Gaussian vectors

Definition (Gaussian distribution): A real random variable Z is said to have the *standard Gaussian distribution* if its probability distribution is absolutely continuous with respect to the Lebesgue measure and its density is given by

$$f_{\mathcal{N}(0,1)}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

(In this case, we write $Z \sim \mathcal{N}(0,1)$.) Let $m, n \in \mathbb{N}$. An *n*-dimensional random vector X is said to have the *n*-dimensional Gaussian distribution if there exists $\mu \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$ such that $X = \mu + AZ$ where Z is an *m*-dimensional random vector whose components are independent and have the standard Gaussian distribution. (In this case, we write $X \sim \mathcal{N}_n(\mu, \Sigma)$ where $\Sigma = AA^{\top}$.)

Corollaries: Let Z and X be random vectors as in the above definition. Then

- 1. It holds that $\mathbb{E}X = \mu$ (vector of means) and var $X = \Sigma$ (covariance matrix).
- 2. For $k \in \mathbb{N}$ and matrix $B \in \mathbb{R}^{k \times n}$, it holds that $BX \sim \mathcal{N}_k(B\mu, B\Sigma B^{\top})$.
- 3. If Σ is non-singular, then the distribution of X is absolutely continuous with respect to the *n*-dimensional Lebesgue measure and its density is given by

$$f_{\mathcal{N}_n(\mu,\Sigma)}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{\det\Sigma}} e^{-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)}, \quad x \in \mathbb{R}^n.$$

Stochastic processes

Recall the definition of a distribution function.

Definition (Distribution function): Let $k \in \mathbb{N}$. A function $F : \mathbb{R}^k \to [0, 1]$ is a distribution function if it has the following properties:

1. For every $x \in \mathbb{R}^k$ there is a sequence $\{x^n\}_{n \in \mathbb{N}} \subset \mathbb{R}^k$ such that $x^n > x$ (coordinatewise) for every $n \in \mathbb{N}$, $\lim x^n = x$, and

$$\lim_{n \to \infty} F(x^n) = F(x).$$

2. There exists a sequence $\{y^n\}_{n\in\mathbb{N}}\subset\mathbb{R}^k$ such that $\lim y^n=(\infty,\ldots,\infty)^{\top}$ and

$$\lim_{n \to \infty} F(y^n) = 1.$$

3. For every $i \in \{1, \ldots, k\}$ and every $x = (x_1, \ldots, x_k)^\top \in \mathbb{R}^k$ we have that

$$\lim_{y \to -\infty} F(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_k) = 0$$

4. For every $x = (x_1, \ldots, x_k)^\top \in \mathbb{R}^k$ and $y = (y_1, \ldots, y_k)^\top \in \mathbb{R}^k$, x < y, it holds that

$$\sum_{\substack{\delta_1 \in \{x_1, y_1\} \\ \vdots \\ \delta_k \in \{x_k, y_k\}}} (-1)^{\operatorname{card}(\{i:\delta_i = x_i\})} F(\delta_1, \dots, \delta_k) \ge 0.$$

Let $T \subset \mathbb{R}, T \neq \emptyset$. A collection of (real-valued) random variables $\{X_t, t \in T\}$ is called a (real-valued) stochastic process. Given such a process, the system

$$\{\mathsf{F}^X_{t_1,\ldots,t_n}, n \in \mathbb{N}, t_1,\ldots,t_n \in T\}$$

of its marginal distribution functions defined by

$$\mathsf{F}^X_{t_1,\ldots,t_n}(x_1,\ldots,x_n) = \mathbb{P}(X_{t_1} \le x_1,\ldots,X_{t_n} \le x_n), \qquad x_1,\ldots,x_n \in \mathbb{R},$$

for $n \in \mathbb{N}$ and $t_1, t_2, \ldots, t_n \in T$ can be considered. This system is symmetric and consistent in the following manner: For any $n \in \mathbb{N}, t_1, \ldots, t_n \in T$ and $x_1, \ldots, x_n \in \mathbb{R}$, we have that

1. the equality

$$\mathsf{F}^{X}_{t_{\pi_{1}},\ldots,t_{\pi_{n}}}(x_{\pi_{1}},\ldots,x_{\pi_{n}})=\mathsf{F}^{X}_{t_{1},\ldots,t_{n}}(x_{1},\ldots,x_{n})$$

holds for any permutation $\{\pi_1, \ldots, \pi_n\}$ of $\{1, \ldots, n\}$; and

2. we also have

$$\lim_{x_n \to \infty} \mathsf{F}^X_{t_1, \dots, t_{n-1}, t_n}(x_1, \dots, x_n) = \mathsf{F}^X_{t_1, \dots, t_{n-1}}(x_1, \dots, x_{n-1}).$$

In fact, if for any $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T$ we are given a distribution function $\mathsf{F}_{t_1,\ldots,t_n}$, we say that the system $\{\mathsf{F}_{t_1,\ldots,t_n}, n \in \mathbb{N}, t_1,\ldots,t_n \in T\}$ is *consistent* if it has the two properties above. One can always construct a stochastic process from a given system of marginal distributions as long as the system is consistent.

Exercise 1.1: Let $T = \{1, 2\}$. Give an example of

- a consistent system of distribution functions,
- a system of distribution functions that does not satisfy consistency condition 1,
- a system of distribution functions that does not satisfy consistency condition 2.

Theorem 1.1 (Daniell-Kolmogorov): Let $\{\mathsf{F}_{t_1,\ldots,t_n}, n \in \mathbb{N}, t_1 \ldots, t_n \in T\}$ be a consistent system of distribution functions. Then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process $\{X_t, t \in T\}$ defined on it such that for every $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T$, we have

$$\mathbb{P}(X_{t_1} \le x_1 \dots, X_{t_n} \le x_n) = \mathsf{F}_{t_1, \dots, t_n}(x_1, \dots, x_n), \quad x_1, \dots, x_n \in \mathbb{R}.$$

Gaussian processes

Definition (Gaussian process): A stochastic process $\{X_t, t \in T\}$ is called *Gaussian* if for all $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T$, the random vector $(X_{t_1}, \ldots, X_{t_n})^{\top}$ has *n*-dimensional Gaussian distribution.

Exercise 1.2: Let $\{X_t, t \in \mathbb{Z}\}$ be a stochastic process that consists of independent random variables that have the standard Gaussian distribution. Show that $\{X_t, t \in \mathbb{Z}\}$ is a Gaussian process. Let further $\rho \in \mathbb{R}$ be such that $|\rho| < 1$ and let $\{Y_t, t \in \mathbb{Z}\}$ be a stochastic process defined by

$$Y_t = X_t + \rho X_{t-1}, \quad t \in \mathbb{Z}.$$

Show that $\{Y_t, t \in \mathbb{Z}\}$ is also a Gaussian process.

Mean and autocovariance function

Definition (Mean of a process): Let $\{X_t, t \in T\}$ be a stochastic process with finite first moments, i.e. $\mathbb{E}|X_t| < \infty$ for every $t \in T$. Then the (possibly \mathbb{C} -valued) function μ defined by

$$\mu(t) := \mathbb{E}X_t, \quad t \in T,$$

is called the *mean value* of the process $\{X_t, t \in T\}$.

Definition (Autocovariance function): Let $\{X_t, t \in T\}$ be a stochastic process with finite second moments, i.e. $\mathbb{E}|X_t|^2 < \infty$ for all $t \in T$. Then the (possibly \mathbb{C} -valued) function defined by

$$R(s,t) = \mathbb{E}(X_s - \mathbb{E}X_s)(\overline{X_t - \mathbb{E}X_t}), \quad s, t \in T,$$

is called the *autocovariance function* of the process $\{X_t, t \in T\}$.

Theorem 2.2: The autocovariance function has the following properties:

- it is non-negative on the diagonal: $R(t,t) \ge 0$,
- it is Hermitian: $R(s,t) = \overline{R(t,s)}$,
- it satisfies the Cauchy-Schwarz inequality: $|R(s,t)| \leq \sqrt{R(s,s)}\sqrt{R(t,t)}$,
- it is positive semidefinite: for all $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{C}$ and $t_1, \ldots, t_n \in T$ it holds that

$$\sum_{j=1}^{n}\sum_{k=1}^{n}c_{j}\overline{c_{k}}R(t_{j},t_{k}) \ge 0.$$

Stationarity

Definition (Properties of stochastic processes): A stochastic process $\{X_t, t \in T\}$ is called

- centered if $\mu(t) = 0$ for every $t \in T$,
- a process of uncorrelated random variables if the process has finite second moments and for its autocovariance function it holds that R(s,t) = 0 whenever $s, t \in T$ are such that $s \neq t$,
- process with independent increments if for all $n \in \mathbb{N}$ and $t_1, \ldots, t_n \in T$ such that $t_1 < \cdots < t_n$ the random variables $X_{t_2} X_{t_1}, \ldots, X_{t_n} X_{t_{n-1}}$ are independent,
- process with stationary increments if for all $s, t \in T$ such that s < t the distribution of the increment $X_t X_s$ depends only on t s.

Definition (Stationarity): A stochastic process $\{X_t, t \in T\}$ is called

- strictly stationary if for any $n \in \mathbb{N}, t_1, \ldots, t_n \in T$ and h > 0 such that $t_1 + h, \ldots, t_n + h \in T$ the distributions of the random vectors $(X_{t_1}, \ldots, X_{t_n})^\top$ and $(X_{t_1+h}, \ldots, X_{t_n+h})^\top$ are the same;
- weakly stationary if the process has
 - finite second moments,
 - constant mean value (i.e. if there is $\mu \in \mathbb{R}$ such that $\mu(t) = \mu$ holds for every $t \in T$), and
 - if its autocovariance function depends only on the difference of its arguments (i.e. if R(s+h,t+h) = R(s,t) holds for every $h \in \mathbb{R}$, $s, t \in T$ such that $s+h, t+h \in T$),
- *covariance stationary* if the process has finite second moments and its autocovariance function depends only on the difference of its arguments.

Theorem 2.1: The following implications hold:

- a) strictly stationary with finite second moments \Rightarrow weakly stationary,
- b) weakly stationary \Rightarrow covariance stationary,
- c) covariance stationary and constant mean \Rightarrow weakly stationary,
- d) weakly stationary and Gaussian \Rightarrow strictly stationary,
- e) process of uncorrelated random variables with constant variance \Rightarrow covariance stationary,
- f) centered process of uncorrelated random variables with constant variance \Rightarrow weakly stationary.

Important examples of stochastic processes

Definition (Poisson process): A Poisson process $N = \{N_t, t \ge 0\}$ is a stochastic process with the following properties:

- $N_0 = 0$ almost surely,
- N has independent increments, i.e. for every $n \in \mathbb{N}$ and $0 < t_1 < t_2 < \ldots < t_n$, the random variables $N_{t_1}, N_{t_2} N_{t_1}, \ldots, N_{t_n} N_{t_{n-1}}$ are independent,
- N has Poisson stationary increments, i.e. there exists a finite positive constant λ such that for every $0 \le s < t$, we have that $N_t N_s$ has the Poisson distribution $\mathsf{Po}(\lambda(t-s))$.

Definition (Wiener process): A Wiener process $W = \{W_t, t \ge 0\}$ is a stochastic process with the following properties:

- $W_0 = 0$ almost surely,
- W has continuous trajectories, i.e. for almost every $\omega \in \Omega$, the map $t \mapsto W_t(\omega)$ is continuous,
- W has independent increments, i.e. for every $n \in \mathbb{N}$ and $0 < t_1 < t_2 < \ldots < t_n$, the random variables $W_{t_1}, W_{t_2} W_{t_1}, \ldots, W_{t_n} W_{t_{n-1}}$ are independent,
- W has stationary Gaussian increments, i.e. there exists a finite positive constant σ^2 such that for every $0 \le s < t$, we have that $W_t W_s$ has the normal distribution $N(0, \sigma^2(t-s))$.

Exercises

Exercise 2.1: Let $X_t = a + bt + Y_t$, $t \in \mathbb{Z}$, where $a, b \in \mathbb{R}$, $b \neq 0$ and $\{Y_t, t \in \mathbb{Z}\}$ be a sequence of independent identically distributed random variables with zero mean and finite positive variance σ^2 .

- a) Determine the autocovariance function of the sequence $\{X_t, t \in \mathbb{Z}\}$ and discuss its stationarity.
- b) For $q \in \mathbb{N}$ we define random variables V_t by the formula

$$V_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t+j}, \quad t \in \mathbb{Z}.$$

Determine the autocovariance function of the sequence $\{V_t, t \in \mathbb{Z}\}$ and discuss its stationarity.

Exercise 2.2: Let X be a random variable with a uniform distribution on the interval $(0, \pi)$. Consider the sequence of random variables $\{Y_t, t \in \mathbb{N}\}$ where $Y_t = \cos(tX)$. Discuss the properties of such a random sequence.

Exercise 2.3: Consider the stochastic process $X_t = \cos(t+B), t \in \mathbb{R}$, where B is a random variable with a uniform distribution on the interval $(0, 2\pi)$. Check whether the process is weakly stationary.

Exercise 2.4: Let X be a random variable such that $\mathbb{E}X = 0$ and $\operatorname{var} X = \sigma^2 < \infty$. We define $X_t = (-1)^t X, t \in \mathbb{N}$. Discuss the properties of the sequence $\{X_t, t \in \mathbb{N}\}$.

Exercise 2.6: Let $\{N_t, t \ge 0\}$ be a Poisson process with intensity $\lambda > 0$ and let A be a real-valued random variable with zero mean and unit variance, independent of the process $\{N_t, t \ge 0\}$. We define $X_t = A(-1)^{N_t}, t \ge 0$. Determine the autocovariance function of $\{X_t, t \ge 0\}$.

Exercise 2.8: Let $\{W_t, t \ge 0\}$ be a Wiener process. We define the so-called *Ornstein-Uhlenbeck* process $\{U_t, t \ge 0\}$ by the formula $U_t = e^{-\alpha t/2} W_{\exp\{\alpha t\}}, t \ge 0$, where $\alpha > 0$ is a parameter. Decide whether $\{U_t, t \ge 0\}$ is weakly (strictly) stationary and determine its autocovariance function.

Exercise 2.11: Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of independent identically distributed random variables. Prove that the process is strictly stationary. Is it also weakly stationary?

Exercise 2.12: Let $\{X_t, t \in \mathbb{Z}\}$ be a sequence of uncorrelated random variables with zero mean and finite positive variance (so-called *white noise*). Prove that it is weakly stationary. Is it also strictly stationary?

Exercise 2.13: Let $X_0 = 0$, $X_t = Y_1 + \cdots + Y_t$ for $t = 1, 2, \ldots$, where Y_1, Y_2, \ldots are independent identically distributed discrete random variables with zero mean and finite positive variance. Show that $\{X_t, t \in \mathbb{N}_0\}$ is a Markov chain. Determine its autocovariance function. What can we say about the properties of such a random sequence?

Exercise 2.14: Let $\{X_t, t \in T\}$ a $\{Y_t, t \in T\}$ be uncorrelated weakly stationary processes, i.e. for all $s, t \in T$ the random variables X_s and Y_t are uncorrelated. Show that in such a case also the process $\{Z_t, t \in T\}$ with $Z_t = X_t + Y_t$ is weakly stationary.

Exercise 2.18: Determine the autocovariance function of the Wiener process $\{W_t, t \ge 0\}$. For $0 \le t_1 < t_2 < \cdots < t_n$ determine the variance matrix of the random vector $(W_{t_1}, \ldots, W_{t_n})^{\top}$.