
1. Axiomatic definition of probability

1.1. Probability space. Let Ω 6= ∅, and A ⊆ 2Ω be a σ-algebra on Ω, and P be a measure on A with
P (Ω) = 1, i.e. P is a probability measure. Then the triplet (Ω,A, P ) is called a probability space .

Terminology

• Ω . . . sure event
• ω ∈ Ω . . . elementary event
• A ∈ A . . . random event
• P (A) . . . probability of A
• A ∩B = ∅ . . . the events A,B are incompatible (disjoint)

Examples

(1) Ω 6= ∅ is at most countable set, and we require that {ω} ∈ A whenever ω ∈ Ω. In order to A satisfy
the axioms of σ-algebra, we have to put A = 2Ω. If P is a probability on (Ω,A), it has to be of the
following form

P (A) =
∑
ω∈A

pω, where pω ≥ 0 and
∑
ω∈Ω

pω = 1.

In this case (Ω,A, P ) is called a discrete probability space .

(2) Ω ∈ B(Rk) is uncountable and even of positive k-dimensional Lebesgue measure, where k ∈ N.
Further, we put A = {B ∈ B(Rk), B ⊆ Ω} and

P (A) =
∫
A
f(ω) dω, where f ≥ 0 and

∫
Ω
f(ω) dω = 1.

Then f is called a density and (Ω,A, P ) a continuous probability space .

1.2. Random variable. Let Ω 6= ∅, let (Ω,A), (E, E) be measurable spaces. We say that X : Ω → E is
a random variable if X is measurable, i.e. X−1B = {ω ∈ Ω, X(ω) ∈ B} ∈ A holds whenever B ∈ E .
Moreover (E, E) is called a state space and (Ω,A) an underlying space .

Remark Let (Ω,A, P ) be a probability space and X : (Ω,A) → (E, E) a random variable. Then
(E, E , PX) is a probability space, where PX(B) = P (X ∈ B) if B ∈ E . We also write X : (Ω,A, P ) →
(E, E , PX). The probability measure PX is called a distribution of random variable X.

Proof: PX(E) = P (X ∈ E) = 1, and if Bn ∈ E are pairwise disjoint, then the measure of the countable
union ∪nBn is PX(∪nBn) = P (X ∈ ∪nBn) = P (∪n[X ∈ Bn]) =

∑
n P (X ∈ Bn) =

∑
n PX(Bn). �

If (E, E , PX) is a discrete probability space, then we say that X is a discrete random variable . If
(E, E , PX) is a continuous probability space, we say that X is a continuous random variable .

Theorem 1 Let (E, E , µ) be a probability space. Then there exists a random variable X : (Ω,F , P )→
(E, E , µ), i.e. the random variable X has the distribution PX = µ.

Proof: Put Ω = E,A = E , P = µ and X : e ∈ E 7→ e ∈ E, i.e. X is indentity. Then we have that
PX(B) = P (X ∈ B) = P (B) = µ(B), whenever B ∈ E , i.e. PX = µ. �

The random variable X from the proof of theorem 1 is called a canonical random variable , and
(Ω,A, P ) from the proof is called a canonical probability space in the circumstances of theorem 1.

1.3. Random variables with values in product spaces. A random variable X = (X1, . . . , Xk)
T with

values in the product space (
∏k

n=1 En,⊗kn=1En) is called a k-dimensional random vector . Moreover
if (En, En) = (E, E), then we say that X is a k-dimensional random vector with the state space
(E, E). Finally, if E = R and E = B(R), then X is called a k-dimensional real-valued random
vector .

A random variable X = (Xn, n ∈ N) with values in the product space (
∏∞

n=1 En,⊗∞n=1En) is called
a random sequence . Moreover, if (En, En) = (E, E) holds for every n ∈ N, then we say that X is
a random sequence with values in (E, E). Finally, if E = R and E = B(R), we say that X is
a real-valued random sequence .
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A random variable X = (Xt, t ∈ T ) with values in the product space (
∏

t∈T Et,⊗t∈TEt) is called
a random process (indexed by T ). Moreover, if (Et, Et) = (E, E) holds for every t ∈ T, then we
say that X is a random process with values in (E, E) (indexed by T ). Finally, if E = R and
E = B(R), then we say that X is a real-valued random process (indexed by T ).

Remark We remind the definition of the product σ-algebra⊗
t∈T

Et = σ({
∏
t∈T

Bt : Bt ∈ E , and Bt 6= Et holds only for finitely many t ∈ T}).

The set B =
∏

t∈T Bt is called a measurable cylinder (with finite dimensional base , where Bt ∈ Et
holds for every t ∈ T, and where T0 := {t ∈ T,Bt 6= Et} is finite set (of important indices corresponding
to the measurable cylinder B). We note that the set of all measurable cylinders are closed under finite
intersections.

Theorem 2 Let (Ω,A, P ) be a probability space and T 6= 0. Let Xt : (Ω,A) → (Et, Et) be a random
variable whenever t ∈ T. Then X = (Xt, t ∈ T ) is a random process indexed by T.

Proof: Denote E = ⊗t∈TEt and M = {B ∈ E : [X ∈ B] ∈ A} ⊆ E . Then M is a σ-algebra, and we will
show that it contains measurable cylinders. Let B =

∏
t∈T Bt be a cylinder with T0 = {t ∈ T,Bt 6= Et}.

Then

[X ∈ B] = [(Xt, t ∈ T ) ∈
∏
t∈T

Bt] =
⋂
t∈T

[Xt ∈ Bt] =
⋂
t∈T0

[Xt ∈ Bt] ∈ A, i.e. B ∈M.

Then we get that M = E = ⊗t∈TEt, which means that X is a random process indexed by T. �

Corollary Let Xn : (Ω,A)→ (En, En) holds for n ∈ T.
(1) If T = {1, . . . , k}, then X = (X1, . . . , Xk)

T is a k-dimensional random vector.
(2) If T = N, then X = (Xn, n ∈ N) is a random sequence.

Lemma A Let (En, dn), n ∈ N be at most countable system of separable metric spaces, where N ⊆ N,
with Borel σ-algebra B(En) = En. Then their product (E, d) is again a separable metric space with Borel
σ-algebra B(E) = ⊗n∈NB(En).

Remark The separability assumption in the previous lemma is essential. Generally, we have only⊗
t∈T

B(Et) ⊆ B
(∏
t∈T

Et
)
.

(1) If N = {1, . . . , k}, then d from the previous lemma can be of the form d(x, y) =
∑k

n=1 dn(xn, yn).
(2) If N = N, then we can consider d(x, y) =

∑∞
n=1 2−n min{1, dn(xn, yn)}. Note that min{1, dn(xn, yn)}

plays the role of metric on E equivalent with dn, but bounded by 1. Then the weights 2−n ensure
the convergence of the corresponding sum.

Theorem 3 Let (Ω,A) be a measurable space and (En, dn), n ∈ N ⊆ N be at most countable system
of metric spaces, and let Xn : (Ω,A)→ (En,B(En)) be random variables. Then

X = (Xn, n ∈ N) : (Ω,A)→ (E,B(E))

is also a (measurable) random variable, where E =
∏

n∈N En.

Proof: By the previous lemma B(E) = ⊗n∈NB(En). So, we have to show that X is a random process
indexed by N , but it follows from theorem 2. �

Let X : (Ω,A)→ (E, E) be a random variable. Then the σ-algebra σ(X) = {[X ∈ B] : B ∈ E} is called
a σ-algebra generated by the random variable X.

Theorem 4 Let X : (Ω,A)→ (E, E) be a random variable and Y : (Ω,A)→ (R,B(R)) be a real-valued
random variable such that σ(Y ) ⊆ σ(X). Then there exists a measurable function f : (E, E)→ (R,B(R))
such that Y = f(X).
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Proof: If q ∈ Q, then [Y < q] ∈ σ(Y ) ⊆ σ(X) = {[X ∈ B] : B ∈ E}. Hence, there exists Bq ∈ E such
that [Y < q] = [X ∈ Bq]. Put

h(x) = inf{q ∈ Q : x ∈ Bq} and f(x) = h(x) · 1[h(x)∈R].

Then

h(X) = inf{q ∈ Q : X ∈ Bq} = inf{q ∈ Q : Y < q} = Y ∈ R,

and therefore also f(X) = Y. Thus, it remains to show measurability of f . Instead, we show that h is
measurable. Let c ∈ R, then

[h < c] = {x ∈ E : inf{q ∈ Q : x ∈ Bq} < c} =
⋃

c>q∈Q

{x ∈ E : x ∈ Bq} =
⋃

c>q∈Q

Bq ∈ E

and then the measurability of the real-valued function f follows from the measurability of a generalized
function h that may attain non-real values ±∞. �

Remark Let X = (Xt, t ∈ T ) be a random process, then σ(X) = σ(∪t∈Tσ(X)).

In particular, σ(X) = σ(σ(X1) ∪ . . . ∪ σ(Xk)) holds if T = {1, . . . k} and we have a similar equality for
random sequence, when T = N.

Proof: Immediately, we have that σ(Xt) ⊆ σ(X) holds for every t ∈ T, which yields that σ(X) ⊇
σ(∪t∈Tσ(Xt)). Hence, we will show the reverse inclusion in the following. Let B ∈ ⊗t∈TEt be a measurable
cylinder, then there exist Bt ∈ Et such that the set T0 = {t ∈ T : Bt 6= Et} is finite and such that
B =

∏
t∈T Bt. Then

[X ∈ B] =
⋂
t∈T0

[Xt ∈ Bt] ∈ σ(∪t∈Tσ(Xt)).

Then set of all measurable cylinders is a subset of the σ-algebra

M = {B ∈
⊗
t∈T

Et : [X ∈ B] ∈ σ(∪t∈Tσ(Xt))},

which is generated by the set of measurable cylinders, and so we get that M = ⊗t∈TEt. Then we obtain
from the definition that σ(X) = {[X ∈ B] : B ∈ ⊗t∈TEt} ⊆ σ(∪t∈Tσ(Xt)). �

Remark Every σ-algebra F is generated by a random variable, namely by a real-valued process indexed
by F in the form 1F = (1F : F ∈ F), where 1F (ω) = 1 if ω ∈ F and 1F (ω) = 0 if ω /∈ F.

Examples

(1) Note that σ(1F ) = {∅, F,Ω\F,Ω} holds in the previous remark if F ∈ F ⊆ 2Ω.
(2) If random variable X : (Ω,A) → (E, E) is constant x, then σ(X) = {∅,Ω}, and this set is called

a trivial σ-algebra on Ω. If P is a probability on (Ω,A), then

PX(B) = 1[x∈B] = 1B(x) =: δx(B),

where δx defined above is called a Dirac measure at point x.
(3) Let X : (Ω,A)→ (E, E) attain values in {xn : n ∈ N} = rangeX, where N ⊆ N. Then

σ(X) = σ({[X = xn], n ∈ N}) = {[X ∈M ] : M ⊆ N}.

Let P be a probability measure on (Ω,A) and denote pn = P (X = n). Then the distribution PX
of X under P is given by the following formula

PX(B) =
∑

n:xn∈B

pn =
∑
n∈N

pn1[xn∈B] =
∑
n∈N

pn1B(xn) =
∑
n∈N

pnδxn(B),

and it is an (infinite) convex combination of Dirac measures δxn at points xn with weights pn.

Remark Let P be a probability measure on (Ω,A) and X : (Ω,A)→ (E, E). Then (Ω, σ(X), P |σ(X))
is a probability space.
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2. Distribution functions

(1) One-dimensional case. A real-valued function F defined on R is called a distribution function
if it is non-decreasing left-continuous with limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Let µ be a Borel probability measure on R, then F (x) = µ(−∞, x) is a distribution function, and
if X is a random variable with the distribution PX = µ, then F (x) = P (X < x) is a distribution
function, and it is called a distribution function of variable X and it denoted by FX(x). Then
we have that P (a ≤ X < b) = FX(b)− FX(a) holds if a ≤ b.

Examples
(a) Let X ≡ x be a constant variable. Then PX = δx and FX(y) = δx(−∞, y) = 1[x<y] is the

distribution function corresponding to Dirac measure δx at point x.
(b) Let X be a discrete random variable with values in {xn, n ∈ N}, where N ⊆ N. Then

FX(x) =
∑

n:xn<x

pn =
∑
n

pn1[xn<x],

where pn = P (X = xn), and FX can be regarded as an (infinite) convex combination of
distribution functions corresponding to Dirac measures δxn at points xn.

(2) Multidimensional case. Let k ∈ N and x, y ∈ Rk, we write x ≤ y if xn ≤ yn holds for every
n ≤ k. Similarly, we write x < y if xn < yn holds for every n ≤ k, and finally we write x = y if
xn = yn holds for every n ≤ k.

Let X = (X1, . . . , Xk)
T be a k-dimensional real-valued random vector1. Then the following function

FX(x) = P (X < x) = PX(−∞, x), x ∈ Rk

is called a distribution function of random vector X, where x = (x1, . . . , xk)
T and (−∞, x) =∏k

n=1(−∞, xn).

Theorem 5 Let k ∈ N. Then F : Rk → [0, 1] is a distribution function of a random vector if and only
if it satisfies the following conditions

(1) ∀ x ∈ Rk ∃ {xn}n∈N ⊆ Rk such that xn < x & F (xn)→ F (x) as n→∞.
(2) ∃ {xn}n∈N ⊆ Rk such that xn → (∞, . . . ,∞) & F (xn)→ 1 as n→∞.
(3) ∀ n ∈ {1, . . . , k} ∀ x ∈ Rk F (x1, . . . , xn−1, y, xn+1, . . . , xk)→ 0 as y → −∞.
(4) ∀ x, y ∈ Rk

x < y ⇒
∑

δ∈
∏k
j=1{xj , yj}

(−1)
∑k
j=1 1[δj=xj ] F (δ) ≥ 0

Remark

(1) If k = 1, then the condition (4) says that F is non-decreasing, and if k = 1 and this condition is
satisfied, then (1) corresponds to the left continuity of F, (2) corresponds to limx→∞ F (x) = 1 and
(3) to limx→−∞ F (x) = 0.

(2) If k = 2, then (4) is of the form: if x < y then F (x) + F (y)− F (x1, y2)− F (y1,2 ) ≥ 0. If F = FX ,
then the left-hand side is just P (x ≤ X < Y ) = PX([x1, y1) × [x2, y2)) and it is natural that this
value should be non-negative.

Lemma B Let S 6= ∅,S ⊆ M ⊆ 2S. If S is closed under finite intersections and M is a Dynkin system,
i.e.

(1) S ∈M
(2) [A,B ∈M & B ⊇ A] ⇒ B\A ∈M
(3) if Bn ∈M are pairwise disjoint, then the countable union ∪nBn ∈M.

Then σ(S) ⊆M.

Lemma C Let (E, E) be a measurable space and µ, ν two probability measures on (E, E) that agree on
a system S ⊆ E closed under finite intersection such that σ(S) = E . Then µ = ν.

1We know that X is a random variable with values in (Rk,B(Rk)).
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Proof: Denote M = {B ∈ E : µ(B) = ν(B)} and realize that it is a Dynkin system in order to obtain
from Dynkin lemma that E = σ(S) ⊆M ⊆ E . �

Corollary Let X, Y be two k-dimensional real valued random vectors with the same distribution func-
tion FX = FY . Then they have the same distribution PX = PY .

Proof: Denote S = {(−∞, x), x ∈ Rk}. Then S is a system closed under finite intersection generating
Borel σ-algebra B(Rk) and PX(−∞, x) = FX(x) = FY (x) = PY (−∞, x) hold whenever ∈ Rk, i.e. PX = PY
holds on S. By the previous lemma, PX = PY holds on B(Rk). �

Let X = (Xt, t ∈ T ) be a random process with the index set T and T0 ⊆ T a subset. Then we denote
by X|T0 = (Xt, t ∈ T0) its restriction to the index set T0. Further, we denote by K(T ) the system
of all finite subsets of T . 2 By the system of finite-demiensional distributions of the proces X
we mean the system of distributions (PX|T0

: T0 ∈ K(T )).

Corollary Let X, Y be two random processes indexed by T with the same finite-dimensional distribu-
tions, then they have the same distribution PX = PY .

Proof: Let us denote by (Et, Et) the state space of random variables Xt, Yt. Note that they have to
have the same state space as they have by assumption the same distribution. Let S be the system of all
measurable cylinders generating the product σ-algebra ⊗t∈TEt. By the previous lemma, we are only to
show that PX , PY agree on S. Let B ∈ S, then there are Bt ∈ Et if t ∈ T such that B =

∏
t∈T Bt and that

T0 = {t ∈ T,Bt 6= Et} is finite. Then

PX(B) = P (
⋂
t∈T

[Xt ∈ Bt]) = P (
⋂
t∈T0

[Xt ∈ Bt]) = P(Xt,t∈T0)(
∏
t∈T0

Bt) = P(Yt,t∈T0)(
∏
t∈T0

Bt) = . . . = PY (B).

Thus, PX = PY holds on S and the previous lemma gives PX = PY . �

3. Independence

3.1. Independence of random variables. Let T 6= ∅ and Xt : (Ω,A, P ) → (Et, Et, PXt) be random
variable if t ∈ T. We say that the random variables Xt, t ∈ T are independent if for every finite
subset T0 ⊆ T

P (
⋂
t∈T0

[X ∈ Bt]) =
∏
t∈T0

P (Xt ∈ Bt)

holds whenever Bt ∈ Et, t ∈ T0

Theorem 6 Let T 6= ∅ and (Xt, t ∈ T ) be a random process, then the variables Xt, t ∈ T are independent
if and only if PX = ⊗t∈TPXt .

Proof: Let Xt, t ∈ T be independent random variables and let B =
∏

t∈T Bt be a measurable cylinder
with the finite set T0 of important indices. Then

PX(B) = P (
⋂
t∈T

[Xt ∈ Bt]) = P
⋂
t∈T0

[Xt ∈ Bt]) =
∏
t∈T0

P (Xt ∈ Bt) =
∏
t∈T0

PXt(Bt) = [
⊗
t∈T

PXt ](B).

It means that PX and ⊗t∈TPXt agree on the system of measurable cylinders closed under intersections and
generating the product σ-algebra. By lemma from the previous section, PX = ⊗t∈TPXt holds.

Now assume that PX = ⊗t∈TPXt holds, we are going to show that the random variables Xt, t ∈ T are
independent. Let T0 be a finite subset of T and let Bt ∈ Et if t ∈ T0. We put Bt = Et if t ∈ T\T0 in order
to be able to introduce a measurable cylinder B =

∏
t∈T Bt. By the definition of the product measure, we

get that

P (
⋂
t∈T0

[Xt ∈ Bt]) = PX(B) = [
⊗
t∈T

PXt ](B) =
∏
t∈T0

PXt(Bt) =
∏
t∈T0

P (Xt ∈ Bt).

Thus, the variables Xt, t ∈ T are independent. �

Corollary Let Xt, Yt be random variables with the same state space (Et, Et) whenever t ∈ T. Let

(1) Xt, t ∈ T be independent variables

2If T is a topological or metric space, it is usual to denote by K(T ) the set of all kompact sets in T . Here, we can imagine
that T is endowed with the discrete topology so that K(T ) is just the set of all finite subsets of T . Further note that compact
sets share some properties of finite set and that this was the motivation for introducing the notion of compact sets.
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(2) Yt, t ∈ T be also independent variables.

If PXt = PYt holds for every t ∈ T, then PX = PY holds.

Proof: By theorem 6, PX = ⊗t∈TPXt = ⊗t∈TPYt = PY . �

Remark The assumption of independence cannot be omitted. Let Z be a random variable with uniform
distribution on (0, 1), i.e. a continuous random variable with the density f(z) = 1(0,1)(z). Then X = (Z,Z)T

and Y = (Z, 1 − Z)T are two random vectors with completely different distribution but with the same
marginal distributions PX1 = PY1 = PZ = PX2 = PY2 .

Theorem 7 Let X = (X1, . . . , Xk)
T be a k-dimension real-valued random vector, where k ∈ N. Then

the variables X1, . . . , Xk are independent if and only if

(1) FX(x) =
k∏

n=1

FXn(xn)

holds for every x = (x1, . . . , xk)
T ∈ Rk.

Proof: Let us assume that (1) holds. Then

PX(−∞, x) = FX(x) =
k∏

n=1

FXn(xn) =
k∏

n=1

PXn(−∞, xn) = [
k⊗

n=1

PXn ](−∞, x).

Thus, PX and ⊗kn=1PXn agree on {(−∞, x), x ∈ Rk} which is a system closed under finite intersec-
tions generating B(Rk). By lemma from the previous section, PX = ⊗kn=1PXn , and theorem 6 gives
that X1, . . . , Xk are independent variables. On the other hand, if X1, . . . , Xk are independent, we put
B = (−∞, x) =

∏k
n=1 Bn, where Bn = (−∞, xn), and then

FX(x) = P (X ∈ B) =
k∏

n=1

P (Xn ∈ Bn) =
k∏

n=1

FXn(xn)

holds for arbitrary x = (x1, . . . , xk)
T ∈ Rk. �

Theorem 8 Let X = (X1, . . . , Xk)
T be a k-dimensional

(1) discrete random vector with values in at most countable set D =
∏k

n=1Dn. Then the random
variables Xn are also discrete distribution with values in Dn with

P (Xn = xn) =
∑
xj ,j 6=n

P (X1 = x1, . . . , Xk = xk).

Further, the variables X1, . . . , Xk are independent if and only if

P (X1 = x1, . . . , Xk = xk) =
k∏

n=1

P (Xn = xn)

holds for every x = (x1, . . . xk) ∈ D.
(2) continuous real-valued random vector with the density fX(x). Then the variables Xn are again

continuous with the density

fXn(xn) =

∫
R
· · ·
∫

R

∫
R
· · ·
∫

R
fX(x1, . . . , xk) dx1 · · · dxn−1 dxn+1 · · · dxk

and they are independent if and only if

fX(x1, . . . , xk) =
k∏

n=1

fXn(xn) holds for a.e. x ∈ Rk.

Proof: The first equality in the statement follows from the theorem on full probability. If the discrete
variables are independent, we put Bn = [Xn = xn] and the definition of independence gives the second
equality in the statement. The reverse implication is left to the reader.
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It follows from Fubini theorem that

FXn(xn) = lim
xj→∞,j 6=n

FX(x) =

∫
R
· · ·
∫

R
f(y1, . . . , yk)1[yn<xn] dy1 · · · dyk

=

∫ xn

−∞

∫
R
· · ·
∫

R

∫
R
· · ·
∫

R
f(y1, . . . , yk) dy1 · · · dyn−1 dyn+1 · · · yk dyn.

Thus, we get that FXn is an absolutely continuous function and the right hand-side of third equality in the
statement can play the role of the corresponding density. It follows from Radon-Nikodym theorem that
the density is unique up to a set of zero measure, which is here a k-dimensional Lebesgue measure.

Further, if the last equality in the statement holds, then FX(x) =
∏k

n=1 FXn(xn) holds by integrating
and then theorem 7 gives that the variables X1, . . . , Xk are independent. On the other hand, if the variables
are independent, we have the equality FX(x) =

∏k
n=1 FXn(xn) again by theorem 7, and Fubini theorem

gives that

FX(x) =
k∏

n=1

FXn(xn) =

∫ xn

−∞

∫ x1

−∞
· · ·
∫ xn−1

−∞

∫ xn+1

−∞
· · ·
∫ xk

−∞

k∏
m=1

fXm(ym) dyk · · · dyn+1 dyn−1 · · · dy1 dyn.

Now, we see that the right-hand side of the last equality in the statement can play the role of the density
of random vector X, and therefore we obtain the last equality in the statement holds almost everywhere
by Random-Nikodym theorem. �

3.2. Elementary conditioning.

Remark Let (Ω,A, P ) be a probability space and B ∈ A with P (B) > 0, then

P|B : A ∈ A 7→ P (A|B) = P (A∩B)
P (B)

is a probability measure on (Ω,A) with P|B(B) = 1 and it is called a conditional probability by
the event B under the measure P .3 Moreover, if X : (Ω,A) → (E, E) is a random variable, we call its
distribution P|BX

−1 under the probability P|B as the conditional distribution of X given B and we
write PX|B = P|BX

−1, i.e.

PX|B(C) = P|B[X ∈ C] = P (X ∈ C|B) if C ∈ E .

Theorem 9 Let X : (Ω,A, P ) → (Rk,B(Rk), PX) be a continuous random vector with the density fX
and B ∈ σ(X) with P (B) > 0. Then X : (Ω,A, P|B) → (Rk,B(Rk), PX|B) is again a continuous random
variable with the density given by

fX|B(x) = fX(x) 1C(x)
P (X∈C)

, where C ∈ B(Rk) is such that B = [X ∈ C].(2)

Proof: Let A ∈ B(Rk). Since B = [X ∈ C], we obtain that∫
A
fX|B(x) dx = 1

P (B)

∫
A
fX(x)1C(x) dx = 1

P (B)

∫
A∩C fX(x) dx = P ([X∈A]∩B)

P (B)
= P (X ∈ A|B),

and therefore fX|B given by (2) can play the role of the conditional density fX|B of X given B. �

Remark Generally (and roughly speaking), if X is a continuous random variable, then it is also con-
tinuous given B, and similarly, if X is a discrete random variable, then it is also discrete given B.

Theorem 10 Let X : (Ω,A, P ) → (E, E , PX) be a random variable and Y : (Ω,A, P ) → (H,H, PY )
be a discrete random variable with D = {y ∈ H : P (Y = y) > 0}. Then the random variables X, Y are
independent if and only if PX|Y=y = PX holds for every y ∈ D.

3Do not confuse conditional probability P|B by the event B with the restriction of probability P on the set B denoted
as P |B , which is a measure that does not have to be probability one. But if we normalize the restriction P |B by P (B), we
obtain a probability measure, which is just P|B .
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Proof: Let us assume that the conditional distribution does not depends on the condition, i.e. PX|Y=y =
PX holds for every y ∈ D, and let B ∈ E , C ∈ H. Then

P (X ∈ B, Y ∈ C) =
∑

y∈C∩D

P (X ∈ B|Y = y)P (Y = y) =
∑

y∈C∩D

PX|Y=y(B)P (Y = y)

=
∑

y∈C∩D

PX(B)P (Y = y) = PX(B)P (Y ∈ C ∩D) = P (X ∈ B)P (Y ∈ C),

and we get that the variables X, Y are independent. On the other hand, if the variables X, Y are indepen-
dent and B ∈ E , y ∈ D, then

PX|Y=y(B) = P (X ∈ B|Y = y) = P (X∈B,Y=y)
P (Y=y)

= P (X ∈ B) = PX(B),

i.e. PX|Y=y = PX holds for every y ∈ D. �

Corollary If the variable X in theorem 10 is continuous with the density fX : Rk → [0,∞), then X, Y
are independent if and only if fX|Y=y(x) =

ae
fX(x) holds whenever y ∈ D, where =

ae
stands for the equality

almost everywhere w.r.t. k-dimensional Lebesgue measure here.

Proof: If X, Y are independent, then theorem 10 gives that PX|Y=y = PX << λk holds for every y ∈ D,
where λk is a k-dimensional Lebesgue measure, and

dPX|Y=y

dλk
=
ae dPX

dλk
=
ae
fX .

Then the uniqueness of the Radon-Nikodym derivatives gives that fX|Y=y =
ae
fX holds. On the contrary, if

fX|Y=y =
ae
fX holds for every y ∈ D , then PX|Y=y = PX , and we obtain from theorem 10 that the variables

X, Y are independent. �

3.3. Independence of systems of events.

Let T 6= ∅, let (Ω,A, P ) be a probability space and St ⊆ A whenever t ∈ T. We say that a system of the
events St, t ∈ T are (mutually, stochastically) independent if for every T0 ∈ T finite and At ∈ St, t ∈ T0

the following equality holds

P (
⋂
t∈T0

At) =
∏
t∈T0

P (At).

Lemma D Random variables Xt, t ∈ T are independent if and only if the σ(Xt), t ∈ T are independent
systems of random events.

Proof: It follows from the both definition of independence and from the definition of σ-algebra generated
by a random variable in form σ(X) = {[X ∈ B] : B ∈ E}. �

Theorem 11 Let T 6= ∅ and let St be a system of event closed under finite intersections whenever t ∈ T.
Let us assume that the systems St, t ∈ T are independent, then also the corresponding σ-hulls σ(St), t ∈ T
are independent.

Proof: Let T0 = {t1, . . . , tk} ⊆ T, k ∈ N0. Denote

V (n) = [σ(St1), . . . , σ(Stn),Stn+1 , . . . ,Stk are independent].

First, realize that V (0) is just our assumption, and therefore it holds. Further, V (k) is what we want
to show, and this is the reason why to use induction by n. Let us assume that V (n − 1) holds, where
n ∈ N, n < k, we will show that V (n) holds also. By assumption

Stn ⊆M = {An ∈ σ(Stn) : P (
n⋂
j=1

Aj) =
n∏
j=1

P (Aj); j < n⇒ Aj ∈ σ(Stj), j > n⇒ Aj ∈ Sj}.

By Dynkin lemma it is sufficient to realize thatM is a Dynkin system in order to obtain thatM = σ(Stn),
which is just V (n). �

Theorem 12 Let T = ∪i∈IT i be a non-trivial (I 6= ∅) disjoint union of non-empty sets T i 6= ∅. Let
Xt : (Ω,A, P )→ (Et, Et, PXt) be a random variable whenever t ∈ T and let us assume that such variables
are independent. Then we get that the following random variables are also independent (under P )

X i = (Xt, t ∈ T i) : (Ω,A)→ (
∏
t∈T i

Et,
⊗
t∈T i
Et), i ∈ I.
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Proof: By lemma, it is sufficient to show that the systems of events σ(X i), i ∈ I are independent. By
theorem 11, it is sufficient to show that the following systems of events closed under intersections and
generating σ(X i) = σ(Xt, t ∈ T i) are independent

Si = {
⋂
t∈T i0

At, At ∈ σ(Xt) if t ∈ T i0, and T i0 is a finite subset of T i}, i ∈ I.

Let I0 ⊆ I be a finite set and Ai ∈ Si if i ∈ I0. Then there exist T 0
i ⊆ T i finite and At ∈ σ(Xt) if t ∈ T i0

such that Ai = ∩t∈T iAt. Denote T0 = ∪i∈IT i0 and remind that σ(Xt), t ∈ T are independent. Then

P (
⋂
i∈I0

Ai) = P (
⋂
i∈I0

⋂
t∈T i0

At) = P (
⋂
t∈T0

At) =
∏
t∈S

P (At) =
∏
i∈I0

∏
t∈T i0

P (At) =
∏
t∈I0

P (
⋂
t∈T i0

At) =
∏
i∈I0

P (Ai).

�

Lemma E Let Xt : (Ω,A, P ) → (Et, Et, PX), t ∈ T be independent random variables and let ft :
(Et, Et)→ (Ht,Ht) be also measurable. Then ft(Xt), t ∈ T are also independent.

Proof: σ(f(Xt)) = {[ft(Xt) ∈ B] : B ∈ Ht} = {[X ∈ f−1
t B] : B ∈ Ht} ⊆ σ(Xt) as f−1

t B ∈ Et. �

Corollary Let T = ∪i∈ITi be a non-trivial (I 6= ∅) disjoint union of non-empty sets Ti 6= ∅, and let
Xt, t ∈ T be independent random variables. If

fi : (
∏
t∈Ti

Et,
⊗
t∈Ti

Et)→ (Hi,Hi) are measurable,

then fi(Xt, t ∈ Ti) are independent random variables.

Proof: It follows from lemma withX i = (Xt, t ∈ Ti) and E = ⊗t∈TiEt, Ei =
∏

t∈Ti Et and theorem 12. �

4. Mean (expected) value of real-valued random variable

Denote R̄ = R ∪ {∞,−∞} and also B(R̄) = σ([−∞, x);x ∈ R) the corresponding Borel σ-algebra. Let
(Ω,A) be a measurable space such that Ω 6= 0, denote

L∗ = L∗(Ω,A) = {X : (Ω,A)→ (R̄,B(R̄))}
the set of all random variables on (Ω,A) with the state space (R̄,B(R̄)). Similarly,

L = L(Ω,A) = {X : (Ω,A)→ (R,B(R))}
the set of all random variables on (Ω,A) with the state space (R,B(R)). Further, put

L+(Ω,A) = {f ∈ L∗(Ω,A) : f ≥ 0}.
Let us assume that P is a probability measure on (Ω,A). We say that X ∈ L∗ has a mean (expected)
value EX =

∫
Ω
X dP if the right-hand side Lebesgue integral exists in R̄. Otherwise, we say that X does

not have a mean (expected) value . The set of all real-valued random variable on (Ω,A) with a mean
value is denoted as

L̄∗ = L̄∗(Ω,A, P ) = {X ∈ L∗(Ω,A) : E[X+] <∞, E[X−] <∞}.
Further, let p ∈ [0,∞), then we denote

L∗p = L∗p(Ω,A, P ) = {X ∈ L∗(Ω,A) : E|X|p <∞}
Lp = Lp(Ω,A, P ) = L∗p(Ω,A, P ) ∩ L(Ω,A).

By definition ,,0 · ±∞ = ±∞ · 0 = 0”.

Let Z ⊆ R be a locally finite division of R, i.e. for every a, b ∈ R such that a < b the set (a, b) ∩ Z is
finite. Then the following generalized function

x ∈ R̄ 7→ bxc
Z

:= sup{z ∈ Z : z ≤ x}
is measurable from (R̄,B(R̄)) to (R̄,B(R̄)).

Lemma Let L ⊆ L+(Ω,A) satisfy

(1) 1A ∈ L holds whenever A ∈ A
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(2) if f, g ∈ L and a, b ≥ 0 then af + bg ∈ L
(3) if fn ∈ L and fn ↑ f ∈ L+(Ω,A), then f ∈ L.

then L = L+(Ω,A).

Proof: If f ∈ L+(Ω,A) attains values in {0, 1}. Then F = [f = 1] ∈ A and f = 1F ∈ L holds by (1).
If f attains values in a finite set K ⊆ [0,∞), then 1[f=k] ∈ L if k ∈ K, and we get from (2) that also

f =
∑
k∈K

k1F ∈ L.

If f ∈ L+(Ω,A), we put Kn = {j2−n; j = 0, . . . , n2n}. Then Kn ⊆ Kn+1 and 0 ≤ fn := bfc
Kn
↑ f. Since

fn ∈ L+(Ω,A) attains values in the finite set Kn, we have that fn ∈ L and point (3) gives that f ∈ L. �

Theorem 13 (Properties of mean value) Let (Ω,A, P ) be a probability space.

(1) If A ∈ A, then E[1A] = P (A).
(2) If a, b, c ∈ R and X, Y ∈ L∗1, then E(aX + bY + c) = aEX + bEY + c.
(3) If X, Y ∈ L̄∗ and X ≤ Y, then EX ≤ EY.
(4) Monotone convergence theorem: Let Xn−1 ≤ Xn hold almost surely and Xn ∈ L∗ if n ∈ N. Let

Xn → X as n→∞ hold almost surely. If X1 ∈ L̄∗ is such that EX > −∞, then X,Xn ∈ L̄∗ and
EX = limnEXn.

(5) Fatou’s lemma: Let Xn ∈ L∗ hold for every n ∈ N. If there exists Z ∈ L̄∗ with EZ > −∞ such
that Z ≤ Xn holds almost surely for every n ∈ N, then

lim inf
n→∞

Xn ∈ L̄∗ & EZ ≤ E lim inf
n→∞

Xn ≤ lim inf
n→∞

EXn.

(6) Dominated Convergence Theorem: Let Xn ∈ L∗, n ∈ N and Z ∈ L∗1 be such that |Xn| ≤ Z holds
almost surely whenever n ∈ N. Then Xn ∈ L∗1 and if there exists X ∈ L∗ such that Xn → X as
n→∞ almost surely, then X ∈ L∗1 and EXn → EX as n→∞.

Theorem 14 Let X : (Ω,A, P )→ (E, E , PX) be a random variable and G : (E, E)→ (R̄,B(R̄)). Then
G(X) ∈ L̄∗(Ω,A, P ) if and only if G ∈ L̄∗(E, E , PX). Further, if both sides hold, then

EG(X) =
∫

Ω
G(X) dP =

∫
E
G(x) dPX(x).

Proof: Denote L = {F ∈ L+(E, E) : EF (X) =
∫
E
F (x) dPX(x)}. Then (i) if F ∈ L+(E, E) attains values

in {0, 1}, then

EF (X) = P (F (X) = 1) = PX({x ∈ E : F (x) = 1}) =
∫
E
F (x) dPX(x), i.e. F ∈ L.

(ii) If a, b ≥ 0 and F,G ∈ L, then we get that aF + bG ∈ L as follows

E[aF (X) + bG(X)] = aEF (X) + bEG(X) = a
∫
E
F dPX + b

∫
E
G dPX =

∫
E

(aF + bG) dPX .

(iii) Let Fn ∈ L and let Fn ↑ F ∈ L+(E, E). Then we obtain from Monotone Convergence Theorem that

EF (X) = lim
n→∞

EFn(X) = lim
n→∞

∫
E
Fn dPX =

∫
E
F dPX , i.e. F ∈ L.

By lemma, L = L+(E, E). If G ∈ L∗(E, E), then G± ∈ L+(E, E), and the first part of the proof gives that
E[G(X)±] =

∫
E
G± dPX . This gives the first part of the statement. If G ∈ L̄∗(E, E , PX), then we get that

EG(X) = E[G(X)+]− E[G(X)−] =
∫
E
G+ dPX −

∫
E
G− dPX =

∫
E
G dPX .

�

Theorem 15 Let (Ω,A, P ) be a probability space and B ∈ A with P (B) > 0. If X ∈ L̄∗(Ω,A, P ), then
X ∈ L̄∗(Ω,A, P|B) and

E[X|B] =
∫
X dP|B = 1

P (B)

∫
B
X dP = 1

P (B)
E[X 1B].

Proof: Denote

L = {Y ∈ L+(Ω,A) : E[X|B] = 1
P (B)

E[X 1B]}.
(i) If A ∈ A, we show that 1A ∈ L as follows

E[1A|B] = P (A|B) = P (A∩B)
P (B)

= 1
P (B)

E[1A1B].
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(ii) If a, b ≥ 0 and Y, Z ∈ L, then we get that aY + bZ ∈ L as follows

E[aY + bZ|B] = aE[Y |B] + bE[Z|B] = a
P (B)

E[Y 1B] + b
P (B)

E[Z 1B] = 1
P (B)

E[(aY + bZ)1B].

(iii) If L 3 Yn ↑ Y ∈ L+(Ω,A), then Monotone Convergence Theorem gives that

E[Y |B] = lim
n→∞

E[Yn|B] = lim
n→∞

1
P (B)

E[Yn1B] = 1
P (B)

E[Y 1B].

(iv) By lemma, L = L+(Ω,A). If X ∈ L̄∗, then X± ∈ L+(Ω,A) and we get that

E[X|B] = E[X+|B]− E[X−|B] = E[X+1B ]−E[X−1B ]
P (B)

= E[X1B ]
P (B)

.

Theorem 16 Let X1, . . . , Xk be independent variables.

(1) If Xj ≥ 0 holds for every j ≤ k or
(2) if Xj ∈ L∗1 holds for every j ≤ k, then

E
k∏
j=1

Xj =
k∏
j=1

EXj.

Proof: By lemma X1 and
∏k

j=2 Xj are independent, and therefore we may assume that k = 2. Then
the correct proof can be obtained by induction. Let k = 2. First, we assume that X1 = X,X2 = Y ≥ 0.

(1) If X, Y attain values in {0, 1}, then E[XY ] = P (X = 1, Y = 1) = P (X = 1)P (Y = 1) = EX ·EY.
(2) If Y attains values in {0, 1}, then we put

LY = {Z ∈ L+(Ω, σ(X)) : E[Y Z] = EY · EZ}.
By (1) LY contains {0, 1}-valued σ(X)-measurable r.v.’s. If a, b ≥ 0 and Z1, Z2 ∈ LY , then

E[Y (aZ1 + bZ2)] = aE[Y Z1] + bE[Y Z2] = aEY · EZ1 + bEY · EZ2 = EY · E[aZ1 + bZ2].

Hence, aZ1 + bZ2 ∈ L. Finally, if Z ∈ L+(Ω, σ(X)), then 0 ≤ Zn ↑ Z as n → ∞ holds with
Zn = bZc

Kn
, where Kn is defined as in the proof of the lemma above. Then we get that Z ∈ L as

follows
E[Y Z] = lim

n→∞
E[Y Zn] = lim

n→∞
EY · EZn = EY · EZ.

By the same lemma L = L+(Ω, σ(X)), and the statement of the theorem is proved for {0, 1} valued
random variable Y .

(3) Denote LX = {U ∈ L+(Ω, σ(Y )) : E[XU ] = EX · EU}. Then LX contains {0, 1}-valued σ(Y )-
measurable random variables. It can be showed that it is closed under non-negative linear com-
binations and that it is closed under monotone convergence similarly as in step (2). Then we get
from the lemma, we have already used, that LX = L+(Ω, σ(Y )).

If X, Y ∈ L∗1, then we get from the first part of the proof that

E[XY ] = E[X+Y +] + E[X−Y −]− E[X+Y −]− E[X−Y +]

= E[X+]E[Y +] + E[X−]E[Y −]− E[X+]E[Y −]− E[X−]E[Y +]

= (E[X+]− E[X−])(E[Y +]− E[Y −]) = EX · EY.
�

Lemma If X ≥ 0 is a real-valued random variable, then EX =
∫∞

0
(1− FX(x)) dx.

Proof: By definition 1− FX(x) = 1− P (X < x) = P (X ≥ x) and we get from Fubini theorem that

EX =
∫

Ω
X dP =

∫
[0,∞)

x dPX(x) =
∫

[0,∞)

∫ t
0

ds dPX(x) =
∫∞

0

∫
[s,∞)

dPX(x) ds =
∫∞

0
P (X ≥ s) ds

�

Lemma Let X be a real-valued random variable.

(1) Then X ∈ L1 holds if and only if
∑

n P (|X| ≥ n) <∞
(2) Moreover, ∑

n∈N

P (|X| ≥ n) ≤ EX ≤ 1 +
∑
n∈N

P (|X| ≥ n).
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Proof: Since X ∈ L1 holds if and only if |X| ∈ L1, we may prove the statement for Y = |X| ≥ 0. Denote
Z = bY cZ. Then Z ≤ Y ≤ Z+1, and therefore EZ ≤ E|X| ≤ 1+EZ, and X ∈ L1 if and only if EZ <∞.
Let us compute

EZ =
∞∑
n=1

nP (Z = n) =
∞∑
n=1

n∑
k=1

P (Z = n) =
∞∑
k=1

∞∑
n=k

P (Z = n) =
∞∑
k=1

P (Z ≥ k) =
∑
k∈N

P (|X| ≥ k)

�

Theorem 17 (Jensen inequality) Let D ⊆ Rk be a convex set, where k ∈ N. Let X be a k-dimensional
real-valued random vector on (Ω,A, P ) with X(Ω) ⊆ D. Let EX := (EX1, . . . , Ek)

T ∈ Rk. Then EX ∈ D.
If G : D → R is a convex function, then G(X) ∈ L̄∗ and EG(X) ≥ G(EX).

If G is even strictly convex, and X 6= EX holds with positive probability, then EG(X) > G(EX).

Supporting theorems from convex analysis
(i) Let D ⊆ Rk, where k ∈ N, and x /∈ intD. Then there exists a ∈ Rk, a 6= 0 such that aTx ≤ infd∈D a

Td.
(ii) Let D ⊆ Rk, where k ∈ N, and x0 ∈ intD. Let G : D → R be a convex function. Then there exists
a ∈ Rk such that G(x) ≥ G(x0) + aT (x− x0) holds for every x ∈ D.

Remark Let assume that the assumptions of (ii) are satisfied and further assume that G is even strictly
convex. Then we have the strict inequality G(x) > G(x0) + aT (x− x0) for every x ∈ D\{x0}.

Proof: Let us assume the contrary, i.e. that there exists x ∈ D\{x0} such that the strict inequality
does not hold, i.e. we have the equality G(x) = G(x0) + aT (x − x0), thus G is linear on the line with the
end points x and x0, which contradicts the assumption that G is strictly convex. �

Proof of Theorem 17: Without loss of generality we assume that P (aT

1X = b) < 1 holds for every
0 6= a1 ∈ Rk and b 6= 0.4 Then we show that EX ∈ intD. Let us assume the contrary, i.e. let EX /∈ intD.
By (i) the first theorem from convex analysis, there exists 0 6= a ∈ Rk such that aTEX ≤ infd∈D a

Td. Since
X attains values in D, we get that aTX ≥ aTEX. By additional assumption, P (aTX = aTEX) < 1 holds
and therefore we get the strict inequality aTX > aTEX holds with positive probability. Hence, we have
the strict inequality for the mean value aTEX = EaTX > aTEX, and this is a contradiction. Therefore
EX ∈ intD.

By the second theorem from convex analysis, there exists a ∈ Rk such that

G(x) ≥ G(EX) + a
T
(x− EX) =: L(x), x ∈ D.

Since L is an affine function and EX ∈ Rk, we get that L(X) ∈ L1, and therefore G(X) ∈ L̄∗ as
G(X) ≥ L(X). Further, we get that EG(X) ≥ G(EX).

If G is a strict convex function and X 6= EX holds with a positive probability, then G(X) > G(EX) +
aT (X − EX) holds also with a positive probability, and we obtain that EG(X) > G(EX). �

Corollary

(1) Let 0 < p < q <∞ and put G(x) := xq/p. Then G is a strictly convex function on D = [0,∞). Let
X ∈ Lp, put Y = |X|p. Then Jensen inequality gives that E|X|q = EG(Y ) ≥ G(EY ) = (E|X|p)q/p,
and therefore (E|X|q)1/q ≤ (E|X|p)1/p. Moreover, if |X| a non-degenerate random variable, we get
that we have the strict inequality.

(2) Schwartz inequality
Let X, Y ∈ L(Ω,A) be such that XY ∈ L1(Ω,A, P ). Put Z = (|X|2, |Y |2)T and G(x, y) =
−√xy,D = [0,∞)2. Then Jensen inequality gives that

E|XY | ≤
√
E|X|2E|Y |2.

4Otherwise we would consider the orthogonal base of Rk of the form (a1, . . . , ak) =: A and we define vector Y = AX. It
has values in the convex set D := AD. Further, G : y ∈ D 7→ G(A−1y) is a convex function. Since Y1 = b holds almost surely,
we can reduce dimension. Put Z = (Y2, . . . , Yn)T and C = {c ∈ Rk−1 : (b, cT )T ∈ D}. Then C is a convex set. Let us consider
F (c) = G(b, c), then F is a convex function on C such that F (Z) = G(Y ) = G(X) holds almost surely. If EF (Z) ≥ F (EZ),
then EG(X) ≥ G(EX) and similarly if EF (Z) > F (EZ), then EG(X) > G(EX). This is a suggestion how to reduce the
dimension of the problem. We have showed how difficult would be the complete proof of Jensen inequality. Such a proof
would have to contain an induction containing the above suggested reduction of the dimension.
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(3) Minkovsky inequality
Let X, Y ∈ L2(Ω,A, P ). Put G(x, y) = −(

√
x+
√
y)2 on D = [0,∞)2 and Z = (|X|2, |Y |2)T . Then

Jensen inequality gives that

−E(
√
|X|2 + |Y |2)2 = EG(Z) ≥ G(EZ) = −(

√
E|X|2 +

√
E|Y |2)2

and we get that √
E|X + Y |2 ≤

√
E(|X|+ |Y |)2 ≤

√
E|X|2 +

√
E|Y |2.

Let T 6= ∅, we say that real-valued random variables Xt, t ∈ T defined on (Ω,A, P ) are uniformly
integrable if

lim
c→∞

sup
t∈T

E[|Xt|; |Xt| ≥ c] = 0,

where E[X;A] , E[X · 1A] stands for the expected value of X ∈ L(Ω,A) on A ∈ A if the value is well
defined.

Lemma Let T 6= ∅, and assume that there exists Y ∈ L1 such that |Xt| ≤ Y holds for every t ∈ T.
Then Xt, t ∈ T are uniformly integrable.

Proof: By assumption E[|Xt|; |Xt| ≥ c] ≤ E[|Y |; |Y | ≥ c]→ 0 as c→∞. �

Let T 6= ∅, we say that real-valued random variables Xt, t ∈ T defined on (Ω,A, P ) are equally
integrable if

sup
t∈T

E|Xt| <∞.

Lemma Let δ > 0 be such that |Xt|1+δ, t ∈ T are equally integrable, then Xt, t ∈ T are uniformly
integrable.

Proof: Let us compute

E[|Xt|; |Xt| ≥ c] = c · E[ |Xt|
c

; |Xt| ≥ c] ≤ c · E[( |Xt|
c

)1+δ] ≤ c−δ sup
s∈T

E[|Xs|1+δ]→ 0

as c→∞. �

Let T 6= ∅, we say that real-valued random variables Xt, t ∈ T defined on (Ω,A, P ) have equally
absolutely continuous integrals if

lim
δ→0+

sup{E[|Xt|;A] : A ∈ A, P (A) < δ, t ∈ T} = 0.

Theorem 18 Random variables Xt, t ∈ T are uniformly integrable if and only if they are equally
integrable and if they have equally absolutely continuous integrals.

Proof: Let Xt, t ∈ T be equally integrable with equally absolutely continuous integrals. Then

P (|Xt| ≥ c) ≤ 1
c
E|Xt| ≤ 1

c
sup
s∈T

E|Xs| < 1
c

(1 + sup
s∈T

E|Xs|) =: δ(c)→ 0

as c→∞, and

E[|Xt|; |Xt| ≥ c] ≤ sup{E[|Xs|;A] : A ∈ A, P (A) < δ(c), s ∈ T} → 0

as c→∞. On the other hand, let us assume that the random variables Xt, t ∈ T are uniformly integrable,
then there exists c0 such that E|Xt| ≤ E[|Xt|; |Xt| ≥ c0] ≤ 1 holds whenever t ∈ T.

E|Xt| ≤ E[|Xt|; |Xt| ≥ c0] + E[|Xt|; |Xt| < c0] ≤ 1 + c0 <∞.
Further, if c ∈ (0,∞), then

E[|Xt|;A] ≤ E[|Xt|; |Xt| ≥ c] + c · P (A).

Let ε > 0, then there exists c ∈ (0,∞) such that E[|Xt|; |Xt| ≥ c] < ε
2

holds whenever t ∈ T. Further, put
δ0 = ε

2c
. If δ ∈ (0, δ0), then c · P (A) < ε

2
holds if A ∈ A is such that P (A) < δ, and therefore

sup{E[|Xt|;A] : A ∈ A, P (A) < δ, t ∈ T} < ε

holds whenever δ ∈ (0, δ0). �
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Theorem 19 (Vallé-Poussin) Real-valued random variables Xt, t ∈ T are uniformly integrable if and
only if there exist a non-decreasing function G : [0,∞) → [0,∞) with G(t) → ∞ as t → ∞ such that
|Xt|G(|Xt|), t ∈ T are equally integrable random variables.

Proof: Let |Xt|G(|Xt|), t ∈ T be equally integrable random variables. Then

E[|Xt|; |Xt| ≥ c] ≤ 1
G(c)

E[|Xt|G(|Xt|)] ≤ 1
G(c)

sup
s∈T

E[|Xs|G(|Xs|)]→ 0

as c→∞, since G(c)→∞. On the other hand, assume that the random variables Xt, t ∈ T are uniformly
integrable. Then there exists a sequence 0 ≤ ck ↑ ∞ such that

E[|Xt|; |Xt| ≥ ck] ≤ 4−k and put G =
∑

n∈N 2n · 1[cn,cn+1) .

Then G is really a non-decreasing function with G(t)→∞ as t→∞, and

E[|Xt|G(|Xt|)] =
∑
n∈N

2nE[|Xt| · 1[cn,cn+1)(|Xt|)] ≤
∑
n∈N

2nE[|Xt|; |Xt| ≥ cn] ≤
∑
n∈N

2−n = 1.

�
Theorem 20 (Wald equalities) Let Xn, n ∈ N be a sequence of independent identically distributed real-

valued random variables on a probability space (Ω,A, P ) independent with a random variable N attaining
only values in N0. Let us consider the following random sum

S =
N∑
n=1

Xn.

(1) If X1, N ∈ L1, then S ∈ L1 and ES = EN · EX1, and var(S) = EN · var(X1) + varN · (EX1)2.
(2) If α ∈ R\{0} is such that eαX1 ∈ L1, then

E[eαS(EeαX1)−N ] = 1, i.e. E
N∏
n=1

exp{αXn}
E exp{αXn} = 1

Proof: (1a) If Xn ≥ 0, then we get from Fubini theorem that

ES =
∞∑
n=1

E
(
1[N=n]

n∑
k=1

Xk

)
=
∞∑
n=1

P (N = n) · E
( n∑
k=1

Xk

)
= EX1 ·

∞∑
n=1

nP (N = n) = EX1 · EN

as 1[N=n] and
∑n

k=1Xk are independent real-valued integrable random variables. (1b) If Xn may attain all
real values, then X±n satisfy assumptions of (1a). Then we get that ES± = E[X±1 ] · EN <∞, where

S± =
N∑
n=1

X±n .

Then S± ∈ L1, S = S+ − S− ∈ L1, and

ES = ES+ − ES− = (E[X+
1 ]− E[X−1 ]) · EN = E[X1] · EN.

(1c) Since S2 ≥ 0 holds, we obtain from Monotone Convergence Theorem that as n→∞

ES2 ← E[S21[N≤n]] =
n∑
k=1

k∑
m,j=1

E(XmXj1[N=k]) =
n∑
k=1

k∑
m,j=1

E(XmXj) · P (N = k)

=
n∑
k=1

P (N = k)
(
k EX2

1 + k(k − 1) (EX1)2
)
→ EX2

1 · EN + (EX1)2 · EN(N − 1).

Hence, ES2 = EX2
1 · EN + (EX1)2 · EN(N − 1) = EN · var(X1) + (EX1)2 · EN2. Then

var(S) = ES2 − (ES)2 = EN · var(X1) + (EX1)2 · EN2 − (EX1)2 · (EN)2

= EN · var(X1) + varN · (EX1)2.
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(2) Let α 6= 0 and EeαX1 <∞. Again by Monotone Convergence Theorem, we get that

EeαS(EeαX1)−N ← E[eαS(EeαX1)−N1[N≤n]] =
n∑
k=1

E
(
1[N=k] · exp{α

k∑
j=1

Xj}
)

=
n∑
k=1

P (N = k) · E
k∏
j=1

exp{αXj}
E exp{αX1}

=
n∑
k=1

P (N = k) · 1 = P (N ≤ n)→ 1.

Hence, EeαS(EeαX1)−N = 1. �

4.1. Mean value of a complex random variable.
Let X be a random variable with the state space (C,B(C)). We say that it has a mean value c ∈ C

if <X,=X ∈ L1 and < c = E[<X],=c = E[=X].

Remark A complex-valued random variable has a mean value if and only if E|X| <∞ and if this holds,
we have the following inequality |EX| ≤ E|X|.

Theorem 20∗ Let the general assumptions of theorem 20 be satisfied.

(1) If s ∈ R, then EesS = E(E exp{sX1})N .
(2) If s ∈ C is such that EetS <∞ holds with t = <s, then EesS = E(E exp{sX1})N .

Proof: (1) By Fubini theorem

EesS = E

∞∑
n=1

1[N=n]e
s
∑n
k=1Xk =

∞∑
n=1

E1[N=n]e
s
∑n
k=1Xk =

∞∑
n=1

P (N = n) · E
n∏
k=1

esXk

=
∞∑
n=1

P (N = n) · (EesX1)n = E[(EesX1)N ].

(2) Obviously, E|esS| = EeS·<s <∞ holds by assumption and therefore esS has a mean value. Again, we
use Fubini theorem and the same calculation gives the desired result. If we write t = <s instead of s, we
have an integrable function, which dominates the one with s, and this allows us to use Fubini Theorem. �

5. Convergence of Random variables

We say that a sequence Xn, n ∈ N of real-valued random variables converges almost surely to a real
valued-random variable X if there exists A ∈ A with P (A) = 1 such that Xn(ω)→ X(ω) as n→∞ holds
whenever ω ∈ A. As [limnXn = X] ∈ A, we get that Xn → X a.s. iff (if and only if) P (limnXn = X) = 1.

We say that a sequence Xn, n ∈ N of real-valued random variables converges in probability to a real
valued-random variable X if

∀ ε > 0 lim
n→∞

P (|Xn −X| > ε) = 0.

We say that a sequence Xn, n ∈ N of real-valued random variables converges in Lp to a real valued-
random variable X, where p ∈ [1,∞) if Xn, X ∈ Lp and E|Xn −X|p → 0 as n→∞.

Remark The limit almost surely, in probability and in Lp is determined uniquely up to a P -null set.
(i) Let Xn → X almost surely and Xn → Y almost surely as n→∞, then

P (X = Y ) = P (X = Y, lim
n→∞

Xn = X, lim
n→∞

Xn = Y ) = P ( lim
n→∞

Xn = X, lim
n→∞

Xn = Y ) = 1.

(ii) Let Xn → X in probability, then

P (|X − Y | > ε) ≤ P (|X −Xn|+ |Xn − Y | > ε) ≤ P (|Xn −X| > ε
2
) + P (|Xn − Y | > ε

2
→ 0

as n→∞. In particular, P (|X − Y | > ε) = 0 holds for every ε > 0, i.e. X = Y holds almost surely.

(iii) Let Xn → X in Lp and Xn → Y in Lp, where p ∈ [1,∞). Then

(E|X − Y |p)1/p ≤ (E|X −Xn|p)1/p + (E|Xn − Y |p)1/p → 0

as n→∞, and therefore X = Y holds almost surely.

• If Xn → X as n→∞ almost surely, we briefly write Xn→as X as n→∞.
• If Xn → X as n→∞ in probability P , we briefly write Xn→P X as n→∞.
• If Xn → X as n→∞ in Lp, we briefly write Xn

Lp−→ X as n→∞.
• If X = Y holds almost surely, we briefly write X =

as
Y.
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Remark Let (Ω,A, P ) be a probability space. If X ∈ Lp(Ω,A) holds, where p ∈ [1,∞), we denote
||X||p = (E|X|p)1/p. Then ||.||p is a pseudonorm on Lp(Ω,A, P ) and ||X||p = 0 if and only if X =

as
0.

Then %p(X, Y ) = ||X − Y ||p is a pseudometric on Lp(Ω,A, P ) such that %p(X, Y ) = 0 holds if and only
if X =

as
Y. If Xn, X ∈ Lp(Ω,A, P ), then we get the by definition of the convergence in Lp that

Xn → X as n→∞ in Lp ≡ %p(Xn, X)→ 0 as n→∞.

Remark: Let us denote ϕ0(x) = x
1+x

and ϕ1(x) = 1 ∧ x, where x ∧ y := min{x, y}. Further, denote

ψ0(x, y) := ϕ0(|x− y|) ≤ ϕ1(|x− y|) =: ψ1(x, y).

If j ∈ {0, 1}, it can be easily verified that ψj(x, y) is a metric on R equivalent to |x − y| bounded by 1
from above.

Proof: It is left to the reader up to the triangle inequality of ψ0. We are going to show that ϕ0(a + b) ≤
ϕ0(a) + ϕ0(b) holds whenever a, b ≥ 0. As ϕ0 is increasing on [0,∞), we obtain that

ψ0(x, z) = ϕ0(|x− z|) ≤ ϕ0(|x− y|+ |y − z|) ≤ ϕ0(|x− y|) + ϕ0(|y − z|) = ψ0(x, y) + ψ0(y, z)

holds whenever x, y, z ∈ R. First, ϕ′0(x) = d
dx

[1− 1
x
] = (1 + x)−2 holds if x > 0. Since ϕ′(x) is decreasing,

we obtain that

ϕ0(a+ b)− ϕ0(a) =
∫ a+b

a
ϕ′0(x) dx ≤

∫ b
0
ϕ′0(x) dx = ϕ0(b)− ϕ0(0) = ϕ0(b). �

Theorem 21 Let j ∈ {0, 1} and (Ω,A, P ) be a probability space. Then ρj(X, Y ) = Eρj(X, Y ) is a pseu-
dometric on L(Ω,A) such that ρj(X, Y ) = 0 holds if and only if X =

as
Y and such that

Xn→P X as n→∞ ≡ ρj(Xn, X)→ 0 as n→∞
holds whenever Xn, X ∈ L(Ω,A).

Proof: Obviously, ρj is a pseudometric on L(Ω,A) as ψj is a metric on R. If 0 = ρj(X, Y ) = Eψj(X, Y ),
then ψj(X, Y ) =

as
0 and since ψj is a metric, we get that X =

as
Y. Let Xn→P X as n→∞ and ε > 0. Then

0 ≤ ρ0(Xn, X) ≤ ρ1(Xn, X) = E[1 ∧ |Xn −X|] ≤ ε+ P (|Xn −X| > ε).

As ε > 0 was arbitrary, we obtain convergence ρj(Xn, X)→ 0 as n→∞.
Let ρj(Xn, X)→ 0 as n→∞, then we get that ρ0(Xn, X)→ 0 as n→∞, and then

P (|Xn −X| > ε) ≤ Eϕ0(|Xn −X|)/ϕ0(ε) = ρ0(Xn, X)/ϕ0(ε)→ 0

as n→∞, since ϕ0(ε) · 1[|Xn−X|>ε] ≤ ϕ0(|Xn −X|). �

Theorem 22 Let (Ω,A, P ) be a probability space.

(1) Let Xn→as X as n→∞, then Xn→P X as n→∞.
(2) Let Xn→P X as n→∞, then there exists nk →∞ such that Xnk→

as
X as k →∞.

Proof: (1) Let Xn→as X as n → ∞, then ψ1(Xn, X)→as 0 as n → ∞, and Dominated Convergence
Theorem gives that ρ1(X, Y ) = Eψ1(Xn, X)→ 0 as n→∞. By theorem 21, Xn→P X as n→∞.
(2) Let Xn→P X as n→∞. By theorem 21, ρ1(Xn, X)→ 0 as n→∞, and therefore there exists a sequence
nk →∞ such that ρ1(Xnk , X) < 2−k. Then Fubini theorem gives that

E
∞∑
k=1

ψ1(Xnk , X) =
∞∑
k=1

Eψ1(Xnk , X) =
∞∑
k=1

ρ1(Xnk , X) ≤ 1.

In particular,
∑

k ψ(Xnk , X) converges almost surely, and we get that ψ(Xnk , X)→as 0 as k →∞. Then we
have that Xnk→

as
X as k →∞. �

Example Let Ω = [0, 1],A = B[0, 1] and P be a uniform distribution on [0, 1]. Let An ∈ A be a sequence
with P (An) → 0 as n → ∞ such that lim supnAn = [0, 1]. Then Xn = 1An→P 0 and also in Lp whenever
p ∈ [1,∞), but Xn 6→as 0 as n→∞.

Theorem 23 Let (Ω,A, P ) be a probability space and let Xn, X ∈ L(Ω,A), n ∈ N. Then

Xn→P X as n→∞ if and only if ∀ nk ↑ ∞ ∃ km ↑ ∞ Xnkm
→as X as n→∞.(3)
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Proof: Let Xn→P X as n → ∞ and let nk → ∞, then obviously Xnk→
P X as k → ∞. By theorem 22,

there exists km ↑ ∞ such that Xnkm
→as X as n→∞. Now, assume that Xn 6→P X as n→∞. By theorem 21,

there exists ε > 0 and nk ↑ ∞ such that ρ1(Xnk , X) ≥ ε holds for every k ∈ N. If km ↑ ∞, then
ρ1(Xnkm

, X) ≥ ε > 0 holds for every m ∈ N, and therefore Xnkm
6→P X as m→∞ again by theorem 21. �

Remark There does not exists a pseudometric, say ρ, on L(Ω,A, P ) such that Xn→as X if and only if
ρ(Xn, X) → 0 as n → ∞ in general, otherwise theorem 23 gives that Xn→as X as n → ∞ if and only
if Xn→P X as n → ∞, i.e. these two convergence agree, which generally does not hold, see the example
above.5

Lemma Let {Xt}t∈T , {Yt}t∈T ⊆ L1(Ω,A, P ).

(1) If T is finite, then Xt, t ∈ T are uniformly integrable (UI) random variables.
(2) If T = T1 ∪ T2 and Xt, t ∈ Ti are UI for i ∈ {1, 2}, then Xt, t ∈ T are UI.

Further assume that Xt, t ∈ T are UI
(a) If a ∈ R, then aXt, t ∈ T are UI.
(b) If |Yt| ≤ Xt, t ∈ T holds, then Yt, t ∈ T are UI.
(c) If Yt, t ∈ T are UI, then Xt + Yt, t ∈ T are UI.

Proof: (2): Let ε > 0 and cj ∈ (0,∞) be such that supt∈Tj E[|Xt|; |Xt| ≥ cj] < ε. Put c = max{c1, c2},
then supt∈T E[|Xt|; |Xt| ≥ c] < ε.

(1): If T = {t}, then (1) obviously holds. Otherwise use (2) and induction.
(a): If a = 0, then (a) obviously holds. Otherwise, let c ∈ (0,∞), then we obtain from assumption that

sup
t∈T

E[|aXt|; |aXt| ≥ c] ≤ |a| sup
t∈T

E[|Xt|; |Xt| ≥ c/|a|]→ 0 as c→∞.

(b): By assumption supt∈T E[|Yt|; |Yt| ≥ c] ≤ supt∈T E[|Xt|; |Xt| ≥ c]→ 0 as c→∞.
(c): By theorem 18, Xt, Yt are for t ∈ T equally integrable, and therefore we obtain immediately from the
definition that Xt + Yt, t ∈ T are also equally integrable as follows

sup
t∈T

E|Xt + Yt| ≤ sup
t∈T

E|Xt|+ sup
t∈T

E|Yt| <∞.

Further, theorem 18 gives that Xt, t ∈ T and also Yt, t ∈ T have equally absolutely continuous integrals.
The same theorem says that it is enough to show that also Xt+Yt, t ∈ T have equally absolutely continuous
integrals. For δ > 0 denote Aδ,P = {A ∈ A : P (A) < δ}. Then

sup
t∈T

A∈Aδ,P

E[|Xt + Yt|;A] ≤ sup
t∈T

A∈Aδ,P

E[|Xt|;A] + sup
t∈T

A∈Aδ,P

E[|Yt|;A]→ 0

as δ → 0+. �

Remark: If Xn→P X and c > 0, then Xn/c →P X/c as n→∞.

Proof: Let ε > 0, then P (|Xn
c
− X

c
| > ε) = P (|Xn −X| > cε)→ 0 as n→∞.

Theorem 24 Let p ∈ [1,∞) and Xn, X ∈ L(Ω,A). Then the following conditions are equivalent

(1) Xn
Lp−→ X and Xn, X ∈ Lp(Ω,A, P )

(2) Xn→P X and |Xn|p, n ∈ N are uniformly integrable.

Proof: Let (1) hold and let ε > 0. Then P (|Xn − X| > ε) ≤ ε−pE|Xn − X| → 0 as n → ∞. Hence
Xn→P X as n → ∞. Now, we show that Yn, n ∈ N are uniformly integrable, where Yn = |Xn − X|p.
Since Yn ∈ L1(Ω,A, P ) and EYn → 0 as n → ∞, we get that Yn are equally integrable. We will show
that they have also equally absolutely continuous integrals. Let ε > 0, then there exists n0 such that
supn≥n0

E|Yn| < ε. Since Yn ∈ L1(Ω,A, P ), we get from lemma that Yn, n ≤ n0 are uniformly integrable,
and therefore they have equally absolutely continuous integrals. In particular, there exists δ0 > 0 such that

sup{E[|Yn|;A] : A ∈ A, P (A) < δ, n ≤ n0} < ε.

5In the special case Ω = {0}, there is only one probability measure P = δ0 on (Ω, 2Ω), and convergences almost surely
and in probability (and in Lp) agree with convergence everywhere. Further, think of the case, where Ω is finite or countable.
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Then sup{E[|Yn|;A] : A ∈ A, P (A) < δ, n ∈ N} < ε, and we have that |Xn − X|p, n ∈ N are uniformly
integrable. Since X ∈ Lp, we obtain that |Xn|p, n ∈ N are uniformly integrable from lemma and from the
following inequalities

|Xn|p ≤ (|Xn −X|+ |X|)p ≤ 2p max{|Xn −X|p, |X|p} ≤ 2p(|Xn −X|p + |X|p).
Let (2) hold. First, we show that X ∈ Lp(Ω,A, P ). By theorem 22, there exists nk ↑ ∞ such that Xnk→

as
X

as k →∞. By Fatou’s Lemma

E|X|p ≤ lim inf
k→∞

E|Xnk |p ≤ sup
n∈N

E|Xn|p <∞.

Second, we show that Yn = |Xn − X|p, n ∈ N are uniformly integrable. If follows from lemma and the
following inequality

|Xn −X|p ≤ 2p(|Xn|p + |X|p).
Third, let ε > 0 we will show that there exists n0 ∈ N such that E|Xn −X|p < ε holds whenever n ≥ n1.
Since Yn = |Xn −X|p are uniformly integrable, there exists c ∈ (0,∞) such that

sup
n∈N

E[|Yn|; |Yn| ≥ cp] < ε.

Since xp ≤ x holds for x ∈ [0, 1], p ∈ [1,∞), we obtain from the previous remark that

EYn < ε+ E[cp ∧ |Xn −X|p] ≤ ε+ cpE(1 ∧ |Xn−X
c
|) = ε+ cpρ1(Xn

c
, X
c

)→ ε.

Hence, we get that for each ε > 0 we have that

lim sup
n→∞

E|Xn −X|p ≤ ε.
�

Let Xn, n ∈ N be a sequence of real valued random variables. We say that it is a Cauchy sequence
almost surely if there exists A ∈ A with P (A) = 1 such that Xn(ω), n ∈ N is a Cauchy sequence
whenever ω ∈ A, i.e.

sup
p∈N
|Xn+p −Xn|→as 0 as n→∞.

We say that Xn, n ∈ N is a Cauchy sequence in probability if

∀ ε > 0 ∃ n0 ∈ N ∀ n,m ≥ n0 P (|Xn −Xm| > ε) < ε.

Let p ∈ [1,∞), we say that Xn, n ∈ N is a Cauchy sequence in Lp if Xn ∈ Lp, n ∈ N and if

∀ ε > 0 ∃ n0 ∈ N ∀ n,m ≥ n0 E|Xn −Xm|p < ε.

Theorem 25 Let Xn, n ∈ N be a sequence of real valued random variables on (Ω,A, P ).

(1) Then Xn, n ∈ N is a Cauchy sequence a.s. iff there exists X ∈ L(Ω,A) s.t. Xn→as X as n→∞.
(2) Xn, n ∈ N is a Cauchy sequence in probability iff there exists X ∈ L(Ω,A) s.t. Xn→P X as n→∞.
(3) Let p ∈ [1,∞), then Xn, n ∈ N is a Cauchy in Lp iff ∃ X ∈ Lp(Ω,A, P ) s.t. Xn

Lp−→ X as n→∞.
Proof: a) Let us assume that Xn→as X as n → ∞. Then A = [limnXn = X] ∈ A and P (A) = 1, and if
ω ∈ A, then Xn(ω)→ X(ω) as n→∞, and we get that Xn(ω) is a Cauchy sequence.

b) Let Xn→P X as n → ∞ and ε > 0, then there exists n0 ∈ N such that P (|Xn − X| > ε
2
) < ε

2
. If

m,n ≥ n0, then

P (|Xn −Xm| > ε) ≤ P (|Xn −X|+ |X −Xm| > ε) ≤ P (|Xn −X| > ε
2
) + P (|Xm − n| > ε

2
) < ε.

c) Let Xn
Lp−→ X as n → ∞, then there exists n0 ∈ N such that (E|Xn −X|p)1/p < ε

2
holds if n ≥ n0. If

m,n ≥ n0, then

(E|Xm −Xn|p)1/p ≤ (E|Xm −X|p)1/p + (E|Xn −X|p)1/p < ε.

d) Let Xn be a Cauchy sequence almost surely, then there exists A ∈ A with P (A) = 1 such that Xn(ω)
is a Cauchy sequence if ω ∈ A. Then we put X(ω) := limnXn(ω) if ω ∈ A and X(ω) := 0 if ω ∈ Ω\A. It
follows from the definition that X ∈ L(Ω,A) and also Xn→as X as n→∞.
e) Let Xn be a Cauchy sequence in probability. We will show that

lim
n→∞

sup
j∈N

ρ1(Xn, Xn+j) = 0
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Let ε > 0. By assumption there exists n0 such that P (|Xn −Xm| > ε
2
) < ε

2
holds whenever n ≥ n0. Then

ρ1(Xn, Xn+j) = E[1 ∧ |Xn −Xn+j|] ≤ ε

holds if n ≥ n0 and j ∈ N. Let nk ↑ ∞ be such that ρ1(Xnk , Xnk+1
) < 2−k. Then

E
∑
k∈N

ψ1(Xnk , Xnk+1
) =

∑
k∈N

ρ1(Xnk , Xnk+1
) ≤ 1,

and we get
∑

k ψ1(Xnk , Xnk+1
) < ∞ holds almost surely, which gives that Xnk is almost surely a Cauchy

sequence as

ψ1(Xnk , Xnk+j) ≤
j−1∑
i=k

ψ1(Xni , Xni+1
) ≤

∞∑
i=k

ψ1(Xni , Xni+1
)→ 0

as k →∞ holds almost surely. By step d) there exists X ∈ L(Ω,A) such that Xnk→
as
X as k →∞.

ρ1(Xn, X) ≤ ρ1(Xn, Xnk) + ρ1(Xnk , X).

Then

ρ1(Xn, X) ≤ lim sup
k→∞

ρ1(Xn, Xnk) ≤ sup
j∈N

ρ1(Xn, Xn+j)→ 0

as n→∞, i.e. Xn→P X as n→∞.
f) Let Xn be a Cauchy sequence in Lp, where p ∈ [1,∞). Then Xn is a Cauchy sequence in probability: if
ε > 0, then there exists n0 ∈ N such that E|Xn −Xm|p < ε1+p holds whenever m,n ≥ n0. Then

P (|Xn −Xm| > ε) ≤ ε−pE|Xn −Xm|p < ε

holds if m,n ≥ n0. In particular, there exists X ∈ L(Ω,A) such that Xn→P X as n→∞. By theorem 24,
it is enough to show that |Xn|p, n ∈ N are uniformly integrable. First, we show that they are equally
integrable. By assumption there exists n0 ∈ N such that E|Xn0 − Xn|p < 1 holds whenever n ≥ n0. If
n ≥ n0, we get that

E|Xn|p ≤ 2p(E|Xn −Xn0|p + E|Xn0|p) ≤ 2p(1 + E|Xn0 |).
Since Xn ∈ Lp, we get that E|Xn|p is a bounded sequence, and therefore |Xn|p, n ∈ N are equally integrable.
Further, we show that |Xn|p, n ∈ N have equally absolutely continuous integrals. Let ε > 0 we consider
nε ∈ N such that E|Xn −Xm|p < ε holds whenever m,n ≥ nε. If A ∈ A, then

E[|Xn|p;A] ≤ 2p(E|Xn −Xnε|p + E[|Xnε|p;A]).

If A ∈ A has probability P (A) small enough such that E[|Xn|p;A] < ε holds whenever n ≤ nε, then we
get that E[|Xn|p;A] ≤ 2p+1ε holds whenever n ∈ N.
f∗) Let Xn be a Cauchy sequence in Lp, where p ∈ [1,∞). Then supj E|Xn −Xn+j|p → 0 as n→∞. Let

nk ↑ ∞ be such that (E|Xnk −Xnk+1
|p)1/p < 2−k. Then we get from Jensen inequality that

E|Xnk −Xnk+1
| ≤ (E|Xnk −Xnk+1

|p)1/p < 2−k.

Then

E
∑
k∈N

|Xnk −Xnk+1
| =

∑
k∈N

E|Xnk −Xnk+1
| ≤ 1.

In particular,
∑

k |Xnk −Xnk+1
| < ∞ holds almost surely. Similarly as in the step e), we get that Xnk is

a Cauchy sequence almost surely, and by d) we obtain that there exists X ∈ L(Ω,A) such that Xnk→
as
X

as k →∞. Then Fatou’s lemma gives that

E|Xn −X|p ≤ lim inf
k→∞

E|Xn −Xnk |p ≤ sup
j∈N

E|Xn −Xn+j|p → 0

as n → ∞, and E|X|p ≤ 2p[E|Xn − X|p + E|Xn|p] < ∞ holds if n is large enough as Xn ∈ Lp, and
therefore X ∈ Lp holds also. �
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6. Conditioning

Let (Ω,A, P ) be a probability space and B ∈ A be such that P (B) > 0. If A ∈ A, then we have the
conditional probability of A given B in the form

P (A|B) = P (A∩B)
P (B)

(= P|B(A)).

Further, if X ∈ L̄∗(Ω,A, P ), then X ∈ L̄∗(Ω,A, P|B), and

E[X|B] =
∫
X dP|B = 1

P (B)

∫
B
X dP = 1

P (B)
E[X;B]

holds by theorem 15.

Let X ∈ L1(Ω,A, P ) and B ⊆ A be σ-algebra. By a conditional expected value of X given B we
mean every Y ∈ L1(Ω,B, P |B) such that one of the following equivalent conditions holds

(1) ∀B ∈ B
∫
B
X dP =

∫
B
Y dP (technical condition used mostly in proofs)

(2) ∀B ∈ B E[X;B] = E[Y ;B] (condition suitable for verifying by computing)

(3) ∀B ∈ B P (B) > 0 ⇒ E[X|B] = E[Y |B] (condition offering interpretation).

Such a variable Y will be denoted as E[X|B] and the set of all such values as E[X|B].

Remark The condition (1) will be used in proofs, it helps us to avoid to use too many E’s in the
following proofs, and it is the usually used condition. The condition (2) is obviously equivalent to (1) and
it is just the same condition as (1) using expectation E that enables to use our intuition. The relation
between the conditions (2) and (3) is the same as the relation between the definition of independence
of two random events A,B in the form P (A ∩ B) = P (A)P (B) and the condition P (A|B) = P (B) if
P (B) > 0, which is behind the name of this property “independence of expectation of the random event
A on the information that B happened”.

Although the third condition is closest to interpretation of the notion of the conditional expectation, it
does not really says, what it is. We will be able to say what it really is only in case when B is finite and
to refer the reader to the theory of martingales that

E[X|Bn] →as E[X|B∞]

holds whenever Bn ⊆ Bn+1 and B∞ = σ(∪nBn). Further comments will be given when we know what is
E[X|B] if B is finite. See theorem 26 and the text bellow.

Radon-Nikodym theorem Let ν, µ be σ-finite measures on a measurable space (S,S) such that
ν << µ.6 then there exists a non-negative S-measurable function f denoted also as dν

dµ
such that

ν(A) =
∫
A
f dµ, A ∈ S.(4)

Such a function f is determined uniquely up to a µ-null set, and it is called a Radon-Nikodym derivative
of ν w.r.t. µ or a density of ν w.r.t. µ.

Radon-Nikodym theorem for signed measures Let µ be a σ-finite measure on a measurable space
(S,S) and ν be a finite signed measure on (S,S) such that ν << µ7 Then there exists an S-measurable
µ-integrable function f such that (4) holds. Such a function f is determined uniquely up to a µ-null set,
and it is called a Radon-Nikodym derivative of ν w.r.t. µ or a density of ν w.r.t. µ.

Lemma Let ν be a finite signed measure on a measurable space (S,S), then there exist S± ∈ S such
that S+ ∩ S− = ∅ and that ν = ν+ − ν−, where ν±(A) = ν(A ∩ S±) are measures on (S,S).

Proof: By assumption ν = ν+ − ν−, where ν± are finite measures on (S,S). Obviously, we have that
ν± << µ := ν+ + ν−. By Radon-Nikodym theorem there exist S-measurable functions f± such that
ν±(A) =

∫
A
f± dµ holds if A ∈ S. Put f = f+ − f− and S+ := [f > 0], S− := [f < 0]. Then

ν(A) = ν+(A)− ν−(A) =
∫
A
f+ dµ−

∫
A
f− dµ =

∫
A
f dµ, A ∈ S.

6 i.e. ∀ A ∈ S µ(A) = 0⇒ ν(A) = 0.
7 i.e. ∀ A ∈ S µ(A) = 0⇒ ν(A) = 0.
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In particular, ν±(A) = ν(A ∩ S±) =
∫
A∩S± f dµ, and therefore

ν+(A)− ν−(A) = ν(A ∩ S+)− ν(A ∩ S−) =
∫
A∩S+

f dµ−
∫
A∩S− f dµ

=
∫
A
f1[f>0] dµ−

∫
A
f1[f<0] dµ =

∫
A
f dµ = ν(A)

holds whenever A ∈ S. �

Proof of Radon-Nikodym theorem for signed measures: By lemma there exist disjoint measurable
sets S± ∈ S such that

ν = ν+ − ν−, where ν± are finite measures on (S,S) such that ν±(A) = ν(A ∩ S±), A ∈ S.

Let A ∈ S be such that µ(A) = 0, then µ(A ∩ S±) = 0. By assumption ν << µ we get that

ν±(A) = ν(A ∩ S±) = 0.

Hence, we have that ν± << µ, and Radon-Nikodym theorem gives that there are f± : (S,S)→ ([0,∞),B[0,∞))
such that ν±(A) =

∫
A
f± dµ holds if A ∈ S. Then f = f+ − f− is an S-measurable function with∫

|f | dµ ≤
∫
f+ dµ+

∫
f− dµ = ν+(S) + ν−(S) <∞.

Further, if A ∈ S, then ∫
A
f dµ =

∫
A
f+ dµ−

∫
A
f− dµ = ν+(A)− ν−(A) = ν(A).

Let g, h arbitrary S-measurable µ-integrable function such that ν(A) =
∫
A
g dµ holds if ∈ S. Put A+ =

[f > g], A− = [f < g]. Then A± ∈ S, and∫
A±

(f − g) dµ =
∫
A±
f dµ−

∫
A±
g dµ = ν(A±)− ν(A±) = 0.

This is possible only if µ(A±) = 0, and we get that f = g holds µ-almost everywhere. �

Theorem 26 Let X ∈ L1(Ω,A, P ) and F ⊆ A be a σ-algebra. Then ∅ 6= E[X|F ] is a class of equivalent
elements of L1(Ω,F , P |F) w.r.t. equality almost surely and it is the set of all Radon-Nikodym derivatives
of

ν(B) =
∫
B
X dP = E[X;B]

w.r.t. P |F . In particular, E[X|F ] exists and it is determined uniquely almost surely.

Proof: Obviously, ν << P |F , and Radon-Nikodym theorem gives that dν
dP |F exists and it is determined

uniquely up to a P -null set. Hence, we are now only to show that Y is a Radon-Nikodym derivative of ν
w.r.t. P |F if and only if Y ∈ E[X|F ]. If Y ∈ E[X|F ], then Y ∈ L1(Ω,F , P |F) and

∫
B
Y dP =

∫
B
X dP =

ν(B) holds whenever B ∈ F , and therefore Y is a Radon-Nikodym derivative of ν w.r.t. P |F . On the other
hand, let Y be a Radon-Nikodym derivative of ν w.r.t. P |F , then Y is F -measurable and P -integrable
function such that

∫
B
Y dP = ν(B) =

∫
B
X dP holds whenever B ∈ F , and there Y ∈ E[X|F ]. �

Theorem 27 (Elementary properties of conditional expectation) Let X, Y ∈ L1(Ω,A, P ) and F ⊆ A
be σ-algebra.

(1) Let a, b, c ∈ R, then E[aX + bY + c|F ] =
as
aE[X|F ] + bE[Y |F ] + c.

(2) Let X ≤ Y hold almost surely, then E[X|F ] ≤ E[Y |F ] holds almost surely.
(3) E[E(X|F)] = EX.
(4) If X ∈ L(Ω,F), then E[X|F ] =

as
X.

(5) Let C ⊆ F be a σ-algebra, then E[E(X|F)|C] =
as
E[E(X|C)|F ] =

as
E[X|C].

(6) If σ(X) and F are independent, then E[X|F ] =
as
EX.

Proof:

(1) By definition Z = aE[X|F ] + bE[Y |F ] + c ∈ L1(Ω,F , P |F) and if B ∈ F , then∫
B
Z dP = a

∫
B
E(X|F) dP + b

∫
B
E(X|F) dP + c = a

∫
B
X dP + b

∫
B
X dP + c =

∫
B

(aX + bY + c) dP.

(2) Put B = [E(X|F) > E(Y |F)] ∈ F , and therefore we obtain from the following that P (B) = 0∫
B

(E[X|F ]− E[Y |F ]) dP =
∫
B
E[X|F ] dP −

∫
B
E[Y |F ] dP =

∫
B
X dP −

∫
B
Y dP =

∫
B

(X − Y ) dP ≤ 0.

(3) E[E(X|F)] =
∫

Ω
E(X|F) dP =

∫
Ω
X dP = EX.



22

(4) Denote B = [X > E(X|F)] ∈ F . Then∫
B

(X − E[X|F ]) dP =
∫
B
X dP −

∫
B
E[X|F ] dP =

∫
B
X dP −

∫
B
X dP = 0.

This gives that X ≤ E[X|F ] holds almost surely, and the reverse inequality can be obtained
similarly.

(5) By assumption E[X|C] ∈ L1(Ω, C, P |C) ⊆ L1(Ω,F , P |F), and therefore E[E(X|C)|F ] =
as
E[X|C].

Further, we will show that E[E(X|F)|C] ∈ E[X|C]. Obviously, E[E(X|F)|C] ∈ L1(Ω, C, P |C). If
B ∈ C, then ∫

B
E[E(X|F)|C] dP =

∫
B
E(X|F) dP =

∫
B
X dP.

(6) Obviously, EX ∈ L1(Ω,F , P |F). Since σ(X) and F are independent, we get that∫
B
EX dP = EX · P (B) = E[X;B] =

∫
B
X dP. �

We say that A ∈ A is an atom of σ-algebra A if ∀B ∈ A B ⊆ A ⇒ B = ∅ or B = A. We
say that A ∈ A is an atom8 of probability space (Ω,A, P ) if ∀B ∈ A B ⊆ A ⇒ P (B) = 0 or
P (B) = P (A).

Example Y : (Ω,A)→ (E, E) and e ∈ E then [Y = e] is an atom of σ-algebra σ(Y ).

Theorem 28 Let X ∈ L1(Ω,A, P ) and F ⊆ A be a σ-algebra.

(1) If B is an atom of F with P (B) > 0, then

∀ω ∈ B E[X|F ](ω) = E[X|B], i.e. E[X|F ]1B = E[X|B]1B.

(2) If B is an atom of (Ω,F , P |F) with P (B) > 0, then

E[X|F ] = E[X|B] holds almost surely on B, i.e. E[X|F ]1B =
as
E[X|B]1B.

Proof: (2) Let B be an atom of (Ω,F , P |F) with P (B) > 0. Then C = [E(X|F)1B > E(X|B)1B] ∈ F
and C ⊆ B. By assumption P (C) = 0 or P (B\C) = 0. We are going to show that P (C) = 0. So, let us
assume that P (B\C) = 0. Then∫

C
[E(X|F)− E(X|B)] dP =

∫
C
E(X|F) dP − P (C)E(X|B)]

=
∫
B
E(X|F) dP − P (B)E(X|B)] =

∫
B
X dP − E[X1B] = 0,

and we get that P (C) = 0, i.e. E(X|F)1B ≤ E(X|B)1B almost surely. The contrary inequality can be
obtained similarly.

(1) Put N = [E(X|F)1B 6= E(X|F)1B] ∈ F . Then N ⊆ B. Since B is assumed to be an atom of F ,
it is also an atom of (Ω,F , P |F), and therefore P (N) = 0. Since B is assumed to be an atom of F , and
N ⊆ B,N ∈ F , we get that N = B or N = ∅. Since P (B) > 0 = P (N), we get that N = ∅. �

Let (Ω,A, P ) be a probability space and A ∈ A and F ⊆ A be a σ-algebra. Then we denote P (A|F)=
E[1A|F ] and it is called a conditional probability of A given F .

Let X ∈ L1(Ω,A, P ) and Y : (Ω,A) → (E, E). We denote E[X|Y ] = E[X|σ(Y )] and it is called
a conditional expectation of real valued r.v. X given r.v. Y . If A ∈ A, then we denote P (A|Y )=
P (A|σ(Y )) and it is called a conditional probability of A given r.v. Y .

By theorem 4, there exists a measurable function f : (E, E) → (R,B(R)) such that E[X|Y ] = f(Y ) or
P (A|Y ) = f(Y ), respectively. Such a function will be denoted as E[X|Y = y]= f(y) or P (A|Y = y)=
f(y). Note that such functions E[X|Y = y], P (A|Y = y) are determined uniquely up to a PY -null set.

Remark If y ∈ E is such that P (Y = y) > 0 then E[X|Y = y] = E[X|B] holds by theorem 28
with B = [Y = y], and therefore the newly introduced notation is not confusing. If P (Y = y) = 0, then
E[X|Y = y] can be arbitrary real value similarly as f(y) can be arbitrary real value if f is a density of
a continuous real-valued random variable.

It may happen that we are interested in E[X|Y = y] similarly as we may be interested in the value f(y)
of the density f at point y. It is the case when we are considering a version of such a function, which is
continuous at the point y.

8Usually, A is atom of a σ-algebra only if A 6= ∅ and of a probability space only if P (A) > 0.
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Claim Let X ∈ L1(Ω,A, P ) and Y : (Ω,A, P )→ (Rk,B(Rk)), k ∈ N. Let f, g : (Rk,B(Rk))→ (R,B(R))
be such that f(Y ) =

as
E[X|Y ] =

as
g(Y ). Let y0 ∈ Rk be such that

(1) f, g are continuous at the point y0

(2) ∀ ε > 0 P (||Y − y0|| < ε) > 0.

Then f(y0) = g(y0).

Proof: Let us assume that f(y0) 6= g(y0). Since, f, g are continuous at y0, we get that there exists ε > 0
such that f(y) 6= g(y) holds whenever ||y − y0|| < ε. Then we get that f(Y ) 6= g(Y ) holds with a positive
probability, which is a contradiction with assumption that f(Y ) =

as
E[X|Y ] =

as
g(Y ). �

Corollary of theorem 28 Let X ∈ L1(Ω,A, P ) and Y : (Ω,A, P )→ (E, E , PY ) be a discrete random
variable. Then

E[X|Y ] =
as
∑
y∈E

E[X|Y = y] · 1[Y=y]

Moreover, if P (Y = y) > 0 holds for every y ∈ E, then

E[X|Y ] =
∑
y∈E

E[X|Y = y] · 1[Y=y].

Theorem 29 Let Y ∈ L(Ω,F), and X,XY ∈ L1(Ω,A, P ), where F ⊆ A are σ-algebras. Then

E[XY |F ] =
as
Y E[X|F ].

Proof: First, we assume that X, Y ≥ 0. Put

L = {U ∈ L+(Ω,F) : ∀ B ∈ F
∫
B
UX dP =

∫
B
UE[X|F ] dP}.

(1) 1F ∈ L holds if F ∈ F , since∫
B

1FE(X|F) dP =
∫
B∩F E(X|F) dP =

∫
B∩F X dP =

∫
B

1FX dP.

(2) Let a, b ≥ 0 and U, V ∈ L, then W = aU + bV ∈ L, since∫
B
WE[X|F ] dP = a

∫
B
UE[X|F ] dP + b

∫
B
V E[X|F ] dP

= a
∫
B
UX dP + b

∫
B
V X dP =

∫
B
WX dP.

(3) If Un ≥ 0, Un ∈ L, Un ↑ U ∈ L+(Ω,F). Then U ∈ L as∫
B
UE[X|F ] dP = lim

n→∞

∫
B
UnE[X|F ] dP = lim

n→∞

∫
B
UnX dP =

∫
B
UX dP.

Hence, we get by lemma that L = L+(Ω,F , P |F). In order to show the statement for X, Y ≥ 0, we need
to show that Y E[X|F ] ∈ L1(Ω,F , P |F). Obviously, Y E[X|F ] ∈ L(Ω,F). Further, we obtain from the
previous part of the proof that E[Y E(X|F)] = EXY <∞.

Let us consider the general case. By the first part of the proof, the statement holds for X± and Y ±. In
particular, Y ±E[X±|F ] ∈ L1(Ω,F , P |F), and

E[XY |F ] =
as
E[X+Y + +X−Y − −X−Y + −X+Y −|F ]

=
as
E[X+Y +|F ] + E[X−Y −|F ]− E[X−Y +|F ]− E[X+Y −|F ]

=
as
Y +E[X+|F ] + Y −E[X−|F ]− Y +E[X−|F ]− Y −E[X+|F ]

=
as

(Y + − Y −)(E[X+|F ]− E[X−|F ]) =
as
Y E[X|F ].

�

Theorem 30 Let X ∈ L1(Ω,A, P, and Y, Z : (Ω,A) → (E, E). Let Y = Z hold on A ∈ σ(Y ) ∩ σ(Z),
then E[X|Y ]1A =

as
E[X|Z]1A.

Proof: By assumption, there exist B,C ∈ E such that A = [Y ∈ B] = [Z ∈ C]. Let us de-
note F = σ(Y ) ∩ σ(Z). We are going to show that E[X|Y ]1A, E[X|Z]1A ∈ E[X1A|F ]. Obviously,
E[X|Y ]1A, E[X|Z]1A are integrable variables. Let f(y) = E[X|Y = y] and g(z) = E[X|Z = z]. Then

E[X|Y ]1A = f(Y )1[Y ∈B] = f(Y )1A = f(Z)1[Z∈C],

and therefore E[X|Y ]1A is σ(Y ), σ(Z)-measurable. If c ∈ R, we get that

[E(X|Y )1A < c] ∈ σ(Y ) ∩ σ(Z) = F ,
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i.e. E[X|Y ]1A is F -measurable, and therefore E[X|Y ]1A ∈ L1(Ω,F , P |F). Then

E[X|Y ]1A =
as
E(E[X|Y ]1A|F) =

as
E(E[X1A|Y ]|F) =

as
E(X1A|F),

and similarly we would obtain that E[X|Z]1A ∈ L1(Ω,F , P |F) and E[X|Z]1A =
as
E(X1A|F). �

Example Let X ∈ L1(Ω,A, P ). Determine E[X|X+]. Then

E[X|X+]1[X+>0] =
as
E[X|X]1[X>0] =

as
X1[X>0] = X+.

(1) If P (X+ = 0) = 0, then E[X|X+] =
as
X+.

(2) If P (X+ = 0) > 0, then E[X|X+] =
as
X+ + E[X|X+ = 0]1[X+=0] = X+ + E[X|X ≤ 0]1[X≤0].

Lemma Let X ∈ L1(Ω,A, P ), let C ⊆ A be a system closed under finite intersections. Denote F = σ(C)
and assume that Y ∈ L1(Ω,F , P |F) is such that

(1) EY = EX
(2) ∀ B ∈ C E[X;B] = E[Y ;B].

Then Y ∈ E[X|F ].

Proof: Let us denote L = {B ∈ F : E[X;B] = E[Y ;B]}. Obviously, L is a Dynkin system containing
a system C closed under finite intersections. By Dynkin lemma, L ⊇ σ(C) = F ⊇ L. �

Theorem 31 Let X ∈ L1(Ω,A, P ) and Y : (Ω,A) → (E, E), Z : (Ω,A) → (H,H). Let Z and (X, Y )
be independent variables, then E[X|(Y, Z)] =

as
E[X|Y ].

Proof: Put F = σ(Y, Z). Obviously, E[X|Y ] ∈ L1(Ω,F , P |F), where F = σ(C), and where

C = {[Y ∈ B] ∩ [Z ∈ C] : B ∈ E , C ∈ H}
is a system closed under finite intersections. If B ∈ E , C ∈ H, and A = [Y ∈ B] ∩ [Z ∈ C], then∫

A
E[X|Y ] dP = E[E(X|Y );Y ∈ B,Z ∈ C] = E[E(X|Y );Y ∈ B] · P (Z ∈ C)

= E[E(X;Y ∈ B|Y )] · P (Z ∈ C) = E[X;Y ∈ B] · P (Z ∈ C)

= E[X;Y ∈ B,Z ∈ C] =
∫
A
X dP.

By the previous lemma, E[X|Y ] ∈ E[X|(Y, Z)]. �

Let X : (Ω,A, P )→ (S,S, PX) and Y : (Ω,A, P )→ (E, E , PY ). We say that the variables X,Y are

regularly dependent if PX,Y << PX ⊗ PY . Then we denote kX,Y =
dPX,Y

dPX⊗PY
.

Remark If X, Y are independent, then X, Y are regularly dependent with kX,Y ≡ 1.

Theorem 32 Let X : (Ω,A, P ) → (S,S, PX) and Y : (Ω,A, P ) → (E, E , PY ) be regularly dependent
and G ∈ L1(S × E,S ⊗ E , PX,Y ). Then

E[G(X, Y )|Y = y] = E[G(X, y)kX,Y (X, y)]

holds for PY -almost every y ∈ E.

Proof: By assumption,

∞ > E|G(X, Y )| =
∫
S×E |G(x, y)| dPX,Y (x, y) =

∫
E

∫
S
|G(x, y)|kX,Y (x, y) dPX(x) dPY (y).

Then P (A) = 1, where

A = {y ∈ E :
∫
S
|G(x, y)|kX,Y (x, y) dPX(x) <∞} ∈ E .

Put g(y) =
∫
S
G(x, y)kX,Y (x, y) dPX(x) · 1A(y) ∈ L1(E, E , PY ). Then g(Y ) ∈ L1(Ω, σ(Y ), P |σ(Y )). Let

B ∈ E . We get from Fubini theorem that∫
[Y ∈B]

g(Y ) dP =
∫
B
g dPY =

∫
B

∫
S
G(x, y)kX,Y (x, y) dPX(x) dPY (y)

=
∫
S×B G(x, y)kX,Y (x, y) dPX ⊗ dPY (x, y)

=
∫
S×B G(x, y) dPX,Y (x, y) =

∫
[Y ∈B]

G(X, Y ) dP .

Hence, g(Y ) ∈ E[G(X, Y )|Y ], and therefore we get that E[G(X, Y )|Y = y] = g(y) = E[G(X, y)kX,Y (X, y)]
holds PY -almost everywhere. �
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Theorem 33 Let X : (Ω,A, P )→ (S,S, PX), Y : (Ω,A, P )→ (E, E , PY ) have a joint density fX,Y with
respect to µ ⊗ ν, where µ and ν are σ-finite measures on (S,S) and (E, E), respectively. Then X, Y are
regularly dependent variables with

kX,Y (x, y) =
fX,Y (x,y)

fX(x)fY (y)
· 1[fX(x)fY (y) 6=0] PX ⊗ PY -almost everywhere,(5)

where

fX(x) =
∫
fX,Y (x, y) dν(y) · 1[

∫
|fX,Y (x,y)|dν(y)<∞] is a density of r.v. X w.r.t. µ, i.e. fX = dPX

dµ
.

fY (y) =
∫
fX,Y (x, y) dµ(x) · 1[

∫
|fX,Y (x,y)| dµ(x)<∞] is a density of r.v. Y w.r.t. ν, i.e. fY = dPY

dν
.

Further, f̃X,Y (x, y) = fX,Y (x, y) · 1[fX(x)fY (y) 6=0] is a density of PX,Y w.r.t. µ⊗ ν.

Proof: First, we get from Fubini theorem that

P (fX(X) = 0) =
∫
{(x,y):fX(x)=0} fX,Y (x, y) d(µ⊗ ν)(x, y)

=
∫
{x:fX(x)=0}

∫
E
fX,Y (x, y) dν(y) dµ(x) =

∫
{x:fX(x)=0} fX(x) dµ(x) = 0,

and similarly, we would obtain that P (fY (Y ) = 0) = 0. Second, we show that fX is a version of dPX
dµ
. Let

B ∈ S and B̃ = B ∩ [fX 6= 0]. Then PX(B\B̃) = 0, and∫
B
fX(x) dµ(x) =

∫
B̃
fX(x) dµ(x) =

∫
B̃

∫
E
fX,Y (x, y) dν(y) dµ(x) = P (X ∈ B̃) = P (X ∈ B).

Similarly, we would obtain that fY is a version of dPY
dν
. Third, we show that

f̃X,Y (x, y) = fX,Y (x, y) · 1[fX(x)fY (y)6=0]

is a density of PX,Y with respect to µ⊗ ν. If B ∈ S and C ∈ E , we denote B̃ = {x ∈ B : fX(x) 6= 0} ∈ S
and C̃ = {y ∈ E : fY (y) 6= 0} ∈ E . By the previous part of the proof P (X ∈ B\B̃) = 0 = P (Y ∈ C\C̃),
and therefore

PX,Y (B × C) = PX,Y (B̃ × C̃) =
∫
B̃×C̃ fX,Y (x, y) dµ⊗ ν(x, y) =

∫
B×C f̃X,Y (x, y) dµ⊗ ν(x, y)

Since {B × C : B ∈ S, C ∈ E} is a system closed under intersections generating S ⊗ E , we get that it

determines a probability measure on S⊗E , and we obtain that dPX,Y = f̃X,Y dµ⊗ν. Finally, we will show
that the following Dynkin system

M = {A ∈ S ⊗ E :
∫
A
k̃X,Y (x, y) d[PX ⊗ PY ](x, y) = PX,Y (A)}

contains the following system generating S ⊗ E closed under finite intersections

L = {B × F : S ∈ S, F ∈ H},

where k̃X,Y (x, y) stands for the right-hand side of (5). Then Dynkin lemma gives (5). Let B ∈ S, C ∈ E .

PX,Y (B × C) = P (X ∈ B, Y ∈ C) =
∫
B×C f̃X,Y (x, y) dµ⊗ ν(x, y)

=
∫
B×C

f̃X,Y (x,y)

fX(x)fY (y)
fX(x)fY (y) dµ⊗ ν(x, y) =

∫
B

∫
C
k̃X,Y (x, y)fY (y) dν(y)fX(x) dµ(x)

=
∫
B

∫
C
k̃X,Y (x, y) dPY (y) dPX(x) =

∫
B×C k̃X,Y (x, y) d(PX ⊗ PY )(x, y).

�

Corollary Let X : (Ω,A, P ) → (S,S, PX), Y : (Ω,A, P ) → (E, E , PY ) have a joint density fX,Y with

respect to µ⊗ ν, where µ and ν are σ-finite measures on (S,S) and (E, E), respectively. Let f̃X,Y , fX , fY
be densities as in theorem 33, if G ∈ L1(E × S,S ⊗ E , PX,Y ), then

E[k̃X,Y (X, y)G(X, y)] =

∫
f̃X,Y (x, y)G(x, y) dµ(x)

fY (y)
,

and therefore

E[G(X, Y )|Y = y] =

∫
f̃X,Y (x, y)G(x, y) dµ(x)

fY (y)

holds for PY -almost every y ∈ E.

Proof: Obviously, E[k̃X,Y (X, y)G(X, y)] =
∫
k̃X,Y (x, y)G(x, y)fX(x) dµ(x) =

∫
f̃X,Y (x,y)G(x,y) dµ(x)

fY (y)
.
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Theorem 34 (Jensen inequality) Let D ⊆ Rk be a non-empty closed convex set and G : D → R be
a continuous convex function, where k ∈ N. Let X = (X1, . . . , Xk)

T ∈ L1(Ω,A, P )k attain values in D and
let G(X) ∈ L1(Ω,A, P ). Let F ⊆ A be a σ-algebra, then E[X|F ] := (E[X1|F ], . . . , E[Xk|F ])T ∈ D holds
almost surely, and

G(E[X|F ]) ≤ E[G(X)|F ]

holds almost surely.

Theorem from convex analysis

(1) Let K ⊆ Rk be a convex compact set and F ⊆ Rk\K be a closed set. Then there exists a ∈ Rk

such that
sup
κ∈K

a
T
κ < inf

ϕ∈F
a
T
ϕ.

(2) Let D ⊆ Rk be a non-empty closed convex set and G : D → R be a continuous convex function,
where k ∈ N, then

G(x) = sup{a(x) : a is affine9, a ≤ G on D}.

Proof: Let us assume that E[X|F ] 6∈ D holds with a positive probability. Since Rk\D is an open subset
of Rk, it is a countable union of closed10 balls Bn, n ∈ N, and therefore there exists n ∈ N such that
E[X|F ] ∈ Bn holds with a positive probability. By the above-mentioned theorem from convex analysis,
there exists a ∈ Rk such that

sup
b∈Bn

a
T
b < inf

d∈D
a
T
d = ∆.

Since X attains values in D, we get that ∆ ≤ aTX, and therefore ∆ ≤ E[aTX|F ] = aTE[X|F ] holds a.s.
Since E[X|F ] ∈ Bn holds with a positive probability, we a contradiction that

a
T
E[X|F ] ≤ sup

b∈Bn
a
T
b < inf

b∈Bn
a
T
b = ∆ ≤ a

T
E[X|F ]

holds with a positive probability. Thus, we have that E[X|F ] ∈ D holds almost surely.
Since G a continuous convex function on D it can be rewritten in the form

G(x) = sup{a(x) : a is affine, a ≤ G on D}.
In order to be able to substitute E[X|F ] into G in order to obtain equality almost surely, we need to find
a countable set

B ⊆ A = {a affine : a ≤ G on D} s.t. G(x) = sup{a(x) : a ∈ B}, x ∈ D.

Now, assume that a ∈ B, then there exist a ∈ Rk and b ∈ R such that a(x) = aTx+ b, and we get that

a(E[X|F ]) =
as
a
T
E[X|F ] + b=

as
E[a

T
X + b|F ] = =

as
E[a(X)|F ] ≤ E[G(X)|F ]

holds almost surely as a(X) ≤ G(X) holds whenever a ∈ B ⊆ A. Since B is a countable set, we obtain that

P
(
∀ a ∈ B a(E[X|F ]) ≤ E[G(X)|F ]

)
= 1,

and therefore we obtain that

G(E[X|F ]) =
as

sup
a∈B

a(E[X|F ]) ≤ E[G(X)|F ].

holds almost surely. Now, we are going to show that the above mentioned countable subset B ⊆ A exists.
Since D 6= ∅, we get that A 6= ∅. Let a 0 ∈ A. Then there exists a0 ∈ Rk and b0 ∈ R such that a 0(x) = aT

0x+b0

holds if x ∈ D and we put

B := {a ∈ A : ∀x ∈ Rk a(x) = a
T
x+ b, a− a0 ∈ Qk, b− b0 ∈ Q}.

�

Remark

(1) It is not correct just to select from A such affine functions a(x) = aTx+ b such that a ∈ Qk, b ∈ Q.
Is is enough to consider the case G(x) = aTx, where a ∈ Rk\Qk and D = Rk.

9i.e. there exists a ∈ Rk and b ∈ R such that a(u) = a
T
u+ b whenever u ∈ Rk.

10Since Rn is a separable metric space, we get that every open set is a countable union of some open balls, but every open
ball is a countable union of closed balls with the same center and smaller radius.
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(2) We show why we have to consider a supremum over a countable set B in the proof of Jensen
inequality. Let X be a random variable with the uniform distribution on (0, 1). Then

sup{E[1{x}(X)|X] : x ∈ (0, 1)}
is not defined correctly, since E[1{x}(X)|X] is determined uniquely only up to a P -null set. It can
be seen as follows as 1{x}(X), 1∅(X) ∈ E[1{x}(X)|X] and

sup
x∈(0,1)

E[1{x}(X)|X] =
as?

sup
x∈(0,1)

1{x}(X) = 1 6= 0 = sup
x∈(0,1)

1∅(X) =
as?

sup
x∈(0,1)

E[1{x}(X)|X].

Corollary (of Jensen inequality) Let (Ω,F , P ) be a probability space and F ⊆ A a σ-algebra.

(1) Let X ∈ L1(Ω,A, P ). Then |E[X|F ]| ≤ E[|X||F ] holds almost surely.
(2) Let X,Xn ∈ L1(Ω,A, P ), n ∈ N be such that Xn

L1−→ X as n→∞, then E[Xn|F ] L1−→ E[X|F ] as

E
∣∣E[Xn|F ]− E[X|F ]

∣∣ = E
∣∣E[Xn −X|F ]

∣∣ ≤ E[E(|X −Xn||F)] = E|Xn −X| → 0 as n→∞.

Theorem 35 (Lévy) Let (Ω,A, P ) be a probability space and F ⊆ A be a σ-algebra.

(1) Let Xn ∈ L(Ω,A) be such that 0 ≤ Xn ≤ Xn+1 holds almost surely for every n ∈ N.
(2) Let X ∈ L1(Ω,A, P ) be such that Xn→as X as n→∞.

Then E[Xn|F ]→as E[X|F ] as n→∞.
Proof: Since 0 ≤ Xn ≤ X ∈ L1(Ω,A, P ) holds almost surely, we get that Xn ∈ L1(Ω,A, P ), and that

0 ≤ Yn ≤ E[X|F ] holds almost surely, where Yn := E[Xn|F ]. Then we get that

Y := sup
n∈N

Yn ∈ L∗1(Ω,F , P |F)

as 0 ≤ Y ≤ E[X|F ] holds a.s. Then Z = Y 1[Y <∞] ∈ L1(Ω,F , P |F).We are going to show that Z ∈ E[X|F ].
Let B ∈ F , then ∫

B
Z dP =

∫
B
Y dP = lim

n→∞

∫
B
Yn dP = lim

n→∞

∫
B
Xn dP =

∫
B
X dP

holds by Monotone Convergence Theorem as 0 ≤ Yn ↑ Y holds almost surely as n→∞. �

Theorem 36 (Lebesgue) Let X,Xn ∈ L(Ω,A), n ∈ N and Z ∈ L1(Ω,A, P ) be such that

(1) |Xn| ≤ Z holds almost surely for every n ∈ N.
(2) Xn→as X as n→∞

Then Xn, X ∈ L1(Ω,A, P ) and E[Xn|F ]→as E[X|F ] as n→∞ whenever F ⊆ A is a σ-algebra.

Proof: By theorem 13 (6), Xn, X ∈ L1(Ω,A, P ). Further,

Xn ≤ X̄n = sup
k≥n

Xk →as X as n→∞,

and
0 ≤ Yn := Z − X̄n ≤ Yn+1 →as Y := Z −X ∈ L1(Ω,A, P )

as n→∞. By theorem 35,

E[Xn|F ] ≤
as
E[X̄n|F ] =

as
E[Z|F ]− E[Yn|F ] →as E[Z|F ]− E[Y |F ] =

as
E[X|F ].

Hence, we get that
lim sup
n→∞

E[Xn|F ] ≤
as
E[X|F ].

The same inequality for Vn = −Xn and V = −X gives that

lim inf
n→∞

E[Xn|F ] =
as − lim sup

n→∞
E[Vn|F ] ≥

as − E[V |F ] =
as
E[X|F ],

and therefore E[Xn|F ] →as E[X|F ]. �

Theorem 37 Let X ∈ L2(Ω,A, P ) and F ⊆ A be a σ-algebra. Then

(1) E[X|F ] ∈ L2(Ω,F , P |F).

(2) If Y ∈ L2(Ω,F , P |F), then EY (X − E[X|F ]) = 0.

(3) If Z ∈ L2(Ω,F , P |F), then E(X − E[X|F ])2 ≤ E(X − Z)2, i.e.

E(X − E[X|F ])2 = min{E(X − Z)2 : Z ∈ L2(Ω,F , P |F)}.
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Proof: (1) We obtain from Jensen inequality, theorem 34, that (E[X|F ])2 ≤
as
E[X2|F ], and therefore

E|E[X|F ]|2 ≤ EE[X2|F ] = EX2 <∞.

(2) By (1), Z := X − E[X|F ] ∈ L2(Ω,A, P ). By Schwartz inequality E|ZY | ≤
√
EZ2EY 2 < ∞ holds if

Y ∈ L2(Ω,A, P ). Let Y ∈ L2(Ω,F , P |F), then Y (X − E[X|F ]) ∈ L1(Ω,A, P ), and

EY (X − E[X|F ]) = EE[Y (X − E[X|F ])|F ] = E{Y E(X − E[X|F ]|F ])} = E{Y · 0} = 0.

(3) Let Z ∈ L2(Ω,F , P |F), then Y = E[X|F ]− Z ∈ L2(Ω,F , P |F), and (2) gives that

E(X − Z)2 = E(X − E[X|F ] + Y )2 = E(X − E[X|F ])2 + 2EY (X − E[X|F ]) + EY 2

= E(X − E[X|F ])2 + EY 2 ≥ E(X − E[X|F ])2.

�

Let Xk ∈ L1(Ω,F , P ), k ≤ n ∈ N. Then

Var(X) = E(X − EX)(X − EX)
T

is called a variance matrix of random vector X = (X1, . . . , Xn)T . If A,B ∈ Rn×n we write A ≤ B if
B − A is a positively definite matrix, i.e. if C = B − A ≥ 0. This means that

∀λ ∈ Rn λ
T
Cλ ≥ 0, i.e. λ

T
Aλ ≤ λ

T
Bλ.

Theorem 38 Let Xk, Yk ∈ L2(Ω,A, P ), k ≤ n and F ⊆ A be a σ-algebra. If σ(Y ) ⊆ F , then

Var(X − E[X|F ]) ≤ E(X − Y )(X − Y )
T
,

where X = (X1, . . . , Xn)T , Y = (Y1, . . . , Yn)T .

Proof: Let λ ∈ Rn, then λTX,λTY ∈ L2(Ω,A, P ) and E[λTX|F ] = λTE[X|F ]. By theorem 37

λ
T
E(X − Y )(X − Y )

T
λ = E[(λ

T
X − λT

Y )(λ
T
X − λT

Y )
T
]

≥ E[(λ
T
X − E[λ

T
X|F ])(λ

T
X − E[λ

T
X|F ])

T
]

= Var(λ
T
X − E[λ

T
X|F ]) = λ

T
Var(X − E[X|F ])λ.

�

Theorem 39 (Wald) Let Xn, n ∈ N be a sequence of independent identically distributed real-valued
random variables on a probability space (Ω,A, P ) independent with a random variable N attaining only
values in N0. Let us consider the following random sum

S =
N∑
n=1

Xn.

(1) If X1, N ∈ L1(Ω,A, P ), then
E[S|N ] =

as
N · EX1.

(2) If N ∈ L1(Ω,A, P ) and X1 ∈ L2(Ω,A, P ), then

var(S|N) := E[(S − E[S|N ])2|N ] =
as
N · var(X1).

(3) If α ∈ R\{0} is such that eαX1 ∈ L1, then

E[eαS(EeαX1)−N |N ] =
as

1, i.e. E

[
N∏
n=1

exp{αXn}
E exp{αXn} N

]
=
as

1.

Proof: (1) By theorem 20, S ∈ L1(Ω,A, P ). Let n ∈ N0, then

E[S1[N=n]] = E

(
n∑
k=1

Xk1[N=n]

)
= EX1 nP (N = n)

If P (N = n) > 0, then E[S|N = n] =
E[S1[N=n]]

P (N=n)
= nEX1, and therefore

E[S|N ] =
as

∞∑
n=0

E[S|N = n]1[N=n] =
as

∞∑
n=0

nEX11[N=n] = N · EX1.
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(2) Denote S = S −NEX1 =
as
S − E[S|N ]. If n ∈ N0, then

E[S21[N=n]] = E
[( n∑

k=1

(Xk − EXk

)2
1[N=n]

]
= P (N = n)E

( n∑
k=1

Xk − EXk

)2

= P (N = n) var
( n∑
k=1

Xk

)
= P (N = n)n var(X1),

and therefore if P (N = n) > 0, then E[S2|N = n] = n var(X1). Hence,

var(S|N) = E[S2|N ] =
as

∞∑
n=0

E[S2|N = n] · 1[N=n] =
as

∞∑
n=0

n var(X1) · 1[N=n] = N · var(X1).

(3) Denote Yn = exp{αXn}/E exp{αXn} and Z =
∏N

n=1 Yn. Let n ∈ N0, then

E[Z1[N=n]] = E

(
1[N=n] ·

n∏
k=1

Yk

)
= P (N = n)

n∏
k=1

EYk = P (N = n)

as EYk = 1. Then

E[eαS(EeαX1)−N |N ] =
as
E[Z|N ] =

as

∞∑
n=0

E[Z|N = n] · 1[N=n] =
as

1.

�

7. Random measures

Let (Ω,A, P ) be a probability space and F ⊆ A a σ-algebra, and (S,S) be a measurable space. A function
µ : S × Ω→ R is called an (S,F)-random probability measure if

(1) ω ∈ Ω 7→ µ(D,ω) is an F -measurable function whenever D ∈ S.
(2) µ(S, ω) =

as
1, µ(D,ω) ≥

as
0 whenever D ∈ S, and if Dn ∈ S are pairwise disjoint, then

µ(
⋃
n∈N

Dn, ω) =
as
∑
n∈N

µ(Dn, ω).

Example Let X : (Ω,A) → (S,S) and F ⊆ A be a σ-algebra. Put µ(D,ω) = P (X ∈ D|F)(ω). Then
µ is an (S,F)-random probability measure. First, if D ∈ F , then P (X ∈ D|F) ∈ L1(Ω,F , P |F) holds by
the definition. Second, P (X ∈ S|F) =

as
1 and P (X ∈ D|F) ≥

as
0 if D ∈ S hold by the elementary properties

of conditional expectation. Further, if Dn ∈ S are pairwise disjoint, then we obtain from the definition
that

P (X ∈ ∪nDn|F) =
as
E[1[X∈∪nDn]|F ] =

as
E[
∑

n1[X∈Dn]|F ] =
as ∑

nE[1[X∈Dn]|F ] =
as ∑

nP (X ∈ Dn|F).

Let (Ω,A, P ) be a probability space and F ⊆ A be a σ-algebra and (S,S) be a measurable space. Let
µ, ν : S × Ω→ R be (S,F)-random probability measures. We say that ν is a regular version of µ if

(1) ν(D,ω) =
as
µ(D,ω) whenever D ∈ S

(2) D ∈ S 7→ ν(D,ω) is a probability measure whenever ω ∈ Ω.

Theorem 40 Let (S, d) be a separable and complete metric space (or generally a Polish space11). Let
(Ω,A, P ) be a probability space and F ⊆ A be a σ-algebra. Then every (B(S),F)-random probability
measure has a regular version.

Let X : (Ω,A, P ) → (S,S, PX) and Y : (Ω,A, P ) → (H,H, PY ) be random variables. A conditional
distribution of X given Y is a function PX|Y : (B|y) ∈ S ×H 7→ PX|Y (B|y) ∈ [0, 1] satisfying

(1) B ∈ S 7→ PX|Y (B|y) is a probability measure whenever y ∈ H
(2) y ∈ H 7→ PX|Y (B|y) is an H-measurable function whenever B ∈ S.
(3) If B ∈ S and C ∈ H, then

P (X ∈ B, Y ∈ C) =
∫
C
PX|Y (B|y) dPY (y).

11A separable topological space is called a Polish space if there exists a complete metric generating the same topology.
A metric space is called Polish its generate a Polish topology, i.e. if there exists an equivalent complete and separable metric.
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The set of all conditional distributions of X given Y is denoted as L(X|Y ).

Theorem 41 Let (S, d) be a Polish space, X : (Ω,A, P ) → (S,B(S), PX), Y : (Ω,A, P ) → (H,H, PY )
be random variables. Then there exists a conditional distribution of X given Y .

Proof: If D ∈ B(S), we put ν(D, y) = P (X ∈ D|Y = y), and we immediately see that y ∈ H 7→ ν(D, y)
is an H-measurable function. Further,

(1) µ(S, y) = P (X ∈ S|Y = y) = 1 holds for PY -almost every y ∈ H as P (X ∈ S|Y ) =
as

1.
(2) µ(D, y) = P (X ∈ D|Y = y) ≥ 0 holds for PY -almost every y ∈ H as P (X ∈ B|Y ) ≥

as
0.

(3) If Dn ∈ B(S) are pairwise disjoint, then

PY {y ∈ H : µ(∪nDn, y) =
∑

n µ(Dn, y)} = P [µ(∪nDn, Y ) =
∑

nµn(Dn, Y )] = 1

as
µ(∪nDn, Y ) =

as
P (X ∈ ∪nDn|Y ) =

as ∑
nP (X ∈ Dn|Y ) =

as ∑
nµn(Dn, Y ).

Hence, µ is an (B(S),H)-random probability measure. By theorem 40, it has a regular version ν, i.e.

(1) ν(D, y) = µ(D, y) = P (X ∈ D|Y = y) holds for PY -almost every y ∈ H whenever D ∈ B(S)
(2) D ∈ B(S) 7→ ν(D, y) is a probability measure whenever y ∈ H
(3) y ∈ H 7→ ν(D, y) is an H-measurable function whenever D ∈ B(S).

Further, if B ∈ B(S) and C ∈ H, then∫
C
ν(B, y) dPY (y) =

∫
C
P (X ∈ B|Y = y) dPY (y) =

∫
[Y ∈C]

P (X ∈ B|Y ) dP

=
∫

[Y ∈C]
1[X∈B] dP = P (X ∈ B, Y ∈ C).

Hence, ν is a conditional distribution of X given Y. �

Theorem 42 Let X : (Ω,A, P )→ (S,S, PX) and Y : (Ω,A, P )→ (H,H, PY ) be random elements. Let
G ∈ L1(S ×H,S ⊗H, PX,Y ) and PX|Y be a conditional distribution of X given Y. Then

E[G(X, Y )|Y = y] =
∫
S
G(x, y) dPX|Y (x|y) PY -a.e.(6)

Proof: If F = B × C, where B ∈ S and C ∈ H, put

mF (y) =
∫
S
G(x, y) dPX|Y (x|y) =

∫
B

1C(y) dPX|Y (x|y) = PX|Y (B|y) · 1C(y).

By definition, mF (y) is anH-measurable and with values in [0, 1]. Hence, mF ∈ L1(H,H, PY ), and therefore
mF (Y ) ∈ L1(Ω, σ(Y ), P |σ(Y )). Let D ∈ H, then∫

[Y ∈D]
mF (Y ) dP =

∫
D
mF (y) dPY (y) =

∫
D
PX|Y (B|y) · 1C(y) dPY (y)

=
∫
C∩D PX|Y (B|y) dPY (y) = P (X ∈ B, Y ∈ C ∩D) =

∫
[Y ∈D]

1F (X, Y ) dP.

Hence, mF (Y ) ∈ E[1F (X, Y )|Y ], and therefore

F ∈ L := {B × C : B ∈ S, C ∈ H} ⊆ {F ∈ S ⊗H, (6) holds for G = 1F} =:M.

Obviously, σ(L) = S ⊗ H, the set L is closed under finite intersections, and M is a Dynkin system. By
Dynkin lemma, σ(L) = S ⊗H ⊆M. Hence,

(1) 1F ∈ K = {G ∈ L+(S ×H,S ⊗H) : (6) holds } if F ∈ S ⊗H.
(2) If a, b ≥ 0 and G1, G2 ∈ K, then obviously aG1 + bG2 ∈ K.
(3) If Gn ∈ K and Gn ↑ G ∈ L+(S×H,S⊗H). Then G ∈ K holds by Monotone Convergence Theorem.

By lemma, K = L+(S ×H,S ⊗H). Then G± ∈ K and G±(X, Y ) ∈ L1(Ω,A, P ) and therefore

E[G(X, Y )|Y = y] = E[G+(X, Y )|Y = y]− E[G−(X, Y )|Y = y]

=
∫
S
G+(x, y) dPX|Y (x|y)−

∫
S
G−(x, y) dPX|Y (x|y) =

∫
S
G(x, y) dPX|Y (x|y)

holds for PY -almost every y ∈ H. �

Theorem 43 Let X : (Ω,A, P )→ (S,S, PX) and Y : (Ω,A, P )→ (H,H, PY ) be random elements and
G : (S×H,S⊗H)→ (T, T ) and PX|Y be a conditional distribution of X given Y. Then ζ ∈ L(G(X, Y )|Y ),
where

ζ : (B, y) ∈ T ×H 7→ P (G(X, y) ∈ B) ∈ [0, 1].

Proof:

(1) Let y ∈ E, then B ∈ T 7→ P (G(X, y) ∈ B) is a probability measure.
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(2) Let B ∈ T , then y ∈ H 7→ P (G(X, y) ∈ B) is an H-measurable function.
(3) Let B ∈ T , C ∈ H, then∫

C
ζ(B, y) dPY (y) =

∫
C
P (G(X, y) ∈ B) dPY (y) =

∫
C

∫
S

1[G(x,y)∈B] dPX(x) dPY (y)

=
∫
S×C 1[G(x,y)∈B] d(PX ⊗ dPY )(x, y) =

∫
S×C 1[G(x,y)∈B] dPX,Y (x, y)

= P (G(X, Y ) ∈ B, Y ∈ C).

�

Theorem 44 Let X : (Ω,A, P )→ (S,S, PX) and Y : (Ω,A, P )→ (H,H, PY ) have a joint density fX,Y
with respect to µ⊗ ν, where µ, ν are σ-finite measures on (S,S) and (H,H), respectively. Denote

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
1[fY (y)6=0].

Then ζ ∈ L(X|Y ), where

ζ(B|y) =
∫
B
fX|Y (x|y) dµ(x) · 1[fY (y)>0] + PY (B) · 1[fY (y)=0], B ∈ S, y ∈ E.

The function fX|Y (x|y) is called a conditional density of X given Y with respect to µ⊗ ν.
Proof: We know that fY ≥ 0 is a density of Y with respect to ν.

(1) Let y ∈ E, then B ∈ S 7→ ζ(B|y) is a measure on (S,S) with ζ(S|y) = 1.
(2) Let B ∈ S, then Fubini theorem gives that y ∈ H 7→ ζ(B|y) is an H-measurable, since fX|Y is
S ⊗ E-measurable and N = {y ∈ H : fY (y) 6= 0} ∈ E .

(3) Let B ∈ S, C ∈ E . Then∫
C
ζ(B|y) dPY (y) =

∫
C
ζ(B|y)fY (y) dν(y) =

∫
C

∫
B
fX|Y (x|y)fY (y) dµ(x) dν(y)

=
∫
C̃

∫
B
fX,Y (x, y) dµ(x) dν(y) = PX,Y (B × C̃)

= P (X ∈ B, Y ∈ C̃) = P (X ∈ B, Y ∈ C),

where C̃ = {y ∈ C : fY (y) > 0} ∈ H is such that PY (C\C̃) =
∫
C\C̃ fY (y) dν(y) = 0. �

8. 0-1 laws

Let (Ω,A) be a measurable space and Fn ⊆ A, n ∈ N be a sequence of σ-algebras. A residual σ-
algebra is the following σ-algebra

F∞=
⋂
n∈N

σ(
⋃
k≥n

Fk).

Its elements are called residual events.

Example Let Fn ∈ Fn, then

lim sup
n→∞

Fn =
⋂
k∈N

⋃
n≥k

Fn ∈ F∞ & lim inf
n→∞

Fn =
⋃
k∈N

⋂
n≥k

Fn ∈ F∞.

Theorem 45 (Kolmogorov 0-1 law) Let (Ω,A, P ) be a probability space. Let Fn ⊆ A, n ∈ N be
independent σ-algebras, then P (F ) ∈ {0, 1} holds whenever F ∈ F∞.

Proof: Let n ∈ N, Fk ∈ Fk, n ≤ K ∈ N, then

P (
K⋂
k=1

Fk) =
K∏
k=1

P (Fk) =
n∏
k=1

P (Fk)
K∏

k=n+1

P (Fk) = P (
n⋂
k=1

Fk) · P (
K⋂

k=n+1

Fk).

Hence, the system

Ln = {
n⋂
k=1

Fk : Fk ∈ Fk : k ≤ n}

is closed under finite intersections and it is independent with

Ln = {
K⋂

k=n+1

Fk : Fk ∈ Fk, k > n,K > n},
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which is also closed under finite intersections. Hence, σ(Ln) = σ(F1∪ . . .∪Fn) and σ(Ln) = σ(∪k≥nFk) are
also independent. Since F∞ ⊆ σ(∪k>nFk), we get that F∞ is a system independent with σ(F1 ∪ . . .∪Fn).
Then we get that F∞ is a system independent with

L =
⋃
n∈N

σ(F1 ∪ . . . ∪ Fn).

Hence, we get that F∞ are independent with σ(L) = σ(∪nFn) ⊇ F∞. Hence, if F ∈ F∞, then F, F are
independent sets. Then P (F ) = P (F ∩ F ) = P (F )2, and therefore P (F ) ∈ {0, 1}. �

Lemma (Cantelli) Let Fn ∈ A, n ∈ N be such that
∑

n P (Fn) <∞, then P (lim supn Fn) = 0.

Theorem 46 (Borel-Cantelli) Let (Ω,A, P ) be a probability space. Let Fn ∈ A, n ∈ N be independent.
Then

P (lim sup
n→∞

Fn) = 0 ≡
∞∑
n=1

P (Fn) <∞ & P (lim sup
n→∞

Fn) = 1 ≡
∞∑
n=1

P (Fn) =∞.

Theorem 47 Let Xn, n ∈ N be independent random variables. Denote X = (Xn, n ∈ N) and

T =
∞⋂
n=1

{Rn × A : A ∈ B(RN)}

σ-algebra on RN. If g : (RN, T )→ (R̄,B(R̄)), then g(X) is a degenerate random variable.12

Proof: It is enough to show that c ∈ R 7→ P (g(X) < c) attains values in {0, 1}. Let c ∈ R, then

B = {x ∈ RN : g(x) < c} ∈ T .

If n ∈ N, then there exists An ∈ B(RN) such that B = Rn × An. Denote Fn = σ(Xn). Then

[g(X) < c] = [(Xn+k, k ∈ N) ∈ An] ∈ σ(
⋃
k∈N

Fn+k).

Hence,

[g(X) < c] ∈
⋃
n∈N

σ(
⋃
k≥n

Fk) = F∞

Since Fn = σ(Xn) are independent, we get by theorem 45 that P [g(X) < c] ∈ {0, 1}. �

Theorem 48 Let Xn, n ∈ N be sequence of independent identically distribution real-valued random
variables on (Ω,A, P ). Let 0 < bn →∞ as n→∞, then there exists c, d ∈ R̄ such that

lim sup
n→∞

1

bn

n∑
k=1

Xk =
as
c & lim inf

n→∞

1

bn

n∑
k=1

Xk =
as
d.

Proof: We show only the first part of the statement, the second part can be obtained from the first one
immediately. Obviously, if m ∈ N, then

g(x) := lim sup
n→∞

1

bn

n∑
k=1

xk = lim sup
n→∞

1

bn

n∑
k=m+1

xk =: gm(x)

holds. Let c ∈ R, then there exist Am ∈ B(RN) such that

{x ∈ RN : g(x) < c} = {x ∈ RN : gm(x) < c} = Rm × Am

whenever m ∈ N. Hence, {x ∈ RN : g(x) < c} ∈ T . Now, it is enough to apply theorem 47. �

12i.e. there exists c ∈ R̄ such that g(X) = c̄ holds almost surely.
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9. Summability of sequence of real-valued random elements

Lemma(Skorochod inequality) Let X1, . . . , Xn be independent random variables, denote Sn =
∑n

k=1Xk.
Let ε > 0. Then

P (|Sn| > ε) ≥ P ( max
k=1,...,n

|Sk| > 2ε) · min
k=1,...,n

P (|Sn − Sk| ≤ ε)

Proof: Denote T = inf{k ∈ {1, . . . , n} : |Sk| > 2ε}. Then

P (|Sn| > ε) ≥ P (|Sn| > ε, T <∞) =
n∑
k=1

P (|Sn| > ε, T = k) ≥
n∑
k=1

P (|Sk| − |Sn − Sk| > ε, T = k)

≥
n∑
k=1

P (|Sn − Sk| ≤ ε, T = k) =
n∑
k=1

P (|Sn − Sk| ≤ ε)P (T = k)

≥ min
k=1,...,n

P (|Sn − Sk| ≤ ε) · P (T <∞).

�

Let Xn ∈ L(Ω,A, P ), n ∈ N. We say that the following sum of variables
∑∞

n=1Xn is . . . almost surely (in
probability or in Lp, p ≥ 1) if the sequence Sn =

∑n
k=1Xk of partial sums converges to some S ∈ L(Ω,A, P )

almost surely (in probability or in Lp). Then the symbol
∑∞

k=1Xk stands for such a variable S, which is
determined uniquely up to a P -null set.

Remark As it is seen from the definition, we do not emphasize the type of convergent of the sum∑∞
n=1 Xn we are considering. But as we know, such a sum always converges in probability, and therefore

we can always regard S =
∑∞

n=1 Xn as the limit of Sn =
∑∞

k=1Xk in probability, i.e. Sn→P S as t→∞.

Theorem 49 Let Xn ∈ L(Ω,A, P ), n ∈ N be independent random variables. Then

∞∑
n=1

Xn is summable a.s. ≡
∞∑
n=1

Xn is summable in probability.

Proof: Denote Sn =
∑n

k=1 Xk. If Sn→as S, then Sn→P S as n → ∞ by theorem 22. Let Sn→P S, then Sn is
a Cauchy sequence in probability. Let ε, δ ∈ (0, 1), then there exists n0 ∈ N such that P (|Sn−Sn0| > ε

2
) ≤ δ

2
holds whenever n ≥ n0. Then

P (|Sm − Sn| > ε) ≤ P (|Sm − Sn0| > ε
2
) + P (|Sn − Sn0| > ε

2
) ≤ δ

and therefore

min
n0≤n≤m

P (|Sm − Sn| ≤ ε) ≥ 1− δ

and Skorochod inequality gives that

P ( ∪
n≥n0

[|Sn − Sn0| > 2ε]) = lim
m→∞

P ( max
n0≤n≤m

|Sn − Sn0| > 2ε) ≤ lim sup
m→∞

P (|Sm−Sn0 |>ε)
min

n0≤n≤m
P (|Sm−Sn|≤ε) ≤

δ
1−δ .

and we get that

P ( ∪
n,m≥n0

[|Sn − Sm| > 4ε]) ≤ P ( ∪
n,m≥n0

[|Sn − Sn0|+ |Sm − Sn0 | > 4ε]) ≤ P ( ∪
n≥n0

[|Sn − Sn0| > 2ε]) ≤ δ
1−δ .

Hence, if ε > 0 and δ ∈ (0, 1), we have that

P ( ∩
n0∈N

∪
n,m≥n0

[|Sn − Sm| > 4ε]) ≤ lim
n0→∞

P ( ∪
n,m≥n0

[|Sn − Sm| > 4ε]) ≤ δ
1−δ .

Since δ ∈ (0, 1) was arbitrary, we get that

P ( ∩
n0∈N

∪
n,m≥n0

[|Sn − Sm| > 4ε]) = 0,

and therefore

P ( ∩
ε>0
∪
n0∈N

∩
m,n≥n0

[|Sm − Sn| ≤ 4ε]) = 1− lim
ε→0+

P ( ∩
n0∈N

∪
m,n≥n0

[|Sm − Sn| > 4ε]) = 1.

Hence, Sn is a Cauchy sequence almost surely, and theorem 25 gives that Sn converges almost surely. �
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Theorem 50 Let Xn ∈ L2(Ω,A, P ), n ∈ N be uncorrelated random variables. Then
∞∑
n=1

(Xn − EXn) is summable in L2 ≡
∞∑
k=1

var(Xn) <∞.

Proof: By theorem 25, Sn =
∑n

k=1(Xk − EXk) converges in L2 iff Sn is a Cauchy sequence in L2, i.e. iff

lim
n→∞

sup
m,k≥n

E|Sm − Sk|2 = 0 ≡ lim
n→∞

lim
m→∞

m∑
k=n

var(Xk) = 0 ≡
∞∑
k=1

var(Xk) <∞.

�

Theorem 51 LetXn ∈ L2(Ω,A, P ) be independent variables with
∑

n var(Xn) <∞, then
∑∞

n=1(Xn − EXn)
is summable almost surely, in L2 (and also in L1 and in probability).

Proof: It follows from theorems 49 and 50. �

A complete characterization of summability of independent variables is given by the following theorem.

Theorem 52 (Kolmogorov) LetXn ∈ L(Ω,A, P ) be independent variables, then the following conditions
are equivalent.

(1)
∑∞

n=1Xn is summable.
(2) There exists c ∈ (0,∞) such that (7) holds.
(3) (7) holds, whenever c ∈ (0,∞), where

∞∑
n=1

P (|Xn| > c) <∞ &
∞∑
n=1

E[Xn; |Xn| ≤ c] is summable &
∞∑
n=1

var(Xn1[|Xn|≤c]) <∞.(7)

Remark Let Xn ∈ L1, n ∈ N be such that
∑∞

n=1 E|Xn| <∞, then
∑

nXn is summable in L1 and also
almost surely.

Proof: First, we show that Sn =
∑n

k=1Xk is a Cauchy sequence in L1. Obviously.

E|Sn+p − Sn| = E|
n+p∑

k=n+1

Xk| ≤
∞∑

k=n+1

E|Xk| → 0 as n→∞

uniformly in p ∈ N. Second, Y =
∑∞

n=1 |Xn| ∈ L1 holds by assumption, and therefore
∑∞

n=1 |Xn| < ∞
holds almost surely. In particular,

∑∞
n=1Xn is summable almost surely. �

10. Laws of large numbers

Cronecker lemma Let 0 < bn ↑ ∞ and an ∈ R be such that Sn =
∑n

k=1 ak is a convergent sequence in
R, i.e.

∑
n an is summable. Then

1

bn

n∑
k=1

bkak → 0

as n→∞.
Corollary Let 0 < bn ↑ ∞ be such that

∑∞
n=1 b

−1
n Xn is summable almost surely. Then

1

bn

n∑
k=1

Xk →as 0(8)

Remark If Xn ∈ L1 are such that
∑∞

n=1 E|
Xn
bn
| <∞, then (8) holds.

Theorem 53 Let Xn ∈ L2, n ∈ N be independent random variable and let 0 < bn ↑ ∞ be such that
∞∑
n=1

var(Xn
bn

) <∞.

Then

1

bn

n∑
k=1

(Xk − EXk) →as 0.(9)



35

Proof: By theorem 51,
∑∞

k=1
Xk−EXk

bn
is summable almost surely, and the above corollary gives (9). �

Theorem 54 Let Xn, n ∈ N be independent identically distributed real valued random variables, then

P

(
lim sup
n→∞

1

n

n∑
k=1

Xk <∞

)
> 0 ≡ X1 ∈ L1 ≡ 1

n

n∑
k=1

Xk →as EX1

as n→∞.

Theorem 55 (Weak law of large numbers,Čebyšev) Let Xn ∈ L2, n ∈ N be such that cov(Xi, Xj) = 0
if i 6= j, and that

1

b2
n

n∑
k=1

var(Xk)→ 0, then Yn :=
1

bn

n∑
k=1

(Xk − EXk) →P 0.

Proof: By assumption EYn = 0 and E|Yn|2 = var(Yn)→ 0 as n→∞. Hence, Yn
L2−→ 0, which gives that

also Yn→P 0 as n→∞. �

Remark The direct proof can be obtained from the definition of convergence in probability with the
help of so called Čebyšev inequality for X ∈ L1 and ε > 0 in the form

P (|X − EX| > ε) ≤ ε−2var(X).

It is a special case of so called Markov inequality in the form

P (|X| ≥ ε) ≤ ε−rE|X|r

if ε, r > 0.

Theorem 56 (Law of iterated logarithm, Hartmann - Wintner) Let Xn, n ∈ N be iid random variables
with µ = EXn ∈ R and σ2 = var(Xn) ∈ (0,∞). Denote

Yn =
1√
n

n∑
k=1

(Xk − µ),

then

lim sup
n→∞

Yn√
ln lnn

=
as
√

2σ2 & lim inf
n→∞

Yn√
ln lnn

=
as −

√
2σ2.

11. Weak convergence

Let Pn, P be Borel probability measures on a metric space (S, d). We say that Pn converge to P as
n→∞ weakly and we write Pn→w P as n→∞ if∫

f dPn →
∫
f dP

holds as n→∞ whenever f is a bounded continuous function on (S, d). The set of all bounded continuous
function on S will be denoted as Cb(S)

Theorem 57 Let (S, d) be a metric space and P,Q, Pn, n ∈ N be probability measures on (S,B(S)).

(1) If
∫
E
f dP =

∫
E
f dQ holds for every f ∈ Cb(S). Then P = Q.

(2) If Pn→w P and Pn→w Q as n→∞. Then P = Q.

Proof: (1) We will show that the following systemM = {B ∈ B(S);P (B) = Q(B)} contains closed set
in (S, d) and we obtain from Dynkin lemma that Q = P. Obviously ∅ ∈ M. Let F 6= ∅ be closed in (S, d)
and put fn(x) = (1 − nd(x, F ))+. Then Cb(S) 3 fn ↓ 1F . By assumption and Dominated Convergence
Theorem,

P (F ) = lim
n→∞

∫
fn dP = lim

n→∞

∫
fn dQ = Q(F ).

As mentioned above, the closed set determine a Borel probability measure, and therefore P = Q.
(2) It follows from the definition that∫

f dP = lim
n→∞

∫
f dPn =

∫
f dQ, f ∈ Cb(S)

and the first part of the statement gives that P = Q.
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Theorem 58 (Portmanteau lemma) Let (S, d) be a metric space and Pn, P be Borel probability measures
on S. Then the following conditions are equivalent

(1) Pn→w P as n→∞.
(2) lim supn Pn(F ) ≤ P (F ) as n→∞ holds whenever F is a closed set in (S, d).
(3) lim infn Pn(G) ≥ P (G) as n→∞ holds whenever F is an open set in (S, d).
(4) limn Pn(B) = P (B) as n→∞ holds for every Borel subset B of (S, d) such that P (∂B) = 0,

where ∂B = closure(B)\interior(B) is a border of B.

Proof: (1)⇒(2): Let F be a closed set in (S, d). Then Cb(S) 3 fk(x) = (1−kd(x, F ))+ ↓ 1F are functions
with values in [0, 1]. Then Dominated Convergence Theorem gives that

lim sup
n→∞

Pn(F ) = lim sup
n→∞

∫
S

1F dPn ≤ lim
n→∞

∫
S
fk dPn =

∫
S
fk dP →

∫
S

1F dP = P (F ).

(2)≡(3): It is obvious as F = S\G is closed if and only if G = S\F is open and P (F ) + P (G) = 1.
(2,3)⇒(4): Let B be a Borel set with P (∂B) = 0, Then 0 =

as
1∂B = 1F − 1G, where F = cl(B), G = int(B),

and therefore

P (B) = P (G) ≤ lim inf
n→∞

Pn(G) ≤ lim inf
n→∞

Pn(B) ≤ lim sup
n→∞

Pn(B) ≤ lim sup
n→∞

Pn(F ) ≤ P (F ) = P (B).

(4)⇒(1): Let f : S → (a, b) be a continuous function, where −∞ < a < b <∞, and ε > 0 be arbitrary. As

M = {t ∈ (a, b) : P [f = t] > 0} =
⋃
k∈N

{t ∈ (a, b) : P [f = t] ≥ 1
k
}

is a countable union of finite sets (with at most k-elements), it is countable. Hence, there exists a division
D = {a = t0 < . . . < tm = b} ⊆ [a, b]\M with ||D|| = maxj≤m{tj − tj−1} < ε. Then |f − g| ≤ ε, where

g = bfcD =
n∑
i=1

ti−11Bi , where Bi = f−1[ti−1, ti).

As int(Bi) = f−1(ti−1, ti) and cl(Bi) = f−1[ti−1, ti], we get that ∂Bi = f−1{ti−1, ti} has P (∂Bi) = 0. By (4),

P (Bi) = lim
n→∞

Pn(Bi), and therefore
∫
g dPn =

m∑
i=1

ti−1Pn(Bi)→
m∑
i=1

ti−1P (Bi) =
∫
g dP

as n→∞. Further, as |f − g| ≤ ε, we obtain that

|
∫
f dPn −

∫
f dP | ≤ 2ε+ |

∫
g dPn −

∫
g dP | → 2ε

as n→∞. As ε > 0 was arbitrary, we get that
∫
f dPn →

∫
f dP as n→∞ holds for every f ∈ Cb(S). �

Theorem 59 Let (S, d) be a metric space and Pn, P be Borel probability measures on S. Then Pn→w P
as n→∞ holds if and only if each subsequence of Pn has a subsequence, which converges to P weakly.

Proof: If Pn→w P as n → ∞ and N 3 nk ↑ ∞, then we obtain from the definition that Pml→
w

P as
l→∞ holds whenever mk = nkl and N 3 kl ↑ ∞.

On the other hand, let Pn 6→w P as n→∞, then there exists f ∈ Cb(S) such that
∫
f dPn 6→

∫
f dP as

n→∞. Then there exist ε > 0 and N 3 nk ↑ ∞ such that |
∫
f dPnk −

∫
f dP | ≥ ε holds for every k ∈ N.

Then no subsequence of Pnk converges to P weakly. �

Lemma Let (S, d) be a metric space and x, xn ∈ S, n ∈ N. Then δxn→
w

δx as n → ∞ if and only if
xn → x in S, where δy(B) = 1B(y) is a Dirac measure at y ∈ S.

Proof: Let xn → x in S and f ∈ Cb(S). Then
∫
f dδxn = f(xn) → f(x) =

∫
f dδx. On the other hand

let δxn→
w

δx and ε > 0. Then G = {y ∈ S : d(x, y) < ε} is an open set in (S, d). By Portmanteau lemma

lim inf
n→∞

1G(xn) = lim inf
n→∞

δxn(G) ≥ δx(G) = 1G(x) = 1.

Hence, there exists n0 ∈ N such that xn ∈ G holds for every n ≥ n0. �

Let M be a subset of the set of all Borel probability meaures on a metric space (S, d). We say that M is

(1) tight if for every ε > 0 there exists a compact set K in (S, d) s.t. µ(K) > 1− ε whenever µ ∈M.
(2) relatively weakly compact if every sequence µn in M has a weakly convergent subsequence.

Theorem 60 (Prochorov) Let (S, d) be a separable metric space and M be a subset of the set of all
Borel probability measures on (S, d). Then M is relatively weakly compact if and only if M is tight.
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12. Convergence in distribution

Let (S, d) be a separable metric space and X,Xn, n ∈ N be Borel measurable random variables with
values in S. If PXn→

w
PX as n → ∞, we say that Xn converge to X in distribution and write

Xn→D X as n→∞.

Note that each variable can be defined on own probability space (Ωn,An, Pn), then PXn = PnX
−1
n .

Further, if Xn→D X and Xn→D Y as n→∞, then PX = PY but X, Y does not have to be equal a.s., since
they can be even defined on a different probability space.

Remark (Portmanteau lemma for convergence in distribution)
Let (S, d) be a metric space and X,Xn be Borel measurable random variables defined on (Ω,A, P ) or

(Ωn,An, Pn), respectively, with values in S. Then the following conditions are equivalent

(1) Xn→D X as n→∞.
(2) Ef(Xn)→ Ef(X) as n→∞ holds for every f ∈ Cb(S).
(3) lim supn Pn(Xn ∈ F ) ≤ P (X ∈ F ) as n→∞ holds whenever F is a closed set in (S, d).
(4) lim infn Pn(Xn ∈ G) ≥ P (X ∈ G) as n→∞ holds whenever F is an open set in (S, d).
(5) limn Pn(Xn ∈ B) = P (X ∈ B), n→∞ holds whenever B is a Borel subset of (S, d) s.t. P (∂B) = 0,

where ∂B = closure(B)\interior(B) is a border of B.

Theorem 61 Let X,Xn : (Ω,A, P ) → (S,B(S)), n ∈ N be random variables defined on the same
probability space, where (S, d) is a metric space and B(S) is its Borel σ-algebra. Then

(1) If Xn→P X as n→∞, then Xn→D X as n→∞.
(2) If Xn→D X as n→∞ and X =

as
c ∈ S, then Xn→P X as n→∞.

Proof: (1): Let Xn→P X as n → ∞ and assume that Xn 6→D X as n → ∞. Then there exists f ∈
Cb(S),N 3 nk ↑ ∞ and ε > 0 such that

|
∫
f(Xnk) dP −

∫
f(X) dP | ≥ ε.

Let N 3 kl ↑ ∞ be such that Xml→
as
X as l → ∞, where ml = nkl . Then f(Xml)→

as
f(X) as l → ∞ and

Dominated Convergence Theorem gives a contradiction with the above inequality.
(2): Let Xn→D X as n→∞ and ε > 0. Then F = {x ∈ S : d(x, c) ≥ ε} is an closed set in (S, d) and the

above remark gives that

lim inf
n→∞

P (d(Xn, c) > ε) ≤ lim sup
n→∞

P (Xn ∈ F ) ≤ P (X ∈ F ) = 1F (c) = 0

and therefore Xn→P X as n→∞. �

Example There exists a sequence of Xn→D X as n → ∞ such that Xn 6→P X as n → ∞ even if Xn, X
are defined on the same probability space. It is sufficient to consider equally distributed random variables
Xn such that Xn =

as
X1 if n is odd and Xn =

as
X2 6=as X1 if n is even.

Then Xn→D Y as n→∞ holds whenever PY = PX1 , but Xn does not converge in probability.

Theorem 62 Let (S, d), (H, ρ) be metric spaces and g : S → H continuous. If Xn, X are Borel measur-
able random variables with values in S such that

Xn→D X, n→∞, then also Yn = g(Xn)→D g(X) = Y, n→∞.

Proof: Let f ∈ Cb(H), then h = f ◦ g ∈ Cb(S), and we obtain from the above remark that

Ef(Yn) = Ef(g(Xn)) = Eh(Xn)→ Eh(X) = Ef(g(X)) = Ef(Y ).

Again, we obtain from remark above that Yn→D Y as n→∞. �

Corollary Let X(n) : (Ωn,An, Pn)→ (Rk,B(Rk)), X : (Ω,A, P )→ (Rk,B(Rk)), let X(n)→D X as n→∞.
(1) Then λTX(n)→D λTX as n→∞ holds for every λ ∈ Rk.

(2) In particular, X
(n)
j →

D Xj as n→∞ holds for every j ∈ {1, . . . , k}.

See thereom 78 later on that the first implication (1) from the above corollary can be reversed.
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Theorem 63 Let (S, d) be a separable metric space and Xn, Yn be Borel measurable random variables
with values in S such that Xn, Yn are defined on (Ωn,An, Pn). Let Xn→D X as n → ∞ and d(Xn, Yn)→D 0
as n→∞, where X : (Ω,A, P )→ (S,B(S)). Then Yn→D X as n→∞.

Remark We assume that the metric space (S, d) is separable in order to ensure that d(Xn, Yn) are
(An-measurable) random variables. Obviously d : S × S → [0,∞) is a continuous function. Hence Uε =
{(x, y) ∈ S×S : d(x, y) < ε} is a Borel measurable set. If (S, d) is separable, then B(S×S) = B(S)⊗B(S),
and thefore

Uε ∈ B(S × S) = B(S)⊗ B(S) ⇒ [d(Xn, Yn) < ε] = (Xn, Yn)−1Uε ∈ An.

Proof of theorem 63: Since h(x) = 1 ∧ |kx| is a bounded continuous function on R, we get that

Pn(d(Xn, Yn) > 1
k
) ≤ Emin{1, k d(Xn, Yn)} → 0 as n→∞.

Let F be a closed set in (S, d) and put Fk = {s ∈ S; d(x, F ) ≤ 1
k
}. Then

lim sup
n→∞

Pn(Yn ∈ F ) ≤ lim sup
n→∞

Pn(Xn ∈ Fk) + lim sup
n→∞

Pn(d(Xn, Yn) > 1
k
) ≤ P (X ∈ Fk)

holds since Xn→D X as n→∞ and Fk is a closed set. Since F = ∩∞k=1Fk, we obtain that

lim sup
n→∞

Pn(Yn ∈ F ) ≤ P (X ∈ Fk) ↓ P (X ∈ F )

as k →∞. Thus, Yn→D X as n→∞. �

Corollary Let X(n), Y (n) : (Ωn,An, Pn) → (Rk,B(Rk)) and X : (Ω,A, P ) → (Rk,B(Rk)). Denote
||x||2 = xTx if x ∈ Rk. Let X(n)→D X and ||Yn||→D 0 as n→∞, then Yn→D X as n→∞.

If X is a k-dimensional real-valued random vector, we know that its distribution is determined by its
distribution function. As we will see later on, also the convergence of such vectors in distribution can be
characterized in term of distribution functions.

Theorem 64 Let X(n), X be k-dimensional real-valued random vectors. Then the following conditions
are equivalent

(1) Xn→D X as n→∞
(2) FXn(x)→ FX(x) holds for every x ∈ Rk such that FX is continuous at x.

Proof: (1)⇒(2): Let us assume that F is continuous at x ∈ Rk and that Xn→D X as n → ∞. If
x < y ↓ x, then F (y) ↓ F (x), and therefore we obtain that PX(−∞, x) = PX(−∞, x]. Since P (∂(−∞, x)) =
PX(−∞, x]− PX(−∞, x) = 0, we get that by (Portmanteau) remark on convergence in distribution that

lim
n→∞

FXn(x) = lim
n→∞

PXn(−∞, x) = PX(−∞, x) = FX(x).

(2)⇒(1): On the other hand, let us assume that (2) holds. Obviously, Mj = {x ∈ R;P (Xj = x) > 0} are

countable sets. If x ∈ L =
∏k

j=1(R\Mj), we get that

|FX(y)− FX(x)| ≤
k∑
j=1

P (|Xj − xj| ≤ δx,y)→ 0, where δx,y = max
j≤k
|xj − yj| → 0

as y → x holds, i.e. FX is continuous at x. Thus, we get that FX is continuous at each point of the set L.
Since we assume (2), we get that FXn(x)→ FX(x) holds if x ∈ L. If x, y ∈ L are such that x ≤ y, then

PXn [x, y) = ηx,y(FXn)→ ηx,y(FX) = PX [x, y)

holds as n→∞, where

ηx,y(F ) =
∑

z∈
∏k
j=1{xj , yj}

(−1)
∑k
j=1 1[zj=xj ] F (z)

is a function that assigns to a distribution function F of a random vector, say Y, the corresponding
probability PY [x, y) = ηx,y(F ). Let G ⊆ Rk be an open set, then it is a disjoint countable union of sets of
the form [x, y), x, y ∈ L, say G = ∪̇i∈N[x(i), y(i)), where x(i) ≤ y(i) and x(i), y(i) ∈ L hold for every i ∈ N.
Then Fatou’s lemma gives that

lim inf
n→∞

PXn(G) = lim inf
n→∞

∑
i∈N

PXn [x(i), y(i)) ≥
∑
i∈N

lim inf
n→∞

PXn [x(i), y(i)) =
∑
i∈N

PX [x(i), y(i)) = PX(G)
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holds. Then (Portmanteau) remark on convergence in distribution gives that Xn→D X as n→∞. �

13. Characteristic functions

Let X be a n-dimensional real-valued random vector, by its characteristic functions we mean

P̂X(t) = Eeit
TX , t ∈ Rn.

Note that such a function is defined correctly as exp{itTX} is a bounded complex-valued random variable.

Let r > 0 be fixed and denote by Gonr the set of all goniometric polynomials on Rk that are r-periodic
in each coordinate, i.e.

Gonr =

{
<

n∑
j=1

λje
2πi
r
mT
j x;λ = (λ1, . . . , λn)

T ∈ Cn,m = (m1, . . . ,mn) ∈ Zk×n, n ∈ N

}
.

Lemma Let f : Rk → R be a bounded continuous function, r > 0, ε ∈ (0, 1]. Then there exists g ∈ Gon4r

such that

max
x∈[−r,r]k

|f(x)− g(x)| < ε & max
x∈Rk
|g(x)| ≤ sup

x∈Rk
|f(x)|+ 1.(10)

Proof: Denote P4r|r = {g|[−r,r]k ; g ∈ Gon4r}. Note that the functions from P4r|r separate points from

[−r, r]k, i.e. if x, y ∈ [−r, r]k and x 6= y, then there is g ∈ P4r|r such that g(x) 6= g(y). By Stone-Weierstrass
theorem, there exists q ∈ Gon4r such that

max
x∈[−r,r]k

|f(x)− q(x)| < ε
2
.(11)

Put K = sup{|f(x)| : x ∈ Rk}+ ε
2

and

z(y) = (−K) ∨ y ∧K.
Then |q(x)| ≤ K holds whenever x ∈ [−r, r]k by (11) and therefore z(q(x)) = q(x) holds if x ∈ [−r, r]k.
By Weierstrass theorem, there exists a polynomial p such that

max
y∈[a,b]

|p(y)− z(y)| < ε
2
,(12)

where [a, b] = {q(x) : x ∈ Rk}. Then g(x) = p(q(x)) ∈ Gon4r and (12) gives that

max
x∈Rk
|g(x)| = max

x∈Rk
|p(q(x))| ≤ max

y∈[a,b]
|p(y)| ≤ max

y∈[a,b]
|z(y)|+ ε

2
≤ K + ε

2
≤ sup

x∈Rk
|f(x)|+ 1

as ε ∈ (0, 1]. Since z(q(x)) = q(x) holds if x ∈ [−r, r]k, we obtain from (11) and (12) that

max
x∈[−r,r]k

|f(x)− g(x)| ≤ ε
2

+ max
x∈[−r,r]k

|q(x)− p(q(x))| ≤ ε
2

+ max
y∈[α,β]

|z(y)− p(y)| < ε.

�

Theorem 65 The characteristic function determines the distribution of a real-valued random vector,
i.e. if k ∈ N and P̂X(t) = P̂Y (t) holds for every t ∈ Rk, then PX = PY .

Proof: It is sufficient to show that
∫
f dPX =

∫
f dPY holds for every bounded continuous functions f

on Rk by theorem 57. If f ∈ Gonr holds for some r > 0, then the above equality holds as∫
f dPX = Ef(X) = E<

∑n
j=1 λje

2πi
r
mT
jX = <

∑n
j=1 λjP̂X(2πi

r
mj) = <

∑n
j=1 λjP̂Y (2πi

r
mj)

= E<
∑n

j=1 λje
2πi
r
mT
j Y = Ef(Y ) =

∫
f dPY .

Let us fix f : Rk → R bounded and continuous and ε, r > 0 be arbitrary. By lemma above, there exists
g ∈ Gon4r such that (10) holds. If µ is a Borel probability measures on Rk, we have that

|
∫
f dµ−

∫
g dµ| ≤ ε+

∫
Rk\∈[−r,r]k(|f |+ |g|) dµ ≤ ε+ (2 max

x∈Rk
|f(x)|+ 1) · µ(Rk\[−r, r]k).

Hence, there exists a sequence gn ∈ Gon4rn , where rn →∞ such that

lim sup
n→∞

|
∫
f dµ−

∫
gn dµ| ≤ ε

holds whenever ε > 0. If µ is PX or PY , we obtain that

Ef(X) =
∫
f dPX = lim

n→∞

∫
gn dPX = lim

n→∞

∫
gn dPY =

∫
f dPY = Ef(Y ).
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�

Theorem 66 (Cramer-Wold I ) The distribution of a k-dimensional real-valued random vector X is
determined by the distributions of λTX,λ ∈ Rk, i.e. if X, Y are both k-dimensional real-valued random
vectors such that PλTX = PλT Y holds for every λ ∈ Rk. Then PX = PY .

Proof: Let X, Y ∈ L(Ω,A, P )k be such that PλTX = PλT Y holds whenever λ ∈ Rk. Then

P̂X(t) = Eeit
TX = P̂tTX(1) = P̂tT Y (1) = Eeit

T Y = P̂Y (t)

holds for every t ∈ Rk. Then theorem 65 gives that PX = PY . �

Theorem 67 Let X = (X1, . . . , Xk)
T be a k-dimensional real-valued random vector. Then

(1) P̂X(0) = 1 ≥ |P̂X(t)| holds whenever t ∈ Rk.

(2) P̂X(t) = P̂X(−t) holds whenever t ∈ Rk, i.e. <P̂X(t) = <P̂X(−t) and =P̂X(t) + =P̂X(−t) = 0.

(3) P̂X(t) is a uniformly continuous function on Rk.

(4) P̂X is a real-valued function if and only if X has a symmetric distribution, i.e. PX = P−X .

(5) P̂a+BX(t) = eia
T t · P̂X(BT t) holds if a, t ∈ Rm and B ∈ Rm×k.

Proof: (1) Obviously, 1 = E|eitTX | ≤ |EeitTX | = |P̂X(t)| and P̂X(0) = Eei0
TX = Ee0 = 1. (2) Further,

P̂X(t) = Eeit
TX = Eeit

TX = Ee−it
TX = P̂X(−t).

(3) Let t, h ∈ Rk. Then Dominated Convergence Theorem gives that

|P̂X(t+ h)− P̂X(t)| ≤ E|ei(t+h)TX − eit
TX | = E|eih

TX − 1| → 0

as h→ 0 ∈ Rk uniformly in t ∈ Rk.

(4) If PX = P−X , then P̂X(t) = P̂−X(t) = Ee−it
TX = P̂X(−t), and therefore =P̂X(t) = 0 holds by (2).

On the other hand, if =P̂X(t) = 0 holds for every t ∈ Rk, then (2) gives that P̂X(t) = P̂X(−t) = Ee−it
TX =

P̂−X(t). Then theorem 65 gives that PX = P−X .
(5) Obviously,

P̂a+BX(t) = Eeit
T (a+BX) = eia

T t · Eeit
TBX = eia

T t · P̂X(B
T
t).

�

Theorem 68 The variablesX1, . . . , Xk ∈ L(Ω,A, P ) are independent if and only if P̂X(t) =
∏k

j=1 P̂Xj(tj)

holds for every t ∈ Rk.

Proof: Let X1, . . . , Xk be independent, then

P̂X(t) = Eeit
TX = E

k∏
j=1

eitjXj =
k∏
j=1

P̂Xj(tj).

Now, assume that P̂X(t) =
∏k

j=1 P̂Xj(tj). Let Yj have the same distribution as Xj, j = 1, . . . , k be such

that Y1, . . . , Yk are independent. Denote Y = (Y1, . . . , Yk)
T . Then the first part of the proof gives that

P̂Y (t) =
k∏
j=1

P̂Yj(tj) =
k∏
j=1

P̂Xj(tj) = P̂X(t).

Then we get that PX = PY = ⊗kj=1PYj = ⊗kj=1PXj , i.e. X1, . . . , Xk are independent. �

Theorem 69 Let X = (X1, . . . , Xk)
T and Y = (Y1, . . . , Yk)

T be independent real-valued random vectors.

Then P̂X+Y (t) = P̂X(t)P̂Y (t) holds for every t ∈ Rk.

Proof: AsX, Y are independent, P̂X+Y (t) = Eeit
T (X+Y ) = E[eit

TXeit
T Y ] = Eeit

TXEeit
T Y = P̂X(t)P̂Y (t). �

Theorem 70 A continuous function ζ : Rk → C is a characteristic function of a k-dimensional real-
valued random vector if and only if ζ is positively semidefinite , i.e. if

∀ m ∈ N ∀ α ∈ Cm, T = (t1, . . . , tm)
T ∈ (Rk)m α

T
AT (ζ)ᾱ ≥ 0,
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where AT (ζ) = {ζ(tj − tl)}mj,l=1. Equivalently, we can say that ζ is a positively semidefinite function if and

only if AT (ζ) is a positively semidefinite (complex-valued) matrix for every T ∈ Rm×k and m ∈ N.

Theorem 71 Let Xn,n∈N0 be a real valued random sequence independent with N : Ω → N0. Then the
real variable Y = XN has the following characteristic function

P̂Y (t) =
∞∑
n=0

P (N = n)P̂Xn(t).

Proof: A straightforward computation gives that

P̂Y (t) = EeitXN =
∞∑
n=0

P (N = n)E[eitXN |N = n] =
∞∑
n=0

P (N = n)E[eitXn|N = n] =
∞∑
n=0

P (N = n)P̂Xn(t),

since Xn and N are independent variables. �

Theorem 72 Let Xn,n∈N0 be a real valued random sequence of i.i.d. real-valued variables independent

with N : Ω→ N0. Then SN =
∑N

k=1 Xk has the following characteristic function

P̂SN (t) = AN(P̂X1(t)), where AN(s) = EsN .

Proof: Denote Yk =
∑k

j=1Xk, then Y = (Yk, k ∈ N) is independent with N as X = (Xk, k ∈ N) is. Then
SN = YN by the previous theorem has the following characteristic function

P̂SN (t) =
∞∑
n=0

P (N = n)P̂Yn(t) =
∞∑
n=0

P (N = n)(P̂X1(t))
n = AN(P̂X1(t))

as P̂Yn(t) =
∏n

k=1 P̂Xk(t) = P̂X1(t)
n. �

Lemma Denote

πn(x) = eix −
n∑
k=0

(ix)k

k !

whenever n ∈ N0. Then

|πn(x)| ≤ min{2 |x|
n

n !
, |x|

n+1

(n+1)!
}

holds for every n ∈ N0 and x ∈ R.

Proof: Obviously, |π0(x)| = |eix − 1| ≤ 2 and

|π0(x)| = |eix − 1| = |eix − ei0| = |
∫ x

0
eiu du| ≤

∫ |x|
0
|eiu| du = |x|.

Hence, |π0(x)| ≤ min{2, |x|} and the statement of lemma holds for n = 0. Further, if n ∈ N, then πn(0) = 0
and |π′n(x)| = |πn−1(x)|, and therefore by induction, we obtain that

|πn(x)| ≤
∫ |x|

0
|πn−1(u)| du ≤

∫ |x|
0

min{2 |u|
n−1

(n−1) !
, |u|

n

n!
} du ≤ min{2 |x|

n

n !
, |x|

n+1

(n+1)!
}.

�

Theorem 73 Let p ∈ N and X ∈ Lp.

(1) Then P̂X has continuous derivatives up to order p. They are bounded on R, and

P̂
(k)
X (t) := dk

dtk
PX(t) = ikE[XkeitX ]

holds if t ∈ R and k = 1, . . . , p.
(2) The characteristic function P̂X has a finite Taylor expansion

P̂X(t+ h) =

p∑
k=0

P̂
(k)
X (t)

k !
hk + ρp(h, t), s, t ∈ R,(13)

where

%p(h) := sup
t∈R
|ρp(h, t)| = o(hp) as h→ 0, & %p(h) ≤ E|X|p

p !
2hp.
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Proof: (1): If p = 0, then the statement holds with L0 = L. Further, we assume that the statement holds
for p ∈ N and assume that X ∈ Lp+1. Then Dominated Convergence Theorem gives that

P̂
(p)
X (t+h)−P̂ (p)

X (t)

h
= ipE[XpeitX eihX−1

h
]→ ip+1E[Xp+1eitX ], h→ 0,

since |XpeitX eihX−1
h

]| ≤ |X|p+1 ∈ L1. Thus, the statement holds with p replaced by p+ 1.

(2): Since X ∈ Lp, we get that

P̂X(t+ h) =

p∑
k=0

(ih)k

k !
E[XkeitX ] + E[eitXπp(hX)]

By the previous lemma, %p(h) ≤ E|πp(hX)| ≤ 2hp

p !
E|X|p. Similarly, we obtain that

h−p%p(h) ≤ h−pE|πp(hX)| ≤ Emin{2|X|p
p !

, h|X|
n+1

(p+1) !
} → 0

as h→ 0 holds by Dominated Convergence Theorem. �

Let X be a real-valued random variable. Then the function ψX : t ∈ R 7→ EetX ∈ R̄ is called a moment
generating function of X.

Theorem 74 Let X ∈ Lp hold for every p ∈ N and assume that the power series
∑∞

k=0
hk

k !
EXk has

a positive radius of convergence R > 0. Then

P̂X(t+ h) =
∞∑
k=0

hk

k!
P̂

(k)
X (t), t, h ∈ R, |h| < R.(14)

In particular,

P̂X(h) =
∞∑
k=0

hk

k!
ikEXk, h ∈ R, |h| < R,(15)

and P̂X (and also the distribution of X) is uniquely determined by the moments EXk, k ∈ N. Further,
moment generating function is

ψX(t) = EetX =
∞∑
k=0

tk

k !
EXk, t ∈ R, |t| < R.(16)

Proof: We will show that the radius of convergence R̃ of the following power series
∑∞

k=0
tk

k!
E|X|k is

not smaller than
R = lim inf

k→∞

( |EXk|
k!

)−1/k
.

Now, we concentrate on the radius of convergence corresponding to odd moments. We get from Jensen
inequality that (E|X|2k−1)1/(2k−1) ≤ (EX2k)1/(2k). Then

R̄ = lim inf
k→∞

(E|X|2k−1

(2k−1)!

)− 1
2k−1 ≥ lim inf

k→∞

(E|X|2k
(2k)!

)− 1
2k (2k)−

1
2k [(2k − 1)!]

1
2k−1

− 1
2k

= lim inf
k→∞

(E|X|2k
(2k)!

)− 1
2k = R̂

as obviously (2k)−
1
2k → 1 as k →∞ and similarly

0 ≤ ( 1
2k−1
− 1

2k
) ln[(2k − 1)!] = 1

2k(2k−1)

2k−1∑
j=1

ln j ≤ ln(2k)
2k
→ 0.

Since R̄ ≥ R̂, we get that

R̃ = lim inf
k→∞

(E|X|
k

k!
)−

1
k ≥ lim inf

k→∞
(EX

2k

(2k)!
)−

1
2k = R̂.

Since adding new coefficients does not increase the radius of convergence of a power series, we get that

R̃ ≥ R̂ = lim inf
k→∞

(EX
2k

(2k)!
)−

1
2k ≥ lim inf

k→∞

( |EXk|
k!

)− 1
k = R.

Then the radius of convergence of the power series
∑∞

k=0
tk

k!
P̂

(k)
X (s) is

R̈ = lim inf
k→∞

( |P̂ (k)
X (s)|
k!

)− 1
k = lim inf

k→∞

( |EXkeisX |
k!

)− 1
k ≥ lim inf

k→∞

(E|X|k
k!

)− 1
k = R̃ ≥ R.
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Now, let us consider s, t ∈ R such that |t| < R. By theorem 73 (2),

|P̂X(s+ t)−
∞∑
k=0

tk

k!
P̂

(k)
X (s)| ≤ |

∞∑
k=p+1

tk

k!
P̂

(k)
X (s)|+ 2|t|p

p!
E|X|p ≤

∞∑
k=p

2|t|k
k!
E|X|k → 0

holds whenever t ∈ R is such that |t| < R, i.e. (14) holds. Let us consider the following function

ρ : s ∈M 7→ EesX on M = {s ∈ C : |<s| < R},
We will show that it is holomorphic on set M, we show that is has a derivative in the complex variable

d
ds
ρ(s) = d

ds
EesX = E[XesX ].

To verify that the above calculation is correct, we need to show that E|XesX | <∞ if s ∈M, but

E|XesX | = E|XehX | ≤ E
∞∑
k=0

Xk+1

k!
hk ≤

∞∑
k=0

E|X|k+1

k!
|h|k <∞

holds with h = <s ∈ (−R,R) as the power series
∞∑
k=0

E|X|k+1

k!
hk =

∞∑
n=1

E|X|n
(n−1)!

hn−1 =
∞∑
n=0

E|X|n
n!

nhn−1

has the same radius of convergence R̃ ≥ R as the series
∑

k
E|X|k
k!

hk.

Since the characteristic function P̂X(t) = ρ(it), t ∈ R determines the distribution of X, we obtain by
the theorem on uniqueness of holomorphic functions that the distribution PX is uniquely determined
by ρ(it), t ∈ (−R,R), i.e. by the moments EXk, k ∈ N and also by the moment generating function
ψX(h) = ρ(h), h ∈ (−R,R). Obviously, (16) holds as the radius of convergence of the power series on the
right-hand side of (16) is at least R. �

Counterexample There exist

X, Y ∈
⋂
p∈N

Lp

such that EXk = EY k, k ∈ N, but PX 6= PY . Let X ∈ L(Ω,A, P ) have a density

f(x) = c exp{−αxλ} · 1(0,∞)(x), α > 0, λ ∈ (0, 1
2
).

Let us consider β = α tan(λπ) and ε ∈ (−1, 1) and

fε(x) = c exp{−αxλ}(1 + ε sin(βxλ)) · 1(0,∞)(x)

Let us consider a rela-valued random variable Xε with the density fε. Then

EXn
ε =

∫∞
0
xnce−αx

λ
(1 + ε sin(βxλ)) dx,

and therefore we get with u = xλ that

d
dε
EXn

ε =
∫∞

0
xnce−αx

λ
sin(βxλ) dx

=
∫∞

0
xnc= e−(α+iβ)xλ dx,

= 1
λ

∫∞
0
xλ(n+1

λ
−1)c= e−(α+iβ)xλ(λxλ−1) dx,

= 1
λ

∫∞
0
u
n+1
λ
−1c= [e−(α+iβ)u] du,

= 1
λ
cΓ(n+1

λ
)=[(α + iβ)−

n+1
λ ] = 0

as
(α + iβ)−

n+1
λ = α−

n+1
λ (1 + i tan(λπ))−

n+1
λ = α−

n+1
λ (1 + tan2(λπ))−

n+1
2λ e−(n+1)πi ∈ R

and as ∫∞
0

apxp−1

Γ(p)
e−ax dx = 1

hold whenever a ∈ C is such that <a > 0. The last equality can be verified by taking derivative of the
left-hand side with respect to a ∈ C such that <a > 0 and showing that the derivative is equal to zero by
per partes.

Hence, we get that EXn
ε does not depend on ε ∈ (−1, 1) and therefore the variables Xε have the same

moments, but their distributions are different.
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Theorem 75 Let p ∈ N and X ∈ L(Ω,A, P ), be such that P̂
(2p)
X (0) ∈ R, then X ∈ L2p(Ω,A, P ).

Proof: If p = 0, then the statement of the theorem holds with the notation L0 = L. Let us assume

that the statement holds for p and that P̂
(2k+2)
X (0) ∈ R. Theorem 73 gives that P̂X ∈ C2p(R) and that

h(t) = (−1)pP̂
(2p)
X (t) = E[X2peitX ]. As h′′(0) ∈ R holds by assumption, we use 2×l’Hopital to obtain that

lim
t→0

h(t)+h(−t)−2h(0)
t2

= lim
t→0

h′(t)−h′(−t)
2t

= h′′(0).

Then Fatou’s lemma gives that

EX2p+2 ≤ lim
t→0

E[X2p · 1−cos(tX)
t2/2

] = lim
t→0

2h(0)−h(t)−h(−t)
t2

= −h′′(0) = (−1)p+1P̂
(2p+2)
X (0) <∞.

�

Theorem 76 Let X(n) ∈ L(Ωn,An, Pn)k, n ∈ N0 be such that X(n)→ X(0) in distribution as n→∞.
Then P̂X(n)(t)→ P̂X(0)(t) as n→∞ holds for every t ∈ Rk.

Proof: Let X(n) → X(0) in distribution as n → ∞. Since x ∈ Rk 7→ cos(tTx), sin(tTx), t ∈ Rk are
bounded continuous functions, we get that

P̂X(n)(t) = Eeit
TX(n) = E cos(t

T
X(n)) + iE sin(t

T
X(n))→ E cos(t

T
X(0)) + iE sin(t

T
X(0))→ P̂X(0)(t).

Lemma Let X ∈ L(Ω,A, P ) and u > 0. Then P (|uX| > 2) ≤ 1
u

∫ u
−u(1− P̂X(t)) dt.

Proof: Let U ∼ R(−u, u) be independent with X. Then P̂U(x) = sin(ux)
ux

and

1
2u

∫ u
−u(1− P̂X(u)) du = 1− EP̂X(U) = 1− EeiXU = 1− EP̂U(X) = E(1− sin(uX)

uX
) ≥ 1

2
P (|uX| > 2),

since h(x) = 1− sinx
x
≥ 1

2
· 1(2,∞)(|x|). �

Theorem 77 Let X(n) ∈ L(Ωn,An, Pn)k, n ∈ N be such that P̂X(n)(t) → ζ(t) holds whenever t ∈ Rk,
where k ∈ N is fixed. If ζ is continuous at 0, then there exists X ∈ L(Ω,A, P )k such that X(n) → X in

distribution as n→∞ and P̂X = ζ.

Proof of theorem 77 based on theorem 70: By theorem 70, t ∈ Rk 7→ P̂X(n)(t) is a positively

semidefinite function. Then the limit function ζ of P̂X(n) is again a positively semidefinite. Since it is

also continuous at zero 0 ∈ Rk, there exists a k-dimension real-valued random X with P̂X(t) = ζ(t). Let
f : Rk → R be a continuous function bounded by c ∈ (0,∞), i.e. |f | ≤ c <∞. We are going to show that
Ef(X(n))→ Ef(X) as n→∞. By the above lemma,

Pn(||X(n)||m > 2
u
) ≤

k∑
j=1

1
u

∫ u
−u(1− P̂X(n)

j
(t)) dt→

k∑
j=1

1
u

∫ u
−u(1− P̂Xj(t)) dt

as n→∞, where ||x||m = max{|x1|, . . . |xk|}. Then

lim sup
n→∞

Pn(||X(n)||m > 2
u
) ≤

k∑
j=1

1
u

∫ u
−u(1− P̂Xj(t)) dt→ 0(17)

as u→ 0+. Let ε > 0, then there exists n0 ∈ N and u0 > 0 large enough so that

Pn(||X(n)||m > 2
u
) + P (||X|| > 2

u
) < ε

holds whenever n ≥ n0 and u ≥ u0. Put fu(x) = f(x)1[||x||m>2/u]. Then

|Efu(X(n))− Efu(X)| ≤ sup
x∈R
|f(x)| · [Pn(||X(n)||m > 2

u
) + P (||X|| > 2

u
)] < cε(18)

holds if u ≥ u0 and n ≥ n0. By the first lemma in this section, there exists g ∈ Gon4r with r = 2
u

such that
(10) holds. Put f[u] = f − fu and g[u] = g − gu. Then a similar inequality as in (18) gives by (10) that

|Ef[u](X
(n))− Ef[u](X)| ≤ 2ε+ |Eg[u](X

(n))− Eg[u](X)| ≤ (3 + c)ε+ |Eg(X(n))− Eg(X)| → (3 + c)ε

as n→∞ since P̂X(n)(t)→ P̂X(t) and g ∈ Gon4r. Then we obtain that for every ε > 0

lim sup
n→∞

|Ef(X(n))− Ef(X)| ≤ (3 + 2c)ε.
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Proof based on Prochorov theorem: Put ||x||m = max{|x1|, . . . |xk|}. By the above lemma,

Pn(||X(n)||m > 2
u
) ≤

k∑
j=1

1
u

∫ u
−u(1− P̂X(n)

j
(t)) dt→

k∑
j=1

1
u

∫ u
−u(1− ζ(tej)) dt,

where ej ∈ Rk is a unit vector such that eT

jx is a j-th coordinate of x whenever x ∈ Rk. Then

lim sup
n→∞

Pn(||X(n)||m > 2
u
) ≤

k∑
j=1

1
u

∫ u
−u(1− P̂Xj(t)) dt→ 0(19)

as u→ 0+. Let ε > 0, then there exists n0 ∈ N and u0 > 0 large enough so that

Pn(||X(n)||m > 2
u
) < ε(20)

holds whenever n ≥ n0, u ≥ u0. Since the set {PX(n) ;n ≤ n0} is finite, it is by Prochorov theorem tight,
and therefore there exists u ≥ u0 such that (20) holds for every n ≤ n0 (and therefore for every n ∈ N).
Thus, we have verified that {PX(n) , n ∈ N} is tight and we get from Prochorov theorem that if N 3 nk ↑ ∞,
there exist N 3 kl ↑ ∞ such that PX(ml) is weakly convergent, where ml = nkl . Let P be the corresponding
limit Borel probability on Rk, and X : x ∈ Rk 7→ x ∈ Rk be the canonical random element. Then PX = P ,
and therefore X(ml) → X in distribution as l→∞. Then we get that

P̂X(t) = lim
l→∞

P̂X(ml)(t) = ζ(t),

i.e. ζ is a characteristic function of X. If N 3 ñk ↑ ∞ is another sequence, we can again find N 3 k̃l ↑ ∞
such that Xm̃l → X in distribution, where m̃k = ñk̃l , since the characteristic function determines the

distribution. Thus, we obtain from the properties of convergence in distribution that X(n) → X as n→∞
in distribution. �

Corollary Let k ∈ N and X(n) ∈ L(Ωn,An, Pn)k, n ∈ N0. Then X(n)→ X(0) as n→∞ in distribution

if and only if P̂X(n)(t)→ P̂X(0)(t), n→∞ holds for every t ∈ Rk.

Theorem 78 (Cramer-Wold II ) Let k ∈ N and X(n) ∈ L(Ωn,An, Pn)k, n ∈ N0. Then X(n)→ X(0) as
n→∞ in distribution if and only if λTX(n)→ λTX(0), n→∞ in distribution holds for every λ ∈ Rk.

Proof: Let X(n) → X := X(0) in distribution as n → ∞ and let λ ∈ Rk. Since x ∈ Rk 7→ λTx
is a continuous function, we get that λTX(n) → λTX in distribution as n → ∞. On the other hand, if
λTX(n)→ λTX in distribution as n→∞ hods for every λ ∈ Rk, then we get that

P̂X(n)(t) = Eeit
TX(n) = E cos(t

T
X(n)) + iE sin(t

T
X(n))→ E cos(t

T
X) + iE sin(t

T
X)→ P̂X(t)

as n→∞ as sin, cos are bounded continuous functions. Now, it is enough to use the above corollary. �

14. Inversion formulas

Theorem 79 Let X be a real-valued random variables such that P (X ∈ Z) = 1. Then

P (X = k) =
1

2π

∫ π

−π
P̂X(t) e−ikt dt

Proof: Let k ∈ Z, then

1

2π

∫ π

−π
e−ikt

∞∑
n=−∞

eintP (X = n) dt =
1

2π

∞∑
n=−∞

P (X = n)

∫ π

−π
ei(n−k)t dt

=
1

2π

∞∑
n=−∞

P (X = n) · 2π · 1[n=k] = P (X = k).

Theorem 80 Let X ∈ L(Ω,A, P ) satisfy
∫
|P̂X(t)| dt <∞. Then X has a bounded continuous density

fX(x) = 1
2π

∫
R P̂X(t) e−itx dt.(21)

Lemma Let Xn, X ∈ L(Ω,A, P ) be such that
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(1) Xn have bounded continuous densities fXn given by the formulas fXn(x) = 1
2π

∫
R P̂Xn(t) e−itx dt.

(2) Xn → X in distribution, i.e. P̂Xn(t)→ P̂X(t) as n→∞ whenever t ∈ R.
(3) There exists an integrable function h such that |P̂Xn(t)|, |P̂X(t)| ≤ h(t).

Then X has also a bounded continuous density given by the formula (21) and

sup
x∈R
|fXn(x)− fX(x)| → 0, n→∞.

Proof: Obviously, our assumptions together with Dominated Convergence Theorem (DCT) give that

lim
n→∞

sup
p∈N

sup
x∈R
|fXn(x)− fXn+p(x)| ≤ lim

n→∞
1

2π

∫
R |P̂Xn(t)− P̂Xn+p(t)| dt = 0

Hence, there exists a continuous bounded function f such that fn(x) → f(x) as n → ∞ uniformly in x.
Again, Dominated Convergence Theorem gives that

lim
n→∞

sup
x∈R
|fXn(x)− f(x)| ≤ lim

n→∞
1

2π

∫
R |P̂Xn(t)− P̂X(t)| dt = 0

and therefore we obtain again from Dominated Convergence Theorem that

f(x) = lim
n→∞

fXn(x) = lim
n→∞

1
2π

∫
R P̂Xn(t) e−itx dt = 1

2π

∫
R P̂X(t) e−itx dt.

Obviously, f(x) ≥ 0 if x ∈ R, and if FX is continuous at the point x < y, then assumption (2) gives that

FX(y)− FX(x) = lim
n→∞

[FXn(y)− FXn(x)] = lim
n→∞

∫ y
x
fn(u) du =

∫ y
x
f(u) du.

Then we get that FX(y) =
∫ y
−∞ f(u) du holds whenever FX is continuous at y, and we immediately obtain

that FX is a continuous function and f(x) is a density of X. �

Proof of theorem 80: Obviously, if (21) holds, then fX(x) is a continuous function by Dominated

Convergence Theorem bounded by the value
∫
|P̂X(t)| dt.

First, we show that formula (21) holds for X ∼ N(µ, σ2) if σ2 ∈ (0,∞).

1
2π

∫
e−itxP̂X(t) dt = 1

2π

∫
e−itxeitµ−

1
2
σ2t2 dt = 1

2π

∫
e−

1
2
σ2(t+ix−µ

σ2 )2σ dt · 1
σ
e−

1
2

(x−µ)2

σ2 = 1√
2πσ
· e−

1
2

(x−µ)2

σ2

holds, since
∫

1√
2π
e−

1
2

(s−a)2 ds = 1 holds for every a ∈ C, where s = σt. Second, we show that (21) holds

for Z = X + Y whenever X is as above and Y ∈ L(Ω,A, P ) is independent with X. Then

FZ(z) = P (Z < z) =
∫ ∫ z−y
−∞ fX(x) dx dPY (y) =

∫ ∫ z
−∞ fX(x− y) dx dPY (y) =

∫ z
−∞

∫
fX(x− y) dPY (y) dx,

and therefore Z has a density
fZ(z) =

∫
fX(x− y) dPY (y).

Further Z has a characteristic function in the form

P̂Z(t) = P̂X(t)P̂Y (t) = P̂X(t)
∫
eity dP (y) =

∫
P̂X+y(t) dPY (y).

Since |P̂X+y(t)| = |P̂X(t)| is an integrable function, we obtain that

1
2π

∫
e−itzP̂Z(t) dt = 1

2π

∫
e−itz

∫
P̂X+y(t) dPY (y) dt =

∫
1

2π

∫
e−itzP̂X+y(t) dt dPY (y) =

∫
fX+y(z) dPY (y),

which verifies (21) for Z as the right-hand side is just fZ(z).

Third, let X be arbitrary random variable with
∫
h(t) dt <∞, where h(t) = |P̂X(t)|. Let Yn ∼ N(0, 1/n)

be independent with X. Then we know that Xn := X + Yn → X as n→∞ in distribution and (21) holds

for Xn. Further since |P̂Yn(t)| ≤ 1, we get that

|P̂Xn(t)| = |P̂X(t)| · |P̂Yn(t)| ≤ |P̂X(t)| = h(t).

By lemma, we obtain that (21) holds also for X. �

Theorem 81 Let X ∈ L1 and α < β be real values. Then

FX(β) + FX(β+)

2
− FX(α) + FX(α+)

2
= lim

T→∞

1

2π

∫ T

−T

e−iuα−e−iuβ
iu

P̂X(u) du.

Moreover, if FX is continuous at the points α, β, then

FX(β)− FX(α) =
1

2π

∫ ∞
−∞
<
(
e−iuα−e−iuβ

iu
P̂X(u)

)
du
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Remark If Y ∼ R(α, β) is independent with X. Then P̂Y (u) = eiβu−eiαu
(β−α)iu

and Z = X−Y has a characteristic

function

P̂Z(u) = P̂X(u)P̂Y (−u) = e−iuα−e−iuβ
(β−α)iu

P̂X(u).

The above theorem together with the previous one also says that if FX is continuous at the points {α, β},
and if P̂Z(t) is an integrable characteristic function, then Z has a continuous density, which is given by
the inversion formula for the densities

fZ(z) =
1

2π

∫ ∞
−∞

e−izuP̂Z(u) du

and therefore fZ(0) = FX(β)−FX(α)
β−α = P (α<X<β)

β−α .

We say that X ∈ L(Ω,A, P ) has an equidistant distribution if there are a ∈ R called an origin and
d > 0 called a step such that Y = (X − a)/d attains integer values almost surely, i.e. P (Y ∈ Z) = 1. If

there is no bigger step d̃ > d of the equidistant distribution, then d is called a maximal step.

Theorem 82 Let X ∈ L(Ω,A, P ) have an equidistant distribution with a step d > 0 and an origin

a ∈ R. Then |P̂X(t)| is a 2π
d

-periodic function and P̂X(2π
d

) = e
2πia
d .

Proof: Denote Y = (X−a)/d. By assumption Y ∈ Z holds almost surely. Then e2πY i =
as

1, and therefore

P̂X(t+ 2π
d

) = Eei(t+
2π
d

)X = Eei(t+
2π
d

)(a+dY ) = ei(t+
2π
d

)aEe2πY ieitdY = e
2πia
d Eeit(a+dY ) = e

2πia
d P̂X(t).

�

Theorem 83 Let X ∈ L(Ω,A, P ) and t0 > 0 be such that |P̂X(t0)| = 1. Then X has an equidistant

distribution with a step d = 2π
t0
. Moreover, if a ∈ R is such that P̂X(t0) = eit0a, then a is an origin of the

equidistant distribution of X corresponding to the step d.

Proof: Let a ∈ R be such that P̂X(t0) = eiat0 . Then Z = X−a is such that P̂Z(t0) = e−iat0P̂X(t0) = 1, i.e.

1 = E cos(t0Z) + iE sin(t0Z).

In particular, 1 = E cos(t0Z), and therefore Y := t0Z/(2π) ∈ Z holds almost surely, and

X = a+ Z = a+ 2π
t0
Y. �

Corollary Let X ∈ L(Ω,A, P ). It there exists t0 > 0 such that |P̂X(t0)| = 1, then |P̂X(t)| is a t0-periodic
function.

In particular, if h(t) : R→ C and t0 ∈ R is such that |h(t0)| = 1, but h(t) is not a t0-periodic function,
then h(t) is not a characteristic function of a real-valued random variable.

Examples The following functions are not characteristic functions of a real-valued random variable:
f1(t) = cot(t2), f2(t) = cos(

√
|t|), f3(t) = cos(ln(1 + |t|)).

Corollary Let X ∈ L(Ω,A, P ). Then X has an equidistant distribution if and only if there exists

t0 ∈ (0,∞) such that |P̂X(t0)| = 1.

Theorem 84 Let X ∈ L(Ω,A, P ) have a non-degenerate equidistant distribution, i.e. let a, b ∈ R be
such that a < b and P (X = a)P (X = b) > 0. Then the equidistant distribution PX has a maximal step

d̂ > 0 in the form

d̂ = 2π/t̂, where t̂ = min{t > 0 : |P̂X(t)| = 1} ∈ (0,∞).

Proof: Let a, b ∈ R be such that a < b and P (X = a)P (X = b) > 0, and put t̂ = inf{t > 0; |P̂X(t)| = 1}.
By theorem 82, t̂ < ∞ and theorem 83 gives that t̂ ≥ 2π

b−a . Otherwise, there exists t ∈ (0, 2π
b−a) such that

|P̂X(t)| = 1, which means that X has an equidistant distribution with a step d = 2π/t > b − a. Thus,

t̂ ∈ (0,∞). Since |P̂X(t)| is a continuous function, we get that |P̂X(t̂)| = 1, and therefore we can write

min instead of inf in the definition of t̂. By theorem 83, X has an equidistant distribution with a step d̂.
If d̃ > d̂ was a step of PX , then theorem 82 gives that 1 = |P̂X(t̃)|, where t̃ = 2π/d̃ ∈ (0, t̂), which is not
possible by the definition of t̂. �
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15. Limit theorems

Lemma Let an,k ∈ C, k = 1, . . . , kn ∈ N be such that

kn∑
k=1

an,k → a ∈ C, lim sup
n→∞

kn∑
k=1

|an,k| <∞, lim
n→∞

kn∑
k=1

|an,k|2 = 0.

Then

lim
n→∞

kn∏
k=1

(1 + an,k) = ea.

Proof: By triangle inequality

kn∏
k=1

(1 + an,k)− e
∑kn
k=1 an,k ≤

kn∑
m=1

m−1∏
k=1

(1 + an,k)(1 + an,m − ean,m) e
∑kn
k=m+1 an,k

≤
kn∑
m=1

m−1∏
k=1

(1 + |an,k|)

(
∞∑
j=2

|an,m|j

j!

)
exp

{
kn∑

k=m+1

|an,k|

}

≤
kn∑
m=1

m−1∏
k=1

exp {|an,k|}
|an,m|2

2
e|an,m| exp

{
kn∑

k=m+1

|an,k|

}

= exp

{
kn∑
k=1

|an,k|

}
kn∑
m=1

|an,m|2

2
→ 0

as n→∞. �

Theorem 85=82 (Poisson) Let Xn ∼ Bi(pn, n), n ∈ N. Let npn → λ > 0 as n→∞, then

Xn → X ∼ Po (λ)

as n→∞ in distribution.

Proof: We will show that P̂Xn(t)→ P̂X(t). Obviously,

P̂Xn(t) = (1− pn + pne
it)n = (1 + pn(eit − 1))n.

Put an,k = pn(eit − 1), kn = n, then

kn∑
k=1

an,k = npn(eit − 1)→ λ(eit − 1)

kn∑
k=1

|an,k| = npn|eit − 1| ≤ 2npn → 2λ <∞

kn∑
k=1

|an,k|2 = np2
n|eit − 1|2 ≤ 4n2p2

n

n
→ 0

as n→∞. By lemma

P̂Xn(t) =
n∏
k=1

(1 + an,k) = o(1) + exp

{
kn∑
k=1

an,k

}
= exp{λ(eit − 1)}

as n→∞. If X ∼ Po(λ), then P̂X(t) = exp{λ(eit − 1)}. Hence, P̂Xn(t)→ P̂X(t) as n→∞, and therefore
Xn → X in distribution. �

15.1. Definition of multi-dimensional normal distribution. We say that a random vector X =
(X1, . . . , Xk)

T has a k-dimensional normal distribution Nk(µ,Σ) with the vector µ ∈ Rk of mean values
and variance matrix Σ ∈ Rn×n, where Σ is a positively semidefinite matrix, if

∀ λ ∈ Rk λ
T
X ∼ N(λ

T
µ, λΣλ).
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We recall that X ∼ N(µ, σ2), i.e. X has one-dimensional normal distribution with mean value µ and
variance σ2 ≥ 0 if σ2 = 0 and µ=

as
X or if σ2 > 0 and X has the following density

f(x) = 1√
2πσ2

exp{− (x−µ)2

2σ2 }.

Note that if X ∼ N(µ, σ2) and σ2 > 0, then Y = X−µ
σ
∼ N(0, 1) has a density ϕ(x) = 1√

2π
e−

x2

2 .

So, we can imagine13

that X =
as
µ+ σY holds for some Y ∼ N(0, 1) whenever X ∼ N(µ, σ2).

Remark It following from Cramer-Wold theorem I that such a k-dimensional distribution is determined
uniquely. Thus, we are going to show that such a distribution exists. First assume that Σ = Ik ∈ Rk×k and
that µ = 0 ∈ Rk. Let X1, . . . , Xk ∼ N(0, 1) be independent and put X = (X1, . . . , Xk)

T . Then

P̂X(t) =
k∏
j=1

P̂Xj(tj) =
k∏
j=1

e−
1
2
t2j = e−

1
2
tT t,

and therefore if λ ∈ Rk, then

P̂λTX(s) = Eeisλ
TX = P̂X(sλ) = e−

1
2

(sλ)T (sλ) = e−
1
2
s2 λT λ = P̂Y (s),

where Y ∼ N(0, λTλ). Hence, λTX ∼ N(0, λTλ) holds for every λ ∈ Rk which is nothing else but X ∼
Nk(0, Ik) by the definition.

Second, let X ∼ Nk(0, Ik) as above and let µ ∈ Rk and Σ ∈ Rk×k be positively semi-definite matrix. Then
there exists a positively definite (and symmetric) matrix Σ1/2 such that Σ1/2Σ1/2 = Σ. Put Z = µ+Σ1/2X.
Then

P̂λTZ(s) = Eeisλ
TZ = Eeisλ

T (µ+Σ1/2X) = eisλ
TµP̂X(sΣ1/2λ) = eisλ

Tµe−
1
2
s2λT Σλ = eisλ

Tµ− 1
2
s2λT Σλ = P̂V (s),

where V ∼ N(λTµ, λTΣλ). Hence, Z ∼ Nk(µ,Σ) holds by the definition. In particular, Nk(µ,Σ) exists.

Remark A k-dimensional real valued random vector X has a normal distribution N(µ,Σ) if and only

if P̂X(t) = exp{itTµ− 1
2
tTΣt}.

15.2. Central limit theorems.

Theorem 86 (Feller-Lindeberg 83) Let (Ωn,An, Pn), n ∈ N be a sequence of probability spaces. Let
Xn,1, . . . , Xn,kn ∈ L2(Ωn,An, Pn) be independent centered variables, i.e. EXn,1 = . . . = Xn,kn = 0, where
kn ∈ N, whenever n ∈ N. Denote Yn =

∑n
k=1Xn,k. Let

var(Yn) =
kn∑
k=1

var(Xn,k) =
kn∑
k=1

EX2
n,k → 1, n→∞(22)

(∀ ε > 0)
kn∑
k=1

E[X2
n,k; |Xn,k| ≥ ε]→ 0, n→∞.(23)

Then Yn → Y in distribution, where Y ∼ N(0, 1).

Proof: Obviously, P̂Yn(t) =
∏kn

k=1 P̂Xn,k(t). In order to obtain that P̂Yn(t)→ e−
1
2
t2 , we use lemma above

with an,k = P̂Xn,k(t)− 1. First, since EXn,k = 0, we obtain from lemma above theorem 73 that

|an,k| = |EeitXn,k − 1| ≤ E|π1(tXn,k)| ≤ Emin{2|tXn,k|, (tXn,k)2

2
} ≤ E

(tXn,k)2

2
= 1

2
t2EX2

n,k.

Then we immediately obtain that

kn∑
k=1

|an,k| ≤ 1
2
t2

kn∑
k=1

EX2
n,k → 1

2
t2

as n→∞. Further, we will show that mn := max{|an,k|; k = 1, . . . , kn} → 0 as n→∞, which gives that∑kn
k=1 |an,k|2 ≤ mn ·

∑kn
k=1 |an,k| → 0 as n→∞. Let ε > 0, then

|an,k| ≤ 1
2
t2EX2

n,k ≤ 1
2
t2ε2 + 1

2
t2
∑kn

k=1 E[X2
n,k; |Xn,k| ≥ ε]→ 1

2
t2ε2.

13If (Ω,A, P ) = ({0}, {∅, {0}}, δ0), then the canonical random variable X ∼ N(0, 0), but there exists no Y ∼ N(0, 1) such
that X =as 0 · Y = 0. On the other hand, if the underlying probability space admits Y ∼ N(0, 1), then X =as Y · 0.
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Since ε > 0 was arbitrary, we obtain mn → 0 as n→∞. Thus, it remains to show that
∑kn

k=1 an,k → −
1
2
t2.

By lemma above theorem 73,

|an,k + t2

2
EX2

n,k| = |EeitXn,k − 1− itEXn,k + t2

2
EX2

n,k| = |Eπ2(tXn,k)| ≤ E[t2X2
n,k min{1, | t

6
Xn,k| }]

Let ε > 0 be arbitrary. Then the same steps as above give that

|
kn∑
k=1

an,k + t2

2

kn∑
k=1

EX2
n,k| ≤ t2

kn∑
k=1

E[X2
n,k; |Xn,k| ≥ ε] + |t|3ε

6

kn∑
k=1

EX2
n,k →

|t|3ε
6
.

Since ε > 0 was arbitrary, we obtain the desired convergence
∑kn

k=1 an,k → −
1
2
t2. Then the above mentioned

lemma gives that P̂Yn(t)→ P̂Y (t), where Y ∼ N(0, 1), and therefore Yn → Y in distribution. �

Theorem 87 (Lévy-Lindeberg 84) Let Xn, n ∈ N be independent identically distributed random vari-
ables with µ = EX1 and var(X1) = σ2 ∈ (0,∞). Then

1

σ
√
n

(
n∑
k=1

Xk − nµ

)
→ Y

as n→∞ in distribution, where Y ∼ N(0, 1).

Proof: Put Xn,k = Xk−µ
σ
√
n

and kn = n. Then Xn,1, . . . , Xn,kn ∈ L2 are independent centered variables

with var(X1) = 1
n
. Then var(Yn) =

∑n
k=1 var(Xn,k) = 1. We verify (23). Let ε > 0. Then

n∑
k=1

E[X2
n,k; |Xn,k| ≥ ε] = nE[|X1−µ

σ
√
n
|2; |X1−µ

σ
√
n
| ≥ ε] = σ−2E[|X1 − µ|2; |X1 − µ| ≥ εσ

√
n]→ 0

as n→∞ since X1 ∈ L2. By theorem 86, Yn → Y in distribution as n→∞, where Y ∼ N(0, 1). �

Theorem 88 (Moivre-Laplace) Let Xn ∼ Bi(n, p), n ∈ N. Then

Xn − np√
np(1− p)

→ Y

in distribution as n→∞, where Y ∼ N(0, 1).

Proof: Let us consider a Bernoulli sequence of independent random variables Yk with alternative distri-
bution with parameter p ∈ (0, 1), i.e. Yk ∼ Bi(1, p). Then Zn =

∑n
k=1 Yk ∼ B(n, p) ∼ Xn, and theorem 87

says that (Zn − EZn)/
√

var(Zn)→ Y, in distribution as n→∞, where Y ∼ N(0, 1). �

Theorem 89 (Ljapunov) Let (Ωn,An, Pn), n ∈ N be a sequence of probability spaces. LetXn,1, . . . , Xn,kn ∈
L2(Ωn,An, Pn) be independent centered variables, i.e. EXn,1 = . . . = Xn,kn = 0, where kn ∈ N, whenever
n ∈ N. Denote Yn =

∑n
k=1 Xn,k. Let

var(Yn) =
kn∑
k=1

var(Xn,k) =
kn∑
k=1

EX2
n,k → 1, n→∞(24)

(∃ δ > 0)
kn∑
k=1

E|Xn,k|2+δ → 0, n→∞.(25)

Then Yn → Y in distribution, where Y ∼ N(0, 1).

Proof: We verify the Feller-Lindeberg condition (23) in the statement of the theorem 86. Let ε > 0,
then

kn∑
k=1

E[X2
n,k; |Xn,k| ≥ ε] ≤ ε−δ

kn∑
k=1

E|Xn,k|2+δ → 0, n→∞.

Then Yn → Y in distribution holds by theorem 86, where Y ∼ N(0, 1). �



51

Theorem 90 (Feller-Lindeberg, multi-dimensional CLT) Let (Ωn,An, Pn), n ∈ N be a sequence of
probability spaces and d ∈ N. Let Xn,1, . . . , Xn,kn ∈ L2(Ωn,An, Pn)d be independent centered random
vectors, i.e. EXn,1 = . . . = Xn,kn = 0 ∈ Rd, where kn ∈ N, whenever n ∈ N. Denote Yn =

∑n
k=1 Xn,k. Let

var(Yn) =
kn∑
k=1

var(Xn,k) =
kn∑
k=1

EXn,kX
T

n,k → Σ ∈ Rd, n→∞(26)

(∀ ε > 0)
kn∑
k=1

E[||Xn,k||2; ||Xn,k|| ≥ ε]→ 0, n→∞,(27)

where ||Xn,k||2 = XT

n,kXn,k. Then Yn → Y in distribution, where Y ∼ Nd(0,Σ).

Proof: We will use Cramer-Wold theorem II saying that convergence of random vectors in distribution
can be verified by verifying of the convergence of all linear combinations in distribution. Let λ ∈ Rd, we
are going to show that λTYn → λTY in distribution as n → ∞. Let us consider the first case λTΣλ = 0.
Then

E|λT
Yn|2 = var(λ

T
Yn) = λ

T
var(Yn)λ→ λ

T
Σλ = 0

as n→∞, which means14 that λTYn
L2−→ 0 as n→∞. Then λTYn→P 0, and therefore λTYn → 0 as n→∞

in distribution. Now assume that λTΣλ > 0 and put

Yn,k =
λTXn,k√
λTΣλ

.

Then Yn,k, k = 1, . . . , kn are independent centered random variables. Denote

Zn =
kn∑
k=1

Yn,k.

Then

var(Zn) =
kn∑
k=1

var(Yn,k) =
kn∑
k=1

var(λTXn,k)

λTΣλ
→ 1

as n→∞. Let ε > 0. Since

|Yn,k| = |λ
TXn,k√
λT Σλ
| ≤ ||λ||√

λT Σλ
· ||Xn,k||,

we get that

kn∑
k=1

E[|Yn,k|2; |Yn,k| ≥ ε] ≤ ||λ||
2

λTΣλ

kn∑
k=1

E[||Xn,k||2; ||Xn,k|| ≥
ε
√
λTΣλ

||λ||
]→ 0, n→∞.

Then theorem 86 gives that Zn → Z as n → ∞ in distribution, where Z ∼ N(0, 1), and therefore

λTYn =
√
λTΣλ ·Zn → λTY in distribution as n→∞, since λTY ∼ N(0, λTΣλ) holds as Y ∼ Nd(0,Σ). �

Theorem 91 (Lévy-Lindeberg, multi-dimensional CLT) Let d ∈ N and Xn ∈ Ld
2, n ∈ N be independent

identically distributed random vectors with µ = EX1 ∈ Rd and var(X1) = Σ ∈ Rd×d. Then

1√
n

(
n∑
k=1

Xk − nµ

)
→ Y

as n→∞ in distribution, where Y ∼ N(0,Σ).

Proof: Put kn = n and Xn,k = n−1/2(Xk − µ) ∈ Ld
2. Then EXn,k = 0 ∈ Rd and Xn,k, k = 1, . . . , n are

independent variables with
n∑
k=1

var(Xn,k) = n var(Xn,1) = var(X1) = Σ.

14In fact, we should assume (without loss of generality) that Yn are defined on the same probability space. For example,
we can consider (Ω,A, P ) = ⊗n∈N(Ωn,An, Pn) and Ỹn(ωk, k ∈ N) = Yn(ωn). Then PỸn

= Pn◦Y −1
n , and therefore E|λT

Yn|2 =
E|λT

Ỹn|2 → 0 as n → ∞, which means that λT
Ỹn

L2−→ 0 as n → ∞, and therefore λT
Ỹn→P 0, which implies that λT

Ỹn → 0 in
distribution. This immediately gives that also λT

Yn having the same distribution as λT
Ỹn convergences to zero in distribution.
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Let ε > 0. Then
kn∑
k=1

E[||Xn,k||2; ||Xn,k|| ≥ ε] = nE[||X1−EX1√
n
||2; [||X1−EX1√

n
|| ≥ ε]

= E[||X1 − EX1||2; ||X1 − EX1|| ≥ ε
√
n]→ 0

as n→∞, since ||X1 − EX1|| ∈ L2. By theorem 90,
∑n

k=1Xn,k → Y in distribution as n→∞. �

Theorem 92 (CLT for multidimensional distribution) Let d ∈ N and Xn ∼ M(n, p), n ∈ N be a sequence
of random vectors, where M(n, p) stands for the d-dimensional multinomial distribution with parameters

n ∈ N and p ∈ [0, 1]d is such that
∑d

k=1 pk = 1. Then

n−1/2(Xn − EXn)→ X, in distribution, where X ∼ N(0, diag p− ppT
).

Proof: Let Yn ∼ M (1, p), n ∈ N be independent variables. Then Xn ∼
∑n

k=1 Yk and the statement follows
from theorem 91 as

var(X1) = EX1X
T

1 − EX1EX
T

1 = EdiagX1 − EX1EX
T

1 = diag p− ppT
.

�

Theorem 93 (Ljapunov, multi-dimensional CLT) Let (Ωn,An, Pn), n ∈ N be a sequence of probabil-
ity spaces and d ∈ N. Let Xn,1, . . . , Xn,kn ∈ L2(Ωn,An, Pn)d be independent centered random vectors,
i.e. EXn,1 = . . . = Xn,kn = 0 ∈ Rd, where kn ∈ N, whenever n ∈ N. Denote Yn =

∑n
k=1 Xn,k. Let

var(Yn) =
kn∑
k=1

var(Xn,k) =
kn∑
k=1

EXn,kX
T

n,k → Σ ∈ Rd, n→∞(28)

(∃ δ > 0)
kn∑
k=1

E||Xn,k||2+δ → 0, n→∞.(29)

where ||Xn,k||2 = XT

n,kXn,k. Then Yn → Y in distribution, where Y ∼ Nd(0,Σ).

Proof: We verify the Feller-Lindeberg condition (27) in the statement of the theorem 90. Let ε > 0, then

kn∑
k=1

E[||Xn,k||2; ||Xn,k|| ≥ ε] ≤ ε−δ
kn∑
k=1

E||Xn,k||2+δ → 0, n→∞.

Then Yn → Y in distribution holds by theorem 90, where Y ∼ Nd(0,Σ). �

16. Convergence of distribution functions

Theorem 94 Let Xn ∈ L(Ωn,An, Pn), n ∈ N and X ∈ L(Ω,A, P ) be such that Xn → X as n→∞ in
distribution. If FX(x) = P (X < x) is a continuous function, then

sup
x∈R
|FXn(x)− FX(x)| → 0

as n→∞.
Proof: Obviously FX(−∞+) = 0, FX(∞−) = 1. Let ε > 0 be arbitrary. Then there exists k ∈ N and

real values x1 ≤ . . . ≤ xk such that

|FX(xj)− FX(xj−1)| ≤ ε, j = 1, . . . , k + 1,

where x0 = −∞, xk+1 = +∞, and FX(−∞) := 0, FX(∞) := 1. Since FXn(x) → FX(x) holds at each
point x ∈ R such that FX is continuous at x and since FX is a continuous function, we get the pointwise
convergence FXn → FX . Thus, there exists n0 ∈ N such that

∀n ≥ n0 ∀j = 1, . . . , k |FXn(xj)− FX(xj)| ≤ ε

Let x ∈ R, then there exists j ∈ {1, . . . , k + 1} such that x ∈ R ∩ [xj−1, xj]. Then

FXn(x)− FX(x) ≤ FXn(xj)− FX(xj−1) = FXn(xj)− FX(xj) + FX(xj)− FX(xj−1) ≤ 2ε

FXn(x)− FX(x) ≥ FXn(xj−1)− FX(xj) = FXn(xj−1)− FX(xj−1) + FX(xj−1)− FX(xj) ≥ −2ε

Thus, |FXn(x)− FX(x)| ≤ 2ε holds for every x ∈ R whenever n ≥ n0. �
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Corollary Let Xn ∈ L(Ωn,An, Pn) be such that Xn → X in distribution as n→∞, where X ∼ N(0, 1),
then

sup
x∈R
|FXn(x)− Φ(x)| → 0

as n→∞, where Φ(x) = P (X < x).

17. Local limit theorems

Theorem 95 Let Xn ∈ L2(Ω,A, P ), n ∈ N be independent identically distributed random variables
with EXn = µ and var(Xn) = σ2 ∈ (0,∞) and with equidistant distribution with an origin a ∈ R and
a maximal step d ∈ (0,∞). Denote Sn =

∑n
k=1Xk. Then

√
n · sup

x∈Ln
|P (Sn=x)

d
− 1

σ
√
n
ϕ(x−nµ

σ
√
n

)| → 0

as n→∞, where Ln = {an+ kd; k ∈ Z}.
Proof: Without loss of generality, we assume that d = 1 and a = 0, otherwise we consider i.i.d. variables

Yk = (Xk − a)/d. It follows from inversion formula for equidistant random variables that

σ
√
n P (Sn = x) = σ

√
n

2π

∫ π
−π e

−isxP̂Sn(s) ds = 1
2π

∫ πσ√n
−πσ
√
n

exp{−itx
σ
√
n
}P̂Sn( t

σ
√
n
) dt

= 1
2π

∫ πσ√n
−πσ
√
n

exp{−it(x−nµ)
σ
√
n
}P̂Sn−nµ( t

σ
√
n
) dt

holds if x ∈ Ln and from inversion formula for the densities that

ϕ(x−nµ
σ
√
n

) = 1
2π

∫
R e
−itx−nµ

σ
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Then
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where
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Since X1 − µ is a random variable with equidistant distribution with a maximal step 1, we get that

c(ε) = sup
ε≤|s|≤π

|P̂X1−µ(s)| ∈ [0, 1),

and therefore Jn(ε) ≤ 1
2π
c(ε)nπσ

√
n→ 0 as n→∞ holds whenever ε ∈ (0, π). Finally, we will show that

there exists ε > 0 small enough so that Kn(ε)→ 0 as n→∞. Since Z1 = X1−µ
σ

has EZ1 = 0 and EZ2
1 = 1,

we get that
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holds if ε ∈ (0, δ/σ]. Thus, we may use Dominated Convergence Theorem in order to obtain that Kn(ε)→ 0
as n→∞ if ε = δ/σ, since

P̂Sn−nµ( t
σ
√
n
) = P̂Yn(t)→ e−

1
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as n→∞, where Yn = (Sn − nµ)/(σ
√
n)→ Y in distribution, where Y ∼ N(0, 1). �

Lemma Let X ∈ L(Ω,A, P ) have a bounded density fX(x) ≥ 0 and a non-negative characteristic

function P̂X(t). Then P̂X(t) is an integrable function15.

15And therefore there exists a continuous version of the density of X.
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Proof: Let Yn ∼ N(0, 1
n
) and Y ≡ 0, then P̂Yn(t) = e−

t2

2n → 1 = P̂Y (t), where Y ≡ 0. Since P̂X(t) is
assumed to be non-negative, we obtain from Fatou’s lemma that∫
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Further, we obtain from inversion formula for the density fN(0,1/n)(x) of N(0, 1
n
) that

1
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Let c ∈ (0,∞) be such that fX(x) ≤ c hold for every x ∈ R, then∫
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Thus, we get that
∫

R P̂X(t) dt ≤ 2πc <∞. �

Theorem 96 Let Xn ∈ L2(Ω,A, P ), n ∈ N be independent identically distributed random centered
variables with a bounded density f(x) and var(X1) = σ2 ∈ (0,∞). Denote Sn =

∑n
k=1Xk and Yn = 1

σ
√
n
Sn.

Then Yn has a continuous density fYn(y) for n ≥ 2 and

sup
x∈R
|fYn(y)− ϕ(y)| → 0, n→∞.

Proof: First, we show that Yn has a continuous density if n ≥ 2. Put h(t) = P̂X1(t). Then |h(t)|2 =

P̂X1(t)P̂−X2(t) = P̂X1−X2(t). By the previous lemma in order to show that |h(t)|2 is integrable, it is enough
to show that there exists a bounded density of Z = X1 − X2, i.e. that the distribution function of Z is
Lipschitz. Obviously,

FZ(z) = P (X1 −X2 < z) = P (X1 < X2 + z) =
∫
P (X1 < x+ z)fX1(x) dx,

and therefore the corresponding density of Z can be considered in the form

fZ(z) =
∫
fX1(x+ z)fX1(x) dx.

Now, it is seen that fZ(z) ≤ c holds if 0 ≤ fX1(x) ≤ c holds for every x ∈ R. Obviously,

|P̂Yn(t)| = |h( t
σ
√
n
)|n ≤ |h( t

σ
√
n
)|2 ∈ L1(R,B(R), λ)

and we obtain from inversion formula for the densities that fYn has a bounded and continuous version
given by the inversion formula.

Second, we use the above-mentioned inversion formula for densities in order to obtain that
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Let ε > 0 be fixed now and put
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∫
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Since
∫
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t2 dt < ∞, we immediately obtain that In(ε) → 0 as n → ∞ holds for every ε > 0. Since∫

|h(t)|2 dt < ∞ and h(t) is a uniformly continuous function, we obtain that |h(t)| → 0 as |t| → ∞,
otherwise we would find ε, δ > 0 and a sequence of tn such that (tn− δ, tn + δ), n ∈ N are disjoint intervals
such that |h(t)| ≥ ε holds on their union, which contradicts integrability condition. Since X1 has a density,
it does not have an equidistant distribution, which means that |h(t)| < 1 holds for every t 6= 0. Since |h(t)|
is a continuous function tending to zero as |t| → ∞ and attaining values in [0, 1) on R\{0}, we get that

c(ε) := sup{|h(t)|; |t| ≥ ε} ∈ [0, 1)

holds for every ε > 0. Then
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∫
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as n→∞. Since EX1 = 0, E(X1/σ)2 = 1, we get that h( r
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Hence, we have a convergent majorant e−
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t2 , and Dominated Convergence Theorem gives that

Kn(ε)→ 0 as n→∞, since

h( t
σ
√
n
)n = P̂Yn(t)→ e−

1
2
t2

as n→∞ by Lévy-Lindeberg central limit theorem. �


