Relating computed and exact entities in Krylov subspace methods based on short recurrences

Tomáš Gergelits, Marie Kubínová, Iveta Hnětynková

Faculty of Mathematics and Physics, Charles University
Institute of Computer Science, Czech Academy of Sciences

GAMM Annual Meeting 2018, Munich

20th March, 2018
Content of the talk

1. Krylov subspace methods
2. Overview of FP behavior
3. Comparison by pairing
4. Conclusions and Outlook
Content of the talk

1. Krylov subspace methods
2. Overview of FP behavior
3. Comparison by pairing
4. Conclusions and Outlook
Krylov subspace methods

Krylov subspace methods for

\[Ax = b, \quad A \in \mathbb{R}^{n \times n}, \ b \in \mathbb{R}^n, \ x_0 \in \mathbb{R}^n \]

often rely mathematically on the computation of an orthonormal basis

\[V_k = [v_1, \ldots, v_k] \]

of the Krylov subspace

\[\mathcal{K}_k(A, r_0) \equiv \text{span}\{r_0, Ar_0, \ldots, A^{k-1}r_0\}, \quad r_0 = b - Ax_0. \]

Symmetric and positive definite matrix \(A \):

⇒ Short recurrences, Lanczos tridiagonalization

We consider here

- Conjugate gradient method via the Lanczos process (CGL);
- Minimal Residual method (MINRES).
CGL and MINRES

Input: matrix A symmetric and positive definite, vector b

CGL: $\|x - x_k^L\|_A = \min_{y \in \mathcal{K}_k(A, r_0)} \|x - y\|_A$, $r_k^L \perp \mathcal{K}_k(A, r_0)$;

MINRES: $\|r_k^M\| = \min_{y \in \mathcal{K}_k(A, r_0)} \|b - Ay\|.$

<table>
<thead>
<tr>
<th>method/quantity</th>
<th>$|x_k - x|$</th>
<th>$|x_k - x|_A$</th>
<th>$|r_k|$</th>
<th>$|r_k|_A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGL</td>
<td>monotone</td>
<td>minimized</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MINRES</td>
<td>monotone</td>
<td>monotone</td>
<td>minimized</td>
<td>–</td>
</tr>
</tbody>
</table>

Peak-plateau relationship; see, e.g., [Cullum, Greenbaum (1996)]:

$$\|r_k^L\| = \frac{\|r_k^M\|}{\sqrt{1 - (\|r_k^M\|/\|r_{k-1}\|)^2}}.$$
Content of the talk

1. Krylov subspace methods
2. Overview of FP behavior
3. Comparison by pairing
4. Conclusions and Outlook
Situation in finite precision arithmetic

We will focus on situation
- serious loss of orthogonality present;
- after finite number of iterations;
- no reorthogonalization, no restarts.

In general, the structure of Krylov subspace methods seems to be lost:
- Computed Lanczos vectors generally do not span Krylov subspaces defined by the input data or their small perturbations.
- Computed residuals generally do not satisfy Galerkin orthogonality or norm minimization property.
Analysis in FP arithmetic

Results for Lanczos algorithm reveal that important structure is preserved:

- Loss of orthogonality may appear only in the directions of eigenvectors of A (Ritz vectors associated with converged Ritz values).
 [Paige (1971, 1980)]

- Finite precision Lanczos process can be described via the exact Lanczos process applied on augmented system containing both the matrix A and the currently computed tridiagonal Jacobi matrix.
 [Paige (2010)]

Related question of sensitivity and perturbation analysis
[Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]
Results for Lanczos algorithm reveal that important structure is preserved:

- Loss of orthogonality may appear only in the directions of eigenvectors of A (Ritz vectors associated with converged Ritz values). [Paige (1971, 1980)]

- Finite precision Lanczos process can be described via the exact Lanczos process applied on augmented system containing both the matrix A and the currently computed tridiagonal Jacobi matrix. [Paige (2010)]

 Relates FP computations with exact computations with larger matrix.

- Related question of sensitivity and perturbation analysis [Carproux, Godunov, Kuznetsov (1997); Paige, Van Dooren (1998)]

 Assumption of full rank of the computed subspace.
Backward-like analysis associates the sequence of computed Jacobi matrices with a larger matrix \hat{A} with clustered eigenvalues. [Greenbaum (1989); Greenbaum, Strakoš (1992)]
Backward-like analysis associates the sequence of computed Jacobi matrices with a larger matrix \hat{A} with clustered eigenvalues. [Greenbaum (1989); Greenbaum, Strakoš (1992)]

Relates FP computations with exact computations with larger matrix.
Questions to be asked

- How do the computed subspaces differ from exact Krylov subspaces?
- How do the computed approximation or residual vectors resemble their exact arithmetic counterparts?
- Which phenomena and results present in exact arithmetic can be restored in or adopted to finite-precision computation? How and to which extent?

Study the mutual relationship of computed quantities and their exact arithmetic counterparts for the same A and b.

Short recurrences \rightarrow rank deficiency!
Content of the talk

1. Krylov subspace methods
2. Overview of FP behavior
3. Comparison by pairing
4. Conclusions and Outlook
Idea of pairings

We investigate whether, in which sense, and how accurately, we can relate k steps of the FP computation $\times l$ steps of the exact computation.

- $k - l \approx$ delay of convergence
- $k - l \approx$ rank-deficiency of generated subspace

This enables to compare:

$$\|x - x_k^L\|_A \times \|x - x_l^L\|_A,$$

$$x_k, r_k \times x_l, r_l,$$

$$\bar{K}_k(A, r_0) \times \bar{K}_l(A, r_0),$$

$$\ldots \times \ldots$$
Pairing approaches

- Using **numerical rank** of the matrix of the computed Lanczos vectors \tilde{V}_k:

 $$k_l \equiv \max\{k \mid \text{num_rank}(\tilde{V}_k) = l\}.$$

- Explicit **fitting of the convergence curves**:
 - **CGL**:
 $$k_l \equiv \arg\min_k \left|\left| x^L_k - x \right|_A - \left|\left| \tilde{x}^L_k - x \right|_A \right| \right|$$
 - **MINRES**:
 $$k_l \equiv \arg\min_k \left|\left| r^M_l - \tilde{r}^M_k \right| \right|$$

The plots illustrate $\{k_l\}$ and the singular values $\sigma^{(k)}_l$ of \tilde{V}_k.
Convergence curves

Since the computed \bar{V}_{k_l} and the exact V_l have for considered pairing approaches approximately the same rank, it may be reasonable to expect:

$$\|x^L_l - x\|_A \approx \|\bar{x}^L_{k_l} - x\|_A, \quad \|r^M_l\| \approx \|\bar{r}^M_{k_l}\|.$$
Moreover, in practice we even observe:

\[x_l^L - x \approx x_k^L - x, \]

\[r_l^M \approx r_k^M. \]
Question: What can we say about other quantities?

\[\| r_L^l \| \approx \| \bar{r}_k^L \| \]

CGL residual norms

Question: What can we say about other quantities?

\[\| r^L \| \approx \| \bar{r}^L \| \]

Answer: NO!!!

Question: What can we say about other quantities?

\[\| r_l^L \| \approx \| \tilde{r}_{k_l}^L \| \]

Answer: NO!!!

But assuming \(\| r_l^M \| \approx \| \tilde{r}_{k_l}^M \| \), the relations

\[
\| r_l^L \| = \frac{\| r_l^M \|}{\sqrt{1 - (\| r_l^M \|/\| r_{l-1}^M \|)^2}}, \quad \| \tilde{r}_{k_l}^L \| \approx \frac{\| \tilde{r}_{k_l}^M \|}{\sqrt{1 - (\| \tilde{r}_{k_l}^M \|/\| \tilde{r}_{k_{l-1}}^M \|)^2}}
\]

(see [Cullum, Greenbaum (1996)]) give for \(\| r_l^M \|/\| r_{l-1}^M \| \approx 1 \) that

\[
\| r_l^L \| \approx \frac{1}{\sqrt{\sum_{j=k_l-1+1}^{k_l} 1/\| \tilde{r}_j^L \|^2}}.
\]

Conclusion: CGL residual norms cannot be compared directly but must be aggregated over the intermediate iterations.

CGL residual vectors

Question: What can we say about other quantities?

\[r_l^L \approx \bar{r}_{k_l}^L \]

Answer: Similarly, for \(\| r_l^M \| / \| r_{l-1}^M \| \not\approx 1 \),

\[
\frac{1}{\| r_l^L \|^2} r_l^L \approx \sum_{j=k_l-1+1}^{k_l} \frac{1}{\| \bar{r}_j^L \|^2} \bar{r}_j^L.
\]
Stagnation: \(\| r^{M}_l \| \approx \| r^{M}_{l-1} \| \)

CGL residual norms:

We proceed \(p \) iterations forward to achieve \(\| r^{M}_{l+p} \| / \| r^{M}_{l-1} \| \ll 1 \). Then,

\[
\frac{1}{\sqrt{\sum_{j=l}^{l+p} 1/\| r^L_j \|^2}} \approx \frac{1}{\sqrt{\sum_{j=k_{l-1}+1}^{k_{l+p}} 1/\| \bar{r}^L_j \|^2}}.
\]
Content of the talk

1. Krylov subspace methods
2. Overview of FP behavior
3. Comparison by pairing
4. Conclusions and Outlook
Conclusions and Outlook

- Proposed pairings allow us to compare simultaneously the quantities of interest (convergence curves, approximation vectors, residuals) for two methods – CGL and MINRES.
- Computed CGL residuals cannot be related directly to their exact counterparts, but need to be aggregated over the intermediate iterations.
- When post-processed accordingly, finite-precision computations resemble exact computations.
- Nearness of computed subspace to exact Krylov subspace
- Stagnation of exact MINRES convergence curve.

Acknowledgement This work has been supported by the Charles University, project GA UK no. 196216.