assume that these
random errors are independent and identically distributed but, in certain situations, the nonparametric
regression model may require that the random errors are heteroscedastic or correlated.

In Chapter 4, we modify some recently proposed specification tests (Hlávka et al.; 2011; Neumeyer;
2009) in order to test the appropriateness of the correlation structure of the observed option prices
proposed in Chapter 3.

1.3 Results

The Appendix contains the most important author’s papers related to the above topics. The pa-
per Hlávka (2011) concerning the optimal design for nonparametric estimation of location of maximum
may be found on page ??. Some problems related to SPD estimation are solved in papers Hlávka
(2006a); Härdle and Hlávka (2009); Hlávka and Svoj́ık (2009) included, respectively, on pages ??, ??,
and ??. A specification test usable for homo- and heteroscedastic nonparametric regression models is
described in the paper Hlávka et al. (2011) starting on page ??.

All these papers concern nonparametric regression models. However, some extensions and modifi-
cations, mainly in Chapters 2 and 4, were necessary in order to unite these results in this habilitation
thesis.
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Chapter 2

Nonparametric estimators of
location

In this chapter, we investigate a nonparametric estimator of the zero and the location of maximum of
a regression function (or its derivative) and we derive the distribution of design points minimizing the
expected variance of the location estimator. We concentrate on fixed-design nonparametric regression
models that allow a natural interpretation of the proposed experiment design.

The problem of nonparametric estimation of the location of maximum is somewhat related to
nonparametric estimation of the mode of a probability distribution (i.e., the value at which the prob-
ability density function attains its maximum), see Parzen (1962), Eddy (1980), Eddy (1982), Romano
(1988b). Asymptotic normality of the random-design Nadaraya-Watson nonparametric estimator of
the location of maximum of an unknown regression function (regression mode) is derived in Ziegler
(2003). The mean squared error (MSE) of both random and fixed design estimators (Nadaraya-
Watson, Gasser-Müller, Priestly-Chao) of the location of maximum under α-mixing assumptions is
investigated in Wieczorek and Ziegler (2010). In this chapter, we complement these results by proving
asymptotic normality of both the empirical zero and of the empirical location of maximum using the
Gasser-Müller estimator and assuming that the random errors are strongly mixing. In addition, we
review and generalize the asymptotically optimal distribution of design points obtained in Hlávka
(2011) to estimators of zeros and locations of extrema of derivatives of regression functions.

In Sections 2.1–2.3, we extend the results of Müller (1985) and establish asymptotic normality
of the empirical zero (the value at which the nonparametric regression estimator meets the horizon-
tal axis) and the empirical location of maximum (the value at which the nonparametric regression
estimator attains its maximum) under strongly mixing assumptions. In Section 2.4, we discuss the
bandwidth choice. The asymptotically optimal distribution of design points is derived in Section 2.5,
see also Müller (1984c); Hlávka (2011). The small sample properties of the proposed experiment
design are investigated in a simulation study in Section 2.6.

2.1 Introduction

In this chapter, the basis of our investigation is the fixed design nonparametric regression model (1.9),
i.e.,

Yi = m(xi) + εi, for i = 1, . . . , n, (2.1)

where Yi’s are observations of the response variable, 0 ≤ x1 < · · · < xn ≤ 1 are fixed values of the
explanatory variable defined by a probability density function fX(.) (i.e., FX(xi) =

∫ xi
0
fX(u)du =

i/n+O(n−2)), and εi’s are random errors.

Recall that the Gasser–Müller (GM) kernel regression estimator (1.10) of the regression function
m(x) is defined as:

m̂n,bn(x) =
1

bn

n∑
i=1

∫ si

si−1

K

(
x− u
bn

)
duYi, (2.2)

where si−1 = 1
2 (xi + xi−1), bn is the bandwidth and K(.) a kernel function.

9
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Similarly, we may estimate derivatives of the regression function:

m̂n,bn,ν(x) =
1

bν+1
n

n∑
i=1

∫ si

si−1

Kν

(
x− u
bn

)
duYi =

n∑
i=1

an,i,bn,ν(x)Yi, (2.3)

where an,i,bn,ν(x) are (non-random) weights, bn is the bandwidth, and Kν(.) is a kernel function of
order (ν, k) (Gasser and Müller; 1984), i.e., the support of the Lipschitz continuous function Kν(.) is
the interval 〈−1, 1〉 and

∫ 1

−1

Kν(x)xjdx =


(−1)νν! for j = ν,
0 0 ≤ j < k, j 6= ν,
(−1)kk!Bk,k for j = k,
(−1)k+1(k + 1)!Bk,k+1 for j = k + 1.

(2.4)

For example, the quartic kernel K(x) = I(|x| ≤ 1)15(1 − x2)2/16 is of order (0, 2) with B2,2 = 1/14
because

∫
K(x)dx = 1,

∫
K(x)xdx = 0, and

∫
K(x)x2dx = 1/7.

The properties of m̂n,bn(x) and m̂n,bn,ν(x) are described in detail in Gasser and Müller (1984).
We review and extend some of these results in Section 2.1.2.

Empirical location of maximum The natural estimator of the location of maximum is the so-
called empirical location of maximum defined as the x-coordinate of the point in which the non-
parametric regression estimator reaches its maximum. In the following, the symbol θn,ν denotes
the (unknown) true location of maximum of the ν-th derivative of the regression function m(.), i.e.,

θν = arg maxx∈[0,1]m
(ν)(x) and θ̂n,bn,ν denotes the location of maximum of the nonparametric re-

gression estimator m̂(ν)(.), i.e., θ̂n,bn,ν = arg maxx∈[0,1] m̂n,bn,ν(x). The value of the nonparametric

regression estimator in the empirical location of maximum, m̂n,bn,ν(θ̂n,bn,ν) is an estimator of the
maximum of the ν-th derivative of the regression function m(.), i.e., m(ν)(θν) = maxx∈[0,1]m

(ν)(x)

Empirical zero Along the same lines, we define ξ̂n,bn,ν , the empirical zero of ν-th derivative of m(.)

as a solution of the equation m̂n,bn,ν(ξ̂n,bn,ν) = 0. The empirical zero estimates the zero, ξν , of m(ν)(.)
defined as a solution of the equation m(ν)(ξν) = 0. The zero ξ is sometimes also called a root of the
equation m(ν)(ξν) = 0.

2.1.1 Notation and assumptions

Let us fix the parameters ν and k and the kernel function Kν(.) of order (ν, k). We start by establishing
asymptotic properties of the nonparametric regression estimator m̂n,bn,ν(.) defined by (2.3). Later on,

in Sections 2.2 and 2.3, these properties are used to establish the asymptotic normality of ξ̂n,bn,ν ,

the nonparametric estimator of the zero of m(ν)(.) and θ̂n,bn,ν , the nonparametric estimator of the
location of maximum of m(ν)(.). For simplicity, the indices k, ν, or bn may be omitted whenever it is
convenient. For example, we may write an,i or an,i(x) instead of an,i,bn,ν(x).

The following assumptions are used in order to derive the asymptotic distribution of the nonpara-
metric regression function estimator:

A1. Regression function: m(k)(.) is Lipschitz continuous.

A2. Kernel: The Lipschitz continuous kernel function Kν(.) with support 〈−1, 1〉 is of order (ν, k),
where ν ≥ 0, k > ν + 1 and the difference k − ν is even.

A3. Bandwidth: bn → 0, nb2n→∞, nb2ν+1
n →∞.

A4. Design: The density f(x) > δf > 0 is Lipschitz (γf )-continuous with 0 < γf ≤ 1, i.e., |f(u)−
f(v)| ≤ Lf |u− v|γf for all u and v ∈ [0, 1] and for some Lf > 0.

A5. Random errors: Denoting εi = εn(xi) , where εn(x) is defined for all x ∈ [0, 1], we assume:

Eεn(x) = O(n−1) uniformly in x ∈ [0, 1],

Cov{εn(xi), εn(xj)} = σ2(xi)I(i = j) +O(n−1) uniformly in {xi, xj} ∈ [0, 1]2,
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the function σ2(.) is Lipschitz continuous, there exist 0 < δσ and Dσ < +∞ such that δσ <
σ2(x) < Dσ for all x ∈ [0, 1]. Assume that E|εi|r < ∞ for some r > 2 and that ξn,i = (εi −
Eεi)/(Var εi)

1/2 is a strictly stationary strongly mixing sequence of random variables such that
{ξ2
n,i} is a uniformly integrable family and limk→∞ ρ̄∗k = limk→∞[supn{supdist(T,S)≥k ρ(σ(ξn,i, i ∈

T ), σ(ξn,j , j ∈ S))}] < 1, where the symbol ρ(., .) denotes the maximal coefficient of correlation,
i.e., ρ(A,B) = supf∈L2(A),g∈L2(B) |corr(f, g)|. For each n, let αn(.) denote the mixing coefficients

of the sequence ξI(|ξi| < n1/r) and assume that lim
∑∞
i=1 αn(i) = α∗n < ∞, limα∗n

= α∗, and

lim supi→∞

[
1 + 6e1/2{αn(i1/r)}2ir/(r−1)

]i(r−1)/(2r)

< M <∞.

2.1.2 Asymptotic properties of the Gasser-Müller estimator

In this section, we summarize some basic asymptotic properties of the nonparametric regression esti-
mator m̂n,bn,ν(x) that are needed later on.

Assuming independent and identically distributed (iid) random errors, the asymptotic distribution
of the Gasser-Müller estimator is given, e.g., in Gasser and Müller (1984). The consistency of the fixed-
design nonparametric regression estimator under various mixing assumptions is investigated in Roussas
(1989), the uniform strong consistency of the Nadaraya-Watson regression estimator is established in
Roussas (1990b), and the asymptotic normality of the fixed-design nonparametric regression estimator
under mixing assumptions is investigated in Roussas et al. (1992).

Let us now establish the asymptotic normality of the Gasser-Müller estimator for weakly depen-
dent sequences of random errors (Lin and Lu; 1996) by using a Central Limit Theorem (CLT) for
nonstationary weakly dependent triangular arrays of random variables (Peligrad; 1996).

Lemma 2.1. Assume A1–A5. Then

Em̂n,bn,ν(x) = m(ν)(x) + bk−νn {Bk,km(k)(x) + o(1)}+O(n−1b−νn ), (2.5)

Var m̂n,bn,ν(x) =
1

nb2ν+1
n

σ2(x)

f(x)
{V +O(bn) +O(n−1b−2

n )}, (2.6)

where V =
∫ 1

−1
K2
ν (t)dt and

m̂n,bn,ν(x)− Em̂n,bn,ν(x)

{Var m̂n,bn,ν(x)}1/2
D−→ N(0, 1). (2.7)

If m(k+1)(.) is continuous then

Em̂n,bn,ν(x) = m(ν)(x) + bk−νn {Bk,km(k)(x) + bnBk,k+1m
(k+1) + o(bn)}+O(n−1b−νn ). (2.8)

Proof. Equations (2.5) and (2.8) follow exactly as in Gasser and Müller (1984); Müller (1984b, 1985)
using Taylor expansion of m(.) and

n∑
i=1

si∫
si−1

Kν

(
x− u
bn

)
du =

1∫
0

Kν

(
x− u
bn

)
du =

min( x
bn
,1)∫

max(−1, x−1
bn

)

Kν(t)bndt = O(bn). (2.9)

Next, similarly as in Müller (1985), we show that for the design points xi defined in Section 2.1.1 it
holds:

si − si−1 =
xi+1 − xi−1

2
=
F−1

(
i+1
n

)
− F−1

(
i−1
n

)
2

+O(n−2)

=
1

n

F−1
(
i+1
n

)
− F−1

(
i−1
n

)
2/n

+O(n−2) =
1

nf{F−1(u∗i )}
+O(n−2)

=
1

nf(x∗i )
+O(n−2) =

1

nf(xi)
+O(n−2) (2.10)



12 CHAPTER 2. NONPARAMETRIC ESTIMATORS OF LOCATION

for some u∗i ∈ ((i− 1)/n, (i+ 1)/n) and F−1(u∗i ) = x∗i = xi+O(n−2). Similarly, for an,i = an,i,bn,ν(x)
defined in (2.3), we have that:

an,i =
1

bν+1
n

∫ si

si−1

Kν

(
x− u
bn

)
du =

1

bν+1
n

∫ si

si−1

{
Kν

(
x− xi
bn

)
+O(n−1b−1

n )

}
du

=
1

bν+1
n

(si − si−1)

{
Kν

(
x− xi
bn

)
+O(n−1b−1

n )

}
=

1

bν+1
n

{
1

nf(xi)
+O(n−2)

}{
Kν

(
x− xi
bn

)
+O(n−1b−1

n )

}
=

1

bν+1
n

[
Kν {(x− xi)/bn}

nf(xi)
+O(n−2b−1

n )

]
=
Kν {(x− xi)/bn}

nf(xi)b
ν+1
n

+O(n−2b−ν−2
n ). (2.11)

By the Lipschitz continuity of Kν(.) and (2.10) we have that:

n∑
i=1

{∫ si

si−1

Kν

(
x− u
bn

)
du

}2

=

n∑
i=1

{∫ si

si−1

Kν

(
x− xi
bn

)
du+O(n−2b−1

n )

}2

=

n∑
i=1

{
1

nf(xi)
Kν

(
x− xi
bn

)
+O(n−2b−1

n )

}2

=

n∑
i=1

[
1

{nf(xi)}2
K2
ν

(
x− xi
bn

)
+O(n−3b−1

n )

]

=

n∑
i=1

∫ si

si−1

1

nf(u)
K2
ν

(
x− u
bn

)
du+O(n−2b−1

n ) =

∫ 1

0

1

nf(u)
K2
ν

(
x− u
bn

)
du+O(n−2b−1

n )

=

min( x
bn
,1)∫

max(−1, x−1
bn

)

1

nf(x− tbn)
K2
ν (t)bndt+O(n−2b−1

n ) = O(n−1bn) (2.12)

because by our assumptions nb2n −→∞.

Using A5, (2.9), and (2.12) and proceeding similarly as in (2.12), we obtain that:

Var m̂n,bn,ν(x) =
1

b2ν+2
n

n∑
i=1

{∫ si

si−1

Kν

(
x− u
bn

)
du

}2

{σ2(xi) +O(n−1)}

+
1

b2ν+2
n

n∑
i=1

n∑
j=1

j 6=i

{∫ si

si−1

Kν

(
x− u
bn

)
du

}{∫ sj

sj−1

Kν

(
x− u
bn

)
du

}
O(n−1)

=
1

b2ν+2
n

n∑
i=1

{∫ si

si−1

Kν

(
x− u
bn

)
du

}2

{σ2(xi)}+O(n−2b−2ν−1
n ) +O(n−1b−2ν

n )

=
1

b2ν+2
n


min( x

bn
,1)∫

max(−1, x−1
bn

)

σ2(x− tbn)

nf(x− tbn)
K2
ν (t)bndt+O(n−2b−1

n )

+O(n−2b−2ν−1
n ) +O(n−1b−2ν

n )

=
1

nb2ν+1
n

σ2(x)

f(x)

∫ 1

−1

K2
ν (t)dt+O(n−1b−2ν

n ) +O(n−2b−2ν−3
n ) +O(n−2b−2ν−1

n ) +O(n−1b−2ν
n )

=
1

nb2ν+1
n

σ2(x)

f(x)

∫ 1

−1

K2
ν (t)dt+O(n−1b−2ν

n ) +O(n−2b−2ν−3
n )

=
1

nb2ν+1
n

σ2(x)

f(x)
{V +O(bn) +O(n−1b−2

n )}.

Defining:

m̃n,bn,ν(x) =

n∑
i=1

an,i{m(xi) + (Var εi)
1/2ξi} =

n∑
i=1

an,i{m(xi) + εi −Eεi} = m̂n,bn,ν(x)−
n∑
i=1

an,iEεi,
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it is easy to see that m̃n,bn,ν(x) = m̂n,bn,ν(x) + O(1/n), Em̃n,bn,ν(x) = Em̂n,bn,ν(x) + O(1/n), and
Var m̃n,bn,ν(x) = Var m̂n,bn,ν(x). Hence, in order to establish the asymptotic normality result (2.7),
it suffices to show the asymptotic normality of

m̃n,bn,ν(x)− Em̃n,bn,ν(x)

{Var m̃n,bn,ν(x)}1/2

which immediately follows by Peligrad (1996, Corollary 2.1) from assumption A5 because:

max
1≤i≤n

|ani(Var εi)
1/2|

{Var m̃n,bn,ν(x)}1/2
= O(n−1/2b−1/2

n )
n→∞−→ 0

by (2.11) and (2.6), and

sup
n

∑n
i=1 a

2
ni Var εi

Var m̃n,bn,ν(x)
≤ sup

n

b−2ν−2
n Dσ

∑n
i=1

{∫ si
si−1

Kν

(
x−u
bn

)
du
}2

n−1b−2ν−1
n σ2(x){V +O(bn) +O(n−1b−2

n )}/f(x)

= sup
n

min(x/bn,1)∫
max{−1,(x−1)/bn}

{DσK
2
ν (t)/f(x− tbn)}dt+O(n−2b−1

n )

σ2(x){V +O(bn) +O(n−1b−2
n )}/f(x)

< +∞

by (2.12) and (2.6).

After establishing the pointwise asymptotic normality of m̂n,bn,ν(.), we investigate the uniform
convergence rate.

Lemma 2.2. Assume A1–A5. Then

sup
x∈[δ,1−δ]

∣∣∣Em̂n,bn,ν(x)−m(ν)(x)
∣∣∣ = O(bk−νn ) +O(n−1b−νn )

for any fixed δ ∈ (0, 1/2).

Proof. By the Taylor expansion:

m(x− tbn) =

k−1∑
j=0

m(ν)(x)

j!
(−tbn)j +

∫ −tbn
0

m(k)(x+ u)

(k − 1)!
(−tbn − u)k−1du.

Recalling that m(k)(.) is Lipschitz continuous with constant Lk by A1, we obtain:

sup
|t|≤1

∣∣∣∣∣∣m(x− tbn)−
k−1∑
j=0

m(ν)(x)

j!
(−tbn)j

∣∣∣∣∣∣
= sup

|t|≤1

∣∣∣∣∣
∫ −tbn

0

m(k)(x+ u)

(k − 1)!
(−tbn − u)k−1du

∣∣∣∣∣ ≤ bn
(k − 1)!

sup
|t|≤1

∣∣∣m(k)(x+ u)(tbn)k−1
∣∣∣

≤ bkn
(k − 1)!

sup
|t|≤1

∣∣∣m(k)(x) + Lktbn

∣∣∣ ≤ bkn|m(k)(x)|+ Lkb
k+1
n

(k − 1)!
= O(bkn).

Similarly as in the proof of Lemma 2.1, using the assumption that Kν(.) is a kernel function of
order (ν, k), we have uniformly in [δ, 1− δ] that:

Em̂n,bn,ν(x) =
1

bν+1
n

n∑
i=1

∫ si

si−1

Kν

(
x− u
bn

)
du{m(x) + Eεi}

=
1

bνn

min(x/bn,1)∫
max{−1,(x−1)/bn}

m(x− tbn)Kν (t) dt+O(n−1b−νn )

=
1

bνn

min(x/bn,1)∫
max{−1,(x−1)/bn}


k−1∑
j=0

m(ν)(x)

j!
(−tbn)j +O(bkn)

Kν (t) dt+O(n−1b−νn )

= m(ν)(x) +O(bk−νn ) +O(n−1b−νn ). (2.13)



14 CHAPTER 2. NONPARAMETRIC ESTIMATORS OF LOCATION

Corollary 1. The optimum rate of convergence in Lemma 2.2 is O(bk−νn ) and it is achieved for
bn = n−1/k.

Proof. The statement follows directly by comparing the rates in Lemma 2.2.

In order to deal with correlated random variables, we apply a Hoeffding type exponential inequality
for strongly mixing sequences of random variables, see Roussas (1996).

Lemma 2.3. Assume A1–A5. Then

sup
x∈[δ,1−δ]

|m̂n,bn,ν(x)−m(ν)(x)| = O

{
b(r−1)/2
n + bk−νn +

(
log n

nb2ν+1
n

)1/2
}

a.s.

for any fixed δ ∈ (0, 1/2).

Proof. Without loss of generality, we assume that bn < δ. Another possible approaches to the bound-
ary effects would be to introduce circularity assumptions or to use a boundary kernel (Müller; 1984a).

The proof is organized similarly as the proof of Lemma 2.2 in Müller (1985) or the proof of the
second Lemma in Müller (1984a), see also Cheng and Lin (1981), Mack and Silverman (1982), or
Roussas (1990b).

Similarly as in the proof of Lemma 2.1 we define m̃n,bn,ν(x) =
∑n
i=1 an,i(x){m(xi) + (Var εi)

1/2ξi}
and recall that:

sup
x∈[δ,1−δ]

|m̂n,bn,ν(x)− m̃n,bn,ν(x)| = O(n−1). (2.14)

In order to establish the uniform convergence rate of m̃n,bn,ν(.), we define estimators h̃n,bn,ν(x) =∑n
i=1 an,i(x)(Var εi)

1/2ξi, and h̄n,bn,ν(x) =
∑n
i=1 an,i(x)(Var εi)

1/2ξiI(|ξi| < Bn).

Let Rn ⊂ (0, 1) denote a set with cardinality O(n2) such that for all x ∈ (0, 1) there exists
τ(x) ∈ Rn satisfying supx∈(0,1) |x− τ(x)| = ‖x− τ(x)‖ = O(n−2). Then

sup
x∈[δ,1−δ]

|m̃n,bn,ν(x)− Em̃n,bn,ν(x)|

= sup
x∈[δ,1−δ]

|h̃n,bn,ν(x)− Eh̃n,bn,ν(x)|

≤ sup
x∈[δ,1−δ]

|h̃n,bn,ν(x)− h̄n,bn,ν(x)|+ sup
x∈[δ,1−δ]

|h̄n,bn,ν(x)− h̄n,bn,ν{τ(x)}|

+ sup
x∈[δ,1−δ]

|h̄n,bn,ν{τ(x)} − Eh̄n,bn,ν{τ(x)}|+ sup
x∈[δ,1−δ]

|Eh̄n,bn,ν{τ(x)} − Eh̄n,bn,ν{x}|

+ sup
x∈[δ,1−δ]

|Eh̄n,bn,ν{x} − Eh̃n,bn,ν{x}| = A+B + C +D + E. (2.15)

Concerning A, Markov’s inequality implies that P (|ξi| > Bi) ≤ E|ξi|r/Bri . This implies that∑+∞
i=1 P (|ξi| > Bi) ≤

∑+∞
i=1 {E|ξi|r/Bri } < +∞, and the Borel-Cantelli lemma immediately leads that

the probability of the event {|ξi| > Bi} occurring infinitely many times is equal to zero. Hence, there
exists Nω such that h̃n,bn,ν(x) = h̄n,bn,ν(x) for all x and for all n > Nω.

Concerning E, we have by Jensen’s, Hölder’s, and Markov’s inequality uniformly in x that:

|Eh̄n,bn,ν{x} − Eh̃n,bn,ν{x}| ≤ E|hn,bn,ν{x} − h̃n,bn,ν{x}|

≤ E

n∑
i=1

|an,i(x)| (Var εi)
1/2 |ξiI(|ξi| ≥ Bn)| ≤ D1/2

σ

{
n∑
i=1

|an,i(x)|

}
E {|ξ1| I(|ξ1| ≥ Bn)}

≤ D1/2
σ

{
n∑
i=1

|an,i(x)|

}
(E |ξ1|r)1/r{P (|ξ1| ≥ Bn)}1−1/r

≤ D1/2
σ

{
n∑
i=1

|an,i(x)|

}
(E |ξ1|r)1/r{E |ξ1|r /Brn}1−1/r = O(B1−r

n ). (2.16)
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Concerning the terms B and D, we use the Lipschitz continuity of the kernel function to obtain
uniformly in x that:

|h̄n,bn,ν(x)− h̄n,bn,ν{τ(x)}|

=

∣∣∣∣∣
n∑
i=1

an,i(x)(Var εi)
1/2ξiI(|ξi| < Bn)−

n∑
i=1

an,i{τ(x)}(Var εi)
1/2ξiI(|ξi| < Bn)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[an,i(x)− an,i{τ(x)}](Var εi)
1/2ξiI(|ξi| < Bn)

∣∣∣∣∣
≤ 1

bν+1
n

n∑
i=1

∣∣∣∣∣
∫ si

si−1

{
Kν

(
x− u
bn

)
−Kν

(
τ(x)− u

bn

)}
du ξiI(|ξi| < Bn)

∣∣∣∣∣
≤ 1

bν+1
n

n∑
i=1

∫ si

si−1

L

∣∣∣∣τ(x)− x
bn

∣∣∣∣ du |ξi|I(|ξi| < Bn)

≤ 1

bν+2
n

n∑
i=1

L(si − si−1) |τ(x)− x| du |Bn = O(b−ν−2
n n−2Bn). (2.17)

It remains to investigate the term C:

sup
x∈[δ,1−δ]

|h̄n,bn,ν{τ(x)} − Eh̄n,bn,ν{τ(x)}| = max
τ∈Rn

|h̄n,bn,ν{τ} − Eh̄n,bn,ν{τ}| (2.18)

and, obviously,

P (max
τ∈Rn

|h̄n,bn,ν(τ)− Eh̄n,bn,ν(τ)| > εn) ≤
∑
τ∈Rn

P (|h̄n,bn,ν(τ)− Eh̄n,bn,ν(τ)| > εn). (2.19)

Denoting ξ∗,ni = ξiI(|ξi| < Bn), ηn a sequence of positive integers tending to∞, and µn = bn/2ηnc
(so that n ≈ 2µnηn), we apply a Hoeffding-type inequality for an α-mixing sequence of random
variables (Roussas; 1996, Theorem 4.1) to show that:

P

{(
βn

log n

)1/2

|h̄n,bn,ν(τ)− Eh̄n,bn,ν(τ)| > ε

}

= P

{∣∣∣∣∣ 1n
n∑
i=1

nan,i(τ)(Var εi)
1/2(ξ∗,ni − Eξ∗,ni )

∣∣∣∣∣ > ε(log n)1/2β−1/2
n

}

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

K0(ξ∗,ni − Eξ∗,ni )

∣∣∣∣∣ > εbν+1
n (log n)1/2β−1/2

n

)
≤ K1

[
1 + 6e1/2{α(ηn)}1/µn

]µn
exp(−K2nε

2b2ν+2
n β−1

n B−2
n log n),

= K1

[
1 + 6e1/2{α(ηn)}1/µn

]µn
exp

(
log n−K2nε

2b2ν+2
n β−1

n B−2
n

)
= K1

[
1 + 6e1/2{α(ηn)}1/µn

]µn
n−K2nε

2b2ν+2
n β−1

n B−2
n (2.20)

where the sequence βn →∞ will be specified later, εbν+1
n (log n)1/2β

−1/2
n < K3η

−1
n , and K0, K1, K2,

and K3 are some constants.
Combining (2.18)–(2.20), we obtain for any ε > 0 that:

P

{(
βn

log n

)1/2

sup
x∈[δ,1−δ]

|h̄n,bn,ν{τ(x)} − Eh̄n,bn,ν{τ(x)}| > ε

}

≤
∑
τ∈Rn

{(
βn

log n

)1/2

|h̄n,bn,ν{τ} − Eh̄n,bn,ν{τ}| > ε

}

≤ K1

[
1 + 6e1/2{α(ηn)}1/µn

]µn
n2−K2nε

2b2ν+2
n β−1

n B−2
n

n→∞→ 0,



16 CHAPTER 2. NONPARAMETRIC ESTIMATORS OF LOCATION

assuming that lim infn→∞ nb2ν+2
n β−1

n B−2
n > 2K−1

2 ε−2, lim supn→∞
[
1 + 6e1/2{α(ηn)}1/µn

]µn
< ∞,

and ηnb
ν+1
n (log n)1/2β

−1/2
n → 0.

Using (2.18)–(2.19), we finally obtain for the term C:

∞∑
n=1

P

{(
βn

log n

)1/2

sup
x∈[δ,1−δ]

|h̄n,bn,ν{τ(x)} − Eh̄n,bn,ν{τ(x)}| > ε

}

≤
∞∑
n=1

K1

[
1 + 6e1/2{α(ηn)}1/µn

]µn
n2−K2nε

2b2ν+2
n β−1

n B−2
n (2.21)

and, if lim infn→∞ nb2ν+2
n β−1

n B−2
n > 3K−1

2 ε−2, the term on the right hand side of (2.21) is finite and

Borel-Cantelli lemma implies that (βn/ log n)
1/2

C = O(1) a.s.
Assuming that lim infn→∞ nb2ν+2

n β−1
n B−2

n > 3K−1
2 ε−2, lim supn→∞

[
1 + 6e1/2{α(ηn)}1/µn

]µn
<

∞, and ηn = o(b−ν−1
n β

1/2
n log n) and using (2.16) and (2.17), we thus obtain for (2.15):

sup
x∈[δ,1−δ]

|m̃n,bn,ν(x)− Em̃n,bn,ν(x)| = O{B1−r
n + n−2b−ν−2

n Bn + (log n/βn)1/2}, a.s. (2.22)

Clearly, we may now choose constant c3 large enough so that Bn = c3b
−1/2
n = O(b

−1/2
n ) and the

sequence βn = nb2ν+1
n still satisfies the assumption lim infn→∞ nb2ν+2

n β−1
n B−2

n > 3K−1
2 ε−2. Plugging

Bn = c3b
−1/2
n and βn = O(b

−1/2
n ) into (2.22) and using (2.14), we get:

sup
x∈[δ,1−δ]

|m̂n,bn,ν(x)− Em̂n,bn,ν(x)| = O

{
b(r−1)/2
n +

(
log n

nb2ν+1
n

)1/2
}
, a.s. (2.23)

Applying Lemma 2.2, we finally obtain:

sup
x∈[δ,1−δ]

|m̂n,bn,ν(x)−mν(x)|

≤ sup
x∈[δ,1−δ]

|m̂n,bn,ν(x)− Em̂n,bn,ν(x)|+ sup
x∈[δ,1−δ]

|Em̂n,bn,ν(x)−mν(x)|

= O

{
b(r−1)/2
n + bk−νn +

(
log n

nb2ν+1
n

)1/2
}
, a.s.

Remark 1. The optimal rate of uniform convergence in (2.23) is(
n

log n

)− r−1
2r+4ν

and it is achieved for the bandwidth

b∗n =

(
n

log n

)−1/(r+2ν)

.

Proof. The optimal rate of uniform convergence follows directly from the comparison of the terms

b
(r−1)/2
n and

(
logn

nb2ν+1
n

)1/2

. Notice that b∗n satisfies assumption A3 because r > 2 by A5 and

n(b∗n)2ν+1 = n1− 2ν+1
2ν+r log

2ν+1
2ν+r = n1− 2ν+r

2ν+r+ r−1
2ν+r log

2ν+1
2ν+r = n

r−1
2ν+r log

2ν+1
2ν+r → +∞.

Remark 2. Assuming that k− ν ≤ (r− 1)/2, the optimal rate of uniform convergence in Lemma 2.3
is (

n

log n

)− k−ν
2k+1

and it is achieved for the bandwidth

b∗n =

(
n

log n

)−1/(2k+1)

.
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Proof. The rate of convergence follows directly from the comparison of the terms bk−νn and
(

logn

nb2ν+1
n

)1/2

.

Notice that b∗n satisfies assumption A3 because k > ν by assumption A2 and

n(b∗n)2ν+1 = n1− 2ν+1
2k+1 log

2ν+1
2k+1 = n

2k−2ν
2k+1 log

2ν+1
2ν+r =→ +∞.

Remark 3. The optimal rate of uniform convergence in Lemma 2.3 is(
n

log n

)−min( k−ν2k+1 ,
r−1

2r+4ν )

and it is achieved for the bandwidth

b∗n =

(
n

log n

)−1/min(2k+1,r+2ν)

.

Proof. The proof follows from Remarks 1 and 2.

2.2 Nonparametric estimators of zeros

Let us recall that the symbol ξ̂n,bn,ν denotes the empirical zero of mν(.), see Section 2.1.

In order to establish the asymptotic distribution of the estimator ξ̂n,bn,ν , we need some additional
assumptions concerning the geometry of the regression function close to the true zero ξν :

A6. Geometry at zero: Assume that there exist a, b, c > 0, and τ ≥ 1 such that 0 < a < ξν < b <
1, m(ν) is strictly monotonous on 〈a, b〉 and |m(ν)(t)| ≥ c|t− ξν |τ for t ∈ 〈a, b〉.

We start with a lemma establishing the rate of convergence of the estimators ξ̂n,bn,ν by using the
geometry of the regression function and the uniform convergence rate derived in Lemma 2.3.

Lemma 2.4. Assuming A1–A6, then

|ξ̂n,bn,ν − ξν | = O

{
b(r−1)/(2τ)
n + b(k−ν)/τ

n +

(
log n

nb2ν+1
n

)1/(2τ)
}

a.s.

Proof. It follows from Lemma 2.3 and Müller (1985, Lemma 2.4).

The proof of the following Theorems 2.1 follows very closely the proof of Theorem 3.1 in Müller
(1985) but our assumptions concerning random errors are less restrictive.

Theorem 2.1. Assume that assumptions A1–A6 hold, nb2ν+3
n / log n→∞, the kernel Kν(.) is differ-

entiable, Kν(−1) = Kν(1) = 0, the derivative K ′ν(.) is Lipschitz continuous, the regression function

m(.) is (k + 1)-times continuously differentiable and m(ν+1)(ξν) 6= 0. If n1/2b
k+1/2
n → d ≥ 0, then

(nb2ν+1
n )1/2(ξ̂n,bn,ν − ξν)

D−→ N

(
−dBk,km

(k)(ξν)

m(ν+1)(ξν)
,
σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2

)
. (2.24)

Proof. Notice that m̂′n,bnν(.), the first derivative of the GM kernel regression estimator m̂n,bnν(.), is
also a GM kernel regression estimator with the kernel function K ′ν(.).

Clearly,
∫ 1

−1
K ′νx

0dx =
∫ 1

−1
K ′νdx = [Kν(x)]1−1 = 0 and integrating per partes we obtain:∫ 1

−1

K ′νx
jdx = [Kν(x)xj ]1−1 − j

∫ 1

−1

Kν(x)xj−1dx = −j
∫ 1

−1

Kν(x)xj−1dx.

From (2.4) it follows that:

∫ 1

−1

K ′ν(x)xjdx = −j
∫ 1

−1

Kν(x)xj−1dx =

 (−1)ν+1(ν + 1)! for j = ν + 1,
0 1 ≤ j < k + 1, j 6= ν + 1,
(−1)k+1(k + 1)!Bk,k for j = k + 1,
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and it is easy to see that the derivative K ′ν(.) is actually a kernel function of order (ν + 1, k + 1).
Therefore, Lemma 2.3 applies and we have for any δ ∈ (0, 1/2) that:

sup
x∈[δ,1−δ]

|m̂′n,bn,ν(x)−m(ν+1)(x)| = O

{
b(r−1)/2
n + bk−νn +

(
log n

nb2ν+3
n

)1/2
}
→ 0 a.s. (2.25)

if nb2ν+3
n / log n→∞.

By Taylor expansion of m̂n,bn,ν , we obtain that there exists ξ∗n,bn,ν between ξ̂n,bn,ν and ξν such
that:

m(ν)(ξν) = 0 = m̂n,bn,ν(ξ̂n,bn,ν) = m̂n,bn,ν(ξν) + (ξ̂n,bn,ν − ξν)m̂′n,bn,ν(ξ∗n,bn,ν)

implying that:

ξ̂n,bn,ν − ξν =
m(ν)(ξν)− m̂n,bn,ν(ξν)

m̂′n,bn,ν(ξ∗n,ν)
. (2.26)

For the denominator of (2.26) we have:

|m̂′n,bn,ν(ξ∗n,ν)−m(ν+1)(ξν)| ≤ |m̂′n,bn,ν(ξ∗n,ν)−m(ν+1)(ξ∗n,ν)|+ |m(ν+1)(ξ∗n,ν)−m(ν+1)(ξν)| → 0 a.s.

by (2.25) and Lemma 2.4. Hence, the asymptotic distribution of ξ̂n,bn,ν − ξν is, up to the multiplica-
tive constant m(ν+1)(ξν), equal to the asymptotic distribution of m(ν)(ξν) − m̂n,bn,ν(ξν). Applying
Lemma 2.1, we obtain:

Em̂n,bn,ν(ξν)− m̂n,bn,ν(ξν)

{Var m̂n,bn,ν(x)}1/2m(ν+1)(ξν)

D−→ N

(
0,

1

{m(ν+1)(ξν)}2

)
and, if bn → 0, nb2n →∞, and nbνn →∞,

n1/2bν+1/2
n

m(ν)(ξν) + bk−νn Bk,km
(k)(ξν)− m̂n,bn,ν(ξν)

m(ν+1)(ξν)

D−→ N

(
0,
σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2

)
,

implying that:

n1/2bν+1/2
n (ξ̂n,bn,ν − ξν) + n1/2bk+1/2

n

Bk,km
(k)(ξν)

m(ν+1)(ξν)

D−→ N

(
0,
σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2

)
.

2.3 Nonparametric estimators of location of maximum

Let us recall that the symbol θ̂n,bn,ν denotes the empirical location of the maximum of m(ν)(.), see
Section 2.1. Similarly as in the previous section, we need an additional assumption concerning the
geometry of the regression function close to the true location of maximum θν :

A7. Geometry at maximum: Assume that there exist a, b, c > 0, and ρ ≥ 1 such that 0 < a <
θν < b < 1, m(ν) is monotonously increasing on 〈a, θν〉 and monotonously decreasing on 〈θν , b〉,
and |m(ν)(t)−m(ν)(θν)| for t ∈ 〈a, b〉.

We start with a lemma establishing the rate of convergence of the estimator θ̂n,bn,ν by using the
geometry of the regression function and the uniform convergence rate derived in Lemma 2.3.

Lemma 2.5. Assuming A1–A5 and A7, then

|θ̂n,bn,ν − θν | = O

{
b(r−1)/(2ρ)
n + b(k−ν)/ρ

n +

(
log n

nb2ν+1
n

)1/(2ρ)
}

a.s.

and

|m̂n,bn,ν(θ̂n,bn,ν)−m(ν)(θν)| = O

{
b(r−1)/2
n + b(k−ν)

n +

(
log n

nb2ν+1
n

)1/2
}

a.s.
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Proof. It follows from Lemma 2.3 and Müller (1985, Lemma 2.3).

The proof of the following Theorem 2.2 follows very closely the proof of Theorem 3.1 in Müller
(1985) but our assumptions concerning random errors are less restrictive.

Theorem 2.2. Assume A1–A5 and A7, nb2ν+5
n / log n→∞, the kernel Kν(.) is twice differentiable,

K ′ν(−1) = K ′ν(1) = 0, the second derivative K
(2)
ν (.) is Lipschitz continuous, the regression function

m(.) is (k + 1)-times continuously differentiable and m(ν+2)(θν) 6= 0. If n1/2b
k+3/2
n → d′ ≥ 0, then

(nb2ν+3
n )1/2(θ̂n,bn,ν − θν)

D−→ N

(
d′Bk+1,k+1m

(k+1)(θν)

m(ν+2)(θν)
,
σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2

)
, (2.27)

where V ′ =
∫ 1

−1
{K ′ν(t)}2dt.

Proof. Similarly as in the proof of Theorem 2.1, we notice that the second derivative of the GM kernel

regression estimator, m̂
(2)
n,bnν

(.), is a GM kernel regression estimator with the kernel function K
(2)
ν (.).

Clearly,
∫ 1

−1
K

(2)
ν x0dx =

∫ 1

−1
K

(2)
ν dx = [K ′ν(x)]1−1 = 0 and integrating per partes we obtain:∫ 1

−1

K(2)
ν xjdx = [K ′ν(x)xj ]1−1 − j

∫ 1

−1

K ′ν(x)xj−1dx = −j
∫ 1

−1

K ′ν(x)xj−1dx.

Similarly as in the proof of Theorem 2.1, it follows that:∫ 1

−1

K(2)
ν (x)xjdx = −j

∫ 1

−1

K ′ν(x)xj−1dx

= j(j − 1)

∫ 1

−1

K ′ν(x)xj−2dx =

 (−1)ν+2(ν + 2)! for j = ν + 2,
0 1 ≤ j < k + 2, j 6= ν + 2,
(−1)k+2(k + 2)!Bk,k for j = k + 2,

and the second derivative K
(2)
ν (.) is obviously a kernel function of order (ν + 2, k + 2). Therefore,

Lemma 2.3 applies and we have for any δ ∈ (0, 1/2) that:

sup
x∈[δ,1−δ]

|m̂(2)
n,bn,ν

(x)−m(ν+2)(x)| = O

{
b(r−1)/2
n + bk−νn +

(
log n

nb2ν+5
n

)1/2
}
→ 0 a.s. (2.28)

if nb2ν+5
n / log n→∞. Equation (2.28) and Lemma 2.5 together with the continuity of m(ν+2)(.) imply

that:

|m̂(2)
n,bn,ν

(θ̂n,bn,ν)−m(ν+2)(θν)|

≤ |m̂(2)
n,bn,ν

(θ̂n,bn,ν)−m(2)(θ̂n,bn,ν)|+ |m(ν+2)(θ̂n,bn,ν)−m(ν+2)(θν)| n→∞−→ 0 a.s. (2.29)

and, therefore, m̂
(2)
n,bn,ν

(θ̂n,bn,ν) 6= 0 for n large enough.

Observing that, by our assumptions, m̂′n,bn,ν(θ̂n,bn,ν) = m(ν+1)(θν), we obtain by Taylor expansion:

m(ν+1)(θν) = m̂′n,bn,ν(θ̂n,bn,ν) = m̂′n,bn,ν(θν) + (θ̂n,bn,ν − θν)m̂
(2)
n,bn,ν

(θ∗ν),

where θ∗ν is between θ̂n,bn,ν and θν . Therefore,

θ̂n,bn,ν − θν

=
m(ν+1)(θν)−m′n,bn,ν(θν)

m̂
(2)
n,bn,ν

(θ∗ν)

=
m(ν+1)(θν)−m′n,bn,ν(θν)

m(ν+2)(θν)

(
1 +

m(ν+2)(θν)− m̂(2)
n,bn,ν

(θ∗ν)

m̂
(2)
n,bn,ν

(θ∗ν)

)

=
m(ν+1)(θν)−m′n,bn,ν(θν)

m(ν+2)(θν)
(1 +Rn) , (2.30)
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where, similarly as in (2.29), it is easy to see that Rn → 0 a.s. Hence, the asymptotic distribution of

θ̂n,bn,ν − θν is the same as the distribution {m(ν+1)(θν)− m̂′n,bn,ν(θν)}/m(ν+2)(θν). Using Lemma 2.1
with the kernel function K ′ν(.) of order (ν + 1, k + 1), we obtain:

Em̂′n,bn,ν(θν)− m̂′n,bn,ν(θν)

{Var m̂′n,bn,ν(θν)}1/2m(ν+2)(θν)

D−→ N

(
0,

1

{m(ν+2)(θν)}2

)
and, if bn → 0, nb2n →∞, and nbν+1

n →∞,

n1/2bν+3/2
n

m(ν+1)(θν) + bk−νn Bk+1,k+1m
(k)(θν)− m̂′n,bn,ν(θν)

m(ν+2)(θν)

D−→ N

(
0,
σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2

)
,

implying that:

n1/2bν+3/2
n (θ̂n,bn,ν − θν) + n1/2bk+3/2

n

Bk+1,k+1m
(k+1)(θν)

m(ν+2)(θν)

D−→ N

(
0,
σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2

)
.

2.4 Mean squared error and bandwidth

Looking at the mean and the variance of the asymptotic distribution of the empirical zero given in
Theorem 2.1 and replacing d by nb2k+1

n , it is easy to express the Mean Squared Error:

MSE(ξ̂n,bn,ν) = bias2 + variance

=
nb2k+1
n

nb2ν+1
n

(
Bk,km

(k)(ξν)

m(ν+1)(ξν)

)2

+
1

nb2ν+1
n

σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2

= b2k−2ν
n

(
Bk,km

(k)(ξν)

m(ν+1)(ξν)

)2

+
1

nb2ν+1
n

σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2
.

Assuming that the bias term is not equal to zero, i.e., assuming that the k-th derivative of the
regression function m(k)(ξν) 6= 0, we may calculate the bandwidth that minimizes the MSE. Setting

the derivative of MSE(ξ̂n,bn,ν) with respect to bn equal to zero, we obtain:

0 = (2k − 2ν)b2k−2ν−1
n

(
Bk,km

(k)(ξν)

m(ν+1)(ξν)

)2

− (2ν + 1)
1

nb2ν+2
n

σ2(ξν)

f(ξν)

V

{m(ν+1)(ξν)}2

0 = (2k − 2ν)b2k+1
n {Bk,km(k)(ξν)}2 − (2ν + 1)

1

n

σ2(ξν)V

f(ξν)
.

It is easy to see that the second derivative of MSE(ξ̂n,bn,ν) is positive because it is a sum of two
positive terms. Hence, we obtain that:

b0,n = n−1/(2k+1)

[
2ν + 1

2k − 2ν

σ2(ξν)V

f(ξν){Bk,km(k)(ξν)}2

]1/(2k+1)

= O(n−1/(2k+1)) (2.31)

is the optimal bandwidth for the estimation of the zero.
The bandwidth parameter does not necessarily have to be constant and we may consider also local

bandwidths depending on the known density of design points, f(.), and possibly also on a variance
function known up to a multiplicative constant, i.e., σ2(.) = σ2w(.). In principle, we could also consider
dependency of the bandwidth on the term m(ν+1)(.) but, in practice, the derivatives of the regression
function are rarely known and, therefore, we simplify the problem by assuming that m(ν+1)(.) = m1

is an unknown constant. Looking at (2.31), we define the local bandwidth:

b0,n,f (x) ∝
(

1

nf(x)

)1/(2k+1)

(2.32)
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in a homoscedastic situation (σ2(.) = σ2) and

b0,n,f,w(x) ∝
(
w(x)

nf(x)

)1/(2k+1)

, (2.33)

in a heteroscedastic setup (assuming that σ2(.) = σ2w(.)).
The MSE of the empirical location of maximum may be derived similarly. From Theorem 2.2, we

obtain:

MSE(θ̂n,bn,ν) =
nb2k+3
n

nb2ν+3
n

(
Bk+1,k+1m

(k+1)(θν)

m(ν+2)(θν)

)2

+
1

nb2ν+3
n

σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2

= b2k−2ν
n

(
Bk+1,k+1m

(k+1)(θν)

m(ν+2)(θν)

)2

+
1

nb2ν+3
n

σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2
.

Assuming that m(k+1)(θν) 6= 0 and setting the derivative of the MSE equal to zero, we get:

0 = (2k − 2ν)b2k−2ν−1
n

(
Bk+1,k+1m

(k+1)(θν)

m(ν+2)(θν)

)2

− (2ν + 3)
1

nb2ν+4
n

σ2(θν)

f(θν)

V ′

{m(ν+2)(θν)}2

0 = (2k − 2ν)b2k+3
n {Bk+1,k+1m

(k+1)(θν)}2 − (2ν + 3)
1

n

σ2(θν)V ′

f(θν)

implying that the optimal bandwidth for the estimation of the location of maximum is:

be,n = n−1/(2k+3)

[
2ν + 3

2k − 2ν

σ2(θν)V ′

f(θν){Bk+1,k+1m(k+1)(θν)}2

]1/(2k+3)

= O(n−1/(2k+3)) (2.34)

since the second derivative of MSE(θ̂n,bn,ν) is again just a sum of two positive terms.
Similarly as in (2.32) and (2.33), we define local bandwidths:

be,n,f (x) ∝
(

1

nf(x)

)1/(2k+3)

(2.35)

and

be,n,f,w(x) ∝
(
w(x)

nf(x)

)1/(2k+3)

(2.36)

depending on the design f(.) and on the variance function w(.) if σ2(.) = σ2w(.).

2.5 Optimal distribution of design points

The problem of finding the optimal distribution of design points in nonparametric kernel regression
has been previously addressed in Müller (1984b) from the point of view of the integrated mean squared
error (IMSE) of the GM kernel regression estimator m̂(x). Choosing a probability measure H with a
positive and continuous density h(.) on 〈0, 1〉 and considering:

IMSE = E

∫
{m̂(x)−m(x)}dH(x) ≈ 1

nbn

∫
K2(s)ds

∫
h(x)

f(x)
dx,

the AIMSE (asymptotic IMSE) optimal density of the design points f∗X(x) = h(x)1/2/
∫
h(u)1/2du ∝

h(x)1/2 has been derived in Müller (1984b).
Unfortunately, the probability measure H lacks any clear interpretation and, therefore, the AIMSE

optimal design is not well applicable in practice. Similarly as in Hlávka (2011), we overcome this
obstacle by obtaining designs minimizing the variability of the empirical zero and of the empirical
location of maximum.

Let the symbol A denote a probability measure describing the prior distribution of the zero or the
location of maximum and let us assume that A has a positive and continuous density a(.) such that:

A8. Prior location density: There exists δ > 0 such that a(x) > δ, for all x ∈ 〈0, 1〉.

The optimal density of the design points in a heteroscedastic situation is investigated in Sec-
tion 2.5.1. The solution in a homoscedastic situation is given in Section 2.5.2.
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2.5.1 Heteroscedastic random errors

Often, the precision of the measurements depends on the location and the shape of the variance
function is known in advance. In this section, we assume that σ2(.) = σ2w(.), where w(.) > 0 is a
known function and σ2 > 0 an unknown constant, and we describe the distribution of design points
minimizing the variability of nonparametric estimators of the zero and the location of maximum in
Theorems 2.3 and 2.4.

Theorem 2.3. Assume that the assumptions of Theorem 2.1 and A8 hold, σ2(.) = σ2w(.), where
w(.) is a known function and 0 < σ2 <∞, and that m(ν+1)(ξν) = m1 does not depend on the value of
ξν .

1. Assuming that the product w(.)a(.) satisfies assumption A4, the density of design points fV,w(x) ∝
{w(x)a(x)}1/2 minimizes the expectation of the asymptotic variance of the empirical zero, i.e.,∫
V ar(ξ̂n,bn,ν |ξν = u)a(u)du, with respect to the prior density a(.).

2. Assuming that {w(.)}2/3{a(.)}4/3 satisfies assumption A4, the density of design points fL,w(x) ∝
{w(x)}1/3{a(x)}2/3 minimizes the expected length of confidence intervals with respect to the prior
density a(.).

Proof. We prove only the first part because the proof of the second part is very similar. At first, we
recall that for a density of design points fX(.) satisfying A4 it follows from Theorem 2.1 that:

V ar(ξ̂|ξ = x) = cw(x)f−1
X (x),

where c is a constant depending on n, bn, K(.), σ2, and m1 and we notice that the resulting mini-
mization problem:

fV = arg min
fX

∫ 1

0

V ar(ξ̂n,bn,ν |ξn = x)a(x)dx = arg min
fX

∫ 1

0

f−1
X (x)w(x)a(x)dx

belongs to the classical calculus of variations.
Denoting F (x, y, y′) = F (x, FX , fx) = f−1

X (x)w(x)a(x), the necessary condition for an extreme of

I(fX) = I(y′) =
∫ 1

0
F (x, y, y′)dx is F ′y − d

dxF
′
y′ = 0, see e.g. Nožička (1998); Smirnow (1958). In our

setup, F ′y = 0 and F ′y′(x) = −f−2
X (x)w(x)a(x) and the above condition thus implies that the optimal

density of design points fV (.) has to satisfy d
dx{f

−2
V (x)w(x)a(x)} = 0, i.e., f−2

V (x)w(x)a(x) = constant.

Next, let f?V,w(x) ∝ w1/2(x)a1/2(x) denote the candidate solution. Recall that our assumptions

imply that w(.) > δσ/σ
2 > 0 and {w(.)a(.)}1/2 > (δwδσ)1/2/σ. We obtain:

w1/2(x1)a1/2(x1)− w1/2(x2)a1/2(x2)

< {w1/2(x1)a1/2(x1)− w1/2(x2)a1/2(x2)}σw
1/2(x1)a1/2(x1) + w1/2(x2)a1/2(x2)

(δwδ)1/2

= σ{w(x1)a(x1)− w(x2)a(x2)}/(δwδ)1/2.

Hence, the Lipschitz continuity of the function w(.)a(.) (see assumption A4) implies that also the
candidate solution f?V,w(.) is Lipschitz continuous and satisfies assumption A4.

It remains to verify that the candidate solution f?V,w(.) minimizes the expected variance. Consid-
ering another probability density functions fY and fZ = αfY + (1−α)f?V,w for α ∈ 〈0, 1〉 and defining

the integration constant k = {
∫ 1

0
w1/2(u)a1/2(u)du}−1 and a function:

Z(α) =

∫ 1

0

f−1
Z (x)w(x)a(x)dx =

∫ 1

0

1

α{fY (x)− kw1/2(x)a1/2(x)}+ kw1/2(x)a1/2(x)
w(x)a(x)dx,

it is easy to verify that the function Z(α) is continuously differentiable, Z ′(0) = 0 and, if fY and
f?V,w are not equal A-a.e., Z(2)(α) > 0, for α ∈ 〈0, 1〉. This implies that Z ′(α) > 0 for α ∈ (0, 1〉 and,

therefore, I(fY ) =
∫
f−1
Y (x)a(x)dx = Z(1) > Z(0) =

∫
{f?V,w(x)}−1a(x)dx = I(f∗V ) and the assertion

follows.

The optimal design for the empirical location of maximum θ̂n,bn,ν is established in the following
Theorem 2.4.
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Theorem 2.4. Assume that the assumptions of Theorem 2.2 and A8 hold, 0 < σ2 < ∞, and that
m(ν+2)(θν) = m2 does not depend on the location of maximum θν .

1. Assuming that the product w(.)a(.) satisfies assumption A4, the density of design points fV (x) ∝
{w(x)a(x)}1/2 minimizes the expectation of the asymptotic variance of the empirical location of

maximum,
∫
V ar(θ̂n,bn,ν |θν = u)a(u)du, with respect to the prior density a(.).

2. Assuming that {w(.)}2/3{a(.)}4/3 satisfies assumption A4, the density of design points fL(x) ∝
{w(x)}1/3{a(x)}2/3 minimizes the expected length of the confidence interval for the true location
of maximum with respect to the prior density a(.).

Proof. The proof proceeds exactly as the proof of Theorem 2.3.

2.5.2 Homoscedastic random errors

In practice, the variance of the random errors is often constant, i.e., σ2(x) = σ2. The optimal
distribution of the design points in this situation is a simple corollary of Theorems 2.3 and 2.4.

Corollary 2. Under the assumptions of Theorem 2.3 with w(.) ≡ 1, the density of design points
fV (x) ∝ a1/2(x) minimizes the expectation of the asymptotic variance of the empirical zero and the
density of design points fL(x) ∝ a2/3(x) minimizes the expected length of confidence intervals for the
true zero.

Proof. The assertion follows immediately from Theorem 2.3 with w(.) ≡ 1.

Corollary 3. Under the assumptions of Theorem 2.4 with w(.) ≡ 1, the density of design points
fV (x) ∝ a1/2(x) minimizes the expectation of the asymptotic variance of the empirical location of
maximum and the density of design points fL(x) ∝ a2/3(x) minimizes the expected length of confidence
intervals for the location of maximum.

Proof. The assertion follows immediately from Theorem 2.4 with w(.) ≡ 1.

2.5.3 Local bandwidth

In this section, we establish the optimal distribution of design points in a heteroscedastic situation
using the local bandwidth derived in Section 2.4. The optimal design for the empirical zero is given
in the following Theorem 2.5.

Theorem 2.5. Assume that the assumptions of Theorem 2.1 and A8 hold, σ2(x) = σ2w(x), where
w(x) is a known function and 0 < σ2 <∞, m(ν+1)(ξν) = m1 does not depend on the value of the true
zero ξν , and that the local bandwidth b0,n,f,w(.) is given by (2.33).

1. Assuming that the product {w(x)}(4k−4ν)/(4k−2ν+1){a(x)}(4k+2)/(4k−2ν+1) satisfies A4, the den-
sity of design points f0,V,w,l(x) ∝ {w(x)}(2k−2ν)/(4k−2ν+1){a(x)}(2k+1)/(4k−2ν+1) minimizes the

expectation of the asymptotic variance of the empirical zero,
∫
V ar(ξ̂n,bn,ν |ξν = u)a(u)du, with

respect to the prior density a(.).

2. Assuming that {w(x)}(4k−4ν)/(3k−ν+1){a(x)}(4k+2)/(3k−ν+1) satisfies assumption A4, the density
of design points f0,L,w,l(x) ∝ {w(x)}(k−ν)/(3k−ν+1){a(x)}(2k+1)/(3k−ν+1) minimizes the expected
length of confidence intervals for the true zero with respect to the prior density a(.).

Proof. Plugging the local bandwidth b0,n,f,w(.) into the asymptotic variance of the estimator provided
by Theorem 2.1, we obtain that:

V ar(ξ̂n,bn,ν) ∝ w(ξν)

f(ξν)

1

{b0,n,f,w(ξν)}2ν+1
∝ w(ξν)

f(ξν)

{
f(ξν)

w(ξν)

}(2ν+1)/(2k+1)

=

{
w(ξν)

f(ξν)

}(2k−2ν)/(2k+1)

.

Proceeding similarly as in the proof of Theorem 2.3, we solve the minimization problem:

f0,V,w,l = arg min
fX

∫ 1

0

V ar(ξ̂n,b0,n,f,w(x),ν |ξν = x)a(x)dx

= arg min
fX

∫ 1

0

{f(x)}−(2k−2ν)/(2k+1){w(x)}(2k−2ν)/(2k+1)a(x)dx
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and we obtain that the solution has to satisfy:

{f0,V,w,l(x)}−(4k−2ν+1)/(2k+1){w(x)}(2k−2ν)/(2k+1)a(x) = constant,

i.e.,
f0,V,w,l(x) ∝ {w(x)}(2k−2ν)/(4k−2ν+1){a(x)}(2k+1)/(4k−2ν+1). (2.37)

Concerning the second part of the theorem, we solve the minimization problem:

f0,L,w,l = arg min
fX

∫ 1

0

{f(x)}−(k−ν)/(2k+1){w(x)}(k−ν)/(2k+1)a(x)dx

leading in the same way that:

{fL,w,l(x)}−(3k−ν+1)/(2k+1){w(x)}(k−ν)/(2k+1)a(x) = constant

and
f0,L,w,l(x) ∝ {w(x)}(k−ν)/(3k−ν+1){a(x)}(2k+1)/(3k−ν+1). (2.38)

The proof may now be finished in the same way as the proof of Theorem 2.3.

The optimal design for the empirical location of maximum in a heteroscedastic situation with local
bandwidth is given in the following Theorem 2.6.

Theorem 2.6. Assume that the assumptions of Theorem 2.2 and A8 hold, 0 < σ2 <∞, m(ν+2)(θν) =
m2 does not depend on the location of maximum θν , and the local bandwidth be,f,w(.) is given by (2.36).

1. Assuming that {w(x)}(4k−4ν)/(4k−2ν+3){a(x)}(4k+6)/(4k−2ν+3) satisfies A4, the density of design
points fe,V,w,l(x) ∝ {w(x)}(2k−2ν)/(4k−2ν+3){a(x)}(2k+3)/(4k−2ν+3) minimizes the expectation of

the asymptotic variance of the empirical location of maximum,
∫
V ar(θ̂n,bn,ν |θν = u)a(u)du,

with respect to the prior density a(.).

2. Assuming that {w(x)}(4k−4ν)/(3k−ν+3){a(x)}(4k+6)/(3k−ν+6) satisfies assumption A4, the density
of design points fe,L,w,l(x) ∝ {w(x)}(k−ν)/(3k−ν+3){a(x)}(2k+3)/(3k−ν+3) minimizes the expected
length of confidence intervals for the true location of maximum with respect to the prior density
a(.).

Proof. The proof proceeds similarly as the proof of Theorem 2.5. Plugging the local bandwidth
be,n,f,w(.) given in (2.36) into the asymptotic variance of the estimator provided by Theorem 2.1, we
obtain that:

V ar(θ̂n,bn,ν) ∝ w(θν)

f(θν)

1

{b0,n,f,w(θν)}2ν+3
∝ w(θν)

f(θν)

{
f(θν)

w(θν)

}(2ν+3)/(2k+3)

=

{
w(θν)

f(θν)

}(2k−2ν)/(2k+3)

.

Once again, similarly as in the proof of Theorems 2.3 and 2.5, we solve the minimization problem:

fe,V,w,l = arg min
fX

∫ 1

0

V ar(ξ̂n,b0,n,f,w(x),ν |ξν = x)a(x)dx

= arg min
fX

∫ 1

0

{f(x)}−(2k−2ν)/(2k+3){w(x)}(2k−2ν)/(2k+3)a(x)dx

and we obtain that the solution has to satisfy:

{fe,V,w,l(x)}−(4k−2ν+3)/(2k+3){w(x)}(2k−2ν)/(2k+3)a(x) = constant,

i.e.,
fe,V,w,l(x) ∝ {w(x)}(2k−2ν)/(4k−2ν+3){a(x)}(2k+3)/(4k−2ν+3). (2.39)

In the second part of the theorem, we solve the minimization problem:

fe,L,w,l = arg min
fX

∫ 1

0

{f(x)}−(k−ν)/(2k+3){w(x)}(k−ν)/(2k+3)a(x)dx

leading in the same way that:

{fe,L,w,l(x)}−(3k−ν+3)/(2k+3){w(x)}(k−ν)/(2k+3)a(x) = constant

and
fe,L,w,l(x) ∝ {w(x)}(k−ν)/(3k−ν+3){a(x)}(2k+3)/(3k−ν+3). (2.40)

The proof may be now finished similarly as the proof of Theorem 2.3.
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2.6 Simulation study

In this section, we investigate the finite sample properties of the method in a short simulation study.
The simulation study was implemented in the statistical computing environment R (R Develop-
ment Core Team; 2011). All simulation results are based on the Gasser–Müller (GM) kernel regression
estimator using the quartic kernel and 1000 simulations.

constant bandwidth local bandwidth
m(.) m′(.) m(.) m′(.)

zero max. zero max. zero max. zero max.
ropt(MSE) 1/2 1/2 1/2 1/2 5/9

.
= 0.56 7/11

.
= 0.63 7/11

.
= 0.63 9/13

.
= 0.69

ropt(MAD) 2/3 2/3 2/3 2/3 5/7
.
= 0.71 7/9

.
= 0.78 7/9

.
= 0.78 9/11

.
= 0.82

Table 2.1: Powers of the prior density defining the optimal experiment design for all estimators related
to the regression function and its first derivative.

In Table 2.1, we summarize the optimal nonparametric regression designs concerning the regression
function and its first derivative under assumptions of homoscedasticity, see Corollaries 2 and 3 and
Theorems 2.5 and 2.6. It is interesting that the design is “more concentrated” for MAD and for local
bandwidth. As one might expect, the optimal design for estimation of the location of maximum of a
regression function is exactly the same as the optimal design for estimation of a zero of its derivative.

2.6.1 Zeros

We start by investigating the optimality properties of the experimental design proposed for estimation
of zeros.

Linear regression function

As a most simple example, let us first investigate a linear function:

m1(x) = 4(x− θ),

where the design points xi are uniformly distributed in 〈0, 1〉 and we set n = 50, σ = 0.5, and the
bandwidth bn = 50. Both the true regression line and the resulting GM estimator calculated using
the quartic kernel, i.e.,

K(u) =
15

16
(1− u2)2I(|u| ≤ 1),

with bandwidth bn = 0.07 are plotted in Figure 2.1.
Apart of the estimators, it is very useful to display also the precision of the estimator. The

standard approach is to plot asymptotic confidence intervals derived from the asymptotic distribution
given in Theorem 2.1. For the linear regression function m1(.), the bias term in Theorem 2.1 is clearly
equal to zero because the quartic kernel is a kernel function of order (0, 2) and the second derivative

m
(2)
1 (ξ0) = 0 implying that:

P

{(
ξ̂n.bn,0 ± u1−α/2

σ(ξ0)

{f(ξ0}1/2
V 1/2

m′(ξ0)

)
3 ξ0

}
= 0.95.

The resulting 95% confidence interval
(
ξ̂n.bn,0 ± u0.975

σ(ξ0)
{f(ξ0}1/2

V 1/2

m′(ξ0)

)
obtained for the bandwidth

bn = 0.07 is plotted in Figure 2.2.
In Figure 2.3, we display both the estimator and the corresponding 95% confidence intervals in

order to illustrate the link between the bandwidth and the length of the confidence interval. Figure 2.3
suggests that longer bandwidths lead shorter 95% confidence intervals without decreasing the coverage
probability. However, confidence intervals based on oversmoothed regression estimators should be used
with caution and only if the bias term in Theorem 2.1 is equal to zero (i.e., when the second derivative
of the regression function is zero). In the last plot in Figure 2.3, the estimator already suffers from
boundary effects increasing the bias also in the empirical zero.
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Figure 2.1: Simulated example: empirical zero for a linear regression function m1(.). The dashed lines
denote the empirical zero. The full lines denote the true regression line and the true zero.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

x

y

Figure 2.2: Simulated example: asymptotic 95% confidence intervals for the true zero, regression
function m1(.), bandwidth bn = 0.07.
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Figure 2.3: Simulated example: asymptotic 95% confidence intervals for the zero of m1(.) calculated
for several bandwidths.
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Nonlinear regression function

In order to investigate the effect of the design in a more interesting situation, we use the following
nonlinear regression function:

m(x) =
(x+ 0.05)2 − (ξ0 + 0.05)2

(x+ 0.05)
.

Note that the second derivative m(2)(ξ0) 6= 0 and that the first derivative m(1)(ξ0) = 2 does not
depend on ξ0.

Bandwidth parameter Preliminary simulation study, not included in this report, showed some
rather unclear behavior of the estimators when constant bandwidth was used. Therefore, we use only
the local bandwidth, b0,n,f (.), defined in (2.32). For simplicity, we rewrite the local bandwidth as
bn(x) = b{f(x)}−1/(2k+1) and b is the only bandwidth parameter used in the remaining part of this
section.

Prior distribution of zero Similarly as in Hlávka (2011), we choose the prior distribution of the
zero as a mixture of Uniform, U(0, 1), and Normal distribution, N(µθ, σ

2
θ), restricted to the interval

〈0, 1〉. More precisely, the prior density of the zero in our simulation study is:

a(θ) ∝ (1− p)φµθ,σ2
θ
(θ|θ ∈ 〈0, 1〉) + p,

where φ(.|〈0, 1〉) denotes the density of a N(µθ, σ
2
θ) distribution restricted to the interval 〈0, 1〉. In

the following, we set µθ = 0.4, σ2
θ = 0.01, and p = 0.1.

Design density The density of the design points is controlled by a parameter r such that for a
fixed value of r, the density of the design points, fX,r(.), is proportional to the r-th power of the prior
density a(.), i.e., fX,r(x) ∝ ar(x). An example of one step of the simulation study including the prior
density and the design density with r = 1/2 is plotted in Figure 2.4. The meaning of the parameter
r is very simple. For example, the value r = 0 corresponds to uniformly distributed design points,
fX,0(x) = I(x ∈ 〈0, 1〉). The value r = 1 would mean that the density of design points is equal to
the prior density of the location of maximum, i.e., fX,1(x) = a(x). Higher values of the parameter
r mean that the design points are more concentrated in the neighborhood of the mode of the prior
distribution a(θ), see Figure 2.5 for an illustration.

Setup of the simulation study In each step of the simulation, for a fixed sample size n, the
standard deviation σ ∈ {0.1, 0.5}, the bandwidth parameter b ∈ 〈0.005, 0.5〉, and the parameter
controlling the density of design points r ∈ 〈0, 1.2〉, we:

1. calculate the design points according to the density fX,r(x) ∝ ar(x),

2. simulate the responses Yi = m(xi)+σεi, for i = 1, . . . , n, where εi are iid N(0, 1) pseudo-random
variables and m(.) is the regression function with zero drawn from the prior distribution,

3. calculate the empirical zero using the GM estimator with bandwidth parameter b and the func-
tion uniroot() in the statistical computing environment R (R Development Core Team; 2011).

Optimality criteria For each sample size n, standard deviation σ, the bandwidth parameter b, and
each value of the parameter r, we calculate the Mean Squared Error (MSE) and the Mean Absolute
Deviation (MAD) of the empirical zero from 1000 simulations. In all tables, the MSE and MAD are
presented only for the best value of the parameter r (denoted as ropt) for each bandwidth and the
bandwidths with the smallest MSE or MAD are denoted by the symbol ?. For example, in Table 2.2,
for n = 20 observations and σ = 0.1, the MSE is minimized for local bandwidth parameter b = 0.2
(i.e., for the local bandwidth bn(.) = 0.2{f(.)}−1/(2k+1)) and the density of design points proportional
to a0.6(.) (since ropt = 0.6).
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Figure 2.4: An example of a prior density and the corresponding design density with r = 0.5. The
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n = 20 ropt(MAD) ropt(MSE) ropt(MAD) ropt(MSE)
b σ = 0.1 σ = 0.5

0.06 0.650 (2.1868) 0.600 (0.0814) 0.600 (9.3079) 0.550 (1.6594)
0.08 0.650 (1.9761) 0.600 (0.0664) 0.750 (9.5271) 0.950 (1.8105)
0.10 0.650 (1.8203) 0.600 (0.0564) 0.950 (9.4956) 0.050 (1.8109)
0.15 0.650 (1.5236) 0.600 (0.0401) 0.350 (8.5319) 0.250 (1.2938)
0.20 0.650 (1.4215)? 0.600 (0.0349)? 0.250 (7.4125) 0.250 (0.9347)
0.30 0.650 (1.6826) 0.350 (0.0460) 0.250 (6.0326) 0.250 (0.6270)
0.40 0.650 (2.5834) 0.250 (0.0936) 0.250 (5.3373)? 0.250 (0.4951)?
0.50 0.650 (4.1449) 0.650 (0.2094) 0.250 (5.7023) 0.250 (0.5335)

n = 50 ropt(MAD) ropt(MSE) ropt(MAD) ropt(MSE)
b σ = 0.1 σ = 0.5

0.06 0.650 (1.4830) 0.750 (0.0372) 0.100 (7.0341) 0.100 (0.9000)
0.08 0.650 (1.3109) 0.650 (0.0294) 0.250 (6.3327) 0.150 (0.7083)
0.10 0.750 (1.1854) 0.750 (0.0241) 0.250 (5.9188) 0.100 (0.6170)
0.15 0.750 (1.0088) 0.750 (0.0179) 0.250 (5.1974) 0.250 (0.4587)
0.20 0.650 (1.0024)? 0.750 (0.0176)? 0.400 (4.5714) 0.400 (0.3618)
0.30 0.850 (1.4056) 0.500 (0.0305) 0.400 (3.9342)? 0.150 (0.2713)
0.40 0.750 (2.3862) 0.750 (0.0758) 0.350 (3.9557) 0.450 (0.2685)?
0.50 0.750 (3.8955) 0.600 (0.1795) 0.450 (4.8090) 0.350 (0.3675)

n = 200 ropt(MAD) ropt(MSE) ropt(MAD) ropt(MSE)
b σ = 0.1 σ = 0.5

0.06 0.850 (0.7596) 0.500 (0.0095) 0.500 (3.5015) 0.350 (0.1999)
0.08 0.850 (0.6637) 0.550 (0.0075) 0.500 (3.1637) 0.500 (0.1679)
0.10 0.850 (0.6060) 0.550 (0.0062) 0.500 (2.9274) 0.500 (0.1439)
0.15 0.650 (0.5678)? 0.550 (0.0055)? 0.500 (2.5180) 0.500 (0.1089)
0.20 0.850 (0.6663) 0.550 (0.0075) 0.550 (2.2664) 0.550 (0.0874)
0.30 0.750 (1.2714) 0.550 (0.0221) 0.550 (2.1450)? 0.550 (0.0768)?
0.40 0.750 (2.2988) 0.550 (0.0636) 0.500 (2.7543) 0.500 (0.1187)
0.50 0.750 (3.7597) 0.750 (0.1588) 0.500 (4.0340) 0.500 (0.2165)

n = 800 ropt(MAD) ropt(MSE) ropt(MAD) ropt(MSE)
b σ = 0.1 σ = 0.5

0.06 0.550 (0.3969) 0.500 (0.0026) 0.500 (1.8691) 0.500 (0.0563)
0.08 0.500 (0.3492) 0.500 (0.0020) 0.500 (1.6666) 0.500 (0.0453)
0.10 0.500 (0.3298)? 0.500 (0.0019)? 0.500 (1.5161) 0.500 (0.0379)
0.15 0.700 (0.3781) 0.500 (0.0027) 0.750 (1.2935) 0.550 (0.0297)
0.20 0.700 (0.5812) 0.700 (0.0054) 0.700 (1.2205)? 0.550 (0.0271)?
0.30 0.850 (1.2881) 0.700 (0.0210) 0.700 (1.5245) 0.700 (0.0426)
0.40 0.850 (2.3169) 0.700 (0.0640) 0.700 (2.4420) 0.700 (0.0859)
0.50 0.850 (3.7740) 0.750 (0.1611) 0.700 (3.9144) 0.700 (0.1947)

n = 2500 ropt(MAD) ropt(MSE) ropt(MAD) ropt(MSE)
b σ = 0.1 σ = 0.5

0.06 0.800 (0.2223) 0.400 (0.0009) 0.950 (1.1019) 0.650 (0.0205)
0.08 0.550 (0.2091)? 0.550 (0.0008)? 0.550 (0.9572) 0.550 (0.0157)
0.10 0.550 (0.2147) 0.550 (0.0009) 0.550 (0.8580) 0.550 (0.0126)
0.15 0.550 (0.3300) 0.550 (0.0018) 0.550 (0.7696)? 0.350 (0.0115)?
0.20 1.000 (0.5678) 0.550 (0.0047) 0.350 (0.8508) 0.350 (0.0136)
0.30 1.000 (1.2477) 0.550 (0.0216) 1.000 (1.3807) 0.450 (0.0319)
0.40 1.000 (2.2324) 1.000 (0.0634) 1.000 (2.3276) 0.450 (0.0829)
0.50 0.900 (3.7032) 0.900 (0.1602) 0.900 (3.8772) 0.450 (0.1962)

Table 2.2: Results of simulations using the regression function m(.) and p = 0.1: the powers ropt
defining the distribution of design points with the smallest MSE and MAD for various sample sizes n,
standard deviations σ = 0.1 and 0.5, and bandwidth parameters b ∈ (0.06, 0.50). The star ? denotes
best bandwidths.
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Results Results obtained using the local bandwidth are summarized in Table 2.2. It seems that
the optimal bandwidth decreases with the sample size and that the values of ropt are quite close to
the theoretical values. The optimal distribution of design points observed in the simulation study
seems to be somewhat different from the optimal values. This could be caused by a too sparse grid of
bandwidths chosen in this simulation study combined with a rather small effect of the design in the
neighborhood of the optimal values.

In order to obtain more reliable and informative result, we now rerun the simulations for n = 800
and σ = 0.5 on a finer grid for the bandwidth parameter b and display the dependency of the MAD
and MSE of the empirical zero in contour- and heatplots in Figures 2.6 and 2.7. In this case, the
optimal bandwidth parameter seems to be b = 0.2 and, for this bandwidth, the simulation agrees very
well with the theoretically optimal values.

The improvement of using the optimal density of design points is displayed in Figures 2.9 and 2.8
for n = 800 and b = 0.2 (these plots may be interpreted as “cuts” of the heatplots 2.6 and 2.7 at the
level b = 0.2). In this case, the results of the simulation agree very well with the theoretical result.
On the other hand, both MSE and MAD do not change much for the parameter r ∈ (0.4, 0.8) and
even the uniformly distributed design points, i.e., r = 0, do not perform much worse than the optimal
design.

2.6.2 Location of maximum

A small simulation study concerning the location of the maximum may be found in Hlávka (2011),
where the regression functions m3(x) = cos{2π(x − θ)} and m4(x) = θ−2 cos{2π(x2 − θ2)} were
investigated. Notice that the regression function m3(.) leads to an asymptotically unbiased estimator

of the location of maximum because m
(3)
3 (θ) = 0. For m4(.), we have that m

(3)
4 (θ) 6= 0 and the

empirical location of maximum is an asymptotically biased estimator.
The dependency of MSE and MAD on the design density is investigated similarly as in in the

previous Section 2.6.1. The simulation results are summarized in Hlávka (2011, Tables 1 and 2) (note
that this paper is enclosed in Appendix on page ??).

The conclusions of the simulation study for location of maximum are very similar to the results
obtained in Section 2.6.1 and also do not contradict the theoretical findings derived in Section 2.5.

2.7 Conclusion

Both the theoretical results in Section 2.5 and the simulation study in Section 2.6 show that the
proposed design of experiment increases the precision of the nonparametric kernel estimator of the
zero of a regression function.

Comparison with Müller (1984b) shows that, with constant bandwidth and with the probability
measure H replaced by the prior density a(.), the AIMSE optimal design is optimal also for the MSE of
empirical zero and location of extremes. Using local bandwidth, the AIMSE optimal design proposed
in Müller (1984b) is optimal also from the point of view of the MSE of the empirical zero.

Our approach to nonparametric regression experiment design is applicable also to other nonpara-
metric regression estimators. For example, one might be interested in local polynomial estimators that
do not suffer from the boundary effect. Actually, the optimal designs for local polynomials should be
the same because the variance of a local polynomial estimator is also inversely proportional to the
density of design points (Simonoff; 1996, Section 5.2.2, p. 140) but some work is still needed to derive
this result in a mathematically correct way.
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Chapter 3

Constrained nonparametric
estimators

In this chapter, we present the content of the papers Hlávka (2006a); Härdle and Hlávka (2009);
Hlávka and Svoj́ık (2009) in a unified manner and we comment some non-standard properties of the
proposed nonparametric regression estimator. Härdle and Hlávka (2009) apply nonparametric regres-
sion methods in order to estimate the so-called State Price Density (SPD) from observed option prices
but the standard nonparametric regression estimator has to be modified in order to accommodate for
the theoretical no-arbitrage requirements in a real-life situation. This leads to an estimator of a com-
mon second derivative of two regression curves assuming that this second derivative is a probability
density function, i.e., it is positive and it integrates to 1.

Section 3.1 describes the SPD and its basic properties. In Section 3.2, we will show that the
SPD may be estimated from the observed European Call and Put option prices via a nonparametric
estimator of the second derivative of the pricing function. In order to improve the proposed estimator,
we take into account the no-arbitrage constraints and use a simple approximation of the covariance
structure of the observed option prices (Härdle and Hlávka; 2009). Some computational aspects
(Hlávka; 2006a; Hlávka and Svoj́ık; 2009) are reviewed in Sections 3.3 and 3.4. Section 3.4 also
explains the difference between regression smoothing and nonparametric regression.

3.1 State price density

The probability density function of interest, the SPD, may be interpreted as a probability density
function describing the expectations of the market. Therefore, it is very important in applied quan-
titative finance because the existence of a unique (risk neutral) SPD implies the absence of arbitrage
(Harrison and Pliska; 1981) and its knowledge allows pricing of complicated (exotic) options.

The SPD cannot be observed directly but it is related to European Call and Put option prices
in a simple way: let the symbol Cd(K,D) denote the price of a European Call option with payoff
(SD−K)+ = max(SD−K, 0), where SD denotes the price of the underlying stock at time D, d is the
current time, and K is the strike price (recall that the buyer of a European Call option with strike
prices K expiring at time D has the right to buy the underlying share on day D for the fixed price K
and, therefore, he earns the difference SD −K if SD > K; the buyer of a European Put option can
sell the underlying share at time D for price K and earns K − SD if SD < K). Clearly, the fair price
of a European Call option should be equal to the expected value of the gain, i.e,

Cd(K,D) = exp{−r(D − d)}
+∞∫
0

(SD −K)+f(SD)dSD, (3.1)

where f(.) is the probability density function of SD. If the option prices are “fair” and the investors
are “risk-neutral” then the density f(.) is equal to SPD. Differentiating (3.1) with respect to the strike
price K allows to express the SPD in terms of the European Call option pricing function (Breeden
and Litzenberger; 1978):

f(K) = exp{r(D − d)}∂
2Cd(K,D)

∂K2
. (3.2)

37
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Sd K r τ Pd P/C M IVd time volume date

2079.23083 1925 0.05153 0.05 1.5 0 0.91667 0.20430 36369.67 100 19950102

2079.23083 1925 0.05153 0.05 1.5 0 0.91667 0.20430 38483.60 100 19950102

2079.23083 1925 0.05153 0.05 1.5 0 0.91667 0.20430 38794.47 100 19950102

2079.72548 1925 0.05153 0.05 1.4 0 0.91645 0.20217 40751.65 100 19950102

2079.23083 1925 0.05153 0.05 1.3 0 0.91667 0.19896 44073.10 100 19950102

2078.73618 1925 0.05153 0.05 1.8 0 0.91688 0.21110 45841.68 20 19950102

2083.68272 1925 0.05153 0.05 1.4 0 0.91471 0.20605 54200.51 30 19950102

2083.18806 1925 0.05153 0.05 1.3 0 0.91492 0.20280 54609.59 90 19950102

2081.20945 1925 0.05153 0.05 1.5 0 0.91579 0.20626 57224.43 1 19950102

2081.20945 1925 0.05153 0.05 1.2 0 0.91579 0.19801 57224.88 1 19950102

2079.23083 1925 0.05153 0.05 1.2 0 0.91667 0.19611 57555.44 49 19950102

2079.23083 1950 0.05153 0.05 2.6 0 0.92857 0.19862 45867.00 40 19950102

2074.28429 1975 0.05153 0.05 4.8 0 0.94272 0.19150 36827.09 2 19950102

2076.75756 1975 0.05153 0.05 4.3 0 0.94160 0.18869 44673.96 30 19950102

2075.27360 1975 0.05153 0.05 4.3 0 0.94227 0.18685 46724.45 50 19950102

2083.68272 1975 0.05153 0.05 4.3 0 0.93847 0.19716 54543.59 10 19950102

2078.24152 2000 0.05153 0.05 7.5 0 0.95283 0.18810 36450.55 100 19950102

2079.23083 2000 0.05153 0.05 7.2 0 0.95238 0.18682 38786.55 100 19950102

2082.19876 2000 0.05153 0.05 7.0 0 0.95102 0.18913 42075.81 10 19950102

2082.19876 2000 0.05153 0.05 6.3 0 0.95102 0.18258 42077.89 50 19950102

2077.74687 2000 0.05153 0.05 7.0 0 0.95306 0.18294 44219.41 40 19950102

2076.75756 2000 0.05153 0.05 7.2 0 0.95352 0.18334 44601.38 100 19950102

2074.77894 2000 0.05153 0.05 7.5 0 0.95443 0.18318 44856.34 100 19950102

2075.27360 2000 0.05153 0.05 7.5 0 0.95420 0.18389 46747.75 3 19950102

2084.17737 2000 0.05153 0.05 6.0 0 0.95012 0.18235 54276.01 75 19950102

2082.19876 2000 0.05153 0.05 6.4 0 0.95102 0.18353 54887.14 100 19950102

2089.12392 2025 0.05153 0.05 9.5 0 0.95972 0.18170 34442.91 10 19950102

Table 3.1: Beginning of a data set containing intra-day European option prices. The columns are
option prices Sd, strike price K, risk-free interest rate r, time to maturity τ = D− d (0.05× 360 = 18
days), European put option price Pd, call indicator P/C (1 =Call, 0 =Put), moneyness M , im-
plied volatility IVd, time (in sec. after midnight, 36000 = 10 : 00), volume, and date (yyyymmdd,
19950102 = 2nd January 1995).

Equation (3.2) has been previously used to estimate the state price density by means of nonparametric
regression (Aı̈t-Sahalia and Lo; 2000; Aı̈t-Sahalia and Duarte; 2003; Bondarenko; 2003; Yatchew and
Härdle; 2006). Considering the vector of the observed intra-day option prices and an approximation
for its covariance matrix, Härdle and Hlávka (2009) proposed a constrained nonparametric estimator
of the SPD and demonstrated that the proposed covariance structure leads to more flexible SPD
estimators.

3.2 Constrained nonparametric SPD estimation

An example of a data set containing option prices is given in Table 3.1. Considering (3.2), we need
to derive a nonparametric regression estimator for the option price as a function of the strike price
such that its second derivative (up to known multiplicative constant) is a probability density function.
Hence, we start by developing notation that will enable us:

1. describe the structure of the data set,

2. obtain a simple SPD estimator,

3. introduce the constraints,

4. consider correlated observations.
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In order to introduce a simple model linking the SPD, i.e., the second derivative of the option
pricing function with respect to the strike price, and the data set from Table 3.1, we now choose a
subset of the data set corresponding only to one trading day and a single time to maturity, i.e., we
fix the parameters d and τ = D − d and, in the following, these symbols may be omitted at our
convenience.

Call options Let C = (C1, . . . , Cn)> denote the vector of the intra-day Call option prices observed
during the selected day d and reordered in such a way that the corresponding vector of the strike
prices has the following structure:

K =


K1

K2

...
Kn

 =


k11n1

k21n2

...
kp1np

 ,

where k1 < k2 < · · · < kp are the distinct values of the observed strike prices, nj =
∑n
i=1 I(Ki = kj)

with I(.) denoting the indicator function and 1m a vector of ones of length m.

We assume that, on the fixed trading day d with time to maturity τ = D − d, the i-th observed
Call option price (corresponding to strike price Ki) follows the model:

Cd,i(Ki, D) = Ci(Ki) = µ(Ki) + εi, (3.3)

where εi are correlated random errors, ε = (ε1, . . . , εn)>, Var ε = V σ2 > 0.

The model (3.3) is a nonparametric regression model because we do not assume that the function
µ(.) is a known function depending only on a few unknown parameters. On the other hand, this
nonparametric regression model is non-standard because the explanatory variable is observed on a
regular grid of only a few distinct strike prices. For example, the distinct strike prices observed in
Table 3.1 are 1925, 1950, . . . , 2025.

Due to the discrete nature of the explanatory variable, the nonparametric regression estimator of
the option pricing function eventually degenerates to a p-dimensional vector containing the fitted val-
ues µ̂(ki). However, this is not a disadvantage because we may rewrite the degenerated nonparametric
regression model (3.3) as a linear model that will allow an easy implementation of the no-arbitrage
constraints on µ(.), i.e.,

(A) positivity,

(B) monotonicity,

(C) convexity,

(D) second derivative of µ(.) is a probability density function.

The shape of the Call option pricing function (or surface) implied by constraints (A)–(D) is nicely
visible in Figure 3.1 displaying the observed prices of European Call options written on the DAX on
January 16th, 1995. The left panel shows the ensemble of call option prices for different strikes and
maturities as a free structure together with a smooth surface. The typical shape of dependency of the
option price on the strike price can be observed on the right panel containing the option prices only
for the shortest time to expiry, τ = D − d = 4 days.

We have already explained that the option prices are observed only for few distinct strike prices
k1 < · · · < kp, see also Figure 3.1 and Table 3.1. Hence, the above assumptions (A)–(D) have to be
reformulated in terms of the estimator µ̂(.) defined only by its function values µ̂(kj) for j = 1, . . . , p.
In this way, we obtain the constraints:

(C1) µ̂(ki) ≥ 0, i = 1, . . . , p,

(C2) ki < kj implies µ̂(ki) ≥ µ̂(kj),

(C3) ki < kj < kl implies −1 ≤ µ̂(1)
ki,kj

≤ µ̂(1)
kj ,kl

≤ 0,
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Figure 3.1: Call option prices plotted against strike price and time to maturity with the fitted two-
dimensional kernel regression surface (left) and the ensemble of the call option prices with shortest time
to expiry against strike price (right) on 16th January 1995. SFB and CASE data base: sfb649.wiwi.hu-
berlin.de. Figure reprinted from Härdle and Hlávka (2009).

where µ̂
(1)
ki,kj

= {µ̂(ki)− µ̂(kj)}/{ki − kj} denotes the natural estimator of the first derivative of the

function µ(.). The regression function µ̂(.) is defined by its value in points k1, . . . , kp and its second
differences may be used to estimate the SPD (Härdle and Hlávka; 2009).

In Härdle and Hlávka (2009), the model (3.3) has been reparameterized in terms of parameters
β = (β0, . . . , βp)

> so that an estimator of β can be interpreted as an estimator of the SPD. This
is achieved by modeling the vector of conditional means µ = (µ1, . . . , µp)

> = (µ(k1), . . . , µ(kp))
> as

µ = ∆β, with:

∆ =


1 ∆1

p ∆1
p−1 ∆1

p−2 · · · ∆1
3 ∆1

2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...
1 ∆p−1

p 0 0 · · · 0 0
1 0 0 0 · · · 0 0

 , (3.4)

where ∆i
j = max(kj − ki, 0) denotes the positive part of the distance between ki and kj , the i-th and

the j-th (1 ≤ i ≤ j ≤ p) sorted distinct strike price.

The model for the observed intra-day call option prices can now be written as:

C(K) = X∆β + ε, (3.5)

where X∆ is the design matrix obtained by repeating each row of matrix ∆ ni-times, i = 1, . . . , p.

Using the coefficients β0, . . . , βp−1, the constraints (C1)–(C3) are equivalent to βi > 0, i =

0, . . . , p − 1 a
∑p−1
j=2 βj ≤ 1. Next, we try to explain the meaning of the parameters β0, . . . , βp−1

in the following Example 3.1.

Example 3.1. Let µj = EC(kj) denote the mean option prices for a given strike price kj. Assuming
that ∆i

i+1 = 1 for all i = 1, . . . , p − 1, we may express that conditional expectations µj, j = 1, . . . , p,
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Figure 3.2: Four points example: illustration of the dummy variables for Call options with ∆i
i+1 = 1:

β3 = µ′′(2), β2 = µ′′(3).

in terms of the parameters βi, i = 1, . . . , (p− 1) in this way:

µp = β0,

µp−1 = β0 + β1,

µp−2 = β0 + 2β1 + β2,

µp−3 = β0 + 3β1 + 2β2 + β3,

...

µ1 = β0 + (p− 1)β1 + (p− 2)β2 + · · ·+ βp−1.

An illustration for p = 4 is plotted in Figure 3.2.
The meaning of parameters βj may be now easily explained using Figure 3.2. The parameter β0 is

the mean option price in point 4. According to assumption (C1), β0 has to be positive. The coefficient
β1 is the difference between option prices in points 4 and 3 and, by assumption (C2), it must be positive
as well. The next coefficient, β2, could be described as a change of the first derivative in point 3 and,
hence, it is an estimator of the second derivative of the regression curve in this point. Similarly, β3 may
be interpreted as an estimator of the second derivative of the function µ(.) in point 2. Assumption (C3)
implies that both β2 and β3 are positive. Assumption (C3) also implies that β1 + β2 + β3 ≤ 1.

The interpretation of coefficients β0, . . . , β3 plotted in Figure 3.2 is simplified because the distance
between neighboring strike prices is set to one. In practice, this is not a problem because we obtain
the same interpretation of the parameters βj even in the non-equidistant situation simply by using the
matrix (3.4).

Put and Call options Apart of the Call options prices, we observe also the prices of the closely
related Put options. The standard practice is to use the so-called Put-Call parity (Stoll; 1960), i.e.,
to use the relationship:

Cd(K,D) = Pd(K,D) + Sd −Ke−rτ (3.6)

to transform all observed Put option prices Pd(K,D) into Call option prices. However, we notice
that (3.6) implies that the second derivatives of the pricing functions Cd(K,D) and Pd(K,D) w.r.t. K
are equal and, therefore, we may include the Put option prices by extending the linear model (3.5)
and estimate both option pricing function simultaneously.

Let P = (P1, . . . , Pm)> denote the vector of the intra-day Put option prices. Proceeding similarly
as with the Call option prices, we define a linear model for the observed Put option prices in terms
of parameters α0, . . . , αp−1. Once again, it is easiest to explain the proposed model using Figure 3.3
and a simplified example.
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Figure 3.3: Dummy variables for both Call (β) and Put (α) options with ∆i+1
i = 1: β3 = α2 = µ′′(2),

β2 = α3 = µ′′(3).

Example 3.2. The typical shape of the increasing Put option pricing curve is displayed in Figure 3.3
together with the decreasing Call option pricing curve described in Example 3.1. The Put option
pricing curve is described in terms of parameters α0, . . . , αp−1 so that, if νj = EP (kj), we obtain:

ν1 = α0,

ν2 = α0 + α1,

ν3 = α0 + 2α1 + α2,

ν4 = α0 + 3α1 + 2α2 + α3,

...

νp = α0 + (p− 1)α1 + (p− 2)α2 + · · ·+ αp−1.

It follows that, in the nonequidistant situation, we may write:

ν = ∆Pα =


1 0 0 0 · · · 0 0
1 ∆2

1 0 0 · · · 0 0
...

1 ∆p−1
1 ∆p−1

2 ∆p−1
3 · · · ∆p−1

p−2 0

1 ∆p
1 ∆p

2 ∆p
3 · · · ∆p

p−2 ∆p
p−1




α0

α1

...
αp−2

αp−1

 , (3.7)

where the symbol ∆j
i is defined in (3.4). The linear model for the Put option prices can be written as:

P (K) = XP∆β + ε, (3.8)

where XP∆ is the design matrix obtained by repeating each row of the matrix ∆P mi-times, i = 1, . . . , p.
The interpretation of the coefficients αi, i = 0, . . . , p − 1 is very similar to the interpretation of

coefficients βi, i = 0, . . . , p − 1 explained in Example 3.1 and it is easy to show that in Figure 3.3,
the coefficient α2 estimates the value of the SPD for K = 2 and the coefficient α3 estimates SPD for
K = 3. Comparing this interpretation with the interpretation of the coefficients βi and recalling that,
using Put-Call parity (3.6), the SPD estimator calculated from the Call and Put options should be
identical, we obtain:

αi = βp−i+1, for i = 2, . . . , p− 1 (3.9)

and

α1 = 1−
p−1∑
i=1

βi, (3.10)
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i.e., in matrix notation:

α[−1] =


α1

α2

...
αp−2

αp−1

 =


1
0
...
0
0

+


−1 −1 −1 · · · −1 −1

0 0 0 · · · 0 1
...
0 0 1 · · · 0 0
0 1 0 · · · 0 0




β1

β2

...
βp−2

βp−1

 =


1
0
...
0
0

+ Γβ[−1]. (3.11)

Equation (3.11) may be used to fit a vector containing both Put and Call option prices within a single
linear model. The joint vector of parameters is γ = (α0, β0, β1, . . . , βp−1)> and the corresponding
design matrix XPC∆ is obtained by repeating each row of the matrix:

∆PC =

(
0p ∆

1p

(
0p ∆P

[−1]Γ
))

ni or mi times, where ∆P
[−1] denotes the matrix ∆P without its first column. The resulting linear

model for both Call and Put option prices:(
C
P

)
= XPC∆ γ + ε (3.12)

allows to estimate the SPD by means of a simple linear regression. An advantage of this estimator is its
simplicity but, on the other hand, the resulting estimator does not have to satisfy the constraints (C1)–
(C2) and the resulting SPD estimator does not have to be a probability density function.

Constraints Härdle and Hlávka (2009) showed, applying ideas from Robertson et al. (1988), that
the least squares estimator satisfying constraints (C1)–(C2) exists and that it is unique.

In order to calculate the least squares estimator in practice, we consider a simple reparameterization
of the linear model (3.12) in terms of an unconstrained vector of parameters ξ:

β0(ξ) = exp(ξ0),

β1(ξ) =
exp(ξ1)∑p−1
j=1 exp(ξj)

,

... (3.13)

βp−1(ξ) =
exp(ξp−1)∑p−1
j=1 exp(ξj)

,

α0(ξ) = exp(ξp).

Notice that arbitrary value of ξ guarantees that βi > 0 and that the
∑p−1
i=1 βi = 1. The parameter ξ

can be estimated by using nonlinear least squares. The asymptotic distribution of the estimator ξ̂ is
described in literature (Seber and Wild; 1989).

Algorithm The following numerical algorithm was proposed in Härdle and Hlávka (2009):

1. Obtain an initial estimate β̂, e.g., by running the Pool-Adjacent-Violators algorithm (Robertson
et al.; 1988, Chapter 1) on the unconstrained least squares estimates of the first derivative or
by using Hlávka (2006a).

2. Transform the initial estimates β̂ into the estimates ξ̂ using the method described in Härdle and
Hlávka (2009, Section 3.2).

3. Estimate the parameters of the model (3.12) by minimizing the sum of squares in terms of
parameters ξ using nonlinear least squares (Seber and Wild; 1989).

Pointwise confidence intervals for the SPD estimator can be obtained by calculating the asymptotic
variance matrix of the transformation of the nonlinear least squares estimator ξ̂, see Härdle and Hlávka
(2009, Section 5.2).
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Covariance implied by transaction time Until now, we did not specify any assumptions con-
cerning the vector of random errors ε in (3.5), (3.8), and (3.12) but, obviously, it would not be very
reasonable to use the standard iid random errors assumptions. In order to approximate the covari-
ance structure of the observed intra-day option prices, we assume that the SPD develops dynamically
during the trading day and rewrite the linear model in terms of the “most recent value of the SPD”.

To specify the covariance between any two option prices, we have to calculate the covariance
between two Call option prices, the covariance between Put and Call option price and the covariance
between two Put option prices. The covariances proposed in Härdle and Hlávka (2009) depend on the
strike prices and on times of the transactions.

Let ti denote the time of the i-th transaction and let β̃i and α̃i denote the vectors containing the
“current states” of the unknown parameters αj and βj , j = 0, . . . , p − 1, at time ti. Let δi denote
the difference between the transaction times ti and ti−1. Then it is straightforward to calculate the
covariances:

Cov{Ci−u(kj), Ci−v(ki)} = Cov(∆j β̃i−u,∆iβ̃i−v)

= σ2∆j∆
>
i

min(u,v)∑
l=1

δi+1−l, (3.14)

Cov{Pi−u(kj), Pi−v(ki)}, = Cov(∆P
j α̃i−u,∆

P
i α̃i−v)

= σ2∆P
j (∆P

i )>
min(u,v)∑
l=1

δi+1−l, (3.15)

Cov{Ci−u(kj), Pi−v(ki)} = Cov(∆j β̃i−u,∆
P
i α̃i−v)

= σ2

min(u,v)∑
l=1

δi+1−l

p−1∑
k=2

∆j
p+1−k∆p+1−k

i . (3.16)

Härdle and Hlávka (2009, Section 4.4) recommend to add an additional microstructure noise ηi (0, ω2),
such that ηi are iid and independent from the SPD dynamics.

Denoting by σ2W the covariance matrix containing the covariances of the observed option prices
given by (3.14)–(3.16) and V = σ2W + ω2I, we may finally say that we assume that Eε = 0n and

Var ε = V in linear models (3.5), (3.8), and (3.12). A constrained estimate of the SPD β̃1 and of
the variances σ2 and ω2 may be obtained by applying a standard iterative minimization procedure
(Härdle and Hlávka; 2009, Sections 4.4 and 5.4).

Estimate with a fixed time to expiry The proposed algorithm may be applied within each
trading day in our data set. This means that the resulting SPD estimators will correspond to a
linearly decreasing time to maturity with jumps occurring whenever the option with the shortest
time to maturity expires. In our data set, these jumps occur every month, i.e., approximately every
20 trading days. In order to make the SPD estimators comparable, we combine two centered SPD
estimates f̂τ1(.) and f̂τ2(.) corresponding to the times of expiry τ1 < τ2 and we construct an estimate

f̂τ (.) for an arbitrary τ ∈ (τ1, τ2) as:

f̂τ (.) =
(τ2 − τ)f̂τ1(.) + (τ − τ1)f̂τ2(.)

τ2 − τ1
. (3.17)

In this way, the variance of the price of the underlying asset implied by the observed SPD, V̂τ =∫
x2f̂τ (x)dx, can be expressed as:

V̂τ =

∫
x2f̂τ (x)dx

=

∫
x2 (τ2 − τ)f̂τ1(x) + (τ − τ1)f̂τ2(x)

τ2 − τ1
dx

=
(τ2 − τ)V̂τ1 + (τ − τ1)V̂τ2

τ2 − τ1
.

Härdle and Hlávka (2009, Section 6.1) argue that this estimator with a fixed time to expiry is reason-
able because the SPD variances V̂τ are a linearly decreasing function of the time to expiry τ .
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The main advantage of the SPD estimator with the fixed time to expiry is that the dynamics
of such estimator has a very clear and straightforward interpretation, see Härdle and Hlávka (2009,
Section 6.2 and 6.3) for a detailed analysis of the SPDs implied by DAX/EUREX option prices from
January 1995 until March 2003 or Hlávka (2006b) for a functional principal component analysis of
the estimated SPDs with a fixed time to maturity.

3.3 Speed of computation

In the previous section, we have mentioned that Härdle and Hlávka (2009) analyzed options on DAX
from 1995 until 2003. During this period, the number of trades increased from few hundreds in 1995
to several thousands per day in 2003. In the same period, the number of traded distinct strike prices
increased from approximately 10 to 100. This implies that we also need much more computer time
to evaluate the estimators. A short simulation (Hlávka; 2006a, Table 1) shows that approximately
0.6 seconds are needed to calculate the estimator for n = 200 option prices but the same computer
needs more than 1 minute to calculate the estimator for n = 2000, and even more than 12 minutes to
calculate the estimator for n = 5000.

The structure of the data set suggests that many of the observations contribute only a small amount
of information because most of the observed strike prices are concentrated close to the current value
of the underlying stock. In Hlávka (2006a), the structure of the covariance matrix V is exploited in
order to reduce the sample size without losing too much of the information.

The estimator In this section, we will use the general linear model (1.3) with the usual symbols
for the response and explanatory variables, i.e.,

Y = Xβ + ε, (3.18)

where Y = (Y1, . . . , Yn)> is the vector of responses, X denotes the n×p design matrix, β is the vector
of unknown parameters, and Var ε = V σ2 with a known n×n matrix V > 0 and unknown parameter
σ2 > 0. We assume that the structure of the design matrix X can be written as:

X = MXM =


1n1

0n1
· · · 0n1

0n2
1n2

· · · 0n2

...
0np 0np · · · 1np

XM , (3.19)

where 1n and 0n denote, respectively, column vectors of ones and zeros of length n. In practice, the
computation of the general least squares (GLS) estimator:

β̂ =
(
X>V −1X

)−1 X>V −1Y (3.20)

can be very time consuming. Obviously, the most computationally demanding step is the evaluation of
the inverse of the (n×n) variance matrix V . Therefore, in order to avoid the inversion of this variance
matrix, Hlávka (2006a) proposed to replace the n-dimensional vector Y in (3.18) by a p-dimensional
vector YM = M> diag(w)Y and to use the linear model:

YM = XMβ + η, (3.21)

where w is a column vector of weights such that M> diag(w)M = Ip, Eη = 0p, and Var η = σ2VM
with VM = M> diag(w)V diag(w)M . Using the simplified linear model (3.21) instead of (3.18), we
obtain a “faster” least squares estimator:

β̂M (w) =
(
X>MV −1

M XM
)−1 X>MV −1

M YM . (3.22)
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It is very easy to see that the estimator β̂M (w) is unbiased:

Eβ̂M (w) = E
(
X>MV −1

M XM
)−1 X>MV −1

M YM =
(
X>MV −1

M XM
)−1 X>MV −1

M EYM
=

(
X>MV −1

M XM
)−1 X>MV −1

M M> diag(w)EY

=
(
X>MV −1

M XM
)−1 X>MV −1

M M> diag(w)Xβ

=
(
X>MV −1

M XM
)−1 X>MV −1

M M> diag(w)MXMβ

=
(
X>MV −1

M XM
)−1 X>MV −1

M XMβ = β

and that its variance is:
Var β̂M (w) = σ2

(
X>MV −1

M XM
)−1

.

Some theory Let us now introduce notation for elements and submatrices of both the variance
matrix V and its inverse V −1 corresponding to the blocks defined in (3.19): V = (Vij)i,j=1,...,p =
(vij)i,j=1,...,n and V −1 = (V ij)i,j=1,...,p = (vij)i,j=1,...,n, where Vij are matrices of dimension (ni×nj)
and, similarly, VM = (mij)i,j=1,...,p and V −1

M = (mij)i,j=1,...,p.
For an arbitrary variance matrix V , it is very complicated to find the vector of weights w minimizing

the variance of the estimator β̂M (w). Hlávka (2006a) describes minimizers of the trace and determinant
of the matrix VM .

Theorem 3.1. Assume that the matrices Vii, i = 1, . . . , p, are positive definite. The vector, w1 :
M>w1M = Ip, minimizing tr(VM ) is:

w̃1,i =
V −1
ii 1ni

1>niV
−1
ii 1ni

, for i = 1, . . . , p,

where w̃1,i = (w1,ni−1+1, . . . , w1,ni)
>, for i = 1, . . . , p.

Proof. See Hlávka (2006a, Theorem 2).

Theorem 3.2. Assume that the matrix V is positive definite. The vector, w2 : M>w2M = Ip, of
weights minimizing det(VM ) has to satisfy the equations:∑p

j=1 Vij(w̃2,jm
ij) = 0ni , for i = 1, . . . , p,

1>niw̃2,i = 1, for i = 1, . . . , p,
(3.23)

where w̃2,i = (w2,ni−1+1, . . . , w2,ni)
>.

Proof. See Hlávka (2006a, Theorem 3).

It is interesting to note that the weights minimizing the trace of VM , derived in Theorem 3.1,
depend only on the diagonal submatrices Vii, i = 1, . . . , p. Theorem 3.2 states that the weights
minimizing the determinant of VM have more complicated structure and depend on all submatrices
Vij , i, j = 1, . . . , p. In practice, the weights w2 from Theorem 3.2 may be calculated using an iterative
numerical algorithm (Hlávka; 2006a, Remark 5).

Application to SPD estimation In Section 3.2, we have described the covariance matrix V =
σ2W + ω2 diag I proposed for the observed European Put and Call option prices in (3.14)–(3.16).
Notice that, apart of two unknown parameters σ2 and ω2, the variance matrix depends only on W
that in turn depends only on the known strike prices and transaction times.

For simplicity, we now consider a model without the microstructure noise, i.e., we set ω2 = 0. Under
this assumption, it is very simple to calculate the weights w1 proposed in Theorem 3.1: the weights
minimizing the trace of VM assign weight 1 to the most recent observation within each block (distinct
strike price) and weight 0 to all other observations. The resulting estimator may be interpreted as an
estimator using only the most recent observed market price for each strike price.

The application of Theorem 3.2 to SPD estimation is more complicated. A numerical study in
(Hlávka; 2006a, Section 3.2) suggests that the largest weight is always assigned to the most recent
observation within each block. Moreover, observation from other blocks that are “close in time” to
observations with nonzero weight from neighboring blocks also seem to have large weights.

Using this observation, it is straightforward to understand the principle of the proposed computa-
tionally efficient estimators:
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1. take one (or more) most recent observations in each block,

2. add the closest observations to already selected observations in adjacent blocks (neighboring
strike prices),

3. calculate the estimator using the selected observations.

Several modifications of this algorithm are investigated in a simulation study in Hlávka (2006a, Sec-
tion 4.1). The proposed estimator has slightly higher variance but, in some situations, the time of
calculation was reduced from more than one minute to less than one second.

Time permitting, it is always better to use all available observations. These algorithms can be
recommended, e.g., as pilot estimates for the computationally intensive iterative algorithms described
in Section 3.2 or if large data sets have to be evaluated in real-time or before a fast approaching
deadline.

3.4 Kernel smoothing of a nonlinear Kalman filter

In this section, the constrained nonparametric SPD estimator from Section 3.2 is implemented as a
nonlinear Kalman filter (Svoj́ık; 2007). We apply the Nadaraya-Watson estimator (1.7) to smooth the
resulting nonparametric SPD estimator and obtain pointwise asymptotic confidence bands (Hlávka
and Svoj́ık; 2009). The proposed algorithm could be used for on-line monitoring of option prices.

Kalman filter The Kalman filter is a recursive estimator of a true (but unobserved) state of a
system based on continuously arriving measurements. The Kalman filter has many applications in
engineering and technology but it is interesting also from a statistical point of view as a powerful tool
of structural time series analysis (Harvey; 1989).

In order to rewrite the linear model (3.5) for the call option prices in the usual state-space form,
we write for the i-th observation on a fixed day d:

Ci = ∆iβ̃i + εi, (3.24)

β̃i = β̃i−1 + ηi, (3.25)

where we use the same symbols as in (3.14), ∆i denotes the i-th row of the design matrix X∆ (i.e.,
the row corresponding to the i-th observed strike price Ki), and we assume that the random variable
εi ∼ N

(
0, σ2

)
and the random vector ηi ∼ N

(
0p, ω

2δiIp
)

are uncorrelated. Similarly as in (3.14), the
symbol ti denotes the time of the i-th trade and δi = ti − ti−1.

In the setup of SPD estimation, the standard Kalman filter algorithm, consisting of a prediction
and updating step, has to be only slightly modified as in every step i we observe only one option price,
Ci, corresponding to only one strike price Ki.

The Kalman filter starts in time t0 in the initial state β̃0|0, interpretable either as an estimator

of β̃0 or a predictor of β̃1, and its variance matrix Σ0|0. Next, in every prediction step, in time ti−1,
we forecast the future value of the state vector in time ti and calculate the variance matrix of the
predictor:

β̃i|i−1 = E(β̃i|Fi−1) = β̃i−1|i−1, (3.26)

Σi|i−1 = Σi−1|i−1 + ω2δiIp. (3.27)

In the updating step, we use the new information available at time ti to obtain the estimator:

β̃i|i = β̃i|i−1 +KiIi, (3.28)

Σi|i = (Ip −Ki∆i) Σi|i−1, (3.29)

where Ii = Ci(Ki) − Ci|i−1(Ki) = Ci(Ki) − ∆iβ̃i|i−1 is the prediction error with variance Fi|i−1 =

Var(Ii|Fi−1) = σ2 + ∆iΣi|i−1∆>i and where the symbol Ki = Σi|i−1∆>i F
−1
i|i−1 denotes the so-called

Kalman gain.
Similarly as in Section 3.2, the linear Kalman filter (3.26)–(3.29) does not guarantee that the

resulting SPD estimator is a probability density function. Therefore, similarly as in Section 3.2, we
use a transformation in order to obtain a nonlinear modification of the linear Kalman filter.



48 CHAPTER 3. CONSTRAINED NONPARAMETRIC ESTIMATORS

Extended Kalman filter In Section 3.2, we have used a reparameterization of the linear model in
terms of parameters ξ̃ = (ξ0, . . . , ξp−1)> by setting β̃ = g(ξ̃) so that:

β0 = g0(ξ0) = exp(ξ0), (3.30)

βk = gk(ξ̃) = exp(ξk)/S(ξ̃), for k = 1, . . . , p− 1, (3.31)

where S(ξ̃) =
∑p−1
j=1 exp(ξj). In this way, we obtain a nonlinear state space model:

Ci = ∆ig(ξ̃i) + εi, (3.32)

ξ̃i = ξ̃i−1 + ηi, (3.33)

where ξ̃i and g(ξ̃i) = β̃i denote the values of the unknown parameters at time ti and the random
variable εi ∼ N(0, σ2) and the random vector ηi ∼ N

(
0p, ω

2δiIp
)

are uncorrelated.
The extended Kalman filter is obtained by a linearization using the Jacobian matrix:

Bi|i−1 =
∂g(ξ̃i)

∂ξ̃>i

∣∣∣∣∣
ξ̃i=ξ̃i|i−1

(3.34)

that is derived explicitely in Svoj́ık (2007) or Hlávka and Svoj́ık (2009) and leads the extended pre-
diction equations:

ξ̃i|i−1 = ξ̃i−1|i−1, (3.35)

Σi|i−1 = Σi−1|i−1 + ω2δiIp, (3.36)

and the extended updating equations:

ξ̃i|i = ξ̃i|i−1 +KiIi, (3.37)

Σi|i =
(
Ip −Ki∆iBi|i−1

)
Σi|i−1, (3.38)

where Ii = Ci − ∆ig(ξ̃i|i−1) is the prediction error, the symbol Fi|i−1 = Var(Ii|Fi−1) = σ2 +

∆iBi|i−1Σi|i−1B
>
i|i−1∆>i denotes its variance, and Ki = Σi|i−1B

>
i|i−1∆>i F

−1
i|i−1 is the Kalman gain.

The above equations (3.35)–(3.35) constitute the recursion of the extended Kalman filter and, for

each transaction time ti, the vector g(ξ̃i) = β̃i is a recursive estimator of the current value of the SPD.
Finally, we remark that the unknown parameters σ2 and ν2 may be estimated by the prediction

error decomposition of the likelihood function described in Kellerhals (2001, Chapter 5) with the
resulting log-likelihood being maximized numerically. Similarly as in Section 3.2, the extended Kalman
filter may use the additional information from the observed Put options prices, see Tlustý (2010) for
a detailed description of the resulting nonlinear Kalman filter.

Kernel smoothing In Figure 3.4, the Call option prices observed on January 15th, 1995, are plotted
as a function of their strike price on the left-hand side plot in Figure 3.5.

Two of the resulting filtered SPD estimates are plotted in the graphics on the right-hand side of
Figure 3.4. At the end of this trading day, for i2 = n = 410 (15:59:52.14), the estimate is shifted a
bit to the left and more concentrated. The shift to the left corresponds very well to a decrease in the
value of the DAX from 2089.377 to 2075.989 observed in the market. The estimates of the variance
of the error terms based on the prediction error decomposition were σ̂2 = 0.0496 and ω̂2 = 0.621.

In Figure 3.5, we plot both Call option prices observed on February 25th, 2003, and the corre-
sponding SPD estimates for times i1 = n/2 = 732 and i2 = n = 1464. Here, the parameter estimates
were σ̂2 = 0.0324 and ω̂2 = 3.1953. Unfortunately, the estimates obtained in year 2003 do not look at
all like a smooth and unimodal probability density that we would like to obtain. Instead, we observe
a lot of spikes and valleys. This is due to a larger number of distinct strike prices and the fact that the
algorithm does not penalize non-smoothness and guarantees only that the resulting SPD estimates
are positive and integrate to one.

In order to obtain better looking and more easily interpretable results, the resulting estimates
may be smoothed using, e.g., the Nadaraya-Watson kernel regression estimator (1.7). This additional
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Figure 3.4: European call option prices with the shortest time to expiry plotted against strike price
K (left) and two of the filtered SPD estimates (right) on January 15th, 1995, n = 410, p = 12. Figure
reprinted from Hlávka and Svoj́ık (2009).
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Figure 3.5: European call option prices with shortest time to expiry plotted against strike price K on
February 25th, 2003, p = 30, n = 1464, observed prices (left) and the resulting SPD estimates after
10 iterations (right). Figure reprinted from Hlávka and Svoj́ık (2009). Figure reprinted from Hlávka
and Svoj́ık (2009).
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Figure 3.6: Smoothed SPD estimate on FEB-25-2003, n = 1464, p = 30, with pointwise asymptotic
confidence intervals. Figure reprinted from Hlávka and Svoj́ık (2009).

smoothing step can be easily implemented after the Kalman filtering, because the kernel smoothing
of the vector β̃n|n may be expressed as a matrix multiplication of β̃n|n and a smoothing matrix, say
S. Using the variance matrix Σn|n from the filtering step of the extended Kalman filtering algorithm
and the Jacobian matrix (3.34), Hlávka and Svoj́ık (2009) obtain the asymptotic variance matrix of
the smooth SPD estimator:

Var β̃smooth
n|n = Bn|nSΣn|nS

>B>n|n. (3.39)

The variance matrix (3.39) is used to calculate the asymptotic pointwise 95% confidence intervals
plotted in Figure 3.6 together with the smoothed SPD estimate, see also Tlustý (2010) for a more
detailed analysis.
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Chapter 4

Specification tests in nonparametric
regression

In Chapter 1, we have introduced the nonparametric regression model. Usually, statistical inference
concerning the nonparametric regression estimator rests on the assumption that the unobserved ran-
dom errors εi, i = 1, . . . , n, are independent and identically distributed. In practice, the validity of
this assumption may be verified (tested) by applying so-called specification tests.

In this chapter, we describe some recently proposed specification tests applicable in nonparametric
regression (Hlávka et al.; 2011; Einmahl and Van Keilegom; 2008a; Neumeyer; 2009) and we investigate
the applicability of these specification tests in the framework of SPD estimation.

In Section 4.1, we describe specification tests based either on the joint characteristic function
(Hlávka et al.; 2011) or on the joint distribution function (Einmahl and Van Keilegom; 2008a;
Neumeyer; 2009) of the explanatory variable and the random error. In Section 4.2, we show that
modified versions of these specification tests may be used to test hypotheses concerning the covariance
matrix of random errors proposed in Section 3.2. The significance level and the power against vari-
ous alternatives occurring in SPD estimation are investigated in a simulation study in Section 4.2.1.
The asymptotic null distributions of two well-behaving test statistics are derived in Sections 4.2.2
and 4.2.3. In Section 4.3, we apply the resulting modified specification tests and investigate the
validity of assumptions used in Chapter 3.

4.1 Tests of independence in nonparametric regression

Let us recall the random design nonparametric regression model (1.6) introduced in Section 1.1:

Yi = m(Xi) + εi, for i = 1, . . . , n, (4.1)

where εi are iid centered random errors with finite variance, i.e., Eεi = 0 and Var εi = σ2. The
statistical inference is often based on the assumption that the unobservable random errors εi =
Yi −m(Xi) are independent and identically distributed but, in practice, this assumption may not be
always justified. Therefore, one should apply tests of independence described in this section in order
to indicate a possible violation of model assumptions.

The joint distribution function of a random vector consisting of two independent random vari-
ables is equal to the product of the marginal distribution functions. Therefore, the hypothesis of
independence between the explanatory variable X and the random errors ε may be expressed as:

H0 : FX,ε ≡ FXFε, (4.2)

where FX,ε(., .) denotes the joint distribution function of the random vector (X, ε)>, and FX(.) and
Fε(.) are the marginal distribution functions.

Tests based on characteristic function In terms of characteristic functions, the null hypothe-
sis (4.2) may be equivalently rewritten as:

H0 : ϕX,ε ≡ ϕXϕε, (4.3)

53
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where ϕX,ε(., .) denotes the joint characteristic function of the random vector (X, ε)> and ϕX(.) and
ϕε(.) denote the marginal characteristic functions of random variables X and ε.

Hlávka et al. (2011) proposed a test statistic based on a difference Dn(t1, t2) = ϕ̂(t1, t2) −
ϕ̂X(t1)ϕ̂ê(t2) between the joint empirical characteristic function of the explanatory variable X and
the estimated residuals ε̂i = Yi − m̂(Xi):

ϕ̂(t1, t2) =
1

n

n∑
j=1

eit1Xj+it2ε̂j ,

and the product of the marginal empirical characteristic functions:

ϕ̂X(t) =
1

n

n∑
j=1

eitXj and ϕ̂ε̂(t) =
1

n

n∑
j=1

eitε̂j .

More precisely, Hlávka et al. (2011) suggest to reject the null hypothesis (4.3) for large values of the
test statistic:

Tn,W = n

∫ ∞
−∞

∫ ∞
−∞
|Dn(t1, t2)|2W (t1, t2)dt1dt2, (4.4)

where W (t1, t2) is a suitable weight function.
Under some assumptions, Hlávka et al. (2011) derive that:

Tn,W
d→
∫
R2

|Z(t1, t2)|2W (t1, t2)dt1dt2, (4.5)

where {Z(t1, t2), t ∈ R2} is a Gaussian process with zero mean function and the covariance structure
as the process {Z0(t1, t2), (t1, t2) ∈ R2} defined as:

Z0(t1, t2) = {cos(t2ε)− Cε(t2) + εSε(t2) + (ε2 − 1)C ′ε(t2)/2}
× {cos(t1X) + sin(t1X)− CX(t1)− SX(t1)}
+ {sin(t2ε)− Sε(t2)− εCε(t2)− (ε2 − 1)S′ε(t2)/2}
× {cos(t1X)− sin(t1X)− CX(t1) + SX(t1)},

where Cε(.) and Sε(.) are the real and the imaginary part of the characteristic function of εj and C ′ε(.)
and S′ε(.) are respective derivatives. Similarly, CX(.) and SX(.) denote the real and the imaginary
part of the characteristic function of Xj .

We remark that, compared to the papers by Neumeyer (2009) and Einmahl and Van Keilegom
(2008a), no assumptions concerning the smoothness and boundedness of the probability density func-
tion of the random errors are needed in Hlávka et al. (2011, Section 2).

The asymptotic distribution of Tn,W depends on the hypothetical distribution of the error terms
and, therefore, the limit distribution does not provide an applicable approximation for the critical
values. Therefore, both in Hlávka et al. (2011) and in the simulation study in Section 4.2.1, the
critical values are obtained by bootstrap.

Computation of the test statistic and choice of the weight function In order to calculate
the test statistic (4.4) from observations (Xi, ε̂i), i = 1, . . . , n, it is useful to rewrite it, using a
straightforward calculation, as:

Tn,W =
1

n

n∑
j,k=1

IW (Xj−Xk, ε̂j−ε̂k)+
1

n3

n∑
j,k,l,m=1

IW (Xj−Xl, ε̂k−ε̂m)− 2

n2

n∑
j,k,l=1

IW (Xj−Xl, ε̂k−ε̂l),

(4.6)
where

IW (x, y) =

∫ ∞
−∞

∫ ∞
−∞

cos(t1x+ t2y)W (t1, t2)dt1dt2.

In order to simplify the calculation of the test statistic (4.6), we consider the weight functions:

W1(t1, t2) = e−(γ1,1|t1|+γ1,2|t2|) (4.7)

W2(t1, t2) = e−(γ2,1t
2
1+γ2,2t

2
2) (4.8)
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leading to a simple closed form expression for the test statistic (4.6).
The parameters γi,j of the weight functions Wi(t1, t2) in (4.7) and (4.8) are set proportionally to the

observed standard deviations sd(X) =

√
n−1

n∑
k=1

(Xk −X)2 and sd(ε̂) =

√
n−1

n∑
k=1

(ε̂k − ε̂)2, where

ε̂ = n−1
n∑
j=1

ε̂j denotes the sample mean of the residuals. More precisely, for i = 1, 2, γi,1 = γisd(X)

and γi,2 = γisd(ê). In a homoscedastic situation, Hlávka et al. (2011) propose γ1 = 2 and γ2 = 1. In
a more complicated heteroscedastic setup, the recommended values are γ1 = 0.75 and γ2 = 0.5.

Tests based on distribution function A family of tests based on measures of the difference be-
tween the product of the marginal empirical distribution functions and the joint empirical distribution
function of X and the estimated residuals ε̂i is proposed in Einmahl and Van Keilegom (2008a). These
tests are straightforward generalizations of the well known Kolmogorov-Smirnov, Cramér-von Mises,
and Anderson-Darling tests:

Tn,KS =
√
n sup
x,y
|Fn(x, ε)− Fn,X(x)Fn,ε̂(ε)| (4.9)

Tn,CM = n

∫ ∫
{Fn(x, ε)− Fn,X(x)Fn,ε̂(ε)}2dFn,X(x)dFn,ε(ε), (4.10)

Tn,AD = n

∫ ∫
{Fn(x, ε)− Fn,X(x)Fn,ε̂(ε)}2

Fn,X(x)Fn,ε̂(ε){1− Fn,X−(x)}{1− Fn,ε̂−(ε)}
dFn,X(x)dFn,ε̂(ε), (4.11)

where Fn(., .) denotes the joint empirical distribution function calculated from (Xi, ε̂i)
>, i = 1, . . . , n,

with marginals Fn,X(.) = Fn(.,∞) and Fn,ε̂(∞, .) and where, for a distribution function F (.), the
symbol F−(.) denotes its left continuous version. Einmahl and Van Keilegom (2008a) derive the
asymptotic distribution of the test statistics (4.9)–(4.11) but note simulations show that the resulting
test does not achieve the prescribed size of the test and, in practice, a bootstrap procedure is preferable.
A similar difference-based test of independence of X and ε = Y −m(X) is proposed in Einmahl and
Van Keilegom (2008b).

Kernel based test statistic Another interesting possibility of testing the hypothesis (4.2), using
a kernel based test statistic proposed by Zheng (1997) for testing independence in an iid sample of
paired observations, has been introduced in Neumeyer (2009):

Tn,NZ =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
ε̂i − ε̂j
hn

)∫
{I(Xi ≤ x)− FX,n(x)}{I(Xj ≤ x)− FX,n(x)}w(x)dx,

(4.12)
where K(.) is a kernel function with bandwidth hn and w(.) is a weight function. This test statistic
will be investigated more closely in the framework of SPD estimation in Section 4.2.3.

Results of a simulation study Hlávka et al. (2011) study the empirical significance level of the
test based on the characteristic function using the weight functions W1(t1, t2) (denoted as CF1) and
W2(t1, t2) (CF2), the Kolmogorov-Smirnov (KS), Cramér-von Mises (CM), and Anderson-Darling
(AD) tests proposed by Einmahl and Van Keilegom (2008a), and the Neumeyer-Zheng test (NZ)
proposed by Neumeyer (2009) for several distributions of the random errors:

HA : (ε|X = x) ∼ N (0, 1) ,

HB(d) : (ε|X = x) ∼ (χ2
d − d)/

√
2d,

HC(d) : (ε|X = x) ∼ td/
√
d/(d− 2).

The power is investigated against the following alternatives:

HAalt : (ε|X = x) ∼ N (0, 1 + ax) ,

HBalt : (ε|X = x) ∼ (1 + ax)1/2(Wx − rx)/
√

2rx, where Wx ∼ χ2
rx , rx = 1/(bx),

HCalt : (ε|X = x) ∼
√

(1 + ax){1− (cx)1/4}Tx, where Tx ∼ t2/(cx)1/4 .
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Figure 4.1: An example SPD is plotted on the left hand side, the line on the right hand side shows the
corresponding European call pricing function, the circles are simulated intra-day option prices (p = 7,
n = 200).

The parameters a > 0, b > 0, and c ∈ [0, 1] control, respectively, the dependency of the variance,
skewness, and kurtosis of the random error ε on the design variable X.

The critical values are obtained by a bootstrap approximation utilizing standardized residuals and
oversmoothing of the regression function (Härdle and Marron; 1991), see (Hlávka et al.; 2011) for a
complete description of the bootstrap algorithm.

In a homoscedastic nonparametric regression model, the observed empirical levels for CF1(γ1 = 2),
CF2(γ2 = 1) and NZ statistics are reasonably close to the nominal size α = 0.05, with the more classical
procedures KS, CM, and AD failing to capture the nominal size (Hlávka et al.; 2011, Section 4.1.4).
Comparing the CF and NZ tests, it seems that CF tests perform slightly better against alternatives
HAalt and HBalt and the NZ test performs slightly better against the alternative HCalt.

In a heteroscedastic setup, the NZ test seems to provide the most stable results (Hlávka et al.;
2011, Section 4.2.2).

4.2 Specification tests in SPD estimation

In this section, we investigate the appropriateness of the covariance structure proposed in Chapter 3
using tests of independence in nonparametric regression described in the previous Section 4.1.

Recall that in Chapter 3 we have estimated the SPD by using a linear model (3.5), i.e.:

C(K) = X∆(K)β + ε, (4.13)

where C denotes the vector of observed Call option prices, K is the vector of corresponding strike
prices, X∆(K) is the design matrix (3.4), and ε are correlated random errors such that Eε = 0n and
Var ε = σ2V0(K, T ). In Chapter 3, the matrix V0(K, T ) is calculated from the observed strike prices
K and the transaction times T , see (3.14).

As an illustration, we plot an example of a very simple artificial SPD in the left plot in Figure 4.1.
The corresponding European Call pricing function and n = 200 simulated intra-day option prices are
displayed in the right plot in Figure 4.1. A detailed description of the simulation algorithm based
on (3.5) is given in Section 4.2.1. In the right plot in Figure 4.1, we observe strong heteroscedasticity
of the simulated observations. Moreover, the simulated data feature also strong dependency of the
option prices on the simulated transaction times. Notice that the simulated data set looks very similar
to real DAX/EUREX European Call option prices plotted in Figure 3.1.

Assuming that the matrix V0 = V0(K, T ) is positive definite, the linear model (4.13) can be written
as:

V
−1/2
0 C(K) = V

−1/2
0 X∆(K)β + V

−1/2
0 ε, (4.14)
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where η = V
−1/2
0 ε is a vector of iid random errors. This suggests that the model assumptions could

be verified by testing the hypothesis of independence between the strike prices K and the random
errors η.

Test statistic Similarly as in Chapter 3, we assume that the observed intra-day option prices follow
the linear model (4.13), where Var ε = V σ2 for some (unknown) positive definite (n × n) matrix V .
We are interested in testing the null hypothesis:

H0 : V = VH0
(4.15)

against the general alternative H1 : V 6= VH0
, where VH0

> 0 is a prespecified variance matrix, e.g.,
the covariance matrix V0 defined by (3.14). More precisely, we apply the tests of independence from
Section 4.1 to test the hypothesis:

H0 : “ the distribution of the standardized random errors η = V
−1/2
H0

ε does not depend on K”

against general alternatives.
In order to define the test statistic, we proceed similarly as in Section 4.1:

S1. We calculate the estimate β̂ of the vector of parameters β from (4.14) with V0 replaced by the

hypothetical VH0
, and the vector of residuals ε̂ = C − Ĉ = C − X∆β̂.

S2. We calculate the vector of standardized residuals η̂ = V
−1/2
H0

ε̂.

S3. We test the independence of η = V
−1/2
H0

ε and K using the test statistics Tn = T (η̂,K): we
will denote by Tn,KS , Tn,CM , and Tn,AD respectively the Kolmogorov-Smirnov, the Cramér-
von Mises, and the Anderson-Darling test statistics (4.9)–(4.11) (Einmahl and Van Keilegom;
2008a), by Tn,NZ the Neumeyer-Zheng test statistic (4.12) (Neumeyer; 2009), and by Tn,CF1(γ1)

and Tn,CF2(γ2) the test statistic (4.4) with weight functions (4.7)–(4.8) (Hlávka et al.; 2011).

The critical values of all tests are obtained by bootstrap. We fix the number of bootstrap replicates
B and proceed as follows:

B1. For each b = 1, . . . , B, we generate a bootstrap sample η∗b = (η∗b1 , . . . , η
∗b
n )> as an iid sample

from the the distribution given by the empirical distribution function of the residuals η̂1, . . . , η̂n
or the centered residuals η̂ci = η̂i −

∑n
j=1 ηj/n, i = 1, . . . , n.

B2. Define the vector of bootstrap option prices C∗b = X∆β̂ + V
1/2
H0

η∗b.

B3. Denote by T ∗b the test statistic obtained from the b-th bootstrap sample, i.e., the test statistic
calculated from the option prices C∗b, the strike prices K, and the transaction times T .

B4. The null hypothesis is rejected if the test statistics Tn exceeds the critical value obtained as the
1− α empirical quantile of the sample T ∗1, . . . , T ∗B .

We note that oversmoothing of the regression function cannot be used because the explanatory variable
has discrete distribution.

4.2.1 Simulation study

The following short simulation study is based on the SPD plotted in Figure 4.1. We consider three
types of null and alternative hypotheses concerning the variance matrix V of normally distributed
random errors ε:

Hiid : V = In, i.e., iid random errors ε,

Hhet : V = diag(V0),, i.e., independent heteroscedastic random errors ε,

HV0 : V = V0, i.e., iid random errors η = V
−1/2
0 ε with V0 = V0(K, T ) given by (3.14).

In each step of the simulation, the vector of strike prices K is generated from Uniform distribution
on {k1, . . . , kp} and the vector of the transaction times T is generated from Uniform distribution on
(0, 1) (from K and T , we may already calculate the variance matrix V0(K, T ) given by (3.14)). Finally,
we simulate normally distributed iid random errors η ∼ Nn(0n, σ

2In) and, depending on the chosen

variance matrix V , we obtain the vector of the simulated intra-day option prices as C = X∆β̃1 +V 1/2η.
An example of such simulated data set with σ = 0.04 is plotted on the right-hand side in Figure 4.1.
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H0 n CF1(2) CF2(1) CF1( 3
4
) CF2( 1

2
) NZ KS CM AD

50 5.8 5.8 3.0 4.2 4.6 2.2 3.4 3.2
iid 100 4.6 4.6 4.2 4.0 5.2 1.8 4.0 2.6

200 5.4 5.4 3.6 4.2 2.8 2.2 4.8 4.2
50 4.4 4.4 3.2 4.2 5.8 3.8 5.6 6.0

η∗ het 100 4.2 4.2 5.2 4.8 5.0 2.0 4.0 2.6
200 5.6 5.0 4.8 4.6 6.2 4.0 6.6 6.6
50 4.8 5.2 4.6 4.8 7.6 3.2 7.0 8.4

V0 100 5.8 5.4 5.6 6.0 7.0 2.6 5.6 4.0
200 5.6 4.6 5.6 5.8 4.6 3.4 4.8 6.0
50 5.8 5.8 3.0 4.2 4.6 2.2 3.4 3.2

iid 100 4.6 4.6 4.2 4.0 5.2 1.8 4.0 2.6
200 5.4 5.4 3.6 4.2 2.8 2.2 4.8 4.2
50 4.8 5.0 3.2 4.2 6.4 3.8 5.6 5.2

η∗c het 100 4.6 4.2 5.2 4.6 5.0 2.4 3.8 2.2
200 5.2 5.0 4.6 4.4 6.4 4.2 6.0 6.0
50 5.0 5.2 4.8 5.2 7.8 3.2 6.2 6.8

V0 100 5.8 5.8 5.8 6.4 7.0 2.2 5.0 4.6
200 5.4 4.4 5.6 6.0 5.6 3.4 4.6 6.0

Table 4.1: Empirical significance level (in %, unconstrained estimator, 500 simulations, B = 250
bootstrap replicates, α = 0.05, sample size n) of the specification tests using ordinary η∗ and centered
η∗c bootstrap residuals.

Empirical significance level and power for the unconstrained estimate In the simulation
study, we choose the variance matrix of the random errors V = Var(ε) and we test the null hypothesis
H0 : Var(ε) = VH0 for several choices of V and VH0 . In each step of the simulation, we simulate a new
data set with the variance of the random errors given by V . The test statistics and critical value for
testing H0 : V = VH0

are calculated according to algorithms S1–S3 and B1–B4, respectively.

In order to calculate the NZ test statistics, we use the bandwidth proposed in Neumeyer (2009), i.e.,

hn =
[∑n

j=2(η̂[i] − η̂[i−1])
2/{2n(n− 1)}

]1/5
, where η̂[i]’s are sorted according to increasing covariates,

Epanechnikov kernel K(.), and function w(x) = 1. The parameters of the weight function needed for
CF1 and CF2 test statistics were chosen according to Hlávka et al. (2011). No tuning parameters are
required to calculate the KS, CM, and AD test statistics.

In Tables 4.1–4.3, we investigate the behavior of the independence tests using the unconstrained
estimator of m(.).

Alt. H0 n CF1(2) CF2(1) CF1( 3
4
) CF2( 1

2
) NZ KS CM AD

50 99.0 98.4 97.8 98.2 97.4 0.4 12.6 1.8
iid 100 100.0 100.0 100.0 100.0 100.0 0.8 24.4 1.8

200 100.0 100.0 100.0 100.0 100.0 2.0 33.0 1.4
η∗ V0 50 61.0 59.6 63.8 60.8 38.8 19.8 37.8 31.6

het 100 78.8 74.8 84.2 79.0 69.2 26.8 37.0 32.4
200 91.4 90.0 97.4 96.0 91.0 40.6 48.2 48.2
50 99.0 98.4 97.8 98.2 97.4 0.4 12.6 1.8

iid 100 100.0 100.0 100.0 100.0 100.0 0.8 24.4 1.8
200 100.0 100.0 100.0 100.0 100.0 2.0 33.0 1.4

η∗c V0 50 61.2 60.4 63.4 61.4 39.6 19.4 36.8 31.2
het 100 79.6 75.6 84.6 79.4 70.2 24.6 36.4 30.8

200 93.2 91.2 97.8 96.2 93.0 39.8 47.8 47.0

Table 4.2: Empirical power (in %, unconstrained estimator, 500 simulations with B = 250 bootstrap
replicates, α = 0.05, centered bootstrap residuals, sample size n) of the specification tests against
fixed alternative V = V0.
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H0 Alt. n CF1(2) CF2(1) CF1( 3
4
) CF2( 1

2
) NZ KS CM AD

50 67.8 67.8 43.8 46.2 44.2 57.8 38.0 52.4
iid 100 90.6 89.2 78.0 80.4 80.2 90.6 66.2 76.4

200 97.0 96.8 95.2 96.0 97.0 98.8 91.2 93.4
η∗ V0 50 3.2 3.6 3.8 4.6 4.6 0.6 0.0 0.0

het 100 3.8 3.6 5.8 6.6 6.6 0.4 0.0 0.0
200 6.2 6.4 11.0 10.0 11.4 0.8 0.0 0.0
50 67.4 67.4 43.8 46.0 44.0 58.2 37.6 53.0

iid 100 90.6 89.2 77.8 80.4 80.6 90.8 66.0 76.4
200 97.0 96.8 95.2 96.0 97.0 98.8 91.4 93.4

η∗c V0 50 3.4 3.6 4.0 4.4 4.8 0.6 0.0 0.0
het 100 3.8 3.6 5.8 6.6 6.6 0.4 0.0 0.0

200 6.2 6.4 11.0 10.0 11.4 0.8 0.0 0.0

Table 4.3: Empirical power (in %, unconstrained estimator, 500 simulations with B = 250 bootstrap
replicates, α = 0.05, centered bootstrap residuals, sample size n) of the specification tests for fixed
null hypothesis H0 : V = V0 against two alternatives.

The empirical significance levels in Table 4.1 seem to be reasonably close to the nominal value
α = 0.05. For the first two hypotheses, the significance level of the KS test is a bit smaller than 0.05.
Looking at the third and most interesting null hypothesis, H0 : V = V0(K, T ), the significance levels
of all tests are improving with increasing sample size. The behavior of the test seems to be slightly
more stable for the centered bootstrap residuals.

The empirical power for several combinations of null and alternative hypotheses is summarized
in Tables 4.2–4.3. For the null hypothesis H0 : V = V0 and the alternative H1 : V = In, the
best results are given by the KS test. In all other cases, the best power is achieved by the NZ test
statistic. In general, the worst power is achieved by the tests of H0 : V = V0 against the alternative
H1 : V = diag(V0), where the KS, CM, and AD tests completely fail.

Empirical significance level and power for the constrained estimate In practice, one is
interested in using the constrained estimator m̂c(.) satisfying the no-arbitrage conditions (A)–(D)
given in Section 3.2. The empirical significance level and power for the constrained estimator are
summarized in Tables 4.4–4.5, where the constrained estimator m̂c(.) has been used both for the
evaluation of the test statistic in step S1 and within the bootstrap algorithm in step B3.

The empirical significance levels in Table 4.4 are acceptable only for the null hypothesis H0 : V =
V0. The empirical significance levels for the hypothesis H0 : V = diag(V0) are either too large (for
the CF and NZ test statistics) or too small (all tests based on the empirical distribution function).
The worst results are obtained for the null hypothesis H0 : V = In suggesting that the constrained
estimator works well only when the covariances between random errors ε are given by the covariance
matrix V0.

In Table 4.5, we report the empirical power only for the null hypothesis H0 : V = V0. Comparing
Tables 4.3 and 4.5, we observe that the power of the CF and NZ tests is actually higher for the
procedure using the constrained estimator and that the empirical power for the KS, CM, and AD
tests is very similar for both the constrained and the unconstrained version of the estimator.

We conclude that the constrained estimator combined with NZ or CF test statistic may be used
to test the null hypothesis H0 : V = V0 but it should not be used to test any other null hypothesis.

4.2.2 Asymptotic null distribution of Tn,W

In the simulation study in Section 4.2.1, we have found out that the best statistics are Tn,W and
Tn,NZ corresponding to CF (Hlávka et al.; 2011) and NZ (Neumeyer; 2009) specification tests. In
Sections 4.2.2 and 4.2.3, we shortly comment the validity of the asymptotic null distribution of these
two test statistics in the setup of SPD estimation. For simplicity, we concentrate on the unconstrained
estimator that, in the simulation study, seemed to be more robust.

Assuming a nonparametric regression model and a continuous explanatory variable, the asymptotic
null distribution of Tn,W has been derived in Hlávka et al. (2011). Unfortunately, this result does not
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H0 n CF1(2) CF2(1) CF1( 3
4
) CF2( 1

2
) NZ KS CM AD

50 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0
iid 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 28.0 28.6 12.2 13.8 30.2 0.4 0.0 0.0

η∗ het 100 49.2 47.4 29.4 27.6 52.4 0.8 0.0 0.0
200 81.4 80.4 60.2 55.8 85.8 1.0 0.0 0.0
50 4.8 4.8 4.4 5.0 6.2 2.6 6.0 5.4

V0 100 5.4 5.0 5.6 6.2 5.6 2.6 5.6 3.6
200 5.6 4.6 5.8 6.0 5.0 3.4 4.4 5.6
50 100.0 100.0 100.0 100.0 100.0 99.4 100.0 100.0

iid 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 34.0 33.8 14.0 14.2 36.6 0.6 0.0 0.0

η∗c het 100 54.6 54.0 33.0 30.6 60.6 0.8 0.0 0.0
200 86.0 84.6 65.4 61.4 89.4 1.0 0.0 0.0
50 5.0 5.0 4.6 4.8 6.6 2.8 5.2 4.8

V0 100 5.2 5.4 5.6 6.4 5.4 2.2 5.0 3.8
200 5.6 4.6 5.8 6.0 5.4 3.4 4.0 5.0

Table 4.4: Empirical significance level (in %, constrained estimator, 500 simulations, B = 250 boot-
strap replicates, α = 0.05, sample size n) of the specification tests using ordinary η∗ and centered η∗c
bootstrap residuals.

H0 Alt. n CF1(2) CF2(1) CF1( 3
4
) CF2( 1

2
) NZ KS CM AD

50 85.6 82.4 72.6 72.2 72.6 58.0 27.8 40.0
iid 100 95.8 95.6 96.8 95.2 98.2 92.2 57.4 75.6

200 99.4 99.2 99.4 99.2 100.0 99.0 91.2 98.8
η∗ V0 50 2.4 2.6 3.4 3.4 4.2 0.4 0.0 0.0

het 100 3.4 3.2 5.8 6.6 6.2 0.2 0.0 0.0
200 6.0 5.6 10.8 11.8 11.6 0.8 0.0 0.0
50 85.4 82.6 72.6 73.2 74.2 57.6 29.2 41.6

iid 100 95.8 95.6 97.2 95.4 98.4 92.4 58.4 76.0
200 99.4 99.2 99.4 99.2 100.0 99.0 91.4 98.8

η∗c V0 50 2.4 2.6 3.4 3.4 4.2 0.4 0.0 0.0
het 100 3.4 3.2 5.8 6.6 6.2 0.2 0.0 0.0

200 6.0 5.6 10.8 11.8 11.6 0.8 0.0 0.0

Table 4.5: Empirical power (in %, constrained estimator, 500 simulations with B = 250 bootstrap
replicates, α = 0.05, centered bootstrap residuals, sample size n) of the specification tests for fixed
null hypothesis H0 : V = V0 against two alternatives.
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automatically hold for model (4.13) and, in order to derive the asymptotic null distribution of Tn,W
for discretely distributed explanatory variable occurring in Chapter 3, we have to proceed similarly as
Hlávka et al. (2011) with the residuals from the nonparametric regression model replaced by residuals
from the linear model (4.13) similarly as in Hušková and Meintanis (2009, Theorem 1), see also
Van Keilegom et al. (2008, Lemma 4.2).

In order to derive the asymptotic null distribution of Tn,W , we need to use assumptions allowing
discretely distributed explanatory variable:

H1. Let the random errors ε1, . . . , εn be iid random variables with zero mean and Eε4
i <∞.

H2. X1, . . . , Xn are iid random variables, independent with ε1, . . . , εn, having a discrete distribution
on X = {x1, . . . , xp}.

H3. Let m(.) be a regression function with Lipschitz first derivative satisfying the no-arbitrage as-
sumptions (A)–(D) given in Chapter 3 and let m̂(.) denote its unconstrained estimate, i.e.,
m̂(xj) =

∑n
i=1 YiI(Xi = xj)/

∑n
i=1 I(Xi = xj).

H4. The weight function W (., .) is nonnegative and such that W (t1, t2) = W (−t1, t2) = W (t1,−t2),
tj ∈ R, j = 1, 2, and

∫
R2(t41 + t42)W (t1, t2)dt1dt2 <∞.

The following Remark 4 says that the asymptotic distribution (4.5) derived in Hlávka et al. (2011)
does not change if the explanatory variable has discrete distribution.

Remark 4. Assuming H1–H4, under the null hypothesis (4.15), the test statistic Tn,W defined in (4.4)
has the asymptotic distribution given in (4.5).

Proof. The proof is very similar to the proof of Theorem 1 in Hlávka et al. (2011). The only difference
is in the proof of Lemma 2, where the remainder terms Qcnj(t) and Qsnj(t) in the Taylor expansions:

cos(tε̂j) = cos(tεj)− t sin(tεj){m(Xj)− m̂n(Xj)}+ t2Qcnj(t)

and

sin(tε̂j) = sin(tεj) + t cos(tεj){m(Xj)− m̂n(Xj)}+ t2Qsnj(t)

have to be treated similarly as the remainders in the proof of Theorem 1 in Hušková and Meintanis
(2009), see also Lemma 4.2 in Van Keilegom et al. (2008). It follows that it suffices to verify that the
estimator m̂(.) satisfies assumptions (A.10)–(A.13) in Hušková and Meintanis (2009). It is easy to
see that the assumption (A.10) is satisfied because we assume that the true regression function (true
parameter) satisfies the no-arbitrage constraints (A)–(D) given in Chapter 3. The assumption (A.11)
is satisfied because the unknown parameter is equal to the value of the regression function. Finally,
denoting θ = (m(x1), . . . ,m(xn))>, and noticing that

∂m(xi; θ)

∂θ
= (0, . . . , 0︸ ︷︷ ︸

(i−1)×

, 1, 0, . . . , 0)>

it is easy to see that also (A.12) and (A.13) are satisfied.

In Remark 4, we assume that the random errors are iid and, strictly speaking, the result applies
only when we test the null hypothesis Hiid : V = In. However, further generalization for the null
hypotheses Hhet is very simple if the estimator m̂(.) is defined as a weighted average and if the
residuals are divided by the known standard deviations of the random errors. Similarly, it is easy to
see that Remark 4 applies also to the estimator (3.22) with the weights proposed in Theorem 3.1. The
generalization for the null hypothesis HV0

is also not very complicated because the residuals ε̂i in the
definition of (4.4) only have to be replaced by the residuals η̂i obtained from the linear model (4.14).

Similarly as in Hlávka et al. (2011), the asymptotic null distribution (4.5) is mostly a theoretical
consideration and, in practice, the critical values are obtained by bootstrap.
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4.2.3 Asymptotic null distribution of Tn,NZ

In order to show that the asymptotic null distribution from Zheng (1997), Dette and Neumeyer
(2000), and Neumeyer (2009) applies also in the setup of SPD estimation, we derive the asymptotic
null distribution of the test statistic Tn,NZ assuming that:

N1. The explanatory variable X has a discrete distribution on X = {x1, . . . , xp} and assume that
FX|ε(.|y) = P (X ≤ x|ε = y) has uniformly bounded continuous derivations with respect to y.

N2. The random errors εi, i = 1, . . . , n, are iid and centered with a bounded density fε(.) with two
continuous and bounded derivatives.

N3. Let m̂(x) denote the unconstrained estimate of the regression function m(.), i.e., m̂(xj) =∑n
i=1 YiI(Xi = xj)/

∑n
i=1 I(Xi = xj).

N4. LetK(.) be a symmetric and three times continuously differentiable kernel function with bounded
derivatives. Assume that

∫
K(u)du = 1 and

∫
K2(u)u2du < ∞. Let hn be a sequence of

bandwidths such that hnn
1/7 → 0 and hnn

1/2 →∞ for n→∞.

N5. Let w(.) be a positive and integrable weight function.

The following Theorem 4.1 gives the asymptotic null distribution of the test statistic Tn,NZ .

Theorem 4.1. Under assumptions N1–N5 and under the null hypothesis, nh
1/2
n Tn,NZ

d→ N(0, σ2),
where σ2 = 2

∫
K2(u)duEfε(X)

∫ ∫
F 2{min(x, y)}[1− F{max(x, y)}]2w(x)w(y)dx.

Proof. The proof is postponed to Section 4.5.

In Theorem 4.1, we have derived the asymptotic null distribution only for iid random errors.
Similarly as in Section 4.2.2, the generalization for heteroscedastic random errors is straightforward,
see also Neumeyer (2009)[Section 5] for a generalization of this test statistic to a heteroscedastic
nonparametric regression model with unknown variance function. Concerning the null hypothesis
HV0 , we only note that the proof of Theorem 4.1 under HV0 works also with the correlated random
errors εi from (4.13) replaced by the iid random errors ηi from (4.14).

The asymptotic distribution of Tn,NZ is simpler than the asymptotic distribution of Tn,W but, in
practice, Neumeyer (2009) recommends the bootstrap approximation of critical values.

Comparing assumptions H1–H4 with assumptions N1–N5, we note that Tn,NZ is preferable for
heavy tailed random errors with smooth and bounded densities and that Tn,W requires that Eε4

i is
finite but it does not need any assumptions concerning the smoothness or boundedness of the density
of the random errors.

4.3 Application

In Figure 4.2, we plot altogether n = 577 observed intra-day DAX European Call option prices
from January 24th, 1995, the 17th trading (working) day in 1995. The line on the left-hand side of
Figure 4.2 denotes the constrained estimate, m̂c(.) of the unknown true function m(.). The darkness
of the points denotes the time of each trade and the fitted option pricing curve m̂c(.) lies indeed
closer to the darker, i.e., more recent, observations. On the right-hand side of Figure 4.2, we plot

the standardized residuals η̂ = V
−1/2
0 {m̂c(K)−C} assuming that the variance of the random errors is

given by the matrix V0(K, T ) defined by (3.14).
We consider only tests based on the unconstrained estimator of m(.) which seem to be working

quite well for all three null hypotheses considered in Section 4.2.1. We use 250 bootstrap replications
with centered residuals.

Both the CF and NZ tests reject the hypotheses H0 : V = In (p-value 0.000 for all tests) and
H0 : V = diag(V0) (p-values 0.028,0.040, 0.016, respectively for CF1, CF2, and NZ) whereas the
hypothesis H0 : V = V0 is not rejected (p-values 0.556, 0.468, and 0.556, respectively).

On the contrary, the distribution function based tests that did not perform well in the simulation
study in Section 4.2.1, do not reject any of the hypotheses (all p-values are 1.000 for H0 : V = In, the
p-values 0.304, 0.640, and 0.892 were obtained for H0 : V = diag(V0) respectively for KS, CM, and
AD tests, and the p-values 1.000, 0.420, and 0.236, respectively, for H0 : V = V0.

These results seem to be with good agreement with the simulation study in Section 4.2.1 according
to which the CF and NZ specification tests provide the most reliable and most powerful results.
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Figure 4.2: Observed intra-day European Call option prices on January 24th, 1995, the constrained
estimate, and the residuals standardized by the covariance matrix V0. Option prices corresponding to
later transaction times are marked by darker color.

4.4 Summary

In this chapter, we have investigated the validity of the covariance structure proposed in the framework
of the SPD estimation in Chapter 3 by using appropriate modifications of some recently proposed
specification tests based either on the empirical joint characteristic function or on the empirical joint
distribution function of the observed strike prices and the standardized residuals.

We have demonstrated in a simulation study that any specification test should not be applied
together with the constrained estimator of the SPD.

Using the unconstrained SPD estimator, best results are achieved by the NZ test and the CF tests.
The application of the constrained SPD estimator may be recommended only with the NZ and CF
test and only for the null hypothesis H0 : V = V0. The simulation study also suggests that centering
of the bootstrap residuals leads slightly better power.

The asymptotic null distribution of the NZ and CF test statistics in the setup of SPD estimation
is investigated in Sections 4.2.2 and 4.2.3.

Finally, an application of the proposed methodology to a real data set shows that the proposed
specification tests reject diagonal variance matrices and do not reject the covariance matrix V0(K, T )
proposed in Chapter 3.

4.5 Proof of Theorem 4.1

The proof of Theorem 4.1 is a minor modification of a part of the proof of Theorem 3.1 in Neumeyer
(2009) and the proof of Theorem 1 in Zheng (1997). Compared to these papers, we assume that
the residuals are estimated similarly as in Neumeyer (2009) and the distribution of the explanatory
variable is discrete as in Dette and Neumeyer (2000).

For simplicity, we denote Tn = Tn,NZ and consider:

T̃n =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
εi − εj
hn

)∫
ai(x)aj(x)w(x)dx, (4.16)

where εi = Yi −m(Xi) and

ai(x) = I(Xi ≤ x)− FX,n(x) =
1

n

n∑
k=1
k 6=i

{I(Xi ≤ x)− I(Xk ≤ x)} =
1

n

n∑
k=1
k 6=i

ηi,k(x).
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As in Neumeyer (2009), we have by Taylor expansion:

Tn = T̃n +
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn

{
K

(
ε̂i − ε̂j
hn

)
−K

(
εi − εj
hn

)}∫
ai(x)aj(x)w(x)dx

= T̃n +

3∑
l=1

1

l!
V (l)
n ,

where

V (l)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hl+1
n

K(l)

(
εi − εj
hn

)
{m(Xi)− m̂(Xi)−m(Xj) + m̂(Xj)}l

×
∫
ai(x)aj(x)w(x)dx, for l = 1, 2,

V (3)
n =

1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h4
n

K(3) (ξi,j,n) {m(Xi)− m̂(Xi)−m(Xj) + m̂(Xj)}λ

×
∫
ai(x)aj(x)w(x)dx,

with ξi,j,n between (εi − εj)/hn and (ε̂i − ε̂j)/hn.
By Lemma 4.1, we have that:

3∑
l=1

1

l!
V (l)
n = oP (n−1h−1/2

n )

and it remains to investigate the term T̃n.
We may closely follow the proof of Theorem 1 in Zheng (1997). We note that assumptions allowing

discrete distribution of one of the variables were already used in Dette and Neumeyer (2000) who
investigated the behavior of Zheng’s independence test for fixed alternatives.

The term T̃n may be split into three parts:

T̃n =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
εi − εj
hn

)∫
{I(Xi ≤ x)− FX,n(x)}{I(Xj ≤ x)− FX,n(x)}w(x)dx

=
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
εi − εj
hn

)∫
{I(Xi ≤ x)− FX(x)}{I(Xj ≤ x)− FX(x)}w(x)dx

− 2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
εi − εj
hn

)∫
{I(Xi ≤ x)− FX(x)}{Fn,X(x)− FX(x)}w(x)dx

+
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

hn
K

(
εi − εj
hn

)∫
{Fn,X(x)− FX(x)}2w(x)dx

= T1n − 2T2n + T3n.

Zheng (1997) showed that T2n and T3n are oP (n−1h
−1/2
n ) and noticed that T1n is a U -statistic

with kernel Hn(Zi, Zj) = K
(
εi−εj
hn

) ∫
ξi(x)ξj(x)w(x)dx/hn, where ξi(x) = I(Xi ≤ x) − FX(x)

and Zi = (Xi, εi)
>. Moreover, under the null hypothesis, T1n is a degenerate U -statistic because

E{Hn(Z1, Z2)|Z1 = z1} = 0 and its asymptotic distribution may be obtained by Hall (1984, Theo-
rem 1). Towards this end, we calculate for x < y:

E{ξi(x)ξi(y)} = E[{I(Xi ≤ x)− FX(x)}{I(Xi ≤ y)− FX(y)}]
= FX(x){1− FX(x)}{1− FX(y)} − {FX(y)− FX(x)}FX(x){1− FX(y)}

+ {1− FX(y)}FX(x)FX(y) = FX(x){1− FX(y)}.
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In order to derive the asymptotic variance of T1n, we calculate:

E{H2
n(Z1, Z2)} =

1

h2
n

E

{
K2

(
εi − εj
hn

)∫
ξi(x)ξj(x)w(x)dx

}2

=
1

h2
n

EK2

(
εi − εj
hn

)∫ ∫
E{ξi(x)ξj(x)ξi(y)ξj(y)}w(x)w(y)dxdy

=
1

hn

∫ ∫
K2(u)fε(x)fε(x− hnu)dudx

∫ ∫
F 2{min(x, y)}[1− F{max(x, y)}]2w(x)w(y)dxdy

=
1

hn

{∫
K2(u)du

∫
f2
ε (x)dx+O(h2

n)

}∫ ∫
F 2{min(x, y)}[1− F{max(x, y)}]2w(x)w(y)dxdy

=
1

hn

∫
K2(u)duEfε(X)

∫ ∫
F 2{min(x, y)}[1− F{max(x, y)}]2w(x)w(y)dxdy +O(hn)

= σ2/2hn +O(hn).

It follows that nh
1/2
n T1n

d→ N(0, σ2) because the condition:[
E{G2

n(X1, X2)}+ n−1E{H4
n(X1, X2)}]/[E{H2

n(X1, X2)}
]2 → 0,

where Gn(x, y) = E{Hn(Z1, x)Hn(Z2, y)} (Hall; 1984, Theorem 1) is now easy to verify as we have
already seen that E{H2

n(X1, X2)} = O(h−1
n ) and similarly we obtain also that E{H4

n(X1, X2)} =
O(h−3

n ) and E{G2
n(X1, X2)} = O(1).

Lemma 4.1. Under the assumptions of Theorem 4.1, we have that V
(l)
n = oP (n−1h

−1/2
n ) for l = 1, 2, 3.

Proof. Using the symmetry of K(.) we obtain:

V (1)
n =

2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h2
n

K ′
(
εi − εj
hn

)
{m(Xj)− m̂(Xj)}

∫
ai(x)aj(x)w(x)dx.

Let pX(x) = P (X = x) and p̂X(x) =
∑n
i=1 I(Xi = x)/n. For the difference m(Xj)− m̂(Xj) we have:

m(Xj)− m̂(Xj)

=

∑n
i=1 YiI(Xi = Xj)∑n
i=1 I(Xi = Xj)

−m(Xj)

=

∑n
i=1{m(Xi) + εi}I(Xi = Xj)∑n

i=1 I(Xi = Xj)
−m(Xj)

=

∑n
i=1{m(Xj) + εi}I(Xi = Xj)∑n

i=1 I(Xi = Xj)
−m(Xj)

=

∑n
i=1 εiI(Xi = Xj)/n∑n
i=1 I(Xi = Xj)/n

=
1

n

n∑
i=1

εiI(Xi = Xj)

{
1

pX(Xj)
+

1

p̂X(Xj)
− 1

pX(Xj)

}

=
1

n

n∑
i=1

εiI(Xi = Xj)
1

pX(Xj)
+

1

n

n∑
i=1

εiI(Xi = Xj)

{
1

p̂X(Xj)
− 1

pX(Xj)

}
= µ

(1)
j,n + µ

(2)
j,n.

It follows that V
(1)
n = U

(1)
n + U

(2)
n , where

U (k)
n =

2

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

1

h2
n

K ′
(
εi − εj
hn

)
µ

(k)
j,n

∫
ai(x)aj(x)w(x)dx, for k = 1, 2.
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For U
(1)
n we have:

U (1)
n =

2

n2(n− 1)

n∑
i=1

n∑
j=1
j 6=i

n∑
v=1

1

h2
n

K ′
(
εi − εj
hn

)
εvI(Xv = Xj)

1

pX(Xj)

∫
ai(x)aj(x)w(x)dx

=
2

n4(n− 1)h2
n

n∑
i=1

n∑
j=1
j 6=i

n∑
v=1

n∑
k=1
k 6=i

n∑
l=1
l 6=j

K ′
(
εi − εj
hn

)
εvI(Xv = Xj)

pX(Xj)

∫
ηi,k(x)ηj,l(x)w(x)dx.

As Eεv = 0, only terms with v ∈ {i, j} are not zero in EU
(1)
n . For v = i, we obtain:

E

{
K ′
(
εi − εj
hn

)
εiI(Xi = Xj)

pX(Xj)

∫
ηi,k(x)ηj,l(x)w(x)dx

}
=

∫ ∫ ∫ ∫ ∫ ∫
K ′
(
y − z
hn

)
yI(s = t)

pX(t)

∫
{I(s ≤ x)− I(v ≤ x)}

×{I(t ≤ x)− I(w ≤ x)}w(x)dxdFX|ε=y(s)dFX|ε=z(t)dFε(y)dFε(z)dFX(v)dFX(w)

=

∫ ∫ ∫ ∫ ∫ ∫
K ′(u)

yI(s = t)

pX(t)
fε(y − hnu)fε(z)

∫
{I(s ≤ x)− I(v ≤ x)}

×{I(t ≤ x)− I(w ≤ x)}w(x)dxdFX|ε=y−hnu(s)dFX|ε=z(t)dydzdFX(v)dFX(w)hn

= O(h2
n),

where the last equation follows by Taylor expansion of FX|ε=y−hnu(s) and fε(y − hnu) and from∫
K ′(u)du = 0. The same rate is obtained for v = j. This gives

E{U (1)
n } =

2

n4(n− 1)h2
n

O(n4)O(h2
n) = O(1/n).

Next, we investigate E{U (1)
n }2 under the null hypothesis:

E{U (1)
n }2 = O(n−10h−4

n )

n∑
i=1

n∑
j=1
j 6=i

n∑
v=1

n∑
k=1
k 6=i

n∑
l=1
l 6=j

n∑
i′=1

n∑
j′=1
j′ 6=i′

n∑
v′=1

n∑
k′=1
k′ 6=i′

n∑
l′=1
l′ 6=j′

×E
{
K ′
(
εi − εj
hn

)
K ′
(
εi′ − εj′
hn

)
εvεv′

I(Xv = Xj)I(Xv′ = Xj′)

pX(Xj)pX(Xj′)

×
∫
ηi,k(x)ηj,l(x)w(x)dx

∫
ηi′,k′(x)ηj′,l′(x)w(x)dx

}
.

The expectation E
{
K ′
(
εi−εj
hn

)
K ′
(
εi′−εj′
hn

)
εvεv′

}
is not zero only if at least two pairs of the indices

{i, j( 6= i), v, i′, j′(6= i′), v′} are equal. When the remaining indices are distinct, the term is of order
O(h4

n) and there are at most O(n8) of such pairs. If there are more indices equal to each other, the
term is of order o(hn) and there are at most O(n7) of such combinations. Thus we have

E{U (1)
n }2 = O(n−10h−4

n ){O(n8h4
n) + o(n7hn)} = O(n−2) + o(n−3h−3

n ) = o(n−2h−1
n )

and by Chebyshev’s inequality we obtain that U
(1)
n is of order oP (n−1h

−1/2
n ).

Similarly, we may show that, under the null hypothesis, the terms

U (2)
n =

2

n4(n− 1)h2
n

n∑
i=1

n∑
j=1
j 6=i

n∑
v=1

n∑
k=1
k 6=i

n∑
l=1
l6=j

K ′
(
εi − εj
hn

)
εvI(Xv = Xj)

×
{

1

p̂X(Xj)
− 1

pX(Xj)

}∫
ηi,k(x)ηj,l(x)w(x)dx.

and V
(2)
n are also of order oP (n−1h

−1/2
n ) (in order to show this, one has to use that Eηi,k(x) = 0).

Finally, for the term V
(3)
n , we have by assumption N4:

|V (3)
n | ≤ O

(
1

h4
n

)
sup

x∈{x1,...,xp}
|m(x)− m̂(x)|λ = Op

(
h−4
n n−3/2

)
= oP

(
n−1h−1/2

n

)
,

because in our setup m̂(x) = m(x) +OP (n−1/2).
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Chapter 5

Conclusion

Statistics is sometimes wrongly seen only as a collection of standard methods but, in real-life applica-
tions, standard statistical methods must be tweaked and modified. Therefore, proper statistical data
analysis can not be carried out without a deep understanding of the theoretical background and, on
the other hand, new statistical applications motivate new directions in theoretical research.

Apart of introducing and summarizing the content of the five papers included in the Appendix,
this habilitation thesis contains several extensions of standard nonparametric regression methods
concerning all stages of the data analytical process. I believe that these papers and its extensions are
interesting both from practical and theoretical point of view.

From the practical point of view, the optimal designs from Chapter 2 improve the planning of
nonparametric regression experiments, the Kalman filtering techniques from Section 3.4 may be used
for an online monitoring of option markets, and specification tests from Chapter 4 may be used to
test correct specification of Analysis of Variance (ANOVA) models.

From the theoretical point of view, we have described an interesting special case of a degener-
ated constrained nonparametric regression estimator in Chapter 3 and the optimization and Fourier
techniques from Chapters 2 and 4 will hopefully inspire further generalizations using, e.g., a different
nonparametric regression estimator or more explanatory variables.

C. R. Rao, in a preface to his Linear methods of statistical inference and its applications (Wiley,
1965), described statistics as the “new technology” of the 20th century. Almost 50 years later, statistics
can not be characterized as an entirely new technology but there still continuously appear new real-life
problems assuring that mathematical statistics remains a “somewhat old but up-to-date” branch of
mathematics capable of adapting to new challenges and possibilities.
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Härdle, W. and Hlávka, Z. (2009). Dynamics of state price densities, Journal of Econometrics
150(1): 1–15.

Hlávka, Z. (2006a). Fast algorithm for nonparametric arbitrage-free SPD estimation, Computational
Statistics & Data Analysis 51(4): 2339–2349.

Hlávka, Z. and Svoj́ık, M. (2009). Application of extended Kalman filter to SPD estimation, in
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