
Random fields on a lattice

1. Working with cliques:

a) How many cliques are there on the given graph?

b) Which neighbourhood relation on 13 vertices would result in the least possible number of cliques? What
is the number of cliques in that case?

c) Which neighbourhood relation on 13 vertices would result in the maximum possible number of cliques?
What is the number of cliques in that case?

d) Draw a neighbourhood relation that results in exactly 20 cliques.

e) Is there any other way of representing the neighbourhood relation, other than an undirected graph?

f) Is there any neighbourhood relation relevant for the regions of Czech Republic other than the one based
on the common boundary?

2. Show that a Markov chain {Z1, . . . , Zn} is a Markov random field with respect to the relation i ∼ j ⇔
|i − j| ≤ 1. Prove that the converse implication holds as follows: if {Z1, . . . , Zn} is a Markov random field
with a probability density function satisfying p(z) > 0 for all z = (z1, . . . , zn)T then it is a Markov chain.

3. Consider a Markov random field on a lattice L with respect to the relation i ∼ j. If i ∈ L has no neighbours,
i.e. ∂i = ∅, does that imply that Zi and Z−i are independent?

4. Consider a Markov random field on a lattice L with respect to the relation i ∼ j. If i, j ∈ L are not
neighbours, i.e. i � j, does that imply that Zi and Zj are independent?

5. Let L be a lattice and ∼ be a relation on L given by the graph G = (L,E). Assume that Z is a Markov
random field on L with respect to ∼. Consider adding a new edge, obtaining the graph G′ = (L,E′) with
E ⊂ E′. Does the random field Z considered above have the Markov property with respect to the relation
given by the graph G′?

6. Let L be a lattice and ∼ be the relation on L given by the complete graph G = (L, 2L). Let Z be a
random field on L. Show that it is Markov with respect to ∼. What is the factorization given by the
Hammersley-Clifford theorem?

7. Consider a Gaussian random field on a lattice L, i.e. the joint distribution of {Zi, i ∈ L} is n-dimensional
Gaussian. Assume the covariance matrix Σ is regular and hence Q = Σ−1 exists. The joint probability
density function of {Zi, i ∈ L} is

p(z) =

√
detQ

(2π)n/2
exp

−1

2

∑
i,j∈L

qij(zi − µi)(zj − µj)

 , z ∈ RL.

If this random field is to be Markov, what should be the neighbourhood relation?

8. Local characteristics do not determine the joint distribution. Consider a lattice with two lattice points
L = {i, j} and assume that Zi | Zj = zj has an exponential distribution with rate zj and Zj | Zi = zi has
an exponential distribution with rate zi. Show that these conditional distributions do not correspond to any
probability distribution, i.e. a (proper) joint probability density function of the vector (Zi, Zj)

T does not
exist.
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9. Let Z be a Markov random field on a lattice L and with respect to the relation i ∼ j. Assume that the
random variables {Zi, i ∈ L} are binary, i.e. S = {0, 1}, and that Zi have the same expectation. We want to
test the null hypothesis of independence of {Zi, i ∈ L}, taking into account the neighbourhood relation i ∼ j.
Under the assumptions above, the null hypothesis in fact states that {Zi, i ∈ L} are i.i.d. random variables.

a) Propose an appropriate test statistics T ;

b) discuss how to perform the test if we can simulate from the model under the null hypothesis;

c) discuss how to perform the test if we cannot simulate from the model under the null hypothesis;

d) if the point i ∈ L has many neighbours and the point j ∈ L has few neighbours, the impact of Zi on
the value of T can perhaps be much higher than the impact of Zj – propose a way how to compensate
for that.

Additional exercises

10. Show that any Gibbs random field satisfies

p(zA | z−A) = p(zA | z∂A)

for any A ⊆ L and z ∈ SL. The symbol ∂A denotes the set of neighbours of the set A, i.e. ∂A = (∪i∈A∂i)\A.

11. Let S = N0 and L be a finite lattice in Rd. Show that if βij ≥ 0 for all i, j ∈ L such that i ∼ j, i 6= j, then
the constant ∑

z∈SL

exp

−∑
i∈L

(log zi! + βizi)−
∑
{i,j}∈C

βijzizj


is finite. On the other hand, it is infinite if βij < 0 for any i, j ∈ L: i ∼ j, i 6= j.

Hint: In the first case consider the configurations with max zi = k (there are (k+ 1)n− kn of those). In the
second case consider the configurations with zi = zj = k and zl = 0 for l ∈ L \ {i, j}.

12. Let the random variable Z1 have a normal distribution N(0, 1
1−ϕ2 ) with |ϕ| < 1. Consider a first-order

autoregressive sequence {Z1, . . . , Zn} defined by the formula

Zt = ϕZt−1 + εt, t = 2, . . . , n,

where {ε2, . . . , εn} is a sequence of independent identically distributed random variables with the N(0, 1) dis-
tribution and the sequence is independent of Z1. Determine the variance matrix Σ of the vector (Z1, . . . , Zn)T

and the matrix Q = Σ−1. Show that {Z1, . . . , Zn} is a Gaussian Markov random field with respect to the
relation i ∼ j ⇔ |i− j| ≤ 1.

13. Let {Zi : i ∈ L} be a Gaussian Markov random field with the precision matrix Q. Show that

corr(Zi, Zj | Z−{i,j}) = − qij√
qiiqjj

, i 6= j.

14. Consider random variables X1, X2 having only values 0 or 1. We specify the conditional distributions using
the logistic regression models:

logitP(X1 = 1 | X2) = α0 + α1X2, logitP(X2 = 1 | X1) = β0 + β1X1,

where logit p = log p
1−p and α0, α1, β0, β1 are real-valued parameters. Determine the joint distribution of the

random vector (X1, X2)T using the Brook lemma.
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Random fields on a connected domain

1. Let d > 1 and let Cd(h), h ∈ Rd, be an autocovariance function of a random field {Z(u), u ∈ Rd}, i.e. Cd is
a positive semidefinite function on Rd. Assume that the random field is stationary and isotropic and hence
Cd(h) = f(‖h‖d), h ∈ Rd, for some function f : [0,∞)→ R, where ‖h‖d denotes the d-dimensional Euclidean
norm. For 1 ≤ k < d define Ck(u) = f(‖u‖k), u ∈ Rk. Prove that Ck is the autocovariance function of some
random field {Y (u), u ∈ Rk}.

2. Let {WH(t) : t ∈ Rd+} be a centered Gaussian random field with the covariances

EWH(t)WH(s) =
1

2
(‖t‖2H + ‖s‖2H − ‖t− s‖2H), t, s ∈ Rd+,

where H ∈ (0, 1). Such a random field is called the Lévy’s fractional Brownian random field. Show that it is
an intrinsically stationary random field and determine its variogram.

3. Consider a spherical model for the autocovariance function of a stationary isotropic random field:

C(‖h‖) = σ2 |b(o, %) ∩ b(h, %)|
|b(o, %)|

, h ∈ Rd.

This model is valid in the dimension d and all the lower dimensions, see Exercise 1 above. However, it is not
valid in higher dimensions. Express this autocovariance function for d = 1 and check that it is a positive
semidefinite function. Show that this function considered in R2 (using ‖h‖, h ∈ R2, as its argument) is not
positive semidefinite.

Hint: Consider the points xij = (i
√

2%, j
√

2%), i, j = 1, . . . , 8 and the coefficients αij = (−1)i+j .

4. Express the autocovariance function from the previous Exercise for d = 2 using elementary functions.

5. Determine the spectral density of a weakly stationary random field with the autocovariance function

C(h) = exp{−‖h‖2}, h ∈ Rd.

6. Discuss how to estimate the semivariogram of an isotropic intrinsic stationary random field, based on the
observations Z(x1), . . . , Z(xn).

7. Discuss how to test the independence of two stationary random fields defined on the same domain, based on
the observations (Z1(x1), Z2(x1)), . . . , (Z1(xn), Z2(xn)).
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Random measures

1. Show that

a) µ 7→ µ(B) is a measurable mapping from (M,M) to ([0,∞],B([0,∞])) for every B ∈ B(E),

b) µ 7→ µ|B is a measurable mapping from (M,M) to (M,M) for every B ∈ B(E).

c) µ 7→
∫
E
f(x)µ(dx) is a measurable mapping from (M,M) to ([0,∞],B([0,∞])) for every non-negative

measurable function f on E.

2. Prove that Ψ is a random measure if and only if Ψ(B) is a random variable for every B ∈ B.

3. Consider intependent random variables U1 a U2 with uniform distribution on the interval [0, a], a > 0, and
the point process Φ on R2 defined as

Φ =
∑
m,n∈Z

δ(U1+ma,U2+na).

Determine the intensity measure of this process.

4. Let Ψ be a random measure. Check that the following formulas hold for B,B1, B2 ∈ B:

a) var Ψ(B) = M (2)(B ×B)− Λ(B)2,

b) cov(Ψ(B1),Ψ(B2)) = M (2)(B1 ×B2)− Λ(B1)Λ(B2).

5. Why the measure M (n) cannot have a density w.r.t. the Lebesgue measure on Rn·d but the measure α(n)

can? Consider n = 2, d = 1.

6. Let Φ be a simple point process. Check that the following formulas hold for B,B1, B2, B3 ∈ B:

a) M (2)(B1 ×B2) = Λ(B1 ∩B2) + α(2)(B1 ×B2),

b) M (3)(B1 × B2 × B3) = Λ(B1 ∩ B2 ∩ B3) + α(2)((B1 ∩ B2) × B3) + α(2)((B1 ∩ B3) × B2) + α(2)((B2 ∩
B3)×B1) + α(3)(B1 ×B2 ×B3),

c) α(n)(B × · · · ×B) = E[Φ(B)(Φ(B)− 1) · · · (Φ(B)− n+ 1)].

Additional exercises

7. For 0 < a < b < c let us consider the sets K1 = {0, a, a+ b, a+ b+ c} and K2 = {0, a, a+ c, a+ b+ c}. Let
X0 be a random variable with the uniform distribution on the interval [0, a+ b+ c]. We define simple point
processes Φ1 and Φ2 on R such that supp Φi = {x ∈ R : x = X0 + y + z(a + b + c), y ∈ Ki, z ∈ Z}, i = 1, 2.
Show that P(Φ1(I) = 0) = P(Φ2(I) = 0) for every interval I ⊆ R but the distributions of Φ1 and Φ2 are
different.

8. The Prokhorov distance for finite measures µ, ν is defined as

%P (µ, ν) = inf{ε > 0 : µ(F ) ≤ ν(F ε) + ε, ν(F ) ≤ µ(F ε) + ε) for every F ∈ F},

where F ε = {x ∈ E : ∃y ∈ F, d(x, y) < ε} is an open ε-neighbourhood of a closed set F . Show that %P is a
metric.
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Binomial, Poisson and Cox point process

1. Show that the mixed binomial point process with the Poisson distribution (with parameter λ) of the number

of points N is a Poisson process with the intensity measure λ ν(·)
ν(B) .

2. Let Φ be a Poisson point process with the intensity measure Λ and B ∈ B be a given Borel set. Show that
Φ|B is a Poisson point process and determine its intensity measure.

3. Consider two independent Poisson point processes Φ1 and Φ2 with the intensity measures Λ1 and Λ2. Show
that Φ = Φ1 + Φ2 is a Poisson process and determine its intensity measure.

4. Consider the point pattern {x1, . . . , xn} observed in a compact observation window W ⊂ R2. Suggest a test
of the null hypothesis that the point pattern is a realization of a Poisson process.

5. Let Φ be a Poisson point process with the intensity measure Λ. Determine the covariance cov(Φ(B1),Φ(B2))
for B1, B2 ∈ B.

6. Let Φ be a binomial point process with n points in B and the measure ν. Determine the covariance
cov(Φ(B1),Φ(B2)) for B1, B2 ∈ B.

7. Determine the second-order factorial moment measure of a binomial point process.

8. Dispersion of a random variable Φ(B) is defined as

D(Φ(B)) =
var Φ(B)

EΦ(B)
, B ∈ B0.

Show that

a) for a Poisson process D(Φ(B)) = 1,

b) a binomial process is underdispersed, i.e. D(Φ(B)) ≤ 1,

c) a Cox process is overdispersed, i.e. D(Φ(B)) ≥ 1.

Additional exercises

9. Let Φ be a mixed Poisson point process with the driving measure Y · Λ, where Y is a non-negative random
variable and Λ is a locally finite diffuse measure. Determine the covariance cov(Φ(B1),Φ(B2)) for B1, B2 ∈ B0
and show that it is non-negative.

10. Determine the Laplace transform of a binomial point process.

11. Let Y be a random variable with a gamma distribution. Show that the corresponding mixed Poisson process
Φ is a negative binomial process, i.e. that Φ(B) has a negative binomial distribution for every B ∈ B0.
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Stationary point process

1. Show that a homogeneous Poisson point process is stationary and isotropic. Is there any stationary non-
isotropic Poisson point process?

2. Based on the interpretation of the Palm distribution determine the Palm distribution and the reduced Palm
distribution of a binomial point process.

3. Consider independent random variables U1 a U2 with uniform distribution on the interval [0, a], a > 0, and
the point process Φ in R2defined as

Φ =
∑
m,n∈Z

δ(U1+ma,U2+na).

Determine the Palm distribution and the reduced second-order moment measure of the process. Express its
contact distribution function and the nearest-neighbour distribution function.

4. Show that for a homogeneous Poisson process with the intensity λ it holds that PI = CE = 1, F (r) = G(r) =

1− e−λωdr
d

and J(r) = 1.

5. Consider the point pattern {x1, . . . , xn} observed in a compact observation window W ⊂ R2 and assume it
is a realization of a stationary point process. How to estimate its intensity? How to estimate the values F (r)
and G(r), r > 0?

6. Let Y = {Y (x) : x ∈ Rd} be a weakly stationary Gaussian random field with the mean value µ and the
autocovariance function C(x, y) = σ2r(x − y), where σ2 denotes the variance and r is the autocorrelation
function of the random field Y . Consider the random measure

Ψ(B) =

∫
B

eY (x) dx, B ∈ Bd.

The Cox point process Φ with the driving measure Ψ is called a log-Gaussian Cox process. Show that the
distribution of Φ is determined by its intensity and its pair-correlation function.

7. Determine the pair-correlation function of

a) the Thomas process,

b) the Matérn cluster process for d = 2.

Additional exercises

8. Determine the pair-correlation function of a binomial point process, provided it exists.

9. For a point process with the hard-core distance r > 0 and the intensity λ we define the coverage density as
τ = λ|b(o, r/2)|. It is in fact the mean volume fraction of the union of balls with the centers in the points of
the process and the radii r/2. Determine the maximum possible value of τ for the following models:

a) Matérn hard-core process type I,

b) Matérn hard-core process type II.
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