NMSA405: exercise 8 – optional sampling theorem

Exercise 8.1: Let (X_n) be a sequence of iid random variables with $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$ and let $S_n = \sum_{k=1}^n 2^{k-1} X_k$, $n \in \mathbb{N}$. Consider the first hitting time T of the sequence (S_n) of the set $\{1\}$. Then for (S_n) and T the optional sampling theorem does not hold. Show that $\mathbb{E}S_1 \neq \mathbb{E}S_T$ and the condition $\lim_{n\to\infty} \int_{[T>n]} |S_n| d\mathbb{P} = 0$ is not fulfilled.

Exercise 8.2: (remark to the Theorem 3.5) Let (X_n) be a \mathcal{F}_n -martingale and $T < \infty$ a.s. be a \mathcal{F}_n -stopping time. Show that the condition

$$\exists \ 0 < c < \infty : T > n \Longrightarrow |X_n| \le c$$
 a.s.

does not imply the condition

$$X_T \in L_1$$
 and $\int_{[T>n]} |X_n| d\mathbb{P} \xrightarrow{n \to \infty} 0$

from the Theorem 3.3.

Hint: Consider the sequence $X_n = \sum_{k=1}^n 3^k Y_k$ where (Y_k) is a sequence of iid random variables with the uniform distribution on $\{-1,0,1\}$.

NMSA405: exercise 9 - random walks

Definition: Let (X_n) be an iid random sequence such that $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = 1 - p$ where $p \in [0, 1]$. We call the corresponding random walk (S_n) a (simple) discrete random walk. If p = 1/2 we get the symmetric simple random walk.

Exercise 9.1: Consider the stopping time $T^B = \min\{n \in \mathbb{N} : S_n \notin B\}$ defined as the first exit time of the discrete random walk S_n from the bounded set $B \in \mathcal{B}(\mathbb{R})$ and the stopping time $T_a = \min\{n \in \mathbb{N} : S_n = a\}$ defined as the first hitting time of the random walk S_n of the set $\{a\}$ for $a \in \mathbb{Z}$. Show that

- 1. $T^B < \infty$ a.s.,
- 2. $T_a < \infty$ a.s. if p = 1/2.

Exercise 9.2: Show that the discrete random walk fulfills

- (i) $S_n \xrightarrow[n \to \infty]{} \infty$ a.s. $\iff p > 1/2$,
- (ii) $S_n \xrightarrow[n \to \infty]{} -\infty$ a.s. $\iff p < 1/2$,
- (iii) $\limsup_{n\to\infty} S_n = \infty$ a.s., $\liminf_{n\to\infty} S_n = -\infty$ a.s. $\iff p = 1/2$.

Exercise 9.3: Consider a discrete symmetric random walk (S_n) . For $a, b \in \mathbb{Z}$, a < 0, b > 0, we define $T_{a,b} = \min\{n \in \mathbb{N} : S_n \notin (a,b)\}$ as the first exit time of S_n from the interval (a,b). Show that in that case

$$\mathbb{P}(S_{T_{a,b}} = a) = \frac{b}{b-a}$$
 and $\mathbb{E}T_{a,b} = -ab$.

Corollary: (i) $\mathbb{E}T^B < \infty$ for any bounded set $B \in \mathcal{B}(\mathbb{R})$, (ii) $\mathbb{E}T_b = \infty$ for any $b \in \mathbb{Z}$, $b \neq 0$.

Exercise 9.4: Let (S_n) be a symmetric simple random walk and let A < 0 < B be independent integrable random variables, independent of (S_n) . Denote $T = \min\{n \in \mathbb{N} : S_n \notin (A, B)\}$. Show that in that case

$$\mathbb{P}(S_T = A) = \mathbb{E}\frac{B}{B - A}$$
 and $\mathbb{E}T = -\mathbb{E}A \cdot \mathbb{E}B < \infty$.

NMSA405: exercise 10 – convergence theorems

Exercise 10.1: Give an example of a martingale which converges to the random variable $X_{\infty} \in L_1$ almost surely but not in L_1 .

Exercise 10.2: Let (Y_n) be a sequence of independent random variables such that

$$\mathbb{P}(Y_n = 2^n - 1) = 2^{-n}, \quad \mathbb{P}(Y_n = -1) = 1 - 2^{-n}, \quad n \in \mathbb{N}.$$

Check that $X_n = \sum_{k=1}^n Y_k$ is a martingale. Show that $X_n \xrightarrow[n \to \infty]{\text{a.s.}} -\infty$ and hence the assumptions of the martingale convergence theorems cannot be fulfilled.

Exercise 10.3: (martingale proof of the Kolmogorov 0-1 law) Let $X = (X_1, X_2, ...)$ be a sequence of independent random variables and $F = [X \in T]$ where $T \in \mathcal{T}$ is a terminal set. Show that

$$\forall n \in \mathbb{N}$$
 $\mathbb{E}[\mathbf{1}_F \mid \mathcal{F}_n] = \mathbb{P}(F)$ a.s. and at the same time $\mathbb{E}[\mathbf{1}_F \mid \mathcal{F}_n] \xrightarrow{\text{a.s.}} \mathbf{1}_F$.

From this conclude that $\mathbb{P}(F)$ is either 0 or 1.

NMSA405: exercise 11 – backwards martingale

Definition: Let $(..., X_{-2}, X_{-1})$ be a random sequence indexed by negative integers. Let $... \subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1}$ be a non-decreasing sequence of σ -algebras (filtration). Assume that $X_{-n} \in L_1$ for any $n \in \mathbb{N}$ and $\sigma(..., X_{-n-1}, X_{-n}) \subseteq \mathcal{F}_{-n}$. We say that the sequence (X_{-n}) is an \mathcal{F}_{-n} -martingale if

$$\mathbb{E}[X_{-n} \mid \mathcal{F}_{-(n+1)}] = X_{-(n+1)} \quad \text{a.s. for all } n \in \mathbb{N}.$$

If $\mathcal{F}_{-n} = \sigma(\dots, X_{-n-1}, X_{-n})$, then we speak about a backwards martingale. Analogously we define \mathcal{F}_{-n} -submartingale and \mathcal{F}_{-n} -supermartingale.

Theorem: (Doob's backwards submartingale convergence theorem) Let (X_{-n}) be an \mathcal{F}_{-n} -submartingale. Then there exists a random variable $X_{-\infty}$ (with values in $\mathbb{R} \cup \{-\infty, \infty\}$) such that $X_{-n} \xrightarrow[n \to \infty]{a.s.} X_{-\infty}$. The limiting random variable $X_{-\infty}$ is integrable provided that $\sup_{n \in \mathbb{N}} \mathbb{E} X_{-n}^- < \infty$.

Exercise 11.1: Let Y be an integrable random variable and (\mathcal{F}_{-n}) a filtration. We define $X_{-n} = \mathbb{E}[Y \mid \mathcal{F}_{-n}]$ for $n \in \mathbb{N}$. Show that (X_{-n}) is a uniformly integrable \mathcal{F}_{-n} -martingale.

Exercise 11.2: Let (X_n) be an iid random sequence of integrable random variables. We define

$$Z_{-n} = \frac{1}{n} \sum_{k=1}^{n} X_k, \quad n \in \mathbb{N}.$$

Show that (Z_{-n}) is a backwards martingale.

Exercise 11.3: (martingale proof of the strong law of large numbers) Argue that the backwards martingale from the previous exercise has an integrable limit in the a.s. and L_1 sense. Show that this limit must be constant and equal to $\mathbb{E}X_1$ a.s.