The afterpage package®

David Carlisle
carlisle@cs.man.ac.uk

1995/10/27

This package implements a command, \afterpage, that causes the commands
specified in its argument to be expanded after the curent page is output.!

1. Sometimes IXTEX’s float positioning mechanism gets overloaded, and all
floating figures and tables drift to the end of the document. One may
flush out all the unprocessed floats by issuing a \clearpage command, but
this has the effect of making the current page end prematurely. Now you
can issue \afterpage{\clearpage} and the current page will be filled up
with text as usual, but then a \clearpage command will flush out all the
floats before the next text page begins.

2. An earlier mechanism to help with float placement was the optional argument
[H] (meaning HERE!) which was originally added to the standard floating
environments by here.sty, and is now provided by float.sty. However
some [H] users have commented that they did not really mean ‘Here!” They
actually wanted ‘Somewhere close’. This can now be achieved by
\afterpage{\clearpage\begin{figure}[H] ...\end{figure}}

This ensures that the figure is at the top of the next page. (The \clearpage
stops any other figures drifting past the [H] figure.)

3. Floating longtables. longtable.sty provides the longtable environment,
a multi-page version of tabular. Many longtable users have told me that
it is difficult to set the text surrounding the long table, and that they wanted
a ‘floating’ version. As, presumably, longtables are long, they are probably
too large to hold in memory, and float in the way that the table environment
is floated, however if the table is in a separate file, say 1tfile.tex, you can
now use one of:

\afterpage{\clearpage\input{ltfile}}
\afterpage{\clearpage\input{ltfile}\clearpagel.

The first form lets text apear on the same page as the end of the longtable,
the second ensures that the surrounding text starts again on a new page.

*This file has version number v1.08, last revised 1995/10/27.

1This is really a pre-release, to see whether people like the idea of a command like this. This
implementation is not particularly robust. This implementation does not work in two column
mode, and can get ‘confused’ by I#TEX’s floating environments.

\extrarowheight

A new implementation of IXTEX’s tabular and array
environment*

Frank Mittelbach David Carlislef
Printed March 10, 2004

Abstract

This article describes an extended implementation of the ITEX array—
and tabular-environments. The special merits of this implementation are
further options to format columns and the fact that fragile ¥ TEX—commands
don’t have to be \protect’ed any more within those environments.

The major part of the code for this package dates back to 1988—so does
some of its documentation.

1 Introduction

This new implementation of the array— and tabular-environments is part of a larger
project in which we are trying to improve the XTEX-code in some aspects and to
make IMTEX even easier to handle.

The reader should be familiar with the general structure of the environments
mentioned above. Further information can be found in [3] and [1]. The additional
options which can be used in the preamble as well as those which now have a
slightly different meaning are described in table 1.

Additionally we introduce a new parameter called \extrarowheight. If it
takes a positive length, the value of the parameter is added to the normal height
of every row of the table, while the depth will remain the same. This is important
for tables with horizontal lines because those lines normally touch the capital
letters. For example, we used \setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing
with the implementation.

e If you want to use a special font (for example \bfseries) in a flushed left
column, this can be done with >{\bfseries}1. You do not have to begin
every entry of the column with \bfseries any more.

*This file has version number v2.3m, last revised 1998/05/13.
fDavid kindly agreed on the inclusion of the \newcolumntype implementation, formerly in
newarray.sty into this package

Unchanged options
1 Left adjusted column.
c Centered adjusted column.
r Right adjusted column.
p{width} | Equivalent to \parbox [t]{width}.
@{decl.} | Suppresses inter-column space and inserts decl. instead.
New options
Defines a column of width width. Every entry will be cen-
m{width} | tered in proportion to the rest of the line. It is somewhat
like \parbox{width}.
b{width} | Coincides with \parbox[b]{width}.
Can be used before an 1, r, ¢, p, m or a b option. It inserts
>{decl.} . .
decl. directly in front of the entry of the column.
Can be used after an 1, r, ¢, p{..}, m{..} or a b{..}
<{decl.} . . .
option. It inserts decl. right after the entry of the column.
Inserts a vertical line. The distance between two columns
| will be enlarged by the width of the line in contrast to the
original definition of IATEX.
Can be used anywhere and corresponds with the | option.
| {decl.} rl.“he differe')nce i§ that decl. is inserted instead of a.vertical
line, so this option doesn’t suppress the normally inserted
space between columns in contrast to @{...}.

e In columns which have been generated with p, m or b, the default value of

Table 1: The preamble options.

\parindent is Opt. This can be changed with
>{\setlength{\parindent}{1cm}}p.

e The >— and <—options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in a tabular-environment. If
you use this type of a preamble in an array—environment, you get a column

in LR mode because the additional $’s cancel the existing $’s.

e One can also think of more complex applications. A problem which has been
mentioned several times in TEXhax can be solved with >{\centerdots}c
<{\endcenterdots}. To center decimals at their decimal points you (only?)

have to define the following macros:

{\catcode‘\.\active\gdef . {\egroup\setbox2\hbox\bgroup}}
\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}
\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi
\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else
\setbox0\hbox to\wd2{\hfill\unhboxO}\fi
\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell
and doesn’t work when the tabular is used in the argument of some other
command. A much better version is provided in the dcolumn. sty by David
Carlisle.

e Using c!{\hspace{lcm}}c you get space between two columns which is en-
larged by one centimeter, while c@{\hspace{1icm}}c gives you exactly one
centimeter space between two columns.

1.1 Defining new column specifiers

\newcolumntype Whilst it is handy to be able to type
>{(some declarations)}{c}<{(some more declarations)}

if you have a one-off column in a table, it is rather inconvenient if you often use
columns of this form. The new version allows you to define a new column specifier,
say x, which will expand to the primitives column specifiers.! Thus we may define

\newcolumntype{x}{>{(some declarations)}{c}<{(some more declarations)}}

One can then use the x column specifier in the preamble arguments of all array
or tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment.
If we define:

\newcolumntype{CH>{$}c<{$}}
\newcolumntype{L}{>{$}1<{$}}
\newcolumntype{R}H>{$}r<{$}}

Then we can use C to get centred LR-mode in an array, or centred math-mode
in a tabular.

The example given above for ‘centred decimal points’ could be assigned to a d
specifier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look
too good if the column consists of large numbers, but to only a few decimal places.
An alternative definition of a d column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:?

\def\coldot{.}) Or if you prefer, \def\coldot{\cdot}
{\catcode‘\.=\active

IThis command was named \newcolumn in the newarray.sty. At the moment \newcolumn is
still supported (but gives a warning). In later releases it will vanish.
2The package dcolumn.sty contains more robust macros based on these ideas.

\showcols

\gdef .{$\egroup\setbox2=\hbox to \dimenO \bgroup$\coldot}}
\def\rightdots#1{}%

\setbox0=\hbox{1}\dimenO=#1\wd0

\setbox0=\hbox{\coldot}\advance\dimenO \wdO

\setbox2=\hbox to \dimenO {}V

\setbox0=\hbox\bgroup\mathcode ‘\.="8000 $}
\def\endrightdots{$\hfil\egroup\box0\box2}

Note that \newcolumntype takes the same optional argument as \newcommand
which declares the number of arguments of the column specifier being defined.
Now we can specify d{2} in our preamble for a column of figures to at most two
decimal places.

A rather different use of the \newcolumntype system takes advantage of the
fact that the replacement text in the \newcolumntype command may refer to
more than one column. Suppose that a document contains a lot of tabular
environments that require the same preamble, but you wish to experiment with
different preambles. Lamport’s original definition allowed you to do the following
(although it was probably a mis-use of the system).

\newcommand{\X}{clr}
\begin{tabular}{\X}...

array.sty takes great care not to expand the preamble, and so the above does not
work with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} ...

The replacement text in a \newcolumntype command may refer to any of the
primitives of array.sty see table 1 on page 2, or to any new letters defined in
other \newcolumntype commands.

A list of all the currently active \newcolumntype definitions is sent to the
terminal and log file if the \showcols command is given.

1.2 Special variations of \hline

The family of tabular environments allows vertical positioning with respect to the

baseline of the text in which the environment appears. By default the environment

appears centered, but this can be changed to align with the first or last line in

the environment by supplying a t or b value to the optional position argument.

However, this does not work when the first or last element in the environment is a

\hline command—in that case the environment is aligned at the horizontal rule.
Here is an example:

Tables with no versus

Wi Tables
e \begin{tabular}[t]{1}
commands with no\\ hline \\ commands \\ used
used \end{tabular} versus tables
tables used. \begin{tabular}[t]{I1]}
with some \Rline
hline with some \\ hline \\ commands \\
commands \hline

\end{tabular} used.

\firsthline Using \firsthline and \lasthline will cure the problem, and the tables will
\lasthline align properly as long as their first or last line does not contain extremely large
objects.
Tables Wlth no versus Tables
line \begin{tabular} [t]{1}
commands with no\\ line \\ commands \\ used
used \end{tabular} versus tables
tables | with some |used. \begin{tabular}[t]{I1|}
line \firsthline
commands with some \\ line \\ commands \\
\lasthline

\end{tabular} used.

\extratabsurround The implementation of these two commands contains an extra dimension, which
is called \extratabsurround, to add some additional space at the top and the
bottom of such an environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules
in tables:

1. rules can be placed into the available space without enlarging the table, or
2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation in
the BTEX kernel implements the first concept. Both concepts have their merrits
but one has to be aware of the individual implications.

e With standard KTEX adding rules to a table will not affect the width or
height of the table (unless double rules are used), e.g., changing a preamble
from 111 to 1111 does not affect the document other than adding rules to
the table. In contrast, with array.sty a table that just fit the \textwidth
might now produce an overfull box.

o With standard BTEX modifying the width of rules could result in ugly look-
ing tables because without adjusting the \tabcolsep, etc. the space between
rule and column could get too small (or too large). In fact even overprinting
of text is possible. In contrast, with array.sty modifying any such length
usually works well as the actual visual white space (from \tabcolsep, etc.)
does not depend on the width of the rules.

e With standard KTEX boxed tabulars actually have strange corners because
the horizontal rules end in the middle of the vertical ones. This looks very
unpleasant when a large \arrayrulewidth is chosen. In that case a simple
table like

\setlength{\arrayrulewidth}{5pt}
\begin{tabular}{|1]}

\hline A \\ \hline
\end{tabular}

will produce something like

instead of

2.2 Comparisons with older versions of array.sty

There are some differences in the way version 2.1 treats incorrect input, even if
the source file does not appear to use any of the extra features of the new version.

e A preamble of the form {wx*{0}{abc}yz} was treated by versions prior to
2.1 as {wx}. Version 2.1 treats it as {wxyz}

e An incorrect positional argument such as [Q] was treated as [c] by
array.sty, but is now treated as [t].

e A preamble such as {cc*{2}} with an error in a x-form will generate different
errors in the new version. In both cases the error message is not particularly
helpful to the casual user.

e Repeated < or > constructions generated an error in earlier versions, but are
now allowed in this package. >{(decs)}>{(decs2)} is treated the same as
>{(decs2)(decs1)}.

e The \extracolsep command does not work with the old versions of
array.sty, see the comments in array.bug. With version 2.1 \extracolsep
may again be used in @-expressions as in standard KTEX, and also in !-
expressions (but see the note below).

2.3 Bugs and Features

3

e Error messages generated when parsing the column specification refer to the

preamble argument after it has been re-written by the \newcolumntype
system, not to the preamble entered by the user. This seems inevitable with
any system based on pre-processing and so is classed as a feature.

The treatment of multiple < or > declarations may seem strange at
first. Earlier implementations treated >{(decs1)}>{({decs2)} the same as
>{(decs1){decs2)}. However this did not give the user the opportunity of
overriding the settings of a \newcolumntype defined using these declarations.
For example, suppose in an array environment we use a C column defined
as above. The C specifies a centred text column, however >{\bfseries}C,
which re-writes to >{\bfseries}>{$}c<{$} would not specify a bold col-
umn as might be expected, as the preamble would essentially expand to
\hfil\bfseries#$ $\hfil and so the column entry would not be in the
scope of the \bfseries! The present version switches the order of repeated
declarations, and so the above example now produces a preamble of the form
\hfil$ $\bfseries#$ $\hfil, and the dollars cancel each other out without
limiting the scope of the \bfseries.

The use of \extracolsep has been subject to the following two restrictions.
There must be at most one \extracolsep command per @, or ! expression
and the command must be directly entered into the @ expression, not as part
of a macro definition. Thus \newcommand{\ef}{\extracolsep{\fill}}
...@{\ef} does not work with this package. However you can use some-
thing like \newcolumntype{e}{@{\extracolsep{\fill}} instead.

As noted by the IATEX book, for the purpose of \multicolumn each column
with the exception of the first one consists of the entry and the following
inter-column material. This means that in a tabular with the preamble
[1111111] input such as \multicolumn{2}{|c|} in anything other than
the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable
as that version contains negative spacing so that each | takes up no horizon-
tal space. But since in this package the vertical lines take up their natural
width one sees two lines if two are specified.

The documentation driver file

The first bit of code contains the documentation driver file for TEX, i.e., the file
that will produce the documentation you are currently reading. It will be extracted
from this file by the docstrip program.

1 (xdriver)
2 \NeedsTeXFormat{LaTeX2e}[1995/12/01]
3 \documentclass{ltxdoc}

The bm package*T

David Carlisle with support by Frank Mittelbach

1999/07/05

1 Introduction

This package defines commands to access bold math symbols. The basic command
is \bm which may be used to make the math expression in its argument be typeset
using bold fonts.

The syntax of \bm is:

\bm{(math expression)}
So $\alpha \not= \bm{\alphal}$ produces a # .

\bm goes to some trouble to preserve the spacing, so that for instance \bm<
is a bold < but with the correct \mathrel spacing that TEX gives to <. The
calculations that TEX needs to do for \bm can be quite involved and so a definition
form is provided.

\DeclareBoldMathCommand [{math version)]{(cmd)}{(math expression)}

Defines \cmd to be the bold form of the math expression. The (math version)
defaults to ‘bold’ (i.e., \boldmath).

For relatively simple expressions, the resulting definitions are very efficient, for
instance after:

\DeclareBoldMathCommand\balpha{\alpha}
\balpha is a single ‘mathchardef’ token producing a bold alpha, and so is just as
fast to execute as \alpha.

The above command is mainly intended for use in packages. For occasional
use in IATEX documents, and for compatibility with the plain TEX support for the
mathtime fonts, a ‘user-level’ version, \bmdef ine is provided that is equivalent to:
\DeclareBoldMathCommand [bold].

If there is a ‘heavy’ math version defined (usually accessed by a user-command
\heavymath) then a similar command \hm is defined which access these ‘ultra bold’
fonts. Currently this is probably only useful with the ‘mathtime plus’ font collec-
tion. Definitions of commands that use these fonts may be made by specifying the
optional argument ‘heavy’ to \DeclareBoldMathCommand. Again an abbreviation,
\hmdefine, is provided, equivalent to:

\DeclareBoldMathCommand [heavy].

*This file has version number v1.0g, last revised 1999/07/05.
TDevelopment of this package was commissioned by Y&Y.

The command names (but not the implementation) are taken from Michael
Spivak’s macros to support the mathtime fonts for plain TEX. In those original
macros, the syntax for \bmdefine was \bmdefine\balpha{\bm\alpha} (with a
nested \bm). This syntax also works with this package.

2 Font allocation

In order to access bold fonts in the simplest and quickest possible manner, the
package normally allocates symbol fonts for bold (and possibly heavy) fonts into
the ‘normal’ math version. By default it allocates at most four fonts for \bm and
at most three fonts for \hm. This means that if the mathtime plus font set is
being used, seven additional symbol fonts will be used, in addition to the basic
four that IMTEX already declares. The mathtime package also declares an extra
symbol font, bringing the total to twelve. The maximum number of symbol and
math alphabet fonts that can be used in a math version is sixteen. So the above
allocation scheme does not leave room for many extra math symbols (such as the
AMS symbols) or math alphabets (such as \mathit).

Before loading the bm package you may define \bmmax and \hmmax to be suit-
able values, for instance you may want to set \newcommand\hmmax{0} if you will
not be using \hm much, but you do have a heavy math version defined.

Even if \bmmax is set to zero, \bm will still access the correct bold fonts (by
accessing the fonts via \boldmath) but this method is slower, and does not work
with delimiters. Delimiters can only be made bold if the bold font has been
allocated.

Conversely if you have a non standard font set that makes available extra math
delimiters and accents in bold and medium weights you may want to increase
\bmmax so that fonts are allocated for your font set.

3 Features

In most cases this package should work in a fairly self explanatory way, but there
are some things that might not be obvious.

3.1 Interaction with Math Alphabet Commands

As mentioned above, \bm goes to some trouble to try to make a command that is
just like its argument, but using a bold font. This does not always produce the
effect that you might expect.

$1 g \bm{g}$

$2 \mathrm{g \bm{g}}$

$3 {g} \bm{{g}}$

$4 \mathrm{{g} \bm{{g}}}$

$5 \mathrm{g} \bm{\mathrm{g}}$

produces the following;:

1gg 2gg 399 4gg 528

In math mode ‘g’ is effectively a command that produces the letter ‘g’ from the
‘letters’ alphabet, unless a Math Alphabet command is in effect, in which case the
‘g’ comes from the specified alphabet. \bm{g} makes an equivalent command, but
which defaults to a bold letter alphabet. So in the first example \bm{g} is bold
math italic, but in the second example the \mathrm applies to both g and \bm{g}
in the same way, and so they are both roman.

\bm only inspects the ‘top level’ definition of a command, for more complicated
expressions, and anything inside a { } group, \bm forces bold fonts by essentially
the same (slow) technique used by the AMS \boldsymbol command (but \bm still
takes more care of the spacing). So the third example produces identical output
to the first (but TEX takes more time producing it).

In the fourth example the \mathrm{\bm{gl}} is essentially equivalent to
\mathrm{\mbox{\boldmathg}}. Currently math alphabet settings are not
passed down to ‘nested’ math lists, and so in this example, the \mathrm has
no effect, and a bold math italic g is obtained.

Similarly the last example is equivalent to $\mbox{\boldmath$\mathrm{g}$}}
and so in this case, one obtains a bold roman g.

3.2 Delimiters

TEX can treat character tokens in two! ways. If there is a preceding \left or
\right it can treat them as a delimiter, otherwise it can treat them as a standard
character. For example \left<\right> produces (), which is totally different from
<>, which produces <>.

TEX can only do this for character tokens. Commands such as \langle do not
act in this way. This means that \bm has to decide whether to treat a character as a
delimiter or not. The rule it uses is, it makes a delimiter command for a character
if the previous token in the argument was \left or \right. So \left\bm{<} does
not work, but \bm{\1left<} does.

3.3 Command Arguments

Normally if a command takes arguments the full command, including any argu-
ments, should be included in \bm. o~

So \bm{\overbrace{abc}} (producing abc) not \bm{\overbrace}{abc}. If
you do not include all the arguments you will typically get the error message:
Runaway argument?

! Forbidden control sequence found while scanning use of ...

However commands defined in terms of the TEX accent and radical primitives
may be used without their arguments. So \bm{\hat}{al} produces @, a bold accent
over a non-bold a (compare G) whereas \bm{\hat{a}} makes both the a and the
accent bold, @. Similarly, although the ITEX command \sqrt must be used with

I'Well more than two really.

its arguments, \sqrtsign may be used as in \bm\sqrtsign{abc} to produce v/abc
rather than v/abc or vabe
If you really need to make a command with arguments use bold fonts without
making all of the arguments bold, you can explicitly reset the math version in the
argument, eg:
\sqrt{xyz} \bm{\sqrt{xyz}} \bm{\sqrt{\mbox{\unboldmathxyz}}3}
TYZ TYz TYZ

3.4 Bold fonts

This package interrogates the font allocations of the bold and heavy math versions,
to determine which bold fonts are available. This means that it is best to load the
package after any packages that define new symbol fonts, or (like the mathtime
package) completely change the symbol font allocations.

If no bold font appears to be available for a particular symbol, \bm will use ‘poor
man’s bold’ that is, overprinting the same character in slightly offset positions to
give an appearance of boldness.

In the standard Computer Modern font set, there is no bold ‘large symbols’
font. In the ‘mathptm’ and (standard) mathtime font sets there are no bold math
fonts. In the ‘mathtime plus’ font set there are suitable fonts for bold and heavy
math setting, and so \bm and \hm work well. Similarly in the basic Lucida New
Math font set there are no bold math fonts, so \bm will use ‘poor man’s bold.
However if the Lucida Expert set is used, Then \bm will detect, and use the bold
math fonts that are available.

As discussed above, one may set \bmmax higher or lower than its default value
of four to control the font allocation system. Finer control may be gained by
explicitly declaring bold symbol fonts. Suppose you have a symbol font ‘xyz’ that
is available in medium and bold weights, then you would declare this to ITEX via:
\DeclareSymbolFont{extras} {0OMS}Hxyzt{m}{n}
\SetSymbolFont{extras}{bold}{0OMSH{xyz}{bx}{n}

At this point the symbols wil be available in the normal math version, and their
bold variants in \boldmath. If you also declare:
\DeclareSymbolFont{boldextras}{OMS}Hxyz}{bx}{n}

That is, declare a symbol font whose name is formed by prefixing ‘bold’ (or ‘heavy’)
to an existing symbol font, then \bm (or \hm) will use this font directly, rather
then accessing the ‘extras’ symbol font via \boldmath.

3.5 Strange failures

In order to get the correct spacing, \bm has to ‘investigate’ the definition of the
commands in its argument. It is possible that some strange constructions could
‘confuse’ this investigation. If this happens then IATEX will almost certainly stop
with a strange error. This should not happen with any of the math symbols defined
in the base BTEX or AMS distributions, or any commands defined in terms of those
symbols using normal ITEX math constructs. However if some command does fail
to work inside \bm you should always be able to surround it with an extra set of

\bm@table
\bm@boldtable
\bm@heavytable

braces \bm{{\cmd}} rather than \bm{\cmd}. \bm will not then attempt to set the
correct spacing, so you may need to set it explicitly, for instance, for a relation,
\bm{\mathrel{\cmd}}.

3.6 AMS package amsbsy

The \bm command shares some functionailty with the \boldsymbol command from
the AMS ETEX collection. To aid in moving documents between these two pack-
ages, this package defines \boldsymbol and \heavysymbol as alternative names
for \bm and \hm.

4 Implementation

The commands \bm and \hm work by defining a number of additional symbol fonts
corresponding to the standard ones ‘operators’, ‘letters’, ‘symbols’, and ‘largesym-
bols’. The names for these symbols fonts are produced by prefixing the usual name
with ‘bold’ or ‘heavy’.

For maximum flexibility we get the font definitions by looking in the corre-
sponding math versions, i.e., into \mv@bold and if defined into \mv@heavy.

1 (xpackage)

The table, \bm@table, (which is locally \let to either the bold or heavy version)
defines, for each (math group) ({fam)), the ‘offset’ to the bold version of the
specified symbol font. If there is no bold symbol font defined, the offset will be
set to zero if there is a bold font assigned to this slot in the bold math version, or
—1 if the font in the bold math version is the same as the one in the normal math
version. In this case a ‘poor man’s bold’ system of overprinting is used to achieve
boldness where this is possible.

The settings are made at the time this package is read, and so it is best to load
this package late, after any font loading packages have been loaded. Symbol fonts
loaded after this package will get the offset of zero, so they will still be made bold
by \bm as long as an appropriate font is declared for the bold math version.

\bm@boldtable and \bm@heavytable are set up using very similar code, which
is temporarily defined to \bm, to save wasting a csname. Similarly \bm@pmb...
(which will be defined later) are used as scratch macros.

The general plan. Run through the fonts allocated to the normal math version.
Ignore (math alphabet) allocations? but for each math symbol font, look in the
math version specified by #1 (bold or heavy). If the font there is different, then
allocate a new symbol font in the normal math version to access that bold font and
place the numerical difference between the allocations of the bold and normal font
into the table being built (\bm@boldtable, if #1 is bold). If the symbol allocation
is already greater than \bmmax do not allocate a new symbol font, but rather set
the offset in the table to zero. \bm will detect this, and use \boldmath on its

2For now?

The calc package
Infix notation arithmetic in IXTEX*

Kresten Krab Thorup, Frank Jensen (and Chris Rowley)
1998/07/07

Abstract

The calc package reimplements the KTEX commands \setcounter,
\addtocounter, \setlength, and \addtolength. Instead of a simple value,
these commands now accept an infix notation expression.

1 Introduction

Arithmetic in TEX is done using low-level operations such as \advance and
\multiply. This may be acceptable when developing a macro package, but it
is not an acceptable interface for the end-user.

This package introduces proper infix notation arithmetic which is much more
familiar to most people. The infix notation is more readable and easier to modify
than the alternative: a sequence of assignment and arithmetic instructions. One of
the arithmetic instructions (\divide) does not even have an equivalent in standard
TEX.

The infix expressions can be used in arguments to macros (the calc package
doesn’t employ category code changes to achieve its goals)!.

2 Informal description

Standard IXTEX provides the following set of commands to manipulate counters
and lengths [2, pages 194 and 216].

\setcounter{ctr}{num} sets the value of the counter ctr equal to (the value of)
num. (Fragile)

\addtocounter{ctr}{num} increments the value of the counter ctr by (the value
of) num. (Fragile)

*We thank Frank Mittelbach for his valuable comments and suggestions which have greatly
improved this package.

IHowever, it therefore assumes that the category codes of the special characters, such as (*/)
in its syntax do not change.

\setlength{cmd}{len} sets the value of the length command c¢md equal to (the
value of) len. (Robust)

\addtolength{cmd}{len} sets the value of the length command c¢md equal to its
current value plus (the value of) len. (Robust)

(The \setcounter and \addtocounter commands have global effect, while the
\setlength and \addtolength commands obey the normal scoping rules.) In
standard TEX, the arguments to these commands must be simple values. The
calc package extends these commands to accept infix notation expressions, de-
noting values of appropriate types. Using the calc package, num is replaced by
(integer expression), and len is replaced by (glue expression). The formal syntax
of (integer expression) and (glue expression) is given below.

In addition to these commands to explicitly set a length, many IXTEX com-
mands take a length argument. After loading this package, most of these com-
mands will accept a (glue expression). This includes the optional width argument
of \makebox, the width argument of \parbox, minipage, and a tabluar p-column,
and many similar constructions. (This package does not redefine any of these com-
mands, but they are defined by default to read their arguments by \setlength
and so automatically benefit from the enhanced \setlength command provided
by this package.)

In the following, we shall use standard TEX terminology. The correspondence
between TEX and KTEX terminology is as follows: IXTEX counters correspond
to TEX’s count registers; they hold quantities of type (number). KETEX length
commands correspond to TEX’s dimen (for rigid lengths) and skip (for rubber
lengths) registers; they hold quantities of types (dimen) and (glue), respectively.

TEX gives us primitive operations to perform arithmetic on registers as follows:

e addition and subtraction on all types of quantities without restrictions;

e multiplication and division by an integer can be performed on a register of
any type;

e multiplication by a real number (i.e., a number with a fractional part) can be
performed on a register of any type, but the stretch and shrink components
of a glue quantity are discarded.

The calc package uses these TEX primitives but provides a more user-friendly
notation for expressing the arithmetic.

An expression is formed of numerical quantities (such as explicit constants and
KTEX counters and length commands) and binary operators (the tokens ‘+’, ‘=7,
‘*’ and ‘/’ with their usual meaning) using the familiar infix notation; parentheses
may be used to override the usual precedences (that multiplication/division have
higher precedence than addition/subtraction).

Expressions must be properly typed. This means, e.g., that a dimen expression
must be a sum of dimen terms: i.e., you cannot say ‘2cm+4’ but ‘2cm+4pt’ is valid.

In a dimen term, the dimension part must come first; the same holds for glue
terms. Also, multiplication and division by non-integer quantities require a special
syntax; see below.

Evaluation of subexpressions at the same level of precedence proceeds from left
to right. Consider a dimen term such as “4cm*3%4”. First, the value of the factor
4cm is assigned to a dimen register, then this register is multiplied by 3 (using
\multiply), and, finally, the register is multiplied by 4 (again using \multiply).
This also explains why the dimension part (i.e., the part with the unit designation)
must come first; TEX simply doesn’t allow untyped constants to be assigned to a
dimen register.

The calc package also allows multiplication and division by real numbers.
However, a special syntax is required: you must use \real{(decimal constant)}?
or \ratio{(dimen expression)}{(dimen expression)} to denote a real value to be
used for multiplication/division. The first form has the obvious meaning, and
the second form denotes the number obtained by dividing the value of the first
expression by the value of the second expression.

A later addition to the package (in June 1998) allows an additional method of
specifying a factor of type dimen by setting some text (in LR-mode) and measuring
its dimensions: these are denoted as follows.

\widthof{(text)} \heightof{(text)} \depthof{(text)}

These calculate the natural sizes of the (text) in exactly the same way as is done
for the commands \settowidth etc. on Page 216 of the manual [2].

Note that there is a small difference in the usage of these two methods of
accessing text dimensions. After \settowidth{\txtwd}{Some text} you can use:

\setlength{\parskip}{0.68\textwd}

whereas using the more direct access to the width of the text requires the longer
form for multiplication, thus:

\setlength{\parskip}{\widthof{Some text} * \real{0.68}}

TEX discards the stretch and shrink components of glue when glue is multiplied
by a real number. So, for example,

\setlength{\parskip}{3pt plus 3pt * \real{1.5}}

will set the paragraph separation to 4.5pt with no stretch or shrink. (Incidentally,
note how spaces can be used to enhance readability.)

When TgEX performs arithmetic on integers, any fractional part of the results
are discarded. For example,

\setcounter{x}{7/2}
\setcounter{y}{3*\real{1.6}}
\setcounter{z}{3*\real{1.73}}

will assign the value 3 to the counter x, the value 4 to y, and the value 5 to z.
This truncation also applies to intermediate results in the sequential computation
of a composite expression; thus, the following command

\setcounter{x}{3 * \real{1.6} * \real{l.7}}

2 Actually, instead of (decimal constant), the more general (optional signs){factor) can be
used. However, that doesn’t add any extra expressive power to the language of infix expressions.

will assign 6 to x.

As an example of the use of \ratio, consider the problem of scaling a figure
to occupy the full width (i.e., \textwidth) of the body of a page. Assume that
the original dimensions of the figure are given by the dimen (length) variables,
\Xsize and \Ysize. The height of the scaled figure can then be expressed by

\setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\Xsize}}

3 Formal syntax

The syntax is described by the following set of rules. Note that the definitions of
(number), (dimen), (glue), (decimal constant), and (plus or minus) are as in Chap-
ter 24 of The TeXbook [1]; and (text) is LR-mode material, as in the manual [2].
We use type as a meta-variable, standing for ‘integer’, ‘dimen’, and ‘glue’.?

(type expression) — (type term)
| (type expression)(plus or minus){type term)

(type term) — (type factor)
| (type term){multiply or divide)(integer factor)
| (type term)(multiply or divide)(real number)

type factor) — (type) | (text dimen factor) | (12(type expression)) o
integer) — (number)
text dimen factor) — (text dimen command){(text)}

(
(
(
(text dimen command) — \widthof | \heightof | \depthof
(multiply or divide) — *12 | /12

(

real number) — \ratio{(dimen expression)}{(dimen expression)}
| \real{(decimal constant)}

Note that during most of the parsing of calc expressions, no expansion happens;
thus the above syntax must be explicit?.

4 The evaluation scheme

In this section, we shall for simplicity consider only expressions containing ‘4’
(addition) and ‘«’ (multiplication) operators. It is trivial to add subtraction and
division.

An expression E is a sum of terms: 77 + -+ + T};; a term is a product of
factors: Fy*---x Fy,; a factor is either a simple numeric quantity f (like (number)
as described in the TEXbook), or a parenthesized expression (E').

3This version of the calc package doesn’t support evaluation of muglue expressions.
4Two exceptions to this are: the first token is expanded one-level (thus the whole expression
can be put into a macro); wherever a (decimal constant) or (type) is expected.

Since the TEX engine can only execute arithmetic operations in a machine-
code like manner, we have to find a way to translate the infix notation into this
‘instruction set’.

Our goal is to design a translation scheme that translates X (an expression,
a term, or a factor) into a sequence of TEX instructions that does the following
[Invariance Property]: correctly evaluates X, leaves the result in a global regis-
ter A (using a global assignment), and does not perform global assignments to the
scratch register B; moreover, the code sequence must be balanced with respect to
TEX groups. We shall denote the code sequence corresponding to X by [X].

In the replacement code specified below, we use the following conventions:

e A and B denote registers; all assignments to A will be global, and all assign-
ments to B will be local.

e “<” means global assignment to the register on the lhs.

e “—” means local assignment to the register on the lhs.

7

e “_c]” means “save the code C until the current group (scope) ends, then
execute it.” This corresponds to the TEX-primitive \aftergroup.

e “{” denotes the start of a new group, and “}” denotes the end of a group.

Let us consider an expression T1+T5+- - -+T},. Assuming that [T}] (1 <k < n)
attains the stated goal, the following code clearly attains the stated goal for their
sum:

[T+ To+-+Ta] = {[B]}B—A {[B]}B—B+A
{([T.J}B—B+A A<B

Note the extra level of grouping enclosing each of [T1], [T2], ..., [T»]. This will
ensure that register B, used to compute the sum of the terms, is not clobbered
by the intermediate computations of the individual terms. Actually, the group
enclosing [T1] is unnecessary, but it turns out to be simpler if all terms are treated
the same way.

The code sequence “{ [12] } B «+ B+ A” can be translated into the following
equivalent code sequence: “{_,p—pyaj[T2] }”. This observation turns out to
be the key to the implementation: The “_,p_p4a)” is generated before Ty is
translated, at the same time as the ‘+’ operator between T; and T5 is seen.

Now, the specification of the translation scheme is straightforward:

[f] = A<f
[(EN] = [£]
[T+ T+ +T] = A{opalli]l} {opoprall2]}
{op—pra[Tn]} A<B

[FiL*Fyx---xF,] = {Q[B&A] [Fi]} {<—>[B&B*A] [F]}
{oB—Bsa[Fm]} A< B

By structural induction, it is easily seen that the stated property is attained.
By inspection of this translation scheme, we see that we have to generate the
following code:

e we must generate “{%[BHA]{%[BHA]” at the left border of an expression
(i.e., for each left parenthesis and the implicit left parenthesis at the begin-
ning of the whole expression);

e we must generate “}A < B}A < B” at the right border of an expression
(i.e., each right parenthesis and the implicit right parenthesis at the end of
the full expression);

e ‘«’ is replaced by “Hc.(p—psa)”;
e ‘+"is replaced by “}A < BH_p—ptal—[B—a)”;

e when we see (expect) a numeric quantity, we insert the assignment code
“A <" in front of the quantity and let TEX parse it.

5 Implementation

For brevity define
(numeric) — (number) | (dimen) | (glue) | (muglue)

So far we have ignored the question of how to determine the type of register
to be used in the code. However, it is easy to see that (1) ‘«’ always initiates
an (integer factor), (2) all (numeric)s in an expression, except those which are
part of an (integer factor), are of the same type as the whole expression, and all
(numeric)s in an (integer factor) are (number)s.

We have to ensure that A and B always have an appropriate type for the
(numeric)s they manipulate. We can achieve this by having an instance of A
and B for each type. Initially, A and B refer to registers of the proper type for the
whole expression. When an (integer factor) is expected, we must change A and B
to refer to integer type registers. We can accomplish this by including instructions
to change the type of A and B to integer type as part of the replacement code
for “x; if we append such instructions to the replacement code described above,
we also ensure that the type-change is local (provided that the type-changing
instructions only have local effect). However, note that the instance of A referred
to in g x4 is the integer instance of A.

We shall use \begingroup and \endgroup for the open-group and close-group
characters. This avoids problems with spacing in math (as pointed out to us by
Frank Mittelbach).

The dcolumn package*

David Carlisle
2001/05/28

Abstract

This package defines a system for defining columns of entries in an array
or tabular which are to be aligned on a ‘decimal point’.

This package defines D to be a column specifier with three arguments.
D{(sep.tex)}{(sep.dvi)}{{decimal places)}

(sep.tex) should be a single character, this is used as the separator in the .tex
file. Thus it will usually be ‘.” or *,’.

(sep.dvi) is used as the separator in the output, this may be the same as the
first argument, but may be any math-mode expression, such as \cdot. It should be
noted that dcolumn always uses math mode for the digits as well as the separator.

(decimal places) should be the maximum number of decimal places in the
column. If this is negative, any number of decimal places can be used in the
column, and all entries will be centred on (the leading edge of) the separator. Note
that this can cause a column to be too wide, compare the first two columns in the
example below. If this argument is positive, the column uses macros equivalent to
\rightdots \endrightdots of array.sty, otherwise the macros are essentially
equivalent to \centerdots \endcenterdots.

You may not want to use all three entries in the array or tabular preamble,
so you may define your own preamble specifiers using \newcolumntype.

For example we may say:

\newcolumntype{d} [1]1{D{.}{\cdot}{#1}}

d takes a single argument specifying the number of decimal places, and the
.tex file should use ., with - being used in the output.
\newcolumntype{.{D{.}{.}{-1}}

. specifies a column of entries to be centred on the ..

\newcolumntype{, }{D{,}{,}{2}}
, specifies takes a column of entries with at most two decimal places after a ,.
The following table begins \begin{tabular}{|d{-1}1d{2}!.I, |}

*This file has version number v1.06, last revised 2001/05/28.

1.2 1.2 1.2 1,2

123 123 | 125 | 300,2
11212 11212 | 861.20 | 674,29
184 184 10 69
4 4 A
A

Note that the first column, which had a negative (decimal places) argument is
wider than the second column, so that the decimal point appears in the middle
of the column. Also note that this package deals correctly with entries with no
decimal part, no integer part, and blank entries.

If you have table headings (inserted with \multicolumn{1}{c}{. .2} to over-
ride the D column type) then it may be that neither of the above ‘centred’ or ‘right
aligned’ forms is quite what you want.

head head head wide heading | wide heading | wide heading
1.2 1.2 1.2 1.2 1.2 1.2
11212.2 11212.2 | 11212.2 4 4 A4
4 A4 A4

In both of these tables the first column is set with D{.}{.}{-1} to produce
a column centered on the ., and the second column is set with D{.}{.}{1} to
produce a right aligned column.

The centered column produces columns that are wider than necessary to fit in
the numbers under a heading as it has to ensure that the decimal point is centred.
The right aligned column two does not have this drawback, but under a wide
heading a column of small right aligned figures looks a bit odd.

In version v1.03 a third possibility is introduced. The third (decimal places)
argument may specify both the number of digits to the left and to the right of the
decimal place. The third column in the first table above is set with D{.}{.}{5.1}
and in the second table, D{.}{.}{1.1}, to specify ‘five places to the left and one
to the right’ and ‘one place to the left and one to the right’ respectively. (You
may use ‘,” or other tokens, not necessarily ‘.” in this argument.) The column of
figures is then positioned such that a number with the specified numbers of digits
is centred in the column.

This notation also enables columns that are centred on the mid-point of the
separator, rather than its leading edge; for example D{+}{\, \pm\, }{3, 3} will give
nice, symmetric layout of up to three digits on either side of a + sign.

1 The Macros

1 (xpackage)
First we load array.sty if it not already loaded.
2 \RequirePackage{array}

The basic ideas behind these macros are explained in the documentation for
array.sty. However they use three tricks which may be useful in other contexts.

*

The delarray package

David Carlisle
carlisle@cs.man.ac.uk

1994/03/14

1 Examples

The addition to array.sty added in delarray.sty is a system of implicit \left
\right pairs. If you want an array surrounded by parentheses, you can enter:

\begin{array}({cc}) ...
a b
c d

Similarly if an environment equivalent to PLAIN TEX’s \cases could be defined
by:
\begin{array}\{{1L}. ...

f(x):{o ifz=0

sin(z)/x otherwise

Here L is supposed to denote a column of left aligned L-R text. It may be defined
via: \newcolumntype{L}{>{$}1<{$}}, as discussed in array.sty. Note that as
the delimiters must always be used in pairs, the ‘.’ must be used to denote a ‘null
delimiter’.

This feature is especially useful if the [t] or [b] arguments are also used.
In these cases the result is not equivalent to surrounding the environment by
\left...\right, as can be seen from the following example:

1 1

1 2 1 2

1 2 3 not 1 2 3
3 3

\begin{array}[t] ({c}) 1\\2\\3 \end{array}
\begin{array}[c] ({c}) 1\\2\\3 \end{array}
\begin{array}[b] ({c}) 1\\2\\3 \end{array}

*This file has version number v1.01, last revised 1994/03/14.

\@tabarray

\@Qarray

\@del@array

\quad\mbox{not}\quad

\left (\begin{array}[t]{c} 1\\2\\3 \end{array}\right)
\left (\begin{array}[c]{c} 1\\2\\3 \end{array}\right)
\left (\begin{array}[bl{c} 1\\2\\3 \end{array}\right)

2 The Macros

1 (xpackage)
2 \RequirePackage{array}[1994/02/03]

This macro tests for an optional bracket and then calls up \@@array or
\@@array[c] (as default).

3 \def\@tabarray{\@ifnextchar [{\@@array}{\@Qarray[c]}}

This macro tests for an optional delimiter before the left brace of the main pream-
ble argument. If there is no delimiter, \@arrayleft and \@arrayright are made
a no-ops, and \@array is called with the positional argument. Otherwise call
\@del@array.

4 \def\@@array [#1]{\@ifnextchar\bgroup

5 {\let\@arrayleft\relax\let\@arrayright\relax\@array[#1]1}

6 {\@del@array[#1]1}}

We now know that we have an array (or tabular) with delimiters.

7 \def\@delQarray [#1]#2#3#4{%

The following line is completely redundant but it does catch errors involving de-
limiters before the processing of the alignment begins. A common error is likely
to be omiting the ‘.’ in a \cases-type construction. This causes the first token
of the alignment to be gobbled, possibly causing lots of spurious errors before the
cause of the error, the missing delimiter, is discovered as \@arrayright puts the
alignment and the delimiters together.

8 \setbox\z@\hbox{$\left#2\right#4$}/,

In the case of a ‘¢’ argument we do not need to rebox the alignment, so we can
define \@arrayleft and \@arrayright just to insert the delimiters.

9 \if#lc\def\@arrayleft{\left#2}\def\Q@arrayright{\right#4}J

Otherwise we (should) have a [t] or [b] argument, so first we store the alignment,
without delimiters in box0.

10 \else\def\@arrayleft{\setbox\z@})

Then after the alignment is finished:

11 \def\@arrayright{/

Calculate the amount the box needs to be lowered (this will be negative in the
case of [b]). A little bit of arithmetic cf. the TEXBook, Appendix G, rule 8. We
calculate the amount this way, rather than just taking the difference between the
depth of box(0 and the depth of the box defined below, as the depth of that box

The enumerate package”

David Carlisle
1999/03/05

Abstract

This package gives the enumerate environment an optional argument
which determines the style in which the counter is printed.

An occurence of one of the tokens A a I i or 1 produces the value
of the counter printed with (respectively) \Alph \alph \Roman \roman or
\arabic.

These letters may be surrounded by any strings involving any other TEX
expressions, however the tokens A a I i 1 must be inside a { } group if
they are not to be taken as special.

1 Examples

\begin{enumerate} [EX i.]
\item one one one one one one one
one one one one\label{LA}

\item two
\begin{enumerate} [{example} a)]
\item one of two one of two

one of two\label{LB}

\item two of two

EX i. one one one one one one one
one one one one one

EX ii. two

example a) one of two one

of two one of \end{enumerate}
fwo \item two of two
\end{enumerate}

example b) two of two \end{enumerate}

A-1 one
A-2 two

\begin{enumerate} [{A}-1]
\item one\label{LC}
\item two
\end{enumerate}

\label and \ref may be used as with the standard enumerate environment.
\ref only produces the counter value, not the whole label. \ref prints the value

*This file has version number v3.00, last revised 1999/03/05.

\@enlab

\@enQmark

\@enLabel

\@enSpace
\@enSpQce

\@enGroup

\@enOther

\@enloop
\@enloop®

in the same style as \item, as determined by the presence of one of the tokens
A a I i 1in the optional argument. In the above example \ref{LA}, \ref{LB}
and \ref{LC} produce ‘1’, ‘iia’ and ‘1’ respectively.

2 Macros

1 (xpackage)
Internal token register used to build up the label command from the optional
argument.

2 \newtoks\@enLab

This just expands to a ‘?’. \ref will produce this, if no counter is printed.
3 \def\QenQmark{?}

The next four macros build up the command that will print the item label.
They each gobble one token or group from the optional argument, and add corre-
sponding tokens to the register \@enLab. They each end with a call to \@enloop,
which starts the processing of the next token.

Add the counter to the label. #2 will be one of the ‘special’ tokens A a I i 1,
and is thrown away. #1 will be a command like \Roman.

4 \def\@enLabel#1#2{},

5 \edef\@enThe{\noexpand#1{\Q@enumctr}}

6 \Q@enLab\expandafter{\the\@enLab\csname the\@enumctr\endcsnamely,
7 \@enloop}

Add a space to the label. The tricky bit is to gobble the space token, as you can
not do this with a macro argument.

8 \def\Q@enSpace{\afterassignment\Q@enSp@ce\let\@tempa= }
9 \def\@enSp@ce{\@enLab\expandafter{\the\CenLab\space}\@enloop}

Add a { } group to the label.
10 \def\@enGroup#1{\@enLab\expandafter{\the\@enLab{#1}}\@enloop}

Add anything else to the label
11 \def\@enOther#1{\@enLab\expandafter{\the\@enLab#1}\Q@enloop}

The body of the main loop. Eating tokens this way instead of using \@tfor lets
you see spaces and all braces. \@tfor would treat a and {a} as special, but not

{{a}}.
12 \def\@enloop{\futurelet\@entemp\@enloop@}

13 \def\@enloop@{Y

14 \ifx A\Q@entemp \def\@tempa{\@enLabel\Alph }\else
15 \ifx a\@entemp \def\@tempa{\@enLabel\alph }\else
16 \ifx i\@entemp \def\@tempa{\@enLabel\roman }\else
17 \ifx I\Q@entemp \def\@tempa{\@enLabel\Roman }\else

File not found error®

Frank Mittelbach
March 10, 2004

1 Introduction

When ETEX 2¢ is unable to find a file it will ask for an alternative file name.
However, sometimes the problem is only noticed by TEX, and in that case TEX
insists on getting a valid file name; any other attempt to leave this error loop will
fail.! Many users try to respond in the same way as to normal error messages,
e.g. by typing (return), or s or x, but TgX will interpret this as a file name and
will ask again.

To provide a graceful exit out of this loop, we define a number of files which
emulate the normal behavior of TEX in the error loop as far as possible.

After installing these files the user can respond with h, q, r, s, e, x, and on
some systems also with (return) to TEX’s missing file name question.

2 The documentation driver

This code will generate the documentation. Since it is the first piece of code in
the file, the documentation can be obtained by simply processing this file with
BTEX 2¢.

1 (xdriver)

2 \documentclass{ltxdoc}

3 \begin{document} \DocInput{fileerr.dtx} \end{document}

4 (/driver)

3 The files

3.1 Asking for help with h

When the user types h in the file error loop TEX will look for the file h.tex. In this
file we put a message informing the user about the situation (we use ~~J to start

*This file has version v1.0e last revised 1997/07/07
1On some systems, TEX accepts a special character denoting the end of file to return from
this loop, e.g. Control-D on UNIX or Control-Z on DOS.

new lines in the message) and then finish with a normal \errmessage command
thereby bringing up TEX’s normal error mechanism.

5 (xhelp)

6 \newlinechar=‘\""J

7 \message{!The file name provided could not be found.""J%
8 Use ‘<enter>’ to continue processing,”"J%

9 ‘S’ to scroll future errors~"JJ

10 ‘R’ to run without stopping,~~J/

11 ‘Q’ to run quietly,”"J%

12 or ‘X’ to terminate TeX}

13 \errmessage{}

14 (/help)

3.2 Scrolling this and further errors with s

For the response s we put a message into the file s.tex and start \scrollmode
to scroll further error messages in this run. On systems that allow .tex as a file
name we can also trap a single (return) from the user.

15 (+scroll | return | run, batch) \message{File ignored}

16 (+scroll) \scrollmode
17 (+run) \nonstopmode
18 (+batch) \batchmode

3.3 Exiting the run with x or e

If the user enters x or e to stop TEX, we need to put something into the cor-
responding file which will force TEX to give up. We achieve this by turning off
terminal output and then asking TEX to stop: first by using the internal IXTEX
name \@@end, and if that doesn’t work because something other than IMTEX is
used, by trying the TEX primitive \end.

19 (+edit | exit) \batchmode \csname @@end\endcsname \end

We end every file with an explicit \endinput which prevents the docstrip program
from putting the character table into the generated files.

20 \endinput

A font sampler

Alan Jeffrey
v0.11

1 Introduction

This document describes the font test document fontsmpl.tex and the accom-
panying package fontsmpl.sty. This produces a test of a font family, printing a
sample text, a table of accents, and a sample of commands such as \pounds.

It can be used in two ways. The fontsmpl package provides the command
\fontsample, which produces a sample of the current font.

The fontsmpl document prompts interactively for a font family (for example
‘emr’) and produces a sample of that family.

2 Documentation

This docstrip document has three docstrip options:
e document the code for fontsmpl.tex.
e package the code for fontsmpl.sty.
e driver this documentation.

The code for the driver is:
1 (xdriver)
2 \NeedsTeXFormat{LaTeX2e}
3 \documentclass{ltxdoc}
4 \begin{document}
5 \DocInput{fontsmpl.dtx}
6 \end{document}
7 (/driver)

3 Font sample document

The sample document prompts for a family, and uses the fontsmpl package. If
there is a file fontsmpl.cfg, this is loaded.

8 (xdocument)

9 \NeedsTeXFormat{LaTeX2e}

10 \documentclass{article}

11 \usepackage{fontsmpl}

12 \makeatletter

13 \InputIfFileExists{fontsmpl.cfg}t{}{}

14 \makeatother

15 \typein[\family] {Please enter a family name (for example ‘cmr’).}
16 \title{Test of \LaTeX{} font family ‘\family’}
17 \author{Font sample produced with ‘fontsmpl’}
18 \raggedright

19 \begin{document}
20 \maketitle
21 \fontfamily{\family}\selectfont
22 \fontencoding{T1}\selectfont\fontsample
23 \fontencoding{0T1}\selectfont\fontsample
24 \itshape
25 \fontencoding{T1}\selectfont\fontsample
26 \fontencoding{0T1}\selectfont\fontsample
27 \slshape
28 \fontencoding{T1}\selectfont\fontsample
29 \fontencoding{0T1}\selectfont\fontsample
30 \scshape
31 \fontencoding{T1}\selectfont\fontsample
32 \fontencoding{0T1}\selectfont\fontsample
33 \upshape\bfseries
34 \fontencoding{T1}\selectfont\fontsample
35 \fontencoding{0T1}\selectfont\fontsample
36 \itshape
37 \fontencoding{T1}\selectfont\fontsample
38 \fontencoding{0T1}\selectfont\fontsample
39 \slshape

40 \fontencoding{T1}\selectfont\fontsample
41 \fontencoding{0T1}\selectfont\fontsample
42 \scshape

43 \fontencoding{T1}\selectfont\fontsample
44 \fontencoding{0T1}\selectfont\fontsample
45 \end{document}

46 (/document)

4 Font sample package

The fontsmpl package is a ITEX 2¢ package.

47 (xpackage)
48 \NeedsTeXFormat{LaTeX2e}
49 \ProvidesPackage{fontsmpl}[1994/10/29 Font sample package]

\fontsample The \fontsample command prints out a sample text, a selection of glyphs, and a
table of accents.

\fontsampletext

\fontsampleglyphs
\fontsampleglyph

50 \newcommand{\fontsample}{%

Test of font \f@encoding/\f@family/\f@series/\f@shape.
\fontsampletext

\fontsampleglyphs

\fontsampleaccents

51
52
53
54

55

A sample text, taken from Knuth’s testfont.tex.

56 \newcommand{\fontsampletext}{/
Some text:
\begin{quote}\begin{flushleft}

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
r
78
79
80
81
82

83 }

\\

\\

\\

On November 14, 1885, Senator \& Mrs. Leland Stanford called
together at their San Francisco mansion the 24"prominent men who
had been chosen as the first trustees of The Leland Stanford
Junior University. They handed to the board the Founding Grant
of the University, which they had executed three days before.
This document---with various amendments, legislative acts, and
court decrees---remains as the University’s charter. In bold,
sweeping language it stipulates that the objectives of the
University are ‘‘to qualify students for personal success and
direct usefulness in life; and to promote the publick welfare by
exercising an influence in behalf of humanity and civilization,
teaching the blessings of liberty regulated by law, and
inculcating love and reverence for the great principles of
government as derived from the inalienable rights of man to life,
liberty, and the pursuit of happiness.’’

(' “THE DAZED BROWN FOX QUICKLY GAVE 12345--67890 JUMPS!)
?‘But aren’t Kafka’s Schlo\ss\

and \AE sop’s \OE uvres often na\"\i ve vis-\‘a-vis the
d\ae monic ph\oe nix’s official r\"ole in fluffy s\t ouffl\’es?

\end{flushleft}\end{quote}

A list of sample glyph commands.

84 \newcommand{\fontsampleglyphs}{/
Some glyphs:
\begin{quote}\begin{flushleft}

85
86
87
88
89
90
91
92
93
94
95

\fontsampleglyph{\#}
\fontsampleglyph{\$}
\fontsampleglyph{\%}
\fontsampleglyph{\&}
\fontsampleglyph{\AA}
\fontsampleglyph{\AE}
\fontsampleglyph{\DH}
\fontsampleglyph{\DJ}
\fontsampleglyph{\L}

96 \fontsampleglyph{\NG}

97 \fontsampleglyph{\OE}

98 \fontsampleglyph{\0}

99 \fontsampleglyph{\P}

100 \fontsampleglyph{\SS}

101 \fontsampleglyph{\S}

102 \fontsampleglyph{\TH}

103 \fontsampleglyph{_}

104 \fontsampleglyph{\aa}

105 \fontsampleglyph{\ae}

106 \fontsampleglyph{\copyright}

107 \fontsampleglyph{\dag}

108 \fontsampleglyph{\ddag}

109 \fontsampleglyph{\dh}

110 \fontsampleglyph{\dj}

111 \fontsampleglyph{\dots}

112 \fontsampleglyph{\guillemotleft}
113 \fontsampleglyph{\guillemotright}
114 \fontsampleglyph{\guilsinglleft}
115 \fontsampleglyph{\guilsinglright}
116 \fontsampleglyph{\i}

117 \fontsampleglyph{\j}

118 \fontsampleglyph{\1}

119 \fontsampleglyph{\ng}

120 \fontsampleglyph{\oe}

121 \fontsampleglyph{\o}

122 \fontsampleglyph{\pounds}

123 \fontsampleglyph{\quotedblbase}

124 \fontsampleglyph{\quotesinglbase}
125 \fontsampleglyph{\ss}

126 \fontsampleglyph{\textasciicircum}
127 \fontsampleglyph{\textasciitilde}
128 \fontsampleglyph{\textbackslash}
129 \fontsampleglyph{\textbar}

130 \fontsampleglyph{\textbullet}

131 \fontsampleglyph{\textcompwordmark}
132 \fontsampleglyph{\textemdash}

133 \fontsampleglyph{\textendash}

134 \fontsampleglyph{\textexclamdown}
135 \fontsampleglyph{\textgreater}

136 \fontsampleglyph{\texthyphenchar}
137 \fontsampleglyph{\textless}

138 \fontsampleglyph{\textperiodcentered}
139 \fontsampleglyph{\textquestiondown}
140 \fontsampleglyph{\textquotedblleft}
141 \fontsampleglyph{\textquotedblright}
142 \fontsampleglyph{\textquotedbl}

143 \fontsampleglyph{\textquoteleft}
144 \fontsampleglyph{\textquoteright}
145 \fontsampleglyph{\textvisiblespace}

146 \fontsampleglyph{\th}

147 \fontsampleglyph{\{}
148 \fontsampleglyph{\}}
149 \end{flushleft}\end{quote}
150 }

151 \newcommand{\fontsampleglyphl} [1]{%
152 \ifx#1\@undefined

153 {\typewriterfont\string#1}~is~undefined
154 \else

155 {\typewriterfont\string#1}~is~ ‘#1’

156 \fi

157 }

\fontsampleaccents A sample of accents.

\fontsampleaccent 158 \newcommand{\fontsampleaccents}{%

159 Some accents:

160 \begin{quote}\begin{flushleft}
161 \fontsampleaccent{\"} \\
162 \fontsampleaccent{\’} \\
163 \fontsampleaccent{\.} \\
164 \fontsampleaccent{\=} \\
165 \fontsampleaccent{\H} \\
166 \fontsampleaccent{\"} \\
167 \fontsampleaccent{\‘} \\
168 \fontsampleaccent{\b} \\
169 \fontsampleaccent{\c} \\
170 \fontsampleaccent{\d} \\
171 \fontsampleaccent{\k} \\
172 \fontsampleaccent{\u} \\
173 \fontsampleaccent{\v} \\
174 \fontsampleaccent{\~}
175 \end{flushleft}\end{quote}

176 }

177 \newcommand{\fontsampleaccent}[1]1{/
178 \makebox [1em] [r]{\typewriterfont\string#1}
179 \makebox [16em] [1]1{%

180 #1A#1C#1D#1E#1GH#1T#1L#1NY,

181 #10#1R#1S#1T#1U#1Y#1Z),

182 #latlc#ld#tle#tlgh1\i#t1i#11#1n),
183 #lo#ir#ls#lt#lukly#lz),

184 }

185 }

\typewriterfont Not all sites have the T1 typewriter fonts, so we set the typewriter font to be a
fixed font.

186 \DeclareFixedFont{\typewriterfont}
187 {\encodingdefault}{\ttdefault}{\mddefault}{\updefault}{10}

\TextSymbolUnavailable Switch off the error message from missing glyphs.

188 \def\TextSymbolUnavailable#1{/,

189 \textbf{?}\PackageInfo{fontsmpl}{/

190 Command \protect#1 undefined in encoding \f@encoding
191 Y4

192 }

193 (/package)

Footnotes in a multi-column layout*

Frank Mittelbach
Electronic Data Systems (Deutschland) GmbH
Eisenstrafie 56 N15
D-6090 Riisselsheim

March 10, 2004

1 Preface to version 1.1

The new release is a basically unchanged version of
the original. T upgraded the macros so that they
work with IXTEX 2¢ and used some of the additional
flexibility introduced therein. For example, the com-
mand \preparefootins is now automatically called
at \begin{document}, thus allowing the user to ad-
just the \textheight in the preamble.

It is not surprisingly that I was forced to change
some of the macros because they dig deep into
TEX’s output routines. Fortunately this is some-
thing normally not necessary when upgrading other
TEX 2.09 styles to IXTEX 2¢ packages.

I also upgraded the documentation to conform to
the I TEX 2¢ terminology, e.g., this is a package since
document classes will not know about it. However
it is very likely that i have missed some necessary
corrections.

2 Introduction

The placement of footnotes in a multi-column lay-
out always bothered me. The approach taken by
BTEX (i.e., placing the footnotes separately under
each column) might be all right if nearly no foot-
notes are present. But it looks clumsy when both
columns contain footnotes, especially when they oc-
cupy different amounts of space.

In the multi-column package [5], I used page-wide
footnotes at the bottom of the page, but again the

result doesn’t look very pleasant since short foot-
notes produce undesired gaps of white space. Of
course, the main goal of this package was a balancing
algorithm for columns which would allow switching
between different numbers of columns on the same
page. With this feature, the natural place for foot-
notes seems to be the bottom of the page! but look-
ing at some of the results it seems best to avoid
footnotes in such a layout entirely.

Another possibility is to turn footnotes into end-
notes, i.e., printing them at the end of every chapter
or the end of the entire document. But I assume ev-
eryone who has ever read a book using such a layout
will agree with me, that it is a pain to search back
and forth, so that the reader is tempted to ignore
the endnotes entirely.

When I wrote the article about “Future extensions
of TEX” [6] I was again dissatisfied with the outcome
of the footnotes, and since this article should show
certain aspects of high quality typesetting, I decided
to give the footnote problem a try and modified the
IMTEX output routine for this purpose. The layout I
used was inspired by the yearbook of the Gutenberg
Gesellschaft Mainz [2]. Later on, I found that it is
also recommended by Jan White [9]. On the layout
of footnotes I also consulted books by Jan Tschi-
chold [8] and Manfred Simoneit [7], books, I would

*The IATEX package ftnright.sty which is described in
this article has the version number v1.le dated 2000/04/14.

1. You can not use column footnotes at the bottom, since
the number of columns can differ on one page.

recommend to everyone being able to read German
texts.

2.1 Description of the new layout

The result of this effort is presented in this paper
and the reader can judge for himself whether it was
successful or not.> The main idea for this layout is
to assemble the footnotes of all columns on a page
and place them all together at the bottom of the
right column. Allowing for enough space between
footnotes and text, and in addition, setting the foot-
notes in smaller type® I decided that one could omit
the footnote separator rule which is used in most
publications prepared with TEX.* Furthermore, I
decided to place the footnote markers® at the base-
line instead of raising them as superscripts.®

All in all, T think this generates a neat layout, and
surprisingly enough, the necessary changes to the
ETEX output routine are nevertheless astonishingly
simple.

2.2 The use of the package

This package might be used together with any other
package for IXTEX which does not change the three
internals changed by ftnright.sty.” In most cases,
it is best to use this package as the very last package
in the preamble to make sure that its settings are not
overwritten by other packages.

It is unfortunate that the current I¥TEX has nearly
no provisions to make such changes without over-
writing the internal routines. In the EXTEX3 imple-
mentation, we will certainly add some hooks that
will make such changes more easy.

3 The documentation driver

The first bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be
extracted from this file by the docstrip program.
If you don’t want to make any changes to the pre-
sentation you can alternatively process the .dtx file

directly with IMTEX 2¢ to obtain the documentation.

1 (xdriver)

2 \documentclass[twocolumn]{article}

3

4 \usepackage{ftnright}

5 \usepackage{doc}

6 \AtBeginDocument{\MakeShortVerb{\ |}}

7

8 \newcommand{\TUB}H{\sl TUGboat\/}}

9 \renewcommand\DescribeMacro[1]{\fbox
10 {\PrintDescribeMacro{#1}}}
11 \renewcommand\DescribeEnv[1]{\fbox
12 {\PrintDescribeEnv{#1}}}

13 \renewcommand\PrintMacroName [1]{}
14

15 \setlength{\parindent}{1lem}

16 \setlength{\parskip}

17 {2pt pluslipt minusipt}
18 \setlength{\headsep}{20pt}

19 \setlength{\columnsep}{1.5pc}

20 \renewcommand{\bottomfraction}{.4}
21

22 \flushbottom
23 \CodelineIndex
24 \RecordChanges % produce history

2. Please note, that this option only changed the placement
of footnotes. Since this article also makes use of the doc
package [1], that assigns tiny numbers to code lines sprincled
throughout the text, the resulting design is not perfect. This
package is now a standard part of IATEX 2¢.

3. The standard layout in TUGboat uses the same size for
footnotes and text, giving the footnotes, in my opinion, much
too much prominence.

4. People who prefer the rule can add it by redefining the
command \footnoterule [3, p. 156]. Please, note, that this
command should occupy no space, so that a negative space
should be used to compensate for the width of the rule used.

5. The tiny numbers or symbols, e.g., the ‘5’ in front of this
footnote.

6. Of course, this is only done for the mark preceeding the
footnote text and not the one used within the main text where
a raised number or symbol set in smaller type will help to keep
the flow of thoughts, uninterrupted.

7. These are the macros \@startcolumn, \@makecol and
\@outputdblcol as we will see below. Of course, the package
will take only effect with a document class using a twocolumn
layout (like 1tugboat) or when the user additionally specifies
twocolumn as a document class option in the \documentclass
command.

25 \EnableCrossrefs

26

27 \setcounter{IndexColumns}{2}

28 \IndexPrologue{\section{Index}

290 All numbers denote code lines where
30 the corresponding entry is used,
31 underlined entries point to the
32 definition.}

33

34 \begin{document}

35 \DocInput{ftnright.dtx}

36 \end{document}

37 (/driver)

4 The Implementation

As usual, we start by identifying the current version
of this package file in the transcript file.® This ac-
tually happens at the very top of this file so it is
commented out here.

\ProvidesPackage{ftnright}[\filedate\space
LaTeX2e package \fileversion]

To implement the layout described, above we have
to distinguish between the left and the right column
on a page. For this purpose ITEX maintains the
switch \if@firstcolumn. When assembling mate-
rial for the left (i.e., the first) column, footnotes
should take up no space, since they are held over
for the second column. In the second column these
footnotes are combined with the ones found there
and placed a suitable distance from the main text
at the bottom of this column.

This means that we have to change certain param-
eters for the insertion \footins when we construct
the second column. The right place to do this is
in the BTEX macro \@outputdblcol which we are
going to change later on. What settings for the in-
sertion parameters are appropriate? For setting the
first column \count\footins and \skip\footins
should both be zero since footnotes are held over
while for the second column \count\footins should
be 1000 and the \skip\footins has to be set to
the desired separation between main text and foot-
notes.”

We will allow one column of footnotes (i.e., the
right column) at most, so that \dimen\footins has
to equal \textheight. In principle, it would be pos-
sible to allow for even more footnotes, but this would
complicate matters enormously.*°

Since a document usually starts with a left column,
we have to set \count and \skip\footins on top-
level to zero. For this purpose, we define a macro
\preparefootins which will first save the current
value of \skip\footins in a safe place. This saved
value will be used later for the second column. In
this way, it is possible for the user or a designer of
a document class to adjust this parameter without
fiddling with the code of this package file.

38 (xpackage)

39 \def\preparefootins{}

40 \global\rcol@footinsskip\skip\footins
41 \global\skip\footins\z@

42 \global\count\footins\z@

We will also assign \textheight to \dimen
\footins to allow the user to change this parame-
ter in the preamble.

43 \global\dimen\footins\textheight}

It is necessary to make the assignments above
\global because we are going to use this macro in
the output routine which has an implicit grouping
level to keep the changes made by it local.

8. Nico Poppelier suggested omitting the \typeout state-
ments in the production version of the files to avoid showing
all that unnecessary information to the user. While I accept
his criticism as valid, I decided that this information should at
least be placed into the transcript file to make it easier to de-
tect problems arising from the use of older versions. This hap-
pens now automatically as the command \ProvidesPackage
will only write to the transcript file.

9. A value of 1000 means that there is a one-to-one relation-
ship between the real size of the footnote and the size finally
occupied by the footnote on the current page.

10. It is not possible to make \dimen\footins larger than
\textheight directly, because this would result in a full left
column (with text) and more than one column of footnotes.
Instead, one has to make footnotes visible to the page gener-
ation algorithm again at the moment when a full column of
footnotes is assembled, but we still have some space left in the
first column. It is a nice enhancement, and, I suppose, it is of
some value for preparing publications in certain disciplines,
so here is the challenge ...

The hhline package*

David Carlisle
carlisle@cs.man.ac.uk

1994/05/23

Abstract

\hhline produces a line like \hline, or a double line like \hline\hline,
except for its interaction with vertical lines.

1 Introduction

The argument to \hhline is similar to the preamble of an array or tabular. It
consists of a list of tokens with the following meanings:

= A double hline the width of a column.
- A single hline the width of a column.

A column with no hline.

| A vline which ‘cuts’ through a double (or single) hline.
A vline which is broken by a double hline.

A double hline segment between two vlines.

The top half of a double hline segment.

The bottom half of a double hline segment.

*{3}{==#} expands to ==#==#==#, as in the *-form for the preamble.

* O o H

If a double vline is specified (|| or ::) then the hlines produced by \hhline are
broken. To obtain the effect of an hline ‘cutting through’the double vline, use a
or omit the vline specifiers, depending on whether or not you wish the double
vline to break.

The tokens t and b must be used between two vertical rules. |tb| produces
the same lines as #, but is much less efficient. The main use for these are to make
constructions like |t: (top left corner) and :b| (bottom right corner).

If \hhline is used to make a single hline, then the argument should only
contain the tokens -, ~ and | (and *-expressions).

*This file has version number v2.03, last revised 1994/05/23.

\HH@box

\HHQ@add

\HH@xexpast
\HH@xexnoop

An example using most of these features is:

\begin{tabular}{||ccllclc||}
\hhline{|t:==:t:==:t|}

a&b&cld\\

\hhline{|:==:|~|~||} | a bl
182&3%4\\ ————
\hhline{#==#"|=#}
i&j&k&I\\
\hhline{||--I1--|1}
wlx&y&z\\
\hhline{|b:==:b:==:b|}
\end{tabular}

[N

W

—
<= w o
N

The lines produced by I¥TEX’s \hline consist of a single (TEX primitive)
\hrule. The lines produced by \hhline are made up of lots of small line seg-
ments. TEX will place these very accurately in the .dvi file, but the program that
you use to print the .dvi file may not line up these segments exactly. (A similar
problem can occur with diagonal lines in the picture environment.)

If this effect causes a problem, you could try a different driver program, or if
this is not possible, increasing \arrayrulewidth may help to reduce the effect.

2 The Macros

1 (xpackage)

Makes a box containing a double hline segment. The most common case, both
rules of length \doublerulesep will be stored in \box1, this is not initialised until
\hhline is called as the user may change the parameters \doublerulesep and
\arrayrulewidth. The two arguments to \HH@box are the widths (ie lengths) of
the top and bottom rules.

2 \def \HH@box#1#2{\vbox{%

3 \hrule \Gheight \arrayrulewidth \@width #1

4 \vskip \doublerulesep

5 \hrule \@height \arrayrulewidth \@width #2}}

Build up the preamble in the register \toks@.
6 \def\HHOadd#1{\toks@\expandafter{\the\toks@#1}}

We ‘borrow’ the version of \@xexpast from Mittelbach’s array.sty, as this allows
to appear in the argument list.

7 \def \HHOxexpast#1x#2#3#4\00{}

8 \@tempcnta #2

9 \toks@={#1}\@temptokena={#3}/,

10 \let\the@toksz\relax \let\the@toks\relax
11 \def\@tempa{\theQ@toksz}%

*

The indentfirst package

David Carlisle
carlisle@cs.man.ac.uk

1995/11/23

Abstract

Make the first line of all sections etc., be indented by the usual paragraph
indentation. This should work with all the standard document classes.

\if@afterindent IXTEX uses the switch \if@afterindent to decide whether to indent after a section
heading. We just need to make sure that this is always true.
1 (xpackage)
2 \let\@afterindentfalse\@afterindenttrue
3 \@afterindenttrue
4 (/package)

*This file has version number v1.03, last revised 1995/11/23.

1

Displaying page layout variables

Kent McPherson a.o.*

2000/09/25

Introduction

This BTEX 2¢ package is a reimplementation of layout.sty by Kent McPherson.
It defines the command \layout which produces an overview of the layout of
the current document. The command \layout* recomputes the values it uses to
produce the overview.

this document.

2

The implementation

The figure on the next page shows the output of the \layout command for

This package prints a figure to illustrate the layout that is implemented by the
document class. In the figure several words appear.
sequences to be able to select a different language.

1 (xpackage)
2 \DeclareOption{dutch}{/

3

00 N O Ut

9

\def\Headertext{Kopregel}
\def\Bodytext{Broodtekst}
\def\Footertext{Voetregel}
\def\MarginNotestext{Marge\\Notities}
\def\oneinchtext{een inch}
\def\notshown{niet getoond}

}

10 \DeclareOption{german}{%

11
12
13
14
15
16
17

18 \DeclareOption{ngerman}{\ExecuteOptions{german}}

\def\Headertext{Kopfzeile}
\def\Bodytext{Haupttext}
\def\Footertext{Fu{\ss}zeile}
\def\MarginNotestext{Rand-\\ notizen}
\def\oneinchtext{ein Zoll}
\def\notshown{ohne Abbildung}

}

They are stored in control

*Converted for INTEX 2¢ by Johannes Braams and modified by Hideo Umeki

layout package version v1.2c as of 2000/09/25

|
|
|
|
! [[} Header]
1 ' }
| &
|
|
|
|
|
|
|
|
|
|
|
|

Mérgin

Nbtes Body G)
|
|
| <:>
|
{59

G~ —

|
|
|
!)
| &)
3
|
|
| [Footer]
|
|
1

= O N 0w

one inch + \hoffset
\oddsidemargin = 82pt
\headheight = 12pt
\textheight = 550pt
\marginparsep = 11pt 10
\footskip = 30pt

\hoffset = Opt

\paperwidth = 614pt

0 O N

one inch + \voffset

\topmargin = 16pt

\headsep = 25pt

\textwidth = 355pt
\marginparwidth = 126pt
\marginparpush = Opt (not shown)
\voffset = Opt

\paperheight = 794pt

longtable

The longtable package*

David Carlislet
2000/10/22

Abstract

This package defines the longtable environment, a multi-page version of
tabular.

List of Tables

An optional table caption (used in the list of tables)
A floating table oL L
A difficult \multicolumn combination: pass 1
A difficult \multicolumn combination: pass 2
A difficult \multicolumn combination: pass3
A difficult \multicolumn combination: pass4
A summary of longtable commands

N O U W N
O OO N

1 Introduction

The longtable package defines a new environment, longtable, which has most of
the features of the tabular environment, but produces tables which may be broken
by TEX’s standard page-breaking algorithm. It also shares some features with
the table environment. In particular it uses the same counter, table, and has a
similar \caption command. Also, the standard \listoftables command lists
tables produced by either the table or longtable environments.

The following example uses most of the features of the longtable environment.
An edited listing of the input for this example appears in Section 8.

Note: Various parts of the following table will not line up correctly until
this document has been run through ETEX several times. This is a characteristic
feature of this package, as described below.

*This file has version number v4.10, last revised 2000/10/22.
TThe new algorithm for aligning ‘chunks’ of a table used in version 4 of this package was
devised coded and documented by David Kastrup, dak@neuroinformatik.ruhr-uni-bochum.de.

Table 1: A long table

* This part appears at the top of the table *
* FIRST || SECOND *
* longtable columns are specified || in the *
* same way as in the tabular | environment. *
* @{*}r| |p{1in}e{*} || in this case. *
* Each row ends with a || \\ command. *
* The \\ command has an || optional *
* argument, just as in || the *
* tabular || environment. ¥
* See the effect of \\ [10pt] | 7 *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Also \hline may be used, || as in tabular. *
* That was a \hline *
* That was \hline\hline [| . *
0 This is a \multicolumn{2}{|lc| |} I
* If a page break occurs at a \hline then || a line is drawn *
* at the bottom of one page and at the || top of the next. *
* The [t] [b] [c] argument of tabular || can not be used.*
* The optional argument may be one of || [1] [r] [c] *
* to specify whether the table should be || adjusted *
* to the left, right || or centrally. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* This goes at the || bottom. *

Table 1: (continued)

* This part appears at the top of every other page *
* First || Second *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
Some lines may take up a lot of space, like this: This last
column is a “p”

column so this

“row” of the

table can take

up several lines.

Note however

that TEX will

never break a

page within

such a row.

Page breaks

only occur

between rows of

the table or at

\hline

commands.
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots of lines || like this. *
* Lots! of lines || like this. *
* Lots of lines || like this? *
* Lots of lines || like this. *
* Lots of lines || like this. *
* These lines will || appear *
* in place of the || usual foot *
* at the end || of the table *

1This is a footnote.
2longtable takes special precautions, so that footnotes may also be used in ‘p’ columns.

LTchunksize

\endhead

\endfirsthead

\endfoot
\endlastfoot

\caption

A tabular environment
within | a floating | table

Table 2: A floating table

2 Chunk Size

In order to TEX multi-page tables, it is necessary to break up the table into smaller
chunks, so that TEX does not have to keep everything in memory at one time. By
default longtable uses 20 rows per chunk, but this can be set by the user, with e.g.,
\setcounter{LTchunksize}{10}.®> These chunks do not affect page breaking,
thus if you are using a TEX with a lot of memory, you can set LTchunksize to
be several pages of the table. TEX will run faster with a large LTchunksize.
However, if necessary, longtable can work with LTchunksize set to 1, in which
case the memory taken up is negligible. Note that if you use the commands for
setting the table head or foot (see below), the LTchunksize must be at least as
large as the number of rows in each of the head or foot sections.

This document specifies \setcounter{LTchunksize}{10}. If you look at the
previous table, after the first run of ETEX you will see that various parts of the
table do not line up. KTEX will also have printed a warning that the column
widths had changed. longtable writes information onto the .aux file, so that it can
line up the different chunks. Prior to version 4 of this package, this information
was not used unless a \setlongtables command was issued, however, now the
information is always used, using a new algorithm* and so \setlongtables is no
longer needed. It is defined (but does nothing) for the benefit of old documents
that use it.

3 Captions and Headings

At the start of the table one may specify lines which are to appear at the top
of every page (under the headline, but before the other lines of the table). The
lines are entered as normal, but the last \\ command is replaced by a \endhead
command. If the first page should have a different heading, then this should be
entered in the same way, and terminated with the \endfirsthead command. The
LTchunksize should be at least as large as the number of rows in the heading.
There are also \endfoot and \endlastfoot commands which are used in the same
way (at the start of the table) to specify rows (or an \hline) to appear at the
bottom of each page. In certain situations, you may want to place lines which
logically belong in the table body at the end of the firsthead, or the beginning of
the lastfoot. This helps to control which lines appear on the first and last page of
the table.
The \caption{. ..} command is essentially equivalent to

3You can also use the plain TEX syntax \LTchunksize=10.
4Due to David Kastrup.

\multicolumn{n}{c}{\parbox{\LTcapwidth}{...}}

where n is the number of columns of the table. You may set the width of the
caption with a command such as \setlength{\LTcapwidth}{2in} in the pream-
ble of your document. The default is 4in. \caption also writes the information
to produce an entry in the list of tables. As with the \caption command in the
figure and table environments, an optional argument specifies the text to appear
in the list of tables if this is different from the text to appear in the caption. Thus
the caption for table 1 was specified as \caption[An optional table caption
(used in the list of tables)]{A long table\label{longl}}.

You may wish the caption on later pages to be different to that on the first page.
In this case put the \caption command in the first heading, and put a subsidiary
caption in a \caption[] command in the main heading. If the optional argument
to \caption is empty, no entry is made in the list of tables. Alternatively, if
you do not want the table number to be printed each time, use the \caption*
command.

The captions are set based on the code for the article class. If you have re-
defined the standard \@makecaption command to produce a different format for
the captions, you may need to make similar changes to the longtable version,
\LT@makecaption. See the code section for more details.

A more convenient method of customising captions is given by the caption(2)
package, which provides commands for customising captions, and arranges that the
captions in standard environments, and many environments provided by packages
(including longtable) are modified in a compatible manner.

You may use the \label command so that you can cross reference longtables
with \ref. Note however, that the \label command should not be used in a
heading that may appear more than once. Place it either in the firsthead, or in
the body of the table. It should not be the first command in any entry.

4 Multicolumn entries

The \multicolumn command may be used in longtable in exactly the same way as
for tabular. So you may want to skip this section, which is rather technical, however
coping with \multicolumn is one of the main problems for an environment such
as longtable. The main effect that a user will see is that certain combinations of
\multicolumn entries will result in a document needing more runs of IXTEX before
the various ‘chunks’ of a table align.

The examples in this section are set with LTchunksize set to the minimum
value of one, to demonstrate the effects when \multicolumn entries occur in dif-
ferent chunks.

Consider Table 3. In the second chunk, longtable sees the wide multicolumn
entry. At this point it thinks that the first two columns are very narrow. All
the width of the multicolumn entry is assumed to be in the third column. (This
is a ‘feature’ of TEX’s primitive \halign command.) longtable then passes the
information that there is a wide third column to the later chunks, with the result
that the first pass over the table is too wide.

Table 3: A difficult \multicolumn combination: pass 1

11213

wide multicolumn spanning 1-3 |

multicolumn 1-2 | 3 |
wide 1 | 2 | 3 |

Table 4: A difficult \multicolumn combination: pass 2

1] 2 | 3 |
wide multicolumn spanning 1-3 |
multicolumn 1-2 3
widel | 2 ‘ 3 ‘

Table 5: A difficult \multicolumn combination: pass 3

L2 o3|
wide multicolumn spanning 1-3
multicolumn 1-2 3
wide 1 | 2 ‘ 3

Table 6: A difficult \multicolumn combination: pass 4

] 2 3
wide multicolumn spanning 1-3
multicolumn 1-2 3
wide 1 | 2 ‘ 3

\kill

If the ‘saved row’ from this first pass was re-inserted into the table on the next
pass, the table would line up in two passes, but would be much two wide.

The solution to this problem used in Versions 1 and 2, was to use a \kill
line. If a line is \killed, by using \kill rather than \\ at the end of the line,
it is used in calculating column widths, but removed from the final table. Thus
entering \killed copies of the last two rows before the wide multicolumn entry
would mean that \halign ‘saw’ the wide entries in the first two columns, and so
would not widen the third column by so much to make room for the multicolumn
entry.

In Version 3, a new solution was introduced. If the saved row in the .aux file
was not being used, longtable used a special ‘draft’ form of \multicolumn, this
modified the definition, so the spanning entry was never considered to be wider
than the columns it spanned. So after the first pass, the .aux file stored the
widest normal entry for each column, no column was widened due to \spanned
columns. By default longtable ignored the .aux file, and so each run of ITEX
was considered a first pass. Once the \setlongtables declaration was given,
the saved row in the .aux file, and the proper definition of \multicolumn were
used. If any \multicolumn entry caused one of the columns to be widened, this
information could not be passed back to earlier chunks, and so the table would not
correctly line up until the third pass. This algorithm always converged in three
passes as described above, but in examples such as the ones in Tables 3-6, the
final widths were not optimal as the width of column 2, which is determined by a
\multicolumn entry was not known when the final width for column 3 was fixed,
due to the fact that both \multicolumn commands were switched from ‘draft’
mode to ‘normal’ mode at the same time.

Version 4 alleviates the problem considerably. The first pass of the table will
indeed have the third column much too wide. However, on the next pass longtable
will notice the error and reduce the column width accordingly. If this has to
propagate to chunks before the \multicolumn one, an additional pass will, of
course, be needed. It is possible to construct tables where this rippling up of the
correct widths taks several passes to ‘converge’ and produce a table with all chunks
aligned. However in order to need many passes one needs to construct a table with
many overlapping \multicolumn entries, all being wider than the natural widths
of the columns they span, and all occuring in different chunks. In the typical
case the algorithm will converge after three or four passes, and, the benefits of
not needing to edit the document before the final run to add \setlongtables,
and the better choice of final column widths in the case of multiple \multicolumn
entries will hopefully more than pay for the extra passes that may possibly be
needed.

So Table 3 converges after 4 passes, as seen in Table 6.

You can still speed the convergence by introducing judicious \kill lines, if you
happen to have constellations like the above.

If you object even to KTEX-ing a file twice, you should make the first line of
every longtable a \kill line that contains the widest entry to be used in each
column. All chunks will then line up on the first pass.

\LTleft
\LTright

5 Adjustment

The optional argument of longtable controls the horizontal alignment of the table.
The possible options are [c], [r] and [1], for centring, right and left adjustment,
respectively. Normally centring is the default, but this document specifies

\setlength\LTleft\parindent
\setlength\LTright\fill

in the preamble, which means that the tables are set flush left, but indented
by the usual paragraph indentation. Any lengths can be specified for these two
parameters, but at least one of them should be a rubber length so that it fills up
the width of the page, unless rubber lengths are added between the columns using
the \extracolsep command. For instance

\begin{tabular*}{\textwidth}{@{\extracolsep{...}}...}
produces a full width table, to get a similar effect with longtable specify

\setlength\LTleft{Opt}
\setlength\LTright{Opt}
\begin{longtable}{@{\extracolsep{...}}...}

6 Changes

This section highlights the major changes since version 2. A more detailed change
log may be produced at the end of the code listing if the 1txdoc. cfg file specifies

\AtBeginDocument{\RecordChanges}
\AtEndDocument{\PrintChanges}

Changes made between versions 2 and 3.

e The mechanism for adding the head and foot of the table has been completely
rewritten. With this new mechanism, longtable does not need to issue a
\clearpage at the start of the table, and so the table may start half way
down a page. Also the \endlastfoot command which could not safely be
implemented under the old scheme, has been added.

e longtable now issues an error if started in the scope of \twocolumn, or the
multicols environment.

e The separate documentation file longtable.tex has been merged with the
package file, longtable.dtx using Mittelbach’s doc package.

e Support for footnotes has been added. Note however that \footnote will not
work in the ‘head’ or ‘foot’ sections of the table. In order to put a footnote
in those sections (e.g., inside a caption), use \footnotemark at that point,
and \footnotetext anywhere in the table body that will fall on the same

page.

e The treatment of \multicolumn has changed, making \kill lines unneces-
sary, at the price of sometimes requiring a third pass through KTEX.

e The \newpage command now works inside a longtable.
Changes made between versions 3 and 4.

e A new algorithm is used for aligning chunks. As well as the widest width
in each column, longtable remembers which chunk produced this maximum.
This allows it to check that the maximum is still achieved in later runs.
As longtable can now deal with columns shrinking as the file is edited, the
\setlongtables system is no longer needed and is disabled.

e An extra benefit of the new algorithm’s ability to deal with ‘shrinking’
columns is that it can give better (narrower) column widths in the case
of overlapping \multicolumn entries in different chunks than the previous
algorithm produced.

e The ‘draft’ multicolumn system has been removed, along with related com-
mands such as \LTmulticolumn.

e The disadvantage of the new algorithm is that it can take more passes.
The theoretical maximum is approximately twice the length of a ‘chain’
of columns with overlapping \multicolumn entries, although in practice it
usually converges as fast as the old version. (Which always converged in
three passes once \setlongtables was activated.)

e * and \nopagebreak commands may be used to control page breaking.

7 Summary

Table 7: A summary of longtable commands

Parameters

\LTleft Glue to the left of the table. (\fill)
\LTright Glue to the right of the table. (\fill)
\LTpre Glue before the the table. (\bigskipamount)
\LTpost Glue after the the table. (\bigskipamount)
\LTcapwidth The width of a parbox containing the caption. (4in)
LTchunksize The number of rows per chunk. (20)

Optional arguments to \begin{longtable}
none Position as specified by \LTleft and \LTright.
[c] Centre the table.
(1] Place the table flush left.
[r] Place the table flush right.

Commands to end table rows

A\ Specifies the end of a row

\\ [{dim)] Ends row, then adds vertical space (as in the tabular environment).

* The same as \\ but disallows a page break after the row.

\tabularnewline Alternative to \\ for use in the scope of \raggedright and similar
commands that redefine \\.

\kill Row is ‘killed’, but is used in calculating widths.

\endhead Specifies rows to appear at the top of every page.

\endfirsthead Specifies rows to appear at the top the first page.

\endfoot Specifies rows to appear at the bottom of every page.

\endlastfoot Specifies rows to appear at the bottom of the last page.

longtable caption commands

\caption{(caption)} Caption ‘Table ?: (caption)’, and a ‘(caption)’ entry in the list of
tables.

\caption[{lot)]1{(caption)} Caption ‘Table ?: (caption)’, and a ‘(lot)’ entry in the list of
tables.

\caption[]{{caption)} Caption ‘Table ?: (caption)’, but no entry in the list of tables.

\caption*{(caption)} Caption ‘(caption)’, but no entry in the list of tables.

Commands available at the start of a row

\pagebreak Force a page break.
\pagebreak [(val)] A ‘hint’ between 0 and 4 of the desirability of a break.
\nopagebreak Prohibit a page break.
\nopagebreak [(val)] A ‘hint’ between 0 and 4 of the undesirability of a break.
\newpage Force a page break.

Footnote commands available inside longtable
\footnote Footnotes, but may not be used in the table head & foot.
\footnotemark Footnotemark, may be used in the table head & foot.
\footnotetext Footnote text, use in the table body.

Setlongtables

\setlongtables Obsolete command. Does nothing now.

8 Verbatim highlights from Table 1

\begin{longtable}{@{*}r| |p{1in}@{*}}
KILLED & LINE!!!! \kill
\caption[An optional table caption ...]{A long table\label{long}}\\
\hline\hline
\multicolumn{2}{@{*}c@{*}}
{This part appears at the top of the tablel}\\
\textsc{First}&\textsc{Second}\\
\hline\hline
\endfirsthead
\caption[]{(continued)}\\
\hline\hline
\multicolumn{2}{@{*}c@{*}}/
{This part appears at the top of every other page}\\
\textbf{First}&\textbf{Second}\\
\hline\hline
\endhead
\hline
This goes at the&bottom.\\
\hline
\endfoot
\hline
These lines will&appear\\
in place of the & usual foot\\
at the end& of the table\\
\hline
\endlastfoot
\env{longtable} columns are specified& in the \\
same way as in the \env{tabular}& environment.\\

\multicolumn{2}{|lcl|}{This is a ...}\\
Some lines may take...&

\raggedleft This last column is a
\tabularnewline

‘‘p’? column...

Lots of lines& like this.\\

\hline

Lots\footnote{...} of lines& like this.\\
Lots of 1lines& like this\footnote{...}\\

\hline
Lots of lines& like this.\\

\end{longtable}

An environment for multicolumn output*

Frank Mittelbach

Email: see top of the source file

Printed March 10, 2004

Abstract

This article describes the use and the implementation of the multicols environment. This environment
allows switching between one and multicolumn format on the same page. Footnotes are handled correctly
(for the most part), but will be placed at the bottom of the page and not under each column. ITEX’s float
mechanism, however, is partly disabled in the current implementation. At the moment only page-wide

floats (i.e., star-forms) can be used within the scope of the environment.

Preface to version 1.5

This new release contains two
major changes: multicols will
now support up to 10 columns
and two more tuning possibilities
have been added to the balanc-
ing routine. The balancing rou-
tine now checks the badness of

1 Introduction

Switching between two column
and one column layout is pos-
sible in ITEX, but every use
of \twocolumn or \onecolumn
starts a new page. More-
over, the last page of two
column output isn’t balanced
and this often results in an
empty, or nearly empty, right col-
umn. When I started to write
macros for doc.sty (see “The
doc—Option”, TUGboat volume

the resulting columns and rejects
solutions that are larger than a
certain treshold.

At the same time multicols
has been upgraded to run under
TREX 2¢.

I apologise for the state of the

10 #2, pp. 245-273) I thought
that it would be nice to place
the index on the same page as
the bibliography. And balanc-
ing the last page would not only
look better, it also would save
space; provided of course that
it is also possible to start the
next article on the same page.
Rewriting the index environment
was comparatively easy, but the
next goal, designing an environ-

*This file has version number v1.5z, last revised 2000/07/10.
TNote: This package is released under terms which affect its use in commercial applications. Please see the details at the

top of the source file.

code documentation but the work
on IATEX 2¢ kept me too busy to
do a proper job. This will hope-
fully be corrected in the near fu-
ture.

ment which takes care of foot-
notes, floats etc., was a harder
task. It took me a whole week-
end! to get together the few lines
of code below and there is still a
good chance that I missed some-
thing after all.

Try it and, hopefully, enjoy it;
and please direct bug reports and
suggestions back to Mainz.

11 started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been enough.

2 The User Interface

To use the environment one sim-
ply says

\begin{multicols}{(number)}
(multicolumn text)
\end{multicols}

where (number) is the required
number of columns and (multi-
column tert) may contain arbi-
trary KTEX commands, except
that floats and marginpars are
not allowed in the current imple-
mentation?.

As its first action, the multicols
environment measures the cur-
rent page to determine whether
there is enough room for some
portion of multicolumn out-
put. This is controlled by the
(dimen) variable \premulticols
which can be changed by the
user with ordinary KTEX com-
mands. If the space is less than
\premulticols, a new page is
started. Otherwise, a \vskip of
\multicolsep is added.?

When the end of the mul-
ticols environment is encoun-
tered, an analogous mechanism
is employed, but now we test
whether there is a space larger
than \postmulticols available.
Again we add \multicolsep or
start a new page.

It is often convenient to spread
some text over all columns, just
before the multicolumn output,
without any page break in be-
tween. To achieve this the multi-
cols environment has an optional
second argument which can be
used for this purpose. For exam-
ple, the text you are now reading
was started with

\begin{multicols}{3}
[\section{The User
Interfacel}]

If such text is unusually

long (or short) the value of
\premulticols might need ad-
justing to prevent a bad page
break. We therefore provide a
third argument which can be
used to overwrite the default
value of \premulticols just for
this occasion. So if you want
to combine some longer single
column text with a multicols en-
vironment you could write

\begin{multicols}{3}
[\section{Index}
This index contains ...]
[6cm]

The space between columns is
controlled by the length param-
eter \columnsep. The width
for the individual columns is
automatically calculated from
this parameter and the current
\linewidth. In this article a
value of 18.0pt was used.

Separation of columns with
vertical rules is achieved
by setting the parameter
\columnseprule to some posi-
tive value. In this article a value
of .4pt was used.

Since narrow columns tend
to need adjustments in in-
terline spacing we also pro-
vide a (skip) parameter called
\multicolbaselineskip which
is added to the \baselineskip
parameter inside the multicols en-
vironment. Please use this pa-
rameter with care or leave it
alone; it is intended only for
package file designers since even
small changes might produce to-
tally unexpected changes to your
document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of
the columns generated.

Paragraphing in TEX is con-
trolled by several parameters.
One of the most important is
called \tolerance: this controls
the allowed ‘looseness’ (i.e. the
amount of blank space between
words). Its default value is 200
(the BTEX \fussy) which is too
small for narrow columns. On the
other hand the \sloppy declara-
tion (which sets \tolerance to
10000 = o0) is too large, allow-
ing really bad spacing.*

We therefore use a
\multicoltolerance parameter
for the \tolerance value inside
the multicols environment. Its
default value is 9999 which
is less than infinity but ‘bad’
enough for most paragraphs
in a multicolumn environment.
Changing its value should be
done outside the multicols envi-
ronment. Since \tolerance is
set to \multicoltolerance at
the beginning of every multicols
environment one can locally
overwrite this default by as-
signing \tolerance =_(desired
value). There also exists a
\multicolpretolerance pa-
rameter holding the value
for \pretolerance within a
multicols environment. Both
parameters are usually used only
by package designers.

Generation of multicolumn
output can be divided into two
parts. In the first part we are
collecting material for a page,
shipping it out, collecting mate-
rial for the next page, and so on.
As a second step, balancing will

2This is dictated by lack of time. To implement floats one has to reimplement the whole IATEX output routine.
3 Actually the added space may be less because we use \addvspace (see the IATEX manual for further information about this

command).

4Look at the next paragraph, it was set with the \sloppy declaration.

be done when the end of the mul-
ticols environment is reached. In
the first step TEX might consider
more material whilst finding the
final columns than it actually
use when shipping out the page.
This might cause a problem if
a footnote is encountered in the
part of the input considered, but
not used, on the current page. In
this case the footnote might show
up on the current page, while the
footnotemark corresponding to
this footnote might be set on the
next one.” Therefore the multi-
cols environment gives a warning
message® whenever it is unable
to use all the material considered
so far.

If you don’t use footnotes too
often the chances of something
actually going wrong are very
slim, but if this happens you can
help TEX by using a \pagebreak
command in the final document.
Another way to influence the be-
havior of TEX in this respect
is given by the counter variable
‘collectmore’. If you use the
\setcounter declaration to set
this counter to (number), TEX
will consider (number) more (or
less) lines before making its fi-
nal decision. So a value of —1
may solve all your problems at
the cost of slightly less optimal
columns.

In the second step (balanc-
ing columns) we have other bells
and whistles. First of all you
can say \raggedcolumns if you
don’t want the bottom lines to
be aligned. The default is
\flushcolumns, so TEX will nor-
mally try to make both the
top and bottom baselines of all
columns align.

Additionally you can set
another counter, the ‘unbal-
ance’ counter, to some positive
(number). This will make all but
the right-most column (number)
of lines longer than they would
normally have been. ‘Lines’ in
this context refer to normal text
lines (i.e. one \baselineskip
apart); thus, if your columns
contain displays, for example,
you may need a higher (number)
to shift something from one col-
umn into another.

Unlike ‘collectmore,’” the ‘unbal-
ance’ counter is reset to zero at
the end of the environment so it
only applies to one multicols en-
vironment.

The two methods may be com-
bined but I suggest using these
features only when fine tuning
important publications.

Two more general tuning pos-
sibilities were added with ver-
sion 1.5. TgX allows to mea-
sure the badness of a column in
terms of an integer value, where
0 means optimal and any higher
value means a certain amount
of extra white space. 10000 is
considered to be infinitely bad
(TEX does not distinguish any
further). In addition the special
value 100000 means overfull (i.e.,
the column contains more text
than could possibly fit into it).

The new release now measures
every generated column and ig-
nores solutions where at least
one column has a badness be-
ing larger than the value of the
counter columnbadness. The de-
fault value for this counter is
10000, thus TEX will accept all
solutions except those being over-
full. By setting the counter to a
smaller value you can force the
algorithm to search for solutions
that do not have columns with a

lot of white space.

However, if the setting is too
low, the algorithm may not find
any acceptable solution at all and
will then finally choose the ex-
treme solution of placing all text
into the first column.

Often, when colunms are bal-
anced, it is impossible to find a
solution that distributes the text
evenly over all columns. If that
is the case the last column usu-
ally has less text than the oth-
ers. In the earlier releases this
text was stretched to produce a
column with the same height as
all others, sometimes resulting in
really ugly looking columns.

In the new release this stretch-
ing is only done if the badness
of the final column is not larger
than the value of the counter fi-
nalcolumnbadness. The default
setting is 9999, thus preventing
the stretching for all columns
that TEX would consider in-
finitely bad. In that case the fi-
nal column is allowed to run short
which gives a much better result.

And there are two more
parameters of some exper-
imental nature, one called

\multicolovershoot the other
\multicolundershoot. They
control the amount of space a
column is allowed to be “too full”
or “too short” without affecting
the column badness. They are
set to 2pt by default.

2.2 Not balancing the
columns

Although this package was writ-
ten to solve the problem of bal-
ancing columns, I got repeated
requests to provide a version
where all white space is auto-
matically placed in the last col-
umn or columns. Since version

5The reason behind this behavior is the asynchronous character of the TEX page_builder. However, this could be avoided
by defining very complicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is
clearly beyond the scope of a weekend problem.
6This message will be generated even if there are no footnotes in this part of the text.

v1.5q this now exists: if you
use multicols* instead of the
usual environment the columns
on the last page are not balanced.
Of course, this environment only
works on top-level, e.g., inside a
box one has to balance to deter-
mine a column height in absense
of a fixed value.

2.3 Manually breaking
columns

Another request often voiced
was: “How to I tell IMTEX that
it should break the first column
after this particular line?”. The
\pagebreak command (which
works with the two-column op-
tion of KTEX) is of no use here
since it would end the collection
phase of multicols and thus all
columns on that page. So with
version 1.5u the \columnbreak
command was added. If used
within a paragraph it marks the
end of the current line as the de-
sired breakpoint. You can ob-
serve its effect on the previous
page where three lines of text
have been artifically forced into
the second column (resulting in
some white space between para-
graphs in the first column).

2.4 Floats inside a mul-
ticols environment

Within the multicols environment
the usual star float commands
are available but their function is
somewhat different as in the two-
column mode of standard IMTEX.
Stared floats, e.g., figure*, de-
note page wide floats that are
handled in a similar fashion as
normal floats outside the multi-
cols environment. However, they
will never show up on the page
where they are encountered. In
other words, one can influence
their placement by specifying a
combination of t, b, and/or p
in their optional argument, but

h doesn’t work because the first
possible place is the top of the
next page. One should also note,
that this means that their place-
ment behavior is determined by
the values of \topfraction, etc.
rather then by \dbl....

2.5 Warnings

Under certain circumstances the
use of the multicols environment
may result in some warnings from
TEX or X TEX. Here is a list of the
important ones and the possible
cause:

Underfull \hbox (badness
2

As the columns are often very
narrow TEX wasn’t able to find
a good way to break the para-
graph. Underfull denotes a loose
line but as long the badness val-
ues is below 10000 the result is
probably acceptable.

Underfull \vbox ...
\output is active

while

If a column contains an charac-
ter with an unusual depth, for
example a ‘(’, in the bottom line
then this message may show up.
It usually has no significance as
long as the value is not more
than a few points.

LaTeX Warning: I moved
some lines to the next
page
As mentioned above, multicols
sometimes screws up the foot-
note numbering. As a pre-
caution, whenever there is a
footnote on a page that where
multicols had to leave a re-
mainder for the following page
this warning appears. Check
the footnote numbering on this
page. If it turns out that it
is wrong you have to manually
break the page using \newpage
or \pagebreak[..].

Floats and marginpars not
allowed inside ‘multicols’
environment!

This message appears if you try
to use the \marginpar com-
mand or an unstared version of
the figure or table environment.
Such floats will disappear!

2.6 Tracing the output

To understand the reasoning be-
hind the decisions TEX makes
when processing a multicols envi-
ronment, a tracing mechanism is
provided. If you set the counter
‘multicols’ to a positive (number)
you then will get some tracing in-
formation on the terminal and in
the transcript file:

(number) = 1. TEX will now
tell you, whenever it enters
or leaves a multicols environ-
ment, the number of columns it
is working on and its decision
about starting a new page be-
fore or after the environment.

(number) = 2. In this case
you also get information from
the balancing routine: the
heights tried for the left and
right-most columns, informa-
tion about shrinking if the
\raggedcolumns declaration is
in force and the value of the
‘unbalance’ counter if positive.

(number) = 3. Setting
(number) to this value will ad-
ditionally trace the mark han-
dling algorithm. It will show
what marks are found, what
marks are considered, etc. To
fully understand this informa-
tion you will probably have to
read carefully trough the imple-
mentation.

(number) > 4. Setting
(number) to such a high value

will additionally place an
\hrule into your output, sep-
arating the part of text which
had already been considered

on the previous page from the
rest. Clearly this setting should
not be used for the final out-
put. It will also activate even

3 Prefaces to older versions

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in the multicol.bug file this
new release enhances the multi-
cols environment by allowing for
balancing in arbitrary contexts.
It is now, for example, possible
to balance text within a multicols
or a minipage as shown in 2 where
a multicols environment within a
quote environment was used. It
is now even possible to nest mul-
ticols environments.

The only restriction to such
inner multicols environments
(nested, or within TEX’s internal
vertical mode) is that such vari-

3.2 Preface to version 1.2

After the article about the mul-
ticols environment was published
in TUGboat 10#3, I got numer-
ous requests for these macros.
However, 1 also got a changed
version of my style file, together
with a letter asking me if I would
include the changes to get better
paragraphing results in the case
of narrow lines. The main dif-
ferences to my original style op-
tion were additional parameters
(like \multicoladjdemerits to
be used for \adjdemerits, etc.)
which would influence the line
breaking algorithm.

But actually resetting such pa-
rameters to zero or even worse to
a negative value won’t give bet-
ter line breaks inside the multicols
environment. TgXs line break-
ing algorithm will only look at
those possible line breaks which
can be reached without a badness
higher than the current value of

ants will produce a box with the
balanced material in it, so that
they can not be broken across
pages or columns.

Additionally I rewrote the al-
gorithm for balancing so that it
will now produce slightly better
results.

I updated the source documen-
tation but like to apologize in ad-
vance for some ‘left over’ parts
that slipped through the revision.

A note to people who like
to improve the balancing algo-
rithm of multicols: The balanc-
ing routine in now placed into

\tolerance (or \pretolerance
in the first pass). If this isn’t pos-
sible, then, as a last resort, TEX
will produce overfull boxes. All
those (and only those) possible
break points will be considered
and finally the sequence which re-
sults in the fewest demerits will
be chosen. This means that a
value of —1000 for \adjdemerits
instructs TEX to prefer visibly in-
compatible lines instead of pro-
ducing better line breaks.

However, with TEX 3.0 it is
possible to get decent line breaks
even in small columns by setting
\emergencystretchto an appro-
priate value. I implemented a
version which is capable of run-
ning both in the old and the new
TEX (actually it will simply ig-
nore the new feature if it is not
available). The calculation of
\emergencystretch is probably
incorrect. I made a few tests but

more debugging code for mark
handling.

a single macro which is called
\balance@columns. This means
that one can easily try different
balancing routines by rewriting
this macro. The interface for it
is explained in table 1. There
are several improvements possi-
ble, one can think of integrating
the \badness function of TEX3,
define a faster algorithm for find-
ing the right column height, etc.
If somebody thinks he/she has an
enhancement I would be pleased
to learn about it. But please obey
the copyright notice and don’t
change multicol.dtx directly!

of course one has have much more
experience with the new possi-
bilities to achieve the maximum
quality.

Version 1.1a had a nice ‘fea-
ture’> the penalty for using
the forbidden floats was their
ultimate removal from RTEXs
\@freelist so that after a few
\marginpars inside the multi-
cols environment floats where dis-
abled forever. (Thanks to Chris
Rowley for pointing this out.) I
removed this misbehaviour and
at the same time decided to al-
low at least floats spanning all
columns, e.g., generated by the
figure* environment. You can
see the new functionality in ta-
ble 2 which was inserted at this
very point. However single col-
umn floats are still forbidden and
I don’t think I will have time to
tackle this problem in the near fu-
ture. As an advice for all who

The macro \balance@columns that contains
the code for balancing gathered material is a
macro without parameters. It assumes that
the material for balancing is stored in the box
\mult@box which is a \vbox. It also “knows”
about all parameters set up by the multicols
environment, like \col@number, etc. It can
also assume that \@colroom is the still avail-
able space on the current page.

When it finishes it must return the individ-
ual columns in boxes suitable for further pro-
cessing with \page@sofar. This means that
the left column should be stored in box reg-

ister \mult@gfirstbox, the next in register
\mult@firstbox + 2, ..., only the last one
as an exception in register \mult@grightbox.
Furthermore it has to set up two the macros
\kept@firstmarkand \kept@botmark to hold
the values for the first and bottom mark as
found in the individual columns. There are
some helper functions defined in section 5.1
which may be used for this. Getting the marks
right “by hand” is non-trivial and it may pay
off to first take a look at the documentation
and implementation of \balance@columns be-
low before trying anew.

Table 1: Interface description for \balance@columns

\setemergencystretch: This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch (dimen) register provided in
the new TEX 3.0. The first argument is the num-
ber of columns and the second one is the current
\hsize. At the moment the default definition is

4dpt x #1, i.e. the \hsize isn’t used at all. But
maybe there are better formulae.
\set@floatcmds: This is the hook for the experts
who like to implement a full float mechanism for
the multicols environment. The @ in the name
should signal that this might not be easy.

Table 2: The new commands of multicol.sty version 1.2. Both commands might be removed if good solutions
to these open problems are found. I hope that these commands will prevent that nearly identical style files

derived from this one are floating around.

want to try: wait for TEX 3.0.
It has a few features which will
make life much easier in multi-
column surroundings. Neverthe-
less we are working here at the

4 The Implementation

edge of TEXs capabilities, really
perfect solutions would need a
different approach than it was
done in TEXs page builder.

The text below is nearly un-

changed, I only added documen-
tation at places where new code
was added.

We are now switching to two-column output to show the abilities of this environment (and bad layout

decisions).

4.1 The documentation driver file

The next bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be
extracted from this file by the docstrip program.
Since this is the first code in this file one can produce
the documentation simply by running ETEX on the
.dtx file.

1 (xdriver)
2 \documentclass{ltxdoc}

We use the balancingshow option when loading
multicols so that full tracing is produced. This has to

be done before the doc package is loaded, since doc
otherwise requires multicols without any options.

3 \usepackage{multicol}[1999/05/25]
4 \usepackage{doc}

First we set up the page layout suitable for this ar-
ticle.

5 \setlength{\textwidth}{39pc}

6 \setlength{\textheight}{54pc}

7 \setlength{\parindent}{lem}

8 \setlength{\parskip}{Opt plus 1pt}
9 \setlength{\oddsidemargin}{Opc}

The rawfonts package

Alan Jeffrey
v0.01

Overview

The rawfonts ITEX 2¢ package is used to provide emulation of IXTEX 2.09 docu-
ments which used low-level commands such as \tenrm. If you say:

\usepackage{rawfonts}

then over sixty fonts such as \tenrm will be loaded into IXTEX. This has a large
overhead, for example this document uses:

8221 words of font info for 30 fonts

but when run with the rawfonts package it uses:

19294 words of font info for 73 fonts

That is rawfonts can cause your document to load twice as many fonts. (This
overhead is why I¥TEX 2¢ does not define \tenrm and friends by default.)

If you want to only load a small number of fonts, you can use the only option,
for example to only load \tenrm and \tensf:

\usepackage [only, tenrm,tensf]{rawfonts}

The rawfonts package is intended mainly for use with BTEX 2.09 documents,
and you might want to have the package loaded every time you use ITEX 2¢ in
compatibility mode. In this case, you should add the line:

\RequirePackage{rawfonts}

to your latex209.cfg KIEX 2.09 compatibility configuration file.

sec:intro

The showkeys package*

David Carlisle
1997/06/12

1 Introduction

showkeys. sty modifies the \label, \ref, \pageref, \cite, and \bibitem com-
mands so that the ‘internal’ key is printed. The package tries hard to position
these labels so that the formatting of the rest of the document is unchanged.
\label and \bibitem cause the key to appear in a box either in the margin, or
in a TEX box of zero width, which may possibly over-print other text. The \ref,
\pageref and \cite co Serg:al%grsoprint their arguments in small type, raised just
above the line, like this: ; . This package works with the fleqn option, the packages
in the AMS-IATEX collection, and the varioref, natbib and harvard packages.

2 Package Options

Some people have commented that the printing of the \ref and \cite keys is less
useful than the printing of the \label keys and so showkeys now supports two
options that can be given in the \usepackage command:

notref to stop the redefinition of \ref and \pageref, and related commands
from the varioref package.

notcite to stop the redefinition of \cite and related commands from the harvard
and natbib packages.

So if the package is loaded with \usepackage [notref]{showkeys} then \ref will
have its standard definition, but \label will print its key argument (usually in
the margin).

If you find the printed keys distracting, but don’t want to use the above options
to stop them altogether you may use:

color Print the keys in a distinguishing colour. The default value is a light grey.

*This file has version number v3.12, last revised 1997/06/12.

The colours may be changed by redefining the following two colours after the
package is loaded. refkey (also used for \cite) and labelkey (also used for
\bibitem). The defaults are:

\definecolor{refkey}{gray}{.75}
\definecolor{labelkey}{gray}{.75}

If this option is used the color package will be loaded.
The package accepts two further options.

final to supress the action of this package, for ‘final’ versions.
draft the normal behaviour of this package.

Clearly there is not much point in entering the final option directly in the
\usepackage command, as just not loading this package would have the same
effect, and execute more quickly, however the final option may be useful as it
may be used once in the documentclass command to affect any number of pack-
ages that may be loaded. The draft option does not do anything, but is there to
honour an informal convention that packages have these options in pairs.

3 More Examples

J:mi
The only other sig ilay package that I could find in the macro index,)g, was

on:sk
showlabels. sty,[- After the first draft of this package was written, I found, é
on my local installation! I think the current package is more robust than 2 , but

I thought that showkeys was rather a good name, so I have stolen it for this file.

e”1 1. This has \1label immediately after \item.

e~2 2. This has the \1label at the end.

Within environments like this minipage, we can-
not use \marginpar!, so the appearance is slightly
different. Here is that enumerate environment

A minipage :- { again:
1. This has \1label immediately after \item.

2. This has the \1label at the end.

Displayed math (without equation counter).

0= e
dis e”1
Some text refering to the maths on page 2, and the item |1_

If showkeys thinks that the current environment is going to produce an “equa-
tion number”, then it does not show the label where the \1abel command occurs,

L Actually \marginpar is not used at all in this package now.

cap:c

eq : XX
but tries to put it in the margin, as shown with equation T Fhe package ‘knows’
about the standard equation and eqnarray environments, and also all the num-
bered alignment environments offered by the AMSITREX package, amsmath.

1=1 (1)

Within a figure environment, the \label must not come before the \caption
command. If you place \label inside the argument of \caption the label will be
shown like this:

Figure 1: Within the caption argument.

If you place \label immediately after the \caption command it will be shown
like this:
Figure 2: Immediately after the caption argument.

If you place the \label command at some random point after the \caption
command, it may be shown like:
Figure 3: In vertical mode not immediately after a box.

References

[1] Gil Neiger, showlabels.sty, Undated package, similar to this one, but shows
labels inline, affecting the formating of the document.

[2] Annonymous, showkeys.sty, Package, dated 14 May 1988. Very similar to this
one, also uses \marginpar in outer vertical mode.

[3] David M. Jones, TgX Macro Index, A catalogue of TEX macros, including
ITEX packages, available from all good TEX archives.

4 The Macros

1 (xpackage)

First we handle the options. Normally all related comands are defined to show
their ‘keys’. But since v3.03 one can specify:

notref to stop the redefinition of \ref (and \pageref, and related commands
from varioref package),

eq:xXx

egnar:b

egnar:a

The somedefs toolkit package

Alan Jeffrey
v0.03

Overview

This is an example ‘programmers toolkit’ package, for use by package writers. It
allows package writers to provide options which switch definitions on and off. For
example, a package fred might define a large number of commands, including
\foo and \baz, so:

\usepackage{fred}

would use a lot of memory, even if \foo and \baz were the only commands needed.
However, if the author of fred used the somedefs package, then the user would
be able to say:

\usepackage [only,foo,baz] {fred}

and only the commands \foo and \baz would be defined.
To use the somedefs package in your own packages or classes, you say:

\RequirePackage{somedefs}

You can then use four new commands:

e \UseAllDefinitions which says that all the commands in the file should
be defined.

e \UseSomeDefinitions which says that only the commands specified by
\UseDefinition should be defined.

e \UseDefinition{(name)} which says that the command \name should be
defined.

e \ProvidesDefinition{(definition)} which provides one definition, of the
form \definingcommand{\command}. ..

\UseSomeDefinitions
\UseAllDefinitions
\UseDefinition
\ProvidesDefinition
\@providesdefinition
\@provides@definition
\@unprovided@definition

For example, the package fred could say:

\RequirePackage{somedefs}

\UseAllDefinitions
\DeclareOption{only}{\UseSomeDefinitions}
\DeclareOption*{\UseDefinition{\CurrentOption}}
\ProcessOptions
\ProvidesDefinition{\newcommand{\foo}{...}}
\ProvidesDefinition{\newcommand{\baz}{...}}

One of the commands \UseAllDefinitions or \UseSomeDefinitions should al-
ways be used. You may have some commands which need other commands, in
which case you have to declare the options by hand. For example, if the command
\bar needs the command \foo, you could say:

\DeclareOption{bar}{\UseDefinition{bar}\UseDefinition{foo}}

For a longer example of the use of the somedefs package, look at the rawfonts
package.

Implementation

The driver for the documentation you’re now reading.
1 (xdriver)

2 \documentclass{ltxdoc}

3 \begin{document}

4 \DocInput{somedefs.dtx}

5 \end{document}

6 (/driver)

This is a ITEX 2¢ package.

7 (xpackage)

8 \NeedsTeXFormat{LaTeX2e}

9 \ProvidesPackage{somedefs}[1994/06/01 Toolkit for optional definitions]

The package works by having \UseDefinition{(name)} define \name to be
\@unprovided@definition. If \UseSomeDefinitions has been called, then
\ProvidesDefinition looks to see if \name is \@unprovided@definition. If
\UseAllDefinitions has been called, then \ProvidesDefinition does nothing.
If neither has been called, then \ProvidesDefinition produces an error message.
10 \def\UseSomeDefinitions{%

11 \let\ProvidesDefinition\@providesdefinition

12}

13 \def\UseAllDefinitions{%

14 \let\ProvidesDefinition\@firstofone

15 }

16 \def\UseDefinition#1{%

17 \expandafter\let\csname#1\endcsname\Qunprovided@definition
18 }

19 \def\ProvidesDefinition#1{}

20 \PackageError{somedefs}

21 {No \noexpand\UseSomeDefinitions or \string\UseAllDefinitionsl}},
22 {The package which used the ‘somedefs’ package has an error.}}
23 }

24 \def\@providesdefinition#1{\@provides@definition#i\relax
25 \@provides@definition}

26 \def\@provides@definition#1#2#3\@provides@definitiond{y,
27 \ifx#2\@unprovided@definition

28 #1#2#3%

29 \fi

30 }

31 \def\@unprovided@definitiond{’

32 \PackageError{somedefs}

33 {Package ‘somedefs’ error: this command was never defined}/,
34 {You have requested a command which does not exist.}%
35}

36 \@onlypreamble\UseSomeDefinitions
37 \@onlypreamble\UseAllDefinitions

38 \@onlypreamble\UseDefinition

39 \@onlypreamble\ProvidesDefinition
40 \@onlypreamble\@providesdefinition
41 \@onlypreamble\@provides@definition

That’s it!
42 (/package)

tabularx

The tabularx package*

David Carlisle
1999/01/07

Abstract

A new environment, tabularx, is defined, which takes the same argu-
ments as tabular*, but modifies the widths of certain columns, rather than
the inter column space, to set a table with the requested total width. The
columns that may stretch are marked with the new token X in the preamble
argument.

This package requires the array package.

1 Introduction

This package implements a version of the tabular environment in which the widths
of certain columns are calculated so that the table is is a specified width. Requests
for such an environment seem to occur quite regularly in comp.text.tex.
\begin{tabularx}{(width)}{(preamble)}

The arguments of tabularx are essentially the same as those of the standard
tabular* environment. However rather than adding space between the columns
to achieve the desired width, it adjusts the widths of some of the columns. The
columns which are affected by the tabularx environment should be denoted with
the letter X in the preamble argument. The X column specification will be con-
verted to p{(some value)} once the correct column width has been calculated.

2 Examples

The following table is set with \begin{tabularx}{250pt}{|c|Xlc|XI}

Multicolumn entry! THREE | FOUR
one | The width of three Column four will
this column act in the same
depends on the way as column
width of the two, with the
table.! same width.

*This file has version number v2.07, last revised 1999/01/07.
1You can now use \footnote inside tabularx!

\tracingtabularx

If we change the first line to \begin{tabularx}{300pt}{lc|Xlc|X|} we get:

Multicolumn entry! THREE | FOUR
one | The width of this three Column four will act
column depends on in the same way as
the width of the table. column two, with the
same width.

3 Differences between tabularx and tabular*

These two environments take the same arguments, to produce a table of a specified
width. The main differences between them are:

e tabularx modifies the widths of the columns, whereas tabular* modifies
the widths of the inter-column spaces.

e tabular and tabular* environments may be nested with no restriction,
however if one tabularx environment occurs inside another, then the inner
one must be enclosed by { 7.

e The body of the tabularx environment is in fact the argument to a com-
mand, and so certain constructions which are not allowed in command ar-
guments (like \verb) may not be used.?

e tabular* uses a primitive capability of TEX to modify the inter column space
of an alignment. tabularx has to set the table several times as it searches
for the best column widths, and is therefore much slower. Also the fact that
the body is expanded several times may break certain TEX constructs.

4 Customising the behaviour of tabularx

4.1 Terminal output

If this declaration is made, say in the document preamble, then all following
tabularx environments will print information about column widths as they re-
peatedly re-set the tables to find the correct widths.

As an alternative to using the \tracingtabularx declaration, either of the op-
tions infoshow or debugshow may be given, either in the \usepackage command
that loads tabularx, or as a global option in the \documentclass command.

4.2 The environment used to typeset the X columns

By default the X specification is turned into p{({some value)}. Such narrow
columns often require a special format, this may be achieved using the > syn-
tax of array.sty. So for example you may give a specification of >{\small}X.

2Since Version 1.02, \verb and \verb* may be used, but they may treat spaces incorrectly,
and the argument can not contain an unmatched { or }, or a % character.

\arraybackslash

\newcolumntype

\tabularxcolumn

Another format which is useful in narrow columns is ragged right, however KTEX’s
\raggedright macro redefines \\ in a way which conflicts with its use in a tab-
ular or array environments. For this reason this package introduces the com-
mand \arraybackslash, this may be used after a \raggedright, \raggedleft
or \centering declaration. Thus a tabularx preamble may specify
>{\raggedright\arraybackslash}X.

These preamble specifications may of course be saved using the command,
\newcolumntype, defined in array.sty. Thus we may say
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}
and then use Y in the tabularx preamble argument.

The X columns are set using the p column which corresponds to \parbox[t].
You may want them set using, say, the m column, which corresponds to
\parbox[c]. It is not possible to change the column type using the > syntax,
so another system is provided. \tabularxcolumn should be defined to be a macro
with one argument, which expands to the tabular preamble specification that you
want to correspond to X. The argument will be replaced by the calculated width
of a column.

The default is \newcommand{\tabularxcolumn}[1]{p{#1}}. So we may
change this with a command such as:
\renewcommand{\tabularxcolumn}[1]{>{\smalllm{#1}}

4.3 Column widths

Normally all X columns in a single table are set to the same width, however it is
possible to make tabularx set them to different widths. A preamble argument of
{>{\hsize=.5\hsize}X>{\hsize=1.5\hsize}X} specifies two columns, the sec-
ond will be three times as wide as the first. However if you want to play games
like this you should follow the following two rules.

e Make sure that the sum of the widths of all the X columns is unchanged. (In
the above example, the new widths still add up to twice the default width,
the same as two standard X columuns.)

e Do not use \multicolumn entries which cross any X column.

As with most rules, these may be broken if you know what you are doing.

4.4 1If the algorithm fails. ..

It may be that the widths of the ‘normal’ columns of the table already total more
than the requested total width. tabularx refuses to set the X columns to a negative
width, so in this case you get a warning “X Columns too narrow (table too wide)”.

The X columns will in this case be set to a width of lem and so the table
itself will be wider than the requested total width given in the argument to the
environment. This behaviour of the package can be customised slightly as noted
in the documentation of the code section.

An Extension of the IXTEX theorem environment*

Frank Mittelbach
Electronic Data Systems
(Deutschland) GmbH
Eisenstrafle 56
D-65424 Riisselsheim
Federal Republic of Germany

March 10, 2004

Abstract

The macros described in this paper yield an extension of the IXTEX the-
orem mechanism. It is designed is to satisfy the different requirements of
various journals. Thus, the layout of the “theorems” can be manipulated by
determining a “style”. This article describes not only the use, but also the
definition, of the necessary macros.

Preface to version 2.2

For IXTEX 2¢ this package did not need any fundamental changes. I only modi-
fied the messages generated so that theorem layout styles will show up with the
\listfiles command and cleaned the section on the New Font Selection Scheme
since this is now included in XTEX.

Preface to version 2.1

This version is identical to 2.0g described in TUGboat 10#3 except for some
internal defaults which are now set depending on the used font selection scheme.

This was done to avoid unpleasant surprises if the new font selection scheme
is in force. For further details see section ?? and [?].

1 Introduction

For our purposes here, “theorems” are labelled enunciations, often set off from the
main text by extra space and a font change. Theorems, corollaries, conjectures,

*This file has version number v2.2c, last revised 1995/11/23.

\newtheorem

\theoremstyle

definitions, and remarks are all instances of “theorems”. The “header” of these
structures is composed of a label (such as THEOREM or REMARK) and a number
which serializes an item in the sequence of items with the same label.

Shortly after the introduction of KTEX at the Fachbereich Mathematik in
Mainz, the desire to manipulate the layout of “theorems” arose. In Mainz, the
following two conventions came into general use:

1. The number of the theorem is shown in the margin.
2. There is a line break at the end of the theorem header.

Additionally, some journals require different formats which depend on the
“sort of theorem”: e.g. often remarks and definitions are set in \upshape, while
\itshape is employed for main theorems.

Confronted with these requirements, a theorem environment was developed in
Mainz which allows separate determination of the layout of the “theorems sets”,
comparable to \pagestyle.

2 The user interface

2.1 Defining new theorem sets

As in the original I¥TEX version, the command \newtheorem defines a new “the-
orem set” or “theorem-like structure”. Two required arguments name the new
environment and give the text to be typeset with each instance of the new “set”,
while an optional argument determines how the “set” is enumerated:

\newtheorem{foo}{bar} The theorem set foo (whose name is bar) uses its own
counter.

\newtheorem{fo02} [fool {bar2} The theorem set foo2 (printed name bar2)
uses the same counter as the theorem set foo.

\newtheorem{foo3}{bar3} [section] The theorem set foo3 (printed name bar3)
is enumerated within the counter section, i.e. with every new \section the
enumeration begins again with 1, and the enumeration is composed from the
section-number and the theorem counter itself.

Additionally, the command \theoremstyle can define the layout of various, or
all, theorem sets. It should be noted that any theorem set defined by \newtheorem
is typeset in the \theoremstyle that is current at the time of the definition. Thus,
the following

\theoremstyle{break} \newtheorem{Cor}{Corollary}
\theoremstyle{plain} \newtheorem{Exa}{Example} [section]

leads to the result that the set Cor is formatted in the style break, while the set
Exa and all the following ones are formatted in the style plain, unless another

\theorembodyfont

\theoremheaderfont

\theorempreskipamount
\theorempostskipamount

\theoremstyle follows. Since the definitions installed by \newtheorem are global,
one also can limit \theoremstyle locally by grouping braces.

The choice of the font for the theorem body is completely independent of the
chosen \theoremstyle; this has proven to be very advantageous. For example,

{\theorembodyfont{\upshape} \newtheorem{Rem}{Remark}}

defines a theorem set Rem, which will be set in \upshape in the current layout
(which in our example is plain). As with \theoremstyle, the \theorembodyfont
chosen is that current at the time of \newtheorem. If \theorembodyfont is not
specified or one defines \theorembodyfont{}, then the font used will be that
defined by the \theoremstyle.

It is also possible to customize the font used for the theorem headers. This
is, however, a global declaration, and therefore there should be at most one
\theoremheaderfont declaration in the preamble.!

Two additional parameters affect the vertical space around the theorem en-
vironments: \theorempreskipamount and \theorempostskipamount define, re-
spectively, the spacing before and after such an environment. These parameters
apply for all theorem sets and can be manipulated with the ordinary length macros.
They are rubber lengths, (‘skips’), and therefore can contain plus and minus parts.

Since the definition of theorem sets should—most sensibly—be placed in the
preamble, we only allow installation there. It is therefore possible to release the
memory used here after \begin{document}, in order to make room for other
applications.

2.2 Existing theorem styles

The following theorem styles exist to date:

plain This theorem style emulates the original I TEX definition, except
that additionally the parameters \theorem. . . skipamount are used.

break In this style, the theorem header is followed by a line break.

marginbreak The theorem number is set in the margin, and there is a line break
as in break.

changebreak Like break, but with header number and text interchanged.
change Header number and text are interchanged, without a line break.
margin The number is set in the left margin, without a line break.

All styles (except plain) select \slshape as the default \theorembodyfont.

LTf it is actually necessary to have different header fonts, one has to define new theorem styles
(substituting the desired font) or specify the information directly in the \newtheorem declaration
(the unclean variant).

2.3 Examples

Given the above theorem sets Cor, Exa and Rem, suppose that the preamble also
contains the declarations:

\theoremstyle{marginbreak} \newtheorem{Lem}[Cor]{Lemma}
\theoremstyle{change}
\theorembodyfont{\itshape} \newtheorem{Def} [Cor]{Definition}

\theoremheaderfont{\scshape}

Then the following are some typical examples of the typeset output resulting from
their use.

COROLLARY 1
This is a sentence typeset in the theorem environment Cor.

EXAMPLE 2.1 This is a sentence typeset in the theorem environment Exa.

REMARK 1 This is a sentence typeset in the theorem environment Rem.

LEMMA (BEN USER)
This is a sentence typeset in the theorem environment Lem.

3 DEFINITION (VERY IMPRESSIVE DEFINITION) This is a sentence typeset in the
theorem environment Def.

The last two examples show the effect of the optional argument to a theorem
environment (it is the text typeset in parentheses).

3 Special Considerations

Theoremheader and body are implemented as a unit. This means that the
\theoremheaderfont will inherit characteristics of the \theorembodyfont in
ETEX 2¢. Thus, if for example \theorembodyfont is \itshape and \theoremheaderfont
is \bfseries the font selected for the header will have the characteristics ‘bold
extended italic’. If this is not desired one should set the \theoremheaderfont to
something like

\theoremheaderfont{\normalfont\bfseries}

i.e. supplying all necessary font informations explicitly.

4 Acknowledgements

The publication of this set of macros was only possible with the help of Christina
Busse (translating the manuscript into English), Joachim Pense (playing the role
of typist), Chris Rowley (looking everything over) and many others providing
useful suggestions.

The trace package®

Frank Mittelbach

KTEX3 project
frank.mittelbach@latex-project.org

2001,/07/24

1 Introduction

When writing new macros one often finds that they do not work as expected (at
least I do :-). If this happens and one can’t immediately figure out why there is a
problem one has to start doing some serious debugging. TEX offers a lot of bells and
whistles to control what is being traced but often enough I find myself applying the
crude command \tracingall which essentially means “give me whatever tracing
information is available”.

In fact I normally use e-TEX in such a case, since that TEX extension offers me a
number of additional tracing possibilities which I find extremely helpful. The most
important ones are \tracingassigns, which will show you changes to register
values and changes to control sequences when they happen, and \tracinggroups,
which will tell you what groups are entered or left (very useful if your grouping
got out of sync).

So what I really write is

\tracingassigns=1\tracinggroups=1\tracingall

That in itself is already a nuisance (since it is a mouthful) but there is a worse
catch: when using \tracingall you do get a awful lot of information and some
of it is really useless.

For example, if ITEX has to load a new font it enters some internal routines
of NFSS which scan font definition tables etc. And 99.9% of the time you are not
at all interested in that part of the processing but in the two lines before and the
five lines after. However, you have to scan through a few hundred lines of output
to find the lines you need.

Another example is the calc package. A simple statement like \setlength
\linewidth {1cm} inside your macro will result in

\setlength ->\protect \setlength
{\relax}

*This file has version number v1.1b, last revised 2001/07/24.

\setlength ->\calc@assign@skip
\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\1let \calc@A #1\let \calc®@B #2\expandafter \calc
Qopen \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B
#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\1linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \aftergroup \calc@initB \begingroup \aftergroup \calc
@initB \calc@pre@scan

{\begingroup}

{\aftergroup}

{\begingroup}

{\aftergroup}

\calc@pre@scan #1->\ifx (#1\expandafter \calc@open \else \ifx \widthof #1\expan
dafter \expandafter \expandafter \calc@textsize \else \calc@numeric \fi \fi #1
#1<-1

{\ifx}

{false}

{\ifx}

{false}

\calc@numeric ->\afterassignment \calc@post@scan \global \calc@A
{\afterassignment}

{\global}

{\fi}

{\fi}

\calc@post@scan #1->\ifx #1!\let \calc@next \endgroup \else \ifx #1+\let \calc@
next \calc@add \else \ifx #1-\let \calc@next \calc@subtract \else \ifx #1lx\let
\calc@next \calc@multiplyx \else \ifx #1/\let \calc@next \calc@dividex \else \i
fx #1)\let \calc@next \calc@close \else \calc@error #1\fi \fi \fi \fi \fi \fi \
calc@next

#1<-1

{\ifx}

{true}

{\let}

{\else}

{\endgroup}

{restoring \calc@next=undefined}

\calc@initB ->\calc@B \calc@A
{\skip44}

{\global}

{\endgroup}

{restoring \skip44=0.0pt}

\calc@initB ->\calc@B \calc@A

\traceon
\traceoff

{\skip44}
{\dimen27}

Do you still remember what I was talking about?

No? We're trying to find a problem in macro code without having to scan too
many uninteresting lines. To make this possible we have to redefine a number of
key commands to turn tracing off temporarily in the hope that this will reduce
the amount of noise during the trace. For example, if we change one of the calc
internals slightly, the above tracing output can be reduced to:

\setlength ->\protect \setlength
{\relax}

\setlength ->\calc@assign@skip
\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\1let \calc@A #1\let \calc®@B #2\expandafter \calc
Qopen \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B
#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \conditionally@traceoff \aftergroup \calc@initB \begi
ngroup \aftergroup \calc@initB \calc@pre@scan
{\begingroup}

\conditionally@traceoff ->\tracingrestores \z@ \tracingcommands \z@ \tracingpag
es \z@ \tracingmacros \z@ \tracingparagraphs \z@

{\tracingrestores}

{\tracingcommands}

{restoring \tracingrestores=1}

\calc@initB ->\calc@B \calc@A
{\skip44}
{\dimen27}

Still a lot of noise but definitely preferable to the original case.

I redefined those internals that I found most annoyingly noisy. There are
probably many others that could be treated in a similar fashion, so if you think
you found one worth adding please drop me a short note.

* ok %

The package defines the two macros \traceon and \traceoff to uncondi-
tionally turn tracing on or off, respectively. \traceon is like \tracingall but
additionally adds \tracingassigns and \tracinggroups if the e-TEX program

\conditionally@traceon

\conditionally@traceoff

(in extended mode) is used. And \traceoff will turn tracing off again, a com-
mand which is already badly missing in plain TEX, since it is often not desirable
to restrict the tracing using extra groups in the document.

There are also two internal macros that turn tracing on and off, but only if
the user requested tracing in the first place. These are the ones that are used
internally within the code below.

Since the package overwrites some internals of other packages you should load
it as the last package in your preamble using \usepackage{trace}.

The package offers one option (logonly) that suppresses terminal output dur-
ing tracing. This is useful if the TEX implementation used gets rather slow when
writing a lot of information to the terminal.

2 A sample file

The following small test file shows the benefits of the trace package. If one
uncomments the line loading the package, the amount of tracing data will be
drastically reduced. Without the trace package we get 6594 lines in the log file;
adding the package will reduce this to 1618 lines.

\documentclass{article}
\usepackage{calc}
%\usepackage{trace} ’, uncomment to see difference

\begin{document}
\ifx\traceon\undefined \tracingall \else \traceon \fi

\setlength\linewidth{lcm}
$foo=\bar a$

\small \texttt{\$} \stop

3 Implementation

This package is for use with IATEX (though something similar could be produced
for other formats).

1 (xpackage)
2 \NeedsTeXFormat{LaTeX2e}[1998/12/01]

The package has one option that suppresses tracing on the terminal, i.e., if
used will not set \tracingonline to one. This has been added in version 1.la
since some TEX implementations get rather slow when outputting to a terminal.

3 \DeclareOption{logonly}
4 {\let\tracingonline®@p\z@}

The default is showing the tracing information on the terminal.

5 \let\tracingonline@p\@ne

6 \ProcessOptions\relax

\vref

The varioref package®

Frank Mittelbach
2001/09/04

Abstract

This package defines the commands \vref, \vpageref, \vrefrange, and
\vpagerefrange for I¥TEX 2. \vref is similar to \ref but adds an addi-
tional page reference, like ‘on the facing page’ or ‘on page 27’ whenever the
corresponding \label is not on the same page. The command \vpageref
is a variation to \pageref with a similar functionality. The \v...range
commands take two labels as arguments and produce strings which depend
on whether or not these labels fall onto a single page or on different pages.
Generated strings are customizable so that these commands are usable with
various languages.

1 Introduction

In many cases it is helpful when refering to a figure or table to put both a \ref
and a \pageref command into the document especially when there are one or
more pages between the reference and the object. Therefore some people use a
command like

\newcommand{\fullref}[1]{\ref{#1} on page~\pageref{#1}}

which reduces the number of key strokes, necessary to make such a complete
reference. But since one never knows where the referenced object finally falls,
using such a device may result in a page reference to the current page which is
disturbing and therefore should be avoided.

2 The user interface

The implementation of \vref below produces only a \ref when reference and
\label are on the same page. It will additionally produce one of the strings ‘on
the facing page’, ‘on the preceding page’, or ‘on the following page’, if label and
reference differ by one and it will produce both \ref and \pageref when the
difference is larger. The word ‘facing’ is used when label and reference both fall
onto a double spread. However, if a special page numbering scheme is used instead

*This file has version number v1.3c, last revised 2001/09/04.

\vpageref

\vrefrange

of the usual arabic numbering (e.g., \pagenumbering{roman}) then there will be
no distinction between one or many pages off.

Sometimes one wants to refer only to page number and again such a reference
should normally be suppressed if we are refering to the current page. For this
purpose the package defines the \vpageref command. It will produce the same
strings as \vref except that it doesn’t start with the \ref and except that it will
produce the string that is saved in \reftextcurrent if label and reference fall
onto the same page. By defining \reftextcurrent to produce “on this page” or
something similar, we can avoid that

. see the example \vpageref{ex:foo} which shows ...

[43

comes out as . see the example which shows ...”, which could be misleading.

You can put a space in front of \vpageref it will be ignored if the command
doesn’t produce any text at all.

But in fact \vpageref allows even more control. If has two optional arguments.
With the first one, one can specify the text that should be used if label and
reference fall on the same page. This is very helpful if both are near to each other,
so that they may or may not be separated by a page break. In such a case we
usually know (!) whether the reference is before or after the label so that we can
say something like

. see the example \vpageref[above]{ex:foo} which shows ...

“

which will then come out as . see the example above which shows ...” if
we are still on the same page, but as “... see the example on the page be-
fore which shows ...” (or something similar depending on the settings of the
\reftext..before commands) when there was a page break in the meantime.
One warning however, if you use \vpageref with the optional argument to refer
to a figure or table, keep in mind that depending on the float placement param-
eters the float may show up on top of the current page and therefore before the
reference even if it came after it in the source file.

But maybe you prefer to say “... see the above example” if example and
reference fall onto the same page, i.e., reverse the word order. In fact, in some
languages the word order automatically changes in that case. To allow for this
variation the second optional argument can be used. It specifies the text preceding
the generated reference if object and reference do not fall onto the same page. Thus
one would write

. see the \vpageref [above example] [example]{ex:foo}
which shows ...

to achieve the desired effect.

2.1 Additions in 1998

This command is similar to \vref but it takes two mandatory arguments denoting

\vpagerefrange

\vrefpagenum

a range to refer to (e.g., a sequences of figures or a sequence of equations, etc.).
So if fig:a is your first figure in the sequence and fig:c your last you can write

. see figures \vrefrange{fig:a}{fig:c} ...
which would then be formatted as
. see figures 3.4 to 3.6 on pages 23-24 ...
or, if they happen to all fall onto the next page, as
. see figures 3.4 to 3.6 on the following page ...

i.e., the command is deciding what to say depending on where the two la-
bels are placed in relation to each other; it is essentially implemented using
\vpagerefrange described below. The optional argument the command may take
is the text to use in case both labels are placed on the current page.

This command is similar to \vpageref but takes two mandatory arguments
which are two labels denoting a range. If both labels fall onto the same page, the
command acts exactly like \vpageref (with a single label), otherwise it produces
something like “on pages 15-18” (see customization possibilities below). The
optional argument it may take is the text to use in case both labels are placed on
the current page.

This macro is provided to allow the user to write their own small commands
which implement functions similar to those provided by the two previous com-
mands. It takes two arguments: the second is a label (i.e., as used in \label or
\ref) and the first is an arbitrary command name (make sure you use our own)
that receives the page number related to this label. So if you have two (or more)
labels you could retrieve their page numbers, compare them and then decide what
to print. For example, the following not very serious definition (also using the
ifthen package)

\newcommand\amusingversion[2]{%
\vrefpagenum\firstnum{#1}7,
\vrefpagenum\secondnum{#2}%
the definition
\ifthenelse{\equal\firstnum\secondnum}’,
{s of \ref{#1} and \ref{#2} \vpageref{#1}}/,
{ of \ref{#1} \vpageref{#1} and of \ref{#2} \vpageref{#2}}/
}

...\amusingversion{foo}{bar}
will print something like
... the definitions of 3 and 4 on the previous page
in the case both labels are on the same page but something like
... the definition of 3 on the next page and of 4 on page 13

in case the are on different pages.

\vref*
\vpageref *
\vpagerefrange*

\reftextbefore
\reftextfacebefore
\reftextafter
\reftextfaceafter

\reftextfaraway

\vreftextvario

\reftextpagerange

\reftextlabelrange

2.2 Additions in 2001

The user commands \vref, \vpageref, and \vpagerefrange all work by first
removing any space on their left and then inserting some space of their own (\vref,
for example, a nonbreakable space). That seemed like a good idea back then, but
it has the disadvantage that you can’t use these macros in situations where you
definitely do not want any space before the generated text. E.g., in situations like
(\vref{foo} ...) you end up with a space after the open parenthesis.

Since it is to late to change the default behaviour I've added star versions
of the macros which do not add any space before the generated text (they do
nevertheless remove space at the left).

3 Customization

The package supports all options defined by the babel package to translate the
fixed strings into other languages than English. (Some languages need updating,
however.) It also supports languages currently not in babel; check the section on
options later on. You can also modify some or all of the strings by redefining
the following commands. Backward references use \reftextbefore if the label
is on the preceding page but invisible and \reftextfacebefore if it is one the
facing page (i.e., if the current page number is odd). Similarily \reftextafter
is used when the label comes on the next page but one has to turn the page and
\reftextfaceafter if it is on the following but facing page.

In fact, \reftextface. .. is used only if the user or the document class spec-
ified two-sided printing.

Finally we have \reftextfaraway which is used whenever label and reference
differ by more than one or when they aren’t numeric. This macro is a bit different
because it takes one argument, the symbolic reference string so that one cane make
use of \pageref in its replacement text.

To allow a bit random variation in the generated strings one can use the com-
mand \reftextvario inside the string macros. It takes two arguments and selects
one or the other for printing depending on the number of already seens \vref or
\vpageref commands. As an example see the definitions of \reftextbefore etc.
on page 7.

3.1 Additions in 1998

The commands \vrefrange and \vpagerefrange produce their text using two
macros described below. By redefining them one can modify the results to accom-
modate special requirements.

They both take two mandatory arguments denoting the first and the last label
of the range.

This macro produces text that describes the page range of the two labels, e.g.,
the default for English is “on pages™\pageref{#1}--\pageref{#2}}”.

This macro produces text that describes the range of figures, tables, or what-
ever the labels refer to, the default for English is “\ref{#1} to~\ref{#2}”.

\vrefwarning

\vrefshowerrors

\fullref

4 Options

As mentioned above the package supports all standard options offered by the
Babel system to customize the strings produced. In addition it offers the option
draft to turn error messages into warnings during development. The defaul final
produces error message when a generated string falls onto a page boundary (see
next section).

5 A few warnings

Defining commands like the ones described above poses some interesting problems.
Suppose, for example, that a generated text like ‘on the next page’ gets broken
across pages. If this happens it is very difficult to find an acceptable solution and
in fact can even result in a document that will always change from one state to an-
other (i.e., inserting one string, finding that this is wrong, inserting another string
on the next run which makes the first string correct again, inserting ...). The
current implementation of varioref therefore issues an error message whenever
the generated text is broken across page boundaries, e.g.,

table 5 on the current (page break) page

would would result in an error, which needs to be resolved by the user by replacing
the \vref command with an ordinary \ref just before the final run. This is not
completely satisfactory but in such case no solution really is. During document
preparation, while one is still changing the text, such error messages can be turned
into warnings by placing a \vrefwarning command in the preamble. This is
equivalent to specifying “draft” as an option to the package. \vrefshowerrors
ensures that varioref stops when detecting a possible loop. This is the default and
equivalent to specifying “final” as an option.

At the end final a warning: every use of \vref will internally generate two
macro names to keep track of the string positions within the document. As a
result you may run out of name space or main memory if you make heavy use of
this macro on a small TEX installation. For this reason the primitive command
\fullref is also provided. This command can be used whenever you know for
sure that label and reference can’t fall onto nearby pages.

6 The documentation driver file

The next bit of code contains the documentation driver file for TEX, i.e., the file
that will produce the documentation you are currently reading. It will be extracted
from this file by the docstrip program.

1 (xdriver)

2 \documentclass{ltxdoc}

3 \usepackage{varioref}

4 \GetFileInfo{varioref.sty}

5 \setlength\hfuzz{ipt} % ignore slight overfulls

A New Implementation of IXTEX’s
verbatim and verbatim* Environments.

Rainer Schopf
Zentrum fiir Datenverarbeitung
der Universitat Mainz
Anselm-Frantz-von-Bentzel-Weg 12
D-55099 Mainz
Federal Republic of Germany
Internet: Schoepf@Uni-Mainz.DE

Bernd Raichle
Stettener Str. 73
D-73732 Waldenbronn
Federal Republic of Germany
Internet: raichle@azu.Informatik.Uni-Stuttgart.DE

Chris Rowley
The Open University
Parsifal College
Finchley Road
London NW3 7BG, UK
Internet: C.A.Rowley@open.ac.uk

2001,/03,12

Abstract

This package reimplements the IATEX verbatim and verbatim* envi-
ronments. In addition it provides a comment environment that skips any
commands or text between \begin{comment} and the next \end{comment}.
It also defines the command verbatiminput to input a whole file verbatim.

1 Usage notes

ETEX’s verbatim and verbatim#* environments have a few features that may give
rise to problems. These are:

Verbatim style option 2

e Due to the method used to detect the closing \end{verbatim} (i.e. macro
parameter delimiting) you cannot leave spaces between the \end token and
{verbatim}.

e Since TEX has to read all the text between the \begin{verbatim} and the
\end{verbatim} before it can output anything, long verbatim listings may
overflow TEX’s memory.

Whereas the first of these points can be considered only a minor nuisance the
other one is a real limitation.

This package file contains a reimplementation of the verbatim and verbatim*
environments which overcomes these restrictions. There is, however, one incom-
patibility between the old and the new implementations of these environments: the
old version would treat text on the same line as the \end{verbatim} command
as if it were on a line by itself.

This new version will simply ignore it.

(This is the price one has to pay for the removal of the old verbatim environment’s
size limitations.) It will, however, issue a warning message of the form

LaTeX warning: Characters dropped after \end{verbatimx}!

This is not a real problem since this text can easily be put on the next line without
affecting the output.

This new implementation also solves the second problem mentioned above: it
is possible to leave spaces (but not begin a new line) between the \end and the
{verbatim} or {verbatimx}:

\begin {verbatimx*}
test
test

\end {verbatim*}

Additionally we introduce a comment environment, with the effect that the
text between \begin{comment} and \end{comment} is simply ignored, regardless
of what it looks like. At first sight this seems to be quite different from the purpose
of verbatim listing, but actually the implementation of these two concepts turns
out to be very similar. Both rely on the fact that the text between \begin{...}
and \end{...} is read by TEX without interpreting any commands or special
characters. The remaining difference between verbatim and comment is only that
the text is to be typeset in the first case and to be thrown away in the latter. Note
that these environments cannot be nested.

\verbatiminput is a command with one argument that inputs a file verbatim,
i.e. the command verbatiminput{xx.yy} has the same effect as

\begin{verbatim}
(Contents of the file zz.yy)
\end{verbatim}
This command has also a *-variant that prints spaces as .

Verbatim style option 3

2 Interfaces for package writers

The verbatim environment of XTEX 2 does not offer a good interface to pro-
grammers. In contrast, this package provides a simple mechanism to implement
similar features, the comment environment implemented here being an example of
what can be done and how.

2.1 Simple examples

It is now possible to use the verbatim environment to define environments of your
own. E.g.,

\newenvironment{myverbatim}y,
{\endgraf\noindent MYVERBATIM:
\endgraf\verbatim}
{\endverbatim}

can be used afterwards like the verbatim environment, i.e.

\begin {myverbatim}
test
test

\end {myverbatim}

Another way to use it is to write

\let\foo=\comment
\let\endfoo=\endcomment

and from that point on environment foo is the same as the comment environment,
i.e. everything inside its body is ignored.
You may also add special commands after the \verbatim macro is invoked,

e.g.

\newenvironment{myverbatim}J,
{\verbatim\myspecialverbatimsetupl}’
{\endverbatim}

though you may want to learn about the hook \every@verbatim at this point.
However, there are still a number of restrictions:

1. You must not use the \begin or the \end command inside a definition,
e.g. the following two examples will not work:

\newenvironment{myverbatim}J,
{\endgraf\noindent MYVERBATIM:,
u\endgraf\begin{verbatim}}/,
{\end{verbatim}}
\newenvironment{fred}
{\begin{minipage}{30mm}\verbatim}
{\endverbatim\end{minipagel}}

Verbatim style option 4

If you try these examples, TEX will report a “runaway argument” error. More
generally, it is not possible to use \begin. .. \end or the related environments
in the definition of the new environment. Instead, the correct way to define
this environment would be

\newenvironment{fred}
{\minipage{30mm}\verbatim}
{\endverbatim\endminipage}

2. You cannot use the verbatim environment inside user defined commands;
e.g.,

\newcommand{\verbatimfile}[11%
vuuuuuuuuuut \begin{verbatim}\input{#1}\end{verbatim}}

does not work; nor does
\newcommand{\verbatimfile}[1]{\verbatim\input{#1}\endverbatim}

3. The name of the newly defined environment must not contain characters
with category code other than 11 (letter) or 12 (other), or this will not
work.

2.2 The interfaces

Let us start with the simple things. Sometimes it may be necessary to use a special
typeface for your verbatim text, or perhaps the usual computer modern typewriter
shape in a reduced size.

You may select this by redefining the macro \verbatim@font. This macro is
executed at the beginning of every verbatim text to select the font shape. Do not
use it for other purposes; if you find yourself abusing this you may want to read
about the \every@verbatim hook below.

By default, \verbatim@font switches to the typewriter font and disables the
ligatures contained therein.

There is a hook (i.e. a token register) called \every@verbatim whose contents
are inserted into TEX’s mouth just before every verbatim text. Please use the
\addto@hook macro to add something to this hook. It is used as follows:

\addto@hook({name of the hook){{commands to be added)?}

After all specific setup, like switching of category codes, has been done, the
\verbatim@start macro is called. This starts the main loop of the scanning
mechanism implemented here. Any other environment that wants to make use of
this feature should execute this macro as its last action.

These are the things that concern the start of a verbatim environment. Once
this (and other) setup has been done, the code in this package reads and processes
characters from the input stream in the following way:

Verbatim style option 5

1. Before the first character of an input line is read, it executes the macro
\verbatim@startline.

2. After some characters have been read, the macro \verbatim@addtoline is
called with these characters as its only argument. This may happen several
times per line (when an \end command is present on the line in question).

3. When the end of the line is reached, the macro \verbatim@processline
is called to process the characters that \verbatim@addtoline has accumu-
lated.

4. Finally, there is the macro \verbatim@finish that is called just before the
environment is ended by a call to the \end macro.

To make this clear let us consider the standard verbatim environment. In this
case the three macros above are defined as follows:

1. \verbatim@startline clears the character buffer (a token register).
2. \verbatim@addtoline adds its argument to the character buffer.
3. \verbatim@processline typesets the characters accumulated in the buffer.

With this it is very simple to implement the comment environment: in this case
\verbatim@startline and \verbatim@processline are defined to be no-ops
whereas \verbatim@addtoline discards its argument.

Let’s use this to define a variant of the verbatim environment that prints
line numbers in the left margin. Assume that this would be done by a counter
called VerbatimLineNo. Assuming that this counter was initialized properly by
the environment, \verbatim@processline would be defined in this case as

\def\verbatim@processline{}
\addtocounter{VerbatimLineNo}{1}%
\leavevmode
\1llap{\theVerbatimLineNo\ \hskip\@totalleftmargin}y,
\the\verbatim@line\par}

A further possibility is to define a variant of the verbatim environment that
boxes and centers the whole verbatim text. Note that the boxed text should be
less than a page otherwise you have to change this example.

\def\verbatimboxed#1{\begingroup
\def\verbatim@processline{,
{\setbox0O=\hbox{\the\verbatim@line}y,

\hsize=\wdO

\the\verbatim@line\par}}/
\setbox0=\vbox{\parskip=0pt\topsep=0pt\partopsep=0pt

\verbatiminput{#1}}%
\begin{center}\fbox{\box0}\end{center}y
\endgroup}

Verbatim style option 6

As a final nontrivial example we describe the definition of an environment
called verbatimwrite. It writes all text in its body to a file whose name is given
as an argument. We assume that a stream number called \verbatim@out has
already been reserved by means of the \newwrite macro.

Let’s begin with the definition of the macro \verbatimwrite.

\def\verbatimwrite#1{},

First we call \@bsphack so that this environment does not influence the spacing.
Then we open the file and set the category codes of all special characters:

\@bsphack

\immediate\openout \verbatim@out #1
\let\do\@makeother\dospecials
\catcode ‘\""M\active

The default definitions of the macros

\verbatim@startline
\verbatim@addtoline
\verbatim@finish

are also used in this environment. Only the macro \verbatim@processline has
to be changed before \verbatim@start is called:

\def\verbatim@processline{,
\immediate\write\verbatim@out{\the\verbatim@line}}J,
\verbatim@start}

The definition of \endverbatimwrite is very simple: we close the stream and call
\@esphack to get the spacing right.

\def\endverbatimwrite{\immediate\closeout\verbatim@out\@esphack}

3 The implementation

The very first thing we do is to ensure that this file is not read in twice. To this
end we check whether the macro \verbatim@@@ is defined. If so, we just stop
reading this file. The ‘package’ guard here allows most of the code to be excluded
when extracting the driver file for testing this package.

1 (xpackage)

2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{verbatim}

4 [2001/03/12 v1.5p LaTeX2e package for verbatim enhancements]

5 \@ifundefined{verbatim@@@}{}{\endinput}

We use a mechanism similar to the one implemented for the \comment...
\endcomment macro in AMS-TEX: We input one line at a time and check if it
contains the \end{. ..} tokens. Then we can decide whether we have reached the
end of the verbatim text, or must continue.

The xr package®

David Carlislef
carlisle@cs.man.ac.uk

1994/05/28

This package implements a system for eXternal References.

If one document needs to refer to sections of another, say aaa.tex, then this
package may be loaded in the main file, and the command
\externaldocument{aaa}
given in the preamble.

Then you may use \ref and \pageref to refer to anything which has been
given a \label in either aaa.tex or the main document. You may declare any
number of such external documents.

If any of the external documents, or the main document, use the same \label
then an error will occur as the label will be multiply defined. To overcome
this problem \externaldocument has an optional argument. If you declare
\externaldocument [A-]{aaa} Then all references from aaa are prefixed by A-.
So for instance, if a section of aaa had \label{intro}, then this could be ref-
erenced with \ref{A-intro}. The prefix need not be A-, it can be any string
chosen to ensure that all the labels imported from external files are unique. Note
however that if your style declares certain active characters (: in French, " in
German) then these characters can not usually be used in \label, and similarly
may not be used in the optional argument to \externaldocument.

1 The macros

1 (xpackage)

Check for the optional argument.
2 \def\externaldocument{\@ifnextchar [\XR@{\XR@[]}}

Save the optional prefix. Start processing the first aux file.
3 \def\XR@ [#1]1#2{{/
4 \makeatletter
5 \def\XR@prefix{#1}J,
6 \XR@next#2.aux\relax\\}}

Process the next aux file in the list and remove it from the head of the list of
files to process.

*This file has version number v5.02, last revised 1994/05/28.
TThe Author of Versions 1-4 was Jean-Pierre Drucbert

\xspace

\@xspace

The xspace package*

David Carlisle
1997/10/13

Abstract

\xspace should be used at the end of a macro designed to be used mainly
in text. It adds a space unless the macro is followed by certain punctuation
characters.

1 Introduction

After \newcommand{\gb}{Great Britain\xspace}
\gb is a very nice place to live.
Great Britain is a very nice place to live.
\gb, a small island off the coast of France.
Great Britain, a small island off the coast of France.
\xspace saves the user from having to type \. or {} after most occurrences of
a macro name in text. However if either of these constructions follows \xspace, a
space is not added by \xspace. This means that it is safe to add \xspace to the
end of an existing macro without making too many changes in your document.
Sometimes \xspace may make the wrong decision, and add a space when it
is not required. In these cases follow the macro with {}, as this has the effect of
suppressing the space.
Note that this package must be loaded after any language (or other) packages
that make punctuation characters ‘active’.

2 The Macros

1 (xpackage)
\xspace just looks ahead, and then calls \@xspace.
2 \DeclareRobustCommand\xspace{\futurelet\@let@token\@xspace}

If the next token is one of a specified list of characters, do nothing, otherwise add
a space. If you often use a different punctuation character, add the appropriate
line (do not forget the \fi at the end!)

*This file has version number v1.06, last revised 1997/10/13.

	afterpage
	array
	bm
	calc
	dcolumn
	delarray
	enumerate
	fileerr
	fontsmpl
	ftnright
	hhline
	indentfirst
	layout
	longtable
	multicol
	rawfonts
	showkeys
	somedefs
	tabularx
	theorem
	trace
	varioref
	verbatim
	xr
	xspace

