
NMSA409, topic 6: Invertibility of ARMA series

Definition 6.1: Let {Xt, t ∈ Z} be a stationary ARMA(m,n) random sequence defined by

Xt + a1Xt−1 + · · ·+ amXt−m = Yt + b1Yt−1 + · · ·+ bnYt−n, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). If there exists a sequence of constants {dj , j ∈ N0} such
that

∑∞
j=0 |dj | <∞ and

Yt =

∞∑
j=0

djXt−j , t ∈ Z,

then {Xt, t ∈ Z} is called invertible (it has an AR(∞) representation).

Theorem 6.1: Let {Xt, t ∈ Z} be a stationary ARMA(m,n) random sequence. Let the polynomials
a(z) = 1 +a1z+ · · ·+amz

m and b(z) = 1 + b1z+ · · ·+ bnz
n have no common roots and let the polynomial

b(z) = 1 + b1z + · · · + bnz
n have all the roots outside the unit circle. Then {Xt, t ∈ Z} is invertible and

the coefficients dj are given by

∞∑
j=0

djz
j =

1 + a1z + · · ·+ amz
m

1 + b1z + · · ·+ bnzn
, |z| ≤ 1.

Remark: We may obtain the coefficients dj by solving the equations we get by plugging Yt =
∑∞
j=0 djXt−j

into the defining formula of the ARMA sequence and comparing the coefficients on both sides.

Consider a causal and invertible ARMA(m,n) sequence. Invertibility implies (note that d0 = 1)

Xt+1 = −
∞∑
j=1

djXt+1−j + Yt+1, t ∈ Z.

Causality implies that the random variable Yt+1 is independent of Xt, Xt−1 . . . Thus the best linear
prediction of Xt+1 based on the whole history Xt, Xt−1, . . . is the prediction

X̂t+1 = −
∞∑
j=1

djXt+1−j .

The prediction error is
E|Xt+1 − X̂t+1|2 = E|Yt+1|2 = σ2.

Exercise 6.1: Consider the ARMA(1,1) model defined by

Xt + 0,7Xt−1 = Yt + 0,3Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Determine the coefficients of the AR(∞) representation.
Find the prediction of Xn+1, Xn+2 based on the history Xn, Xn−1, . . . Determine the prediction error.

Exercise 6.2: Consider the ARMA(2,1) model defined by

Xt − 0,1Xt−1 − 0,12Xt−2 = Yt − 0,7Yt−1, t ∈ Z,

where {Yt, t ∈ Z} is a white noise WN(0, σ2). Express {Xt, t ∈ Z} as a causal linear process. Determine
its autocovariance function and spectral density. Decide whether it is invertible. Assume that the whole
history up to time n is known. Find the prediction of Xn+1, Xn+2 based on Xn, Xn−1, . . .



NMSA409, topic 7: Linear filters

Definition 7.1: Let {Yt, t ∈ Z} be a centered weakly stationary sequence. Let {cj , j ∈ Z} be a sequence
of (complex-valued) numbers such that

∑∞
j=−∞ |cj | <∞.

We say that a random sequence {Xt, t ∈ Z} is obtained by filtration of the sequence {Yt, t ∈ Z} if

Xt =

∞∑
j=−∞

cjYt−j , t ∈ Z.

The sequence {cj , j ∈ Z} is called time-invariant linear filter.
Provided that cj = 0 for all j < 0, we say that the filter {cj , j ∈ Z} is causal.

Theorem 7.1: Let {Yt, t ∈ Z} be a centered weakly stationary sequence with the autocovariance function
RY and the spectral density fY and let {ck, k ∈ Z} be a linear filter such that

∑∞
k=−∞ |ck| < ∞. Then

{Xt, t ∈ Z}, where Xt =
∑∞
k=−∞ ckYt−k, is a centered weakly stationary sequence with the autocovariance

function

RX(t) =

∞∑
j=−∞

∞∑
k=−∞

cjckRY (t− j + k), t ∈ Z,

and spectral density
fX(λ) = |Ψ(λ)|2fY (λ), λ ∈ [−π, π],

where

Ψ(λ) =

∞∑
k=−∞

cke
−ikλ, λ ∈ [−π, π],

is called the transfer function of the filter.

Exercise 7.1: Let {Zt, t ∈ Z} be a white noise WN(0, 1) and let {Xt, t ∈ Z} be a causal linear process
defined by

Xt − 0.99Xt−3 = Zt, t ∈ Z.

Let {Yt, t ∈ Z} be the process obtained by the filtration Yt = 1
3 (Xt−1 +Xt+Xt+1). Determine the transfer

function of the filter and compute the spectral density of {Yt}.

Exercise 7.2: Let {Yt, t ∈ Z} be a white noise WN(0, σ2). Let it be transformed by a linear filter into
{Xt, t ∈ Z} so that

Xt − 2Xt−1 = Yt, t ∈ Z,

holds. Determine the coefficients of the linear filter, the transfer function of the filter and compute the
autocovariance function and the spectral density of {Xt, t ∈ Z}.



NMSA409, topic 8: Ergodicity of stochastic processes

Definition 8.1: We say that a stationary sequence {Xt, t ∈ Z} with mean µ is mean square ergodic or it
follows the law of large numbers in L2(Ω,A, P ) if, as n→∞,

Xn =
1

n

n∑
t=1

Xt → µ in mean square (in L2). (1)

If {Xt, t ∈ Z} is a mean square ergodic sequence then

1

n

n∑
t=1

Xt
P→ µ,

i.e., {Xt, t ∈ Z} satisfies the weak law of large numbers for stationary sequences.

Definition 8.2: A stationary mean square continuous process {Xt, t ∈ R} with mean µ is mean square
ergodic if, as τ →∞,

Xτ =
1

τ

∫ τ

0

Xt dt→ µ in the mean square (in L2). (2)

Remark: The convergences above imply that the empirical average (1) or the integral (2) are weakly
consistent estimates of the mean value µ of the random sequence or the process {Xt}, respectively.

Theorem 8.1: A stationary random sequence {Xt, t ∈ Z} with mean µ and autocovariance function R
is mean square ergodic if and only if

1

n

n∑
t=1

R(t)→ 0 as n→∞.

If the sequence is real-valued and it also satisfies
∑∞
t=−∞ |R(t)| <∞ then nvar(Xn)→

∑∞
k=−∞R(k).

Theorem 8.2: A stationary mean square continuous process {Xt, t ∈ R} is mean square ergodic if and
only if its autocovariance function satisfies the condition

1

τ

∫ τ

0

R(t) dt→ 0 as τ →∞.

If the process is real-valued and it also satisfies
∫∞
∞ |R(t)|dt <∞ then τvar(Xτ )→

∫∞
∞ R(t)dt.

Exercise 8.1: Are the AR models from exercises 5.3–5.5 mean square ergodic? And what about the
ARMA(2,1) model from exercise 5.7?

Exercise 8.2: Is the mean square continuous process with spectral density f(λ) = |λ|I(|λ| ≤ 1), λ ∈ R,
mean square ergodic?


