1. AXIOMATIC DEFINITION OF PROBABILITY

1.1. Probability space. Let © # (), and A C 2% be a o-algebra on 2, and P be a measure on A with
P(2) =1, i.e. P is a probability measure. Then the triplet (£2,.4, P) is called a probability space.

TERMINOLOGY

e ()... sure event

o we)... elementary event

e Ac A... random event

e P(A)... probability of A

e ANB=10... the events A, B are incompatible (disjoint)

Examples
(1) Q # 0 is at most countable set, and we require that {w} € A whenever w € Q. In order to A satisfy
the axioms of g-algebra, we have to put A = 2. If P is a probability on (£2,.A), it has to be of the
following form
P(A) = pr, where p, >0 and pr =1.
weA weN
In this case (2, A, P) is called a discrete probability space.

(2) Q € B(R*) is uncountable and even of positive k-dimensional Lebesgue measure, where k € N.
Further, we put A = {B € B(R*), B C Q} and

P(A)= [, flw)dw, where f>0 and [, f(w)dw=1.
Then f is called a density and (2,4, P) a continuous probability space.

1.2. Random variable. Let Q # (), let (2, A4), (E, ) be measurable spaces. We say that X : Q — FE is
a random variable if X is measurable, i.e. X 'B = {w € Q, X(w) € B} € A holds whenever B € £.
Moreover (E, ) is called a state space and (2, A) an underlying space.

Remark Let (2, A, P) be a probability space and X : (£, 4) — (F,€) a random variable. Then
(E,&, Px) is a probability space, where Px(B) = P(X € B) if B € £. We also write X : (2,4, P) —
(E, &, Px). The probability measure Py is called a distribution of random variable X.

Proof: Px(F) = P(X € E) =1, and if B,, € £ are pairwise disjoint, then the measure of the countable
union U, B, is Px(U,B,) = P(X € U,B,) = P(U,]X € B,]) =), P(X € B,) =), Px(B,). O

If (E,&, Px) is a discrete probability space, then we say that X is a discrete random wvariable. If
(E, &, Px) is a continuous probability space, we say that X is a continuous random variable.

Theorem 1 Let (E, &, 1) be a probability space. Then there exists a random variable X : (Q, F, P) —
(E,&, 1), i.e. the random variable X has the distribution Px = p.

Proof: Put Q = F,A=E6 P =pand X : e € E— e € E, i.e. X is indentity. Then we have that
Px(B) = P(X € B) = P(B) = u(B), whenever B € £, i.e. Px = p. O

The random variable X from the proof of theorem 1 is called a canonical random wariable, and
(Q, A, P) from the proof is called a canonical probability space in the circumstances of theorem 1.

1.3. Random variables with values in product spaces. A random variable X = (Xi,..., X})" with
values in the product space (Hi:1 E,,®F_ &, is called a k-dimensional random vector. Moreover
if (En, &) = (E,E), then we say that X is a k-dimensional random vector with the state space
(E,E). Finally, if £ = R and &€ = B(R), then X is called a k-dimensional real-valued random
vector.

A random variable X = (X,,n € N) with values in the product space ([[,_, E,, ®>2,&,) is called
a random sequence. Moreover, if (E,,&,) = (E,£) holds for every n € N, then we say that X is
a random sequence with values in (E,E). Finally, if £ = R and £ = B(R), we say that X is

a real-valued random sequence.
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A random variable X = (X;,t € T) with values in the product space (][, Et, ®ier&) is called
a random process (indexed by T ). Moreover, if (Ei, &) = (F,€) holds for every ¢t € T, then we
say that X is a random process with values in (E,E) (indexed by T ). Finally, if £ = R and
&€ = B(R), then we say that X is a real-valued random process (indexed by T ).

Remark We remind the definition of the product o-algebra
®€t = 0({H B, : B, € £, and B; # FE; holds only for finitely many ¢ € T'}).

teT teT
The set B = [[,. By is called a measurable cylinder (with finite dimensional base, where B, € I,
holds for every ¢t € T, and where Ty := {t € T, B; # E,} is finite set (of important indices corresponding
to the measurable cylinder B). We note that the set of all measurable cylinders are closed under finite
intersections.

Theorem 2 Let (2, A, P) be a probability space and T' # 0. Let X; : (,.4) — (E:, &) be a random
variable whenever ¢t € T'. Then X = (X;,t € T') is a random process indexed by 7.

Proof: Denote £ = @ieré& and M ={B e € :[X € Bl € A} C £. Then M is a o-algebra, and we will
show that it contains measurable cylinders. Let B = HteT By be a cylinder with Ty = {t € T, B, # E;}.
Then

(XeBl=[X,teT) e[[Bl=(Xi€B]=()[X;€B]cA ie BeM.
teT teT teTy

Then we get that M = £ = ®,er&;, which means that X is a random process indexed by 7. O

Corollary Let X,, : (2, A) — (E,,&,) holds for n € T.

(1) f T ={1,...,k}, then X = (X1,...,X})" is a k-dimensional random vector.
(2) If T'=N, then X = (X,,,n € N) is a random sequence.

Lemma A Let (E,,d,),n € N be at most countable system of separable metric spaces, where N C N,
with Borel o-algebra B(E,) = &,. Then their product (£, d) is again a separable metric space with Borel
o-algebra B(E) = QnenB(E,).

Remark The separability assumption in the previous lemma is essential. Generally, we have only

Q) BE) < B([[E).

teT teT

(1) If N ={1,...,k}, then d from the previous lemma can be of the form d(z,y) = 22:1 Ay (T, Yn)-

(2) If N = N, then we can consider d(z,y) = Y~ ; 27" min{1, d,,(z,, y») }. Note that min{1, d,,(z,, y»)}
plays the role of metric on E equivalent with d,,, but bounded by 1. Then the weights 27" ensure
the convergence of the corresponding sum.

Theorem 3 Let (2,.A4) be a measurable space and (E,,d,),n € N C N be at most countable system
of metric spaces, and let X, : (2, A) — (E,, B(E,)) be random variables. Then

X = (X,n € N): (9,4) — (B, B(E))
is also a (measurable) random variable, where E =[] _\ E.

Proof: By the previous lemma B(E) = ®,envB(E,). So, we have to show that X is a random process
indexed by N, but it follows from theorem 2. O

Let X : (2, 4) — (E, &) be a random variable. Then the o-algebra o(X) = {[X € B] : B € £} is called
a o-algebra generated by the random variable X.

Theorem 4 Let X : (2, A) — (E, &) be arandom variable and Y : (2, 4) — (R, B(R)) be a real-valued
random variable such that o(Y') C o(X). Then there exists a measurable function f : (E, &) — (R, B(R))
such that Y = f(X).
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Proof: If ¢ € Q, then [Y < ¢] € o(Y) C o(X) = {[X € B] : B € £}. Hence, there exists B, € £ such
that [Y < ¢| = [X € B,]. Put
h(z) =inf{qg € Q: 2 € By} and f(x)=h(z) " lp@)er-
Then
h(X)=inf{ge Q: X e B,} =inf{geQ:Y <¢q} =Y €R,

and therefore also f(X) = Y. Thus, it remains to show measurability of f. Instead, we show that h is
measurable. Let ¢ € R, then

h<c={reFE:inf{geQ:zxe B} <c}= U {reE:x€B,} = U B,eé&
c>qeQ c>q€Q

and then the measurability of the real-valued function f follows from the measurability of a generalized
function h that may attain non-real values +oo. O

Remark Let X = (X;,¢t € T') be a random process, then o(X) = o(Ugero(X)).
In particular, o(X) = o(o(X;) U ... Uo(Xg)) holds if 7" = {1,...k} and we have a similar equality for
random sequence, when T = N.

Proof: Immediately, we have that o(X;) C o(X) holds for every ¢ € T, which yields that o(X) 2O
0 (Ugera(Xy)). Hence, we will show the reverse inclusion in the following. Let B € ®;cr&; be a measurable
cylinder, then there exist By € & such that the set Top = {t € T : B, # E;} is finite and such that
B = [l,er B:- Then

(X € Bl = [ [X: € B € 0(Uera(Xy)).

teTo
Then set of all measurable cylinders is a subset of the o-algebra
M={Be(RE& X € B] € o(Uera(Xy))},
teT
which is generated by the set of measurable cylinders, and so we get that M = ®;cr&;. Then we obtain

from the definition that o(X) = {[X € B] : B € ®@er&t} C 0(Uiero(Xy)). O

Remark Every o-algebra F is generated by a random variable, namely by a real-valued process indexed
by F in the form 1z = (1p: F € F), where 1p(w) =1ifw e F and 1lp(w) =0ifw ¢ F.

Examples

(1) Note that o(17) = {0, F, Q\F,Q} holds in the previous remark if F' € F C 2.
(2) If random variable X : (Q, A) — (E,&) is constant z, then o(X) = {0, 2}, and this set is called
a trivial o-algebra on ). If P is a probability on (2, .A4), then

Px(B) = 1[;563] = 13(1‘) = (5z(B),

where ¢, defined above is called a Dirac measure at point x.
(3) Let X : (Q,A) — (£, &) attain values in {z,, : n € N} = rangeX, where N C N. Then

o(X) = o({[X = 2,],n € N}) = {[X € M]: M C N}.

Let P be a probability measure on (£2,.4) and denote p, = P(X = n). Then the distribution Py
of X under P is given by the following formula

PX<B) = Z Pn = anl[a:neB] = anlB(xn) = an(smn<B)a
n:xn€B neN neN neN

and it is an (infinite) convex combination of Dirac measures d,, at points z,, with weights p,.

Remark Let P be a probability measure on (2, 4) and X : (2, A) — (E,€). Then (2,0(X), Plo(X))
is a probability space.



2. DISTRIBUTION FUNCTIONS

(1) One-dimensional case. A real-valued function F defined on R is called a distribution function
if it is non-decreasing left-continuous with lim, ., F'(z) = 0 and lim,_,., F'(z) = 1.

Let 1 be a Borel probability measure on R, then F'(x) = p(—00, x) is a distribution function, and
if X is a random variable with the distribution Px = p, then F(x) = P(X < z) is a distribution
function, and it is called a distribution function of variable X and it denoted by Fx(x). Then
we have that P(a < X < b) = Fx(b) — Fx(a) holds if a < b.

Examples

(a) Let X = x be a constant variable. Then Px = d, and Fx(y) = 0,(—00,y) = lz<y is the
distribution function corresponding to Dirac measure J, at point x.

(b) Let X be a discrete random variable with values in {z,,n € N}, where N C N. Then

FX(£) = Z Pn = anl[:vn<a:]a
n: Tnp<x n
where p, = P(X = x,), and Fx can be regarded as an (infinite) convex combination of

distribution functions corresponding to Dirac measures ., at points z,,.

(2) Multidimensional case. Let k € N and z,y € R¥, we write z < y if ,, < y, holds for every
n < k. Similarly, we write x < y if x,, < y,, holds for every n < k, and finally we write x = y if
Tn = Y, holds for every n < k.

Let X = (X1,...,X3)" be a k-dimensional real-valued random vector'. Then the following function
Fx(x) = P(X < x) = Px(—o00,2), z€R"

is called a distribution function of random vector X, where x = (xq,...,x;)" and (—o0,x) =

HZ:I (—OO, l‘n)

Theorem 5 Let k € N. Then F : R* — [0, 1] is a distribution function of a random vector if and only
if it satisfies the following conditions
1) VoeeR 3 {2"},eny C R such that 2" <z & F(2") — F(z) as n — oo.
2) 3 {2"}nen C R” such that 2" — (o0,...,00) & F(a2") — 1 asn — oo.
YVne{l,....,k} VeeRF F(xy,...,00 1,Y,Tns1,...,2) — 0 as y — —oo.
)V ax,y € RF

(
(
(3
(4
v<y = YL (FDER RE) 20

6€H?:1{Ij7 yj}

Remark

(1) If £ = 1, then the condition (4) says that F' is non-decreasing, and if £k = 1 and this condition is
satisfied, then (1) corresponds to the left continuity of F, (2) corresponds to lim, .., F'(z) =1 and
(3) to lim,—,_ F(z) = 0.

(2) If k =2, then (4) is of the form: if x <y then F(x) + F(y) — F(z1,y2) — F(y1,2) > 0. If F' = FY,
then the left-hand side is just P(z < X <Y) = Px([z1,y1) X [22,y2)) and it is natural that this
value should be non-negative.

Lemma B Let S # 0,8 C M C 2° If S is closed under finite intersections and M is a Dynkin system,
ie.
(1) Se M
(2) [AABEM&B2A] = B\Ae M
(3) if B, € M are pairwise disjoint, then the countable union U, B,, € M.
Then o(S) € M.

Lemma C Let (£, £) be a measurable space and p, v two probability measures on (E, £) that agree on
a system S C & closed under finite intersection such that ¢(S) = €. Then p = v.

'We know that X is a random variable with values in (R*, B(R¥)).
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Proof: Denote M = {B € £ : u(B) = v(B)} and realize that it is a Dynkin system in order to obtain
from Dynkin lemma that £ = 0(S) C M C €. O

Corollary Let X,Y be two k-dimensional real valued random vectors with the same distribution func-
tion F'y = Fy. Then they have the same distribution Px = Py-.

Proof: Denote S = {(—o0,z),r € R*}. Then S is a system closed under finite intersection generating
Borel g-algebra B(R*) and Px(—o0,z) = Fx(x) = Fy(r) = Py(—00,z) hold whenever € R* i.e. Py = Py
holds on S. By the previous lemma, Py = Py holds on B(RF). O

Let X = (X, t € T) be a random process with the index set 7" and 7, C 7" a subset. Then we denote
by X|1, = (X, t € Tp) its restriction to the index set Ty. Further, we denote by IC(T") the system
of all finite subsets of T.? By the system of finite-demiensional distributions of the proces X
we mean the system of distributions (Px ., : To € K(T)).

Corollary Let X,Y be two random processes indexed by T with the same finite-dimensional distribu-
tions, then they have the same distribution Py = Py.

Proof: Let us denote by (Fi, &) the state space of random variables X, Y;. Note that they have to
have the same state space as they have by assumption the same distribution. Let S be the system of all
measurable cylinders generating the product o-algebra ®,c7&. By the previous lemma, we are only to
show that Py, Py agree on §. Let B € S, then there are B, € &, if t € T such that B = HteT B, and that
To ={t € T, By # E;} is finite. Then

Px(B) = P([|[X: € B))) = P([ | [X: € Bl]) = Pix,uem)(] [ Br) = Povisery (][ B) = ... = Pr(B).
teT teTo teTo teTo
Thus, Px = Py holds on § and the previous lemma gives Py = Py. O

3. INDEPENDENCE

3.1. Independence of random variables. Let T # () and X, : (Q, A, P) — (FE, &, Px,) be random
variable if ¢ € T. We say that the random wvariables X;,t € T are independent if for every finite
subset Ty C T
P((IX € B]) = ][ P(X: € By)
teTy teTy
holds whenever B; € &, t € T

Theorem 6 Let T # () and (X;,t € T') be a random process, then the variables X;,¢ € T are independent
if and only if Px = ®erP,-

Proof: Let X;,t € T be independent random variables and let B = [],., B; be a measurable cylinder
with the finite set Ty of important indices. Then

Px(B) = P(ﬂ[Xt €B))=P m [Xi € BY]) = H P(X, € By) = H Px,(B) = [®Pxi](3)'
teT teTo teTo teTo teT
It means that Px and ®.c7Px, agree on the system of measurable cylinders closed under intersections and
generating the product o-algebra. By lemma from the previous section, Px = ®;c1Px, holds.

Now assume that Py = ®;crPx, holds, we are going to show that the random variables X;,t € T are
independent. Let Ty be a finite subset of T" and let B, € & if t € Ty. We put B, = E, if t € T\Tj in order
to be able to introduce a measurable cylinder B = [[,. B;. By the definition of the product measure, we
get that

P X0 € B) = Px(B) = (@ Pxl(B) = [] Pr(B) = [] P(X. € B).
teTy teT teTy teTy
Thus, the variables X;,¢ € T" are independent. U

Corollary Let X;,Y; be random variables with the same state space (E;, &) whenever ¢t € T. Let
(1) X, t € T be independent variables

2If T is a topological or metric space, it is usual to denote by K (T') the set of all kompact sets in T'. Here, we can imagine
that T is endowed with the discrete topology so that IC(T") is just the set of all finite subsets of T'. Further note that compact
sets share some properties of finite set and that this was the motivation for introducing the notion of compact sets.



(2) Y;,t € T be also independent variables.
If Px, = Py, holds for every ¢ € T, then Py = Py holds.
Proof: By theorem 6, Py = ®erPx, = Qier Py, = Py. 0
Remark The assumption of independence cannot be omitted. Let Z be a random variable with uniform
distribution on (0, 1), i.e. a continuous random variable with the density f(z) = 1(o,1)(2). Then X = (Z,Z)"

and Y = (Z,1 — Z)" are two random vectors with completely different distribution but with the same
marginal distributions Px, = Py, = Pz = Px, = Py,.

Theorem 7 Let X = (Xi,...,X};)" be a k-dimension real-valued random vector, where k& € N. Then
the variables X, ..., X, are independent if and only if

(1) Fx(z) = || Fx,(zn)

holds for every x = (z1,...,7;)" € RF.
Proof: Let us assume that (1) holds. Then

k
Px(—o0, ) HFX Tn) —HPX —00, Ty,) ®PX
n=1

Thus, Py and ®F_ Py, agree on {(—oco,z),r € R¥} which is a system closed under finite intersec-
tions generating B(R*). By lemma from the previous section, Px = ®F_ Py, , and theorem 6 gives
that Xi,..., X} are independent variables. On the other hand, if X;,..., X} are independent, we put
B = (—o00,x) = Hﬁzl B,,, where B,, = (—o0,x,), and then

Fx(z) = P(X € B) = | [ P(X. € By) HFann

holds for arbitrary z = (z1,...,z)" € R*. O

Theorem 8 Let X = (Xi,...,X})" be a k-dimensional

(1) discrete random vector with values in at most countable set D = Hﬁ:l D,,. Then the random
variables X, are also discrete distribution with values in D,, with

P(X, =,) = Z P(Xi=xz1,..., Xk = x1).
x5, jF#n

Further, the variables X7,..., X, are independent if and only if
P(Xy=a1,..., X =) = [ [ P(X0 = 22)

holds for every x = (1,...2%) € D.
(2) continuous real-valued random vector with the density fx(z). Then the variables X, are again
continuous with the density

fX"(x”):/"'//"'/fX(mlw-ka)dﬁUl“'din—1d$n+1---dxk
R R JR R

and they are independent if and only if
fx(xy, ... xp) = H fx, (zn) holds for a.e. x € R".

Proof: The first equality in the statement follows from the theorem on full probability. If the discrete
variables are independent, we put B, = [X,, = z,] and the definition of independence gives the second
equality in the statement. The reverse implication is left to the reader.



It follows from Fubini theorem that

Fx,(v,) = lim Fx / /fyl,..-7yk yn<an] dy1 -+ dyp

2;—00,j7#

/ / // /fyl,--~,yk dyi -+ dyn—1 dYpt1 - - Y dyn.

Thus, we get that Fly, is an absolutely continuous function and the right hand-side of third equality in the
statement can play the role of the corresponding density. It follows from Radon-Nikodym theorem that
the density is unique up to a set of zero measure, which is here a k-dimensional Lebesgue measure.

Further, if the last equality in the statement holds, then Fy(x) = HZ:1 Fx, (x,) holds by integrating
and then theorem 7 gives that the variables X1, ..., X} are independent. On the other hand, if the variables
are independent, we have the equality Fx(z) = H:z:l Fx, (x,) again by theorem 7, and Fubini theorem
gives that

k Tn x1 Tn—1 Tn+1 Tk k
x):HFXn(xn):/ / / / / Hme(ym)dyk"'dyn+1dyn—1"'dyldyn-
ne1 —o0 J —00 —00 —00 —00 ;g

Now, we see that the right-hand side of the last equality in the statement can play the role of the density
of random vector X, and therefore we obtain the last equality in the statement holds almost everywhere
by Random-Nikodym theorem. O

3.2. Elementary conditioning.

Remark Let (€2, A, P) be a probability space and B € A with P(B) > 0, then

Pp: A€ A P(AB) = 2557

is a probability measure on (€2, A) with Pp(B) = 1 and it is called a conditional probability by
the event B under the measure P.> Moreover, if X : (Q,4) — (E,€) is a random variable, we call its
distribution P X~ under the probability P as the conditional distribution of X given B and we
write Pyp = P|BX_1, i.e

Pyp(C) = Pp[X € C]=P(X €C|B) if Ce€E.

Theorem 9 Let X : (Q, A4, P) — (R*, B(R*), Px) be a continuous random vector with the density fx
and B € o(X) with P(B) > 0. Then X : (Q, 4, Pg) — (R*, B(R*), Px|p) is again a continuous random
variable with the density given by

(2) fxiB(x) = fx(x )P(XG)C)’ where C € B(R*) issuch that B =[X € C].

Proof: Let A € B(R*). Since B = [X € (], we obtain that

[y fxi(@) dz = g5 [, Fx(@)1o(@) de = g5 [yoe fx (@) de = 2S00 — P(X € A|B),

and therefore fxp given by (2) can play the role of the conditional density fx|z of X given B. O

Remark Generally (and roughly speaking), if X is a continuous random variable, then it is also con-
tinuous given B, and similarly, if X is a discrete random variable, then it is also discrete given B.

Theorem 10 Let X : (2,4, P) — (E,&, Px) be a random variable and Y : (Q, A, P) — (H,H, Py)
be a discrete random variable with D = {y € H : P(Y = y) > 0}. Then the random variables X, Y are
independent if and only if Pxy—, = Py holds for every y € D.

3Do not confuse conditional probability P|p by the event B with the restriction of probability P on the set B denoted
as P|p, which is a measure that does not have to be probability one. But if we normalize the restriction P|g by P(B), we
obtain a probability measure, which is just Pp.



Proof: Let us assume that the conditional distribution does not depends on the condition, i.e. Px|y—, =
Px holds for every y € D, and let B € £,C' € ‘H. Then

P(X€B,Y€eC)= Y P(XeB|Y=yP( = Y Pxjy—(B)P(Y =y)
yeCND yeCND
> Px(B)P(Y =y)=Px(B)P(Y € CND)=P(X € B)PY € C),
yeCnD

and we get that the variables X, Y are independent. On the other hand, if the variables X, Y are indepen-
dent and B € £,y € D, then

Pxjy—y(B) = P(X € B|Y =y) = 25820 — p(X € B) = Px(B),

i.e. Pxly—, = Px holds for every y € D. 0

Corollary If the variable X in theorem 10 is continuous with the density fx : R¥ — [0, 00), then X,V
are independent if and only if fx|y—,() = fx(x) holds whenever y € D, where = stands for the equality
almost everywhere w.r.t. k-dimensional Lebesgue measure here.

Proof: If X, Y are independent, then theorem 10 gives that Px|y_, = Py << A holds for every y € D,
where \* is a k-dimensional Lebesgue measure, and

dpx‘y =y ae dPX ae f
d\F T d)E

Then the uniqueness of the Radon-Nikodym derivatives gives that fx|y—, = fx holds. On the contrary, if
[xiy=y = = fx holds for every y € D , then Px|y—y = Px, and we obtain from theorem 10 that the variables
X,Y are independent. O

3.3. Independence of systems of events.

Let T # 0, let (€2, A, P) be a probability space and S; C A whenever t € T. We say that a system of the
events Sy, t € T are (mutually, stochastically) independent if for every Ty € T finite and A, € S;,t € Ty

the following equality holds
P(() 4) =[] P(4y).

teTy teTy

Lemma D Random variables X;,t € T  are independent if and only if the o(X};),t € T are independent
systems of random events.

Proof: It follows from the both definition of independence and from the definition of o-algebra generated
by a random variable in form o(X) = {[X € B]: B € £}. O

Theorem 11 Let T # () and let S; be a system of event closed under finite intersections whenever ¢t € 7.
Let us assume that the systems S;,t € T are independent, then also the corresponding o-hulls o(S;),t € T
are independent.

Proof: Let Ty = {t1,...,tx} C T,k € Ny. Denote
Vin)=[0(S4),--,0(S:.)sStryrs - - - » St are independent].

First, realize that V(0) is just our assumption, and therefore it holds. Further, V' (k) is what we want
to show, and this is the reason why to use induction by n. Let us assume that V(n — 1) holds, where
n € N;n < k, we will show that V(n) holds also. By assumption

S, CM={A,€0(S,):P ﬂA HP )ij <n=A; €0(S,).j>n=A; €S}

By Dynkin lemma it is sufficient to reahze that M is a Dynkin system in order to obtain that M = o(S;,),
which is just V(n). O

Theorem 12 Let T = U;c;T* be a non-trivial (I # () disjoint union of non-empty sets T% # (). Let
X : (A, P) — (Ey, &, Px,) be a random variable whenever ¢ € T and let us assume that such variables
are independent. Then we get that the following random variables are also independent (under P)

X'=(XteT): (A - (][ B.Q) &) iel

teT? teT!
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Proof: By lemma, it is sufficient to show that the systems of events o(X?),7 € I are independent. By
theorem 11, it is sufficient to show that the following systems of events closed under intersections and
generating o(X?) = o(X;,t € T") are independent
S = {ﬂ Ay, Ay € 0(Xy) if t € TE, and T} is a finite subset of 7°},i € I.
teTy
Let Iy C I be a finite set and Al e S if i € Ip. Then there exist TP C T finite and A; € o(X;) if t € T}
such that A* = Nycri Ay Denote Ty = U1} and remind that o(X;),¢ € T are independent. Then

P((AY=P(() () 4) =P A) =] PA) =T I] P4 =TT P([) 4) = [ ] P(4).
i€lp i€lp teTg teTy tesS ST teTé tely tETé i€lp

U

Lemma E Let X; : (A, P) — (E,&, Px),t € T be independent random variables and let f; :
(Ey, &) — (Hy, Hy) be also measurable. Then f;(X;),t € T are also independent.

Proof: o(f(X,)) ={[f(X,) € B]: Be H,} ={[X € f;'B]: B€ H,} Co(X;) as f,'B€&,. O

Corollary Let T = U;c;T; be a non-trivial (I # ) disjoint union of non-empty sets T; # @, and let
Xi,t € T be independent random variables. If

H E;, ® &) — (H;, H;) are measurable,

teTy  teT;
then f;(X:,t € T;) are independent random variables.
Proof: It follows from lemma with X* = (X;,t € T;) and £ = Q1. &, By = HteTi E; and theorem 12. [

4. MEAN (EXPECTED) VALUE OF REAL-VALUED RANDOM VARIABLE

Denote R = R U {00, —00} and also B(R) = o([—00,z); 2 € R) the corresponding Borel o-algebra. Let
(Q, A) be a measurable space such that 2 # 0, denote

L =L (Q,A) ={X : (2, A) — (R, B(R))}
the set of all random variables on (£2,.A) with the state space (R, B(R)). Similarly,
L =L A) = {X: (2 A) — (R, BR))}
)-

the set of all random variables on (9, .4) with the state space (R, B(R)
LA A) = {f € L*(Q.A) : f > 0},

Let us assume that P is a probability measure on (2, A). We say that X € L* has a mean (expected)
value EX = fQ X dP if the right-hand side Lebesgue integral exists in R. Otherwise, we say that X does
not have a mean (expected) value. The set of all real-valued random variable on (€2, .4) with a mean
value is denoted as

L* =LA P)={X e L* (%A : E[Xt] < oo, E[X]| < o0}
Further, let p € [0,00), then we denote
Ly =152 A P)={X cL*(Q, A) : E|X[" < oo}
L, =L,(Q,A, P) = L3(, A P) NL(Q, A).
By definition ,,0 - £00 = +00 -0 =0".

Further, put

Let Z C R be a locally finite division of R, i.e. for every a,b € R such that a < b the set (a,b) N Z is
finite. Then the following generalized function

TERm |z|, :=sup{z€Z:2<1}
is measurable from (R, B(R)) to (R, B(R)).

Lemma Let £ C L1(Q,.A) satisfy
(1) 14 € L holds whenever A € A
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(2) if f,g € L and a,b > 0 then af +bg € L
(3)if fpe Land f, T f € LT(Q,A), then f € L.

then £ =1L1(Q,.A).

Proof: If f € L*(9,.A) attains values in {0,1}. Then F'=[f =1] € Aand f = 1r € £ holds by (1).
If f attains values in a finite set K C [0,00), then 1;;—y € £ if k € K, and we get from (2) that also

ZZ/C1FE£.

keK

If fel*(Q,A), weput K, = {j27";j =0,...,n2"}. Then K,, C Ky,y1 and 0 < f,, := |f], T f. Since
fn € LT(Q,.A) attains values in the finite set K,,, we have that f,, € £ and point (3) gives that f € £. O

Theorem 13 (Properties of mean value) Let (€2, A, P) be a probability space.

(1) If A € A, then E[14] = P(A).

(2) If a,b,c € R and X,Y € Lj, then E(aX +bY 4+ ¢) = aEX +bEY +c.

(3) If X,Y € L* and X <Y, then EX < EY.

(4) Monotone convergence theorem: Let X,,_; < X, hold almost surely and X,, € L* if n € N. Let
X, — X as n — oo hold almost surely. If X; € L* is such that EX > —oo, then X, X,, € L* and
EX =lim, FX,.

(5) Fatou’s lemma: Let X,, € L* hold for every n € N. If there exists Z € L* with EZ > —oc such
that Z < X, holds almost surely for every n € N, then

liminf X,, e L* & EZ < EliminfX,, < liminf FX,,.

n—oo n—oo n—oo

(6) Dominated Convergence Theorem: Let X,, € L*,n € N and Z € Lj be such that | X,| < Z holds
almost surely whenever n € N. Then X,, € L} and if there exists X € L* such that X,, — X as
n — oo almost surely, then X € L7 and FX,, — FX asn — oo.

Theorem 14 Let X : (Q, A, P) — (E,&, Px) be a random variable and G : (E, ) — (R, B(R)). Then
G(X) e L*(Q, A, P) if and only if G € L*(F, &, Px). Further, if both sides hold, then

X:fQG JAP = [, G(x) dPy(x).

Proof: Denote £ = {F € L*(E,€) : EF(X) = [, F(z)dPx(z)}. Then (i) if F € L*(E,£) attains values
in {0, 1}, then

EF(X)=P(F(X)=1)=Px({z € E: F(x) = 1}) = [, F(x)dPx(z), ie. Fe€L.
(ii) If a,b > 0 and F,G € L, then we get that aF" + bG € L as follows
E[aF(X) + bG(X)] = aEF(X) + bEG(X) = a [, FdPy + b [, GdPx = [, (aF + bG) dPy.
(iii) Let F,, € £ and let F,, T F € L*(E,£). Then we obtain from Monotone Convergence Theorem that
EF(X) = lim EF,(X) = lim [ F,dPx = [ FdPy, ie Fe¢cL.

By lemma, £ =L (E,€). If G € L*(E,£), then G € L*(E,€), and the first part of the proof gives that
E|G(X)*] = [, G*dPx. This gives the first part of the statement. If G € L*(E, £, Px), then we get that
EG(X)=E[G(X)"| - E[G(X)"] = [,G"dPx — [,G~dPx = [, GdPx.

]
Theorem 15 Let (€2, A, P) be a probability space and B € A with P(B) > 0. If X € L*(Q, A, P), then
X € L*(Q, A, Pp) and
EIX|B] = [ XdRp = 5l [, X AP = 5l E[X 15].

Proof: Denote
L={Y eL"(Q,A): E[X|B] =

(i) If A € A, we show that 14 € £ as follows

E[14]B] = P(AIB) = "5 = g ElLals]

i EIX 151},
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(ii)) If a,b > 0 and Y, Z € L, then we get that aY + bZ € L as follows
ElaY +bZ|B] = aE[Y|B] + bE[Z|B] = 55 E[Y 15) + 55 E1Z 15] = s
(i) f L5Y, TY € LT(Q, A), then Monotone Convergence Theorem gives that

E[Y|B) = lim E[Y, |B] = lim o EIY, 1] = 5 BV 15

_L_Bl(aY +bZ)1g].

(iv) By lemma, £ = L*(Q, A). If X € L*, then X* € L*(2, A) and we get that

E[X|B] = E[X*|B] - E[X~|B] = ZX el A Ll — Bl

Theorem 16 Let X,..., Xi be independent variables.

(1) If X; > 0 holds for every j < k or
(2) if X; € L7 holds for every j < k, then

k k

El[x; =]]EX;

J=1 J=1

Proof: By lemma X; and H?:z X are independent, and therefore we may assume that k = 2. Then
the correct proof can be obtained by induction. Let k£ = 2. First, we assume that X; = X, X, =Y > 0.

(1) If X, Y attain values in {0, 1}, then F[XY]|=P(X =1,Y =1)=P(X =1)P(Y =1)= EX - EY.
(2) If Y attains values in {0, 1}, then we put
Ly ={Z e LY (Q,0(X)): E[YZ] = EY - EZ}.
By (1) Ly contains {0, 1}-valued o(X)-measurable r.v.’s. If a,b > 0 and Z;, Zs € Ly, then
E[Y (aZ, + bZ,)] = aE[Y Z,] + bE[Y Zs) = aEY - EZ, + bEY - EZ, = EY - ElaZ, + bZs).

Hence, aZ; + bZy € L. Finally, if Z € LT(Q,0(X)), then 0 < Z, T Z as n — oo holds with
Zy = |Z] ., where K, is defined as in the proof of the lemma above. Then we get that Z € £ as
follows

ElYZ| = lim E|YZ,|= lim EY -EZ, =FEY -EZ.

n—oo n—oo

By the same lemma £ = LT (2, 0(X)), and the statement of the theorem is proved for {0, 1} valued
random variable Y.

(3) Denote LX = {U € L*(Q,0(Y)) : E[XU] = EX - EU}. Then £X contains {0, 1}-valued o(Y)-
measurable random variables. It can be showed that it is closed under non-negative linear com-
binations and that it is closed under monotone convergence similarly as in step (2). Then we get
from the lemma, we have already used, that £X = L7(Q,0(Y)).

If X)Y € L7, then we get from the first part of the proof that
EXY]=EX'Y'+EX Y |-EX'Y |-EX Y]
= EXYE[Y"|+ E[XT]E[Y |- E[X'|E[Y | - E[X |E[Y"]
— (BIX*] - BIX)(EYY] - E[Y")) = EX - EY,

Lemma If X > 0 is a real-valued random variable, then EX = [*(1 — Fx(x)) dx.
Proof: By definition 1 — Fx(z) =1—-P(X <x) = P(X > z) and we get from Fubini theorem that

EX = [( XdP = [, ,zdPx(z) = [, )fo dsdPx(z) = [;° ooy dPx (2 )ds = [;° P(X > s)ds

Lemma Let X be a real-valued random variable.

(1) Then X € L; holds if and only if > P(|X|>n) < oo
(2) Moreover,

STP(X|>n) < EX <1+ P(IX]>n).

neN neN
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Proof: Since X € LL; holds if and only if |X| € L;, we may prove the statement for Y = |X| > 0. Denote
Z =1Y|z. Then Z <Y < Z+1, and therefore EZ < E|X| <14+ EZ, and X € L, if and only if £Z < oc.
Let us compute

EZ=Y nP(Z=n)=Y > P(Z=n)=)_ Y P(Z=n)=)» P(Z>k) =) P(X|>k)

l

Theorem 17 (Jensen inequality) Let D C R* be a convex set, where k € N. Let X be a k-dimensional
real-valued random vector on (£, A, P) with X(Q) C D. Let EX := (EX,,...,E;,)" € R*. Then EX € D.
If G: D — Ris a convex function, then G(X) € L* and EG(X) > G(EX).

If G is even strictly convex, and X # EX holds with positive probability, then EG(X) > G(EX).

Supporting theorems from convex analysis

(i) Let D C R* where k € N, and z ¢ int D. Then there exists a € R¥, a # 0 such that o’z < infycp a’d.
(i) Let D C R* where k € N, and z € int D. Let G : D — R be a convex function. Then there exists
a € R¥ such that G(z) > G(x) + a" (z — x0) holds for every x € D.

Remark Let assume that the assumptions of (ii) are satisfied and further assume that G is even strictly
convex. Then we have the strict inequality G(x) > G(zg) + a' (x — x¢) for every x € D\{zo}.

Proof: Let us assume the contrary, i.e. that there exists x € D\{zo} such that the strict inequality
does not hold, i.e. we have the equality G(z) = G(z0) + a' (x — ), thus G is linear on the line with the
end points x and zy, which contradicts the assumption that G is strictly convex. O

Proof of Theorem 17- Without loss of generality we assume that P(a; X = b) < 1 holds for every
0 # a; € R* and b # 0.* Then we show that EX € int D. Let us assume the contrary, i.e. let EX ¢ int D.
By (i) the first theorem from convex analysis, there exists 0 # a € R* such that a" EX < infzepa’d. Since
X attains values in D, we get that o' X > o' EX. By additional assumption, P(a'X = ¢’ EX) < 1 holds
and therefore we get the strict inequality ' X > a' EX holds with positive probability. Hence, we have
the strict inequality for the mean value «' EX = Fa'X > a' EX, and this is a contradiction. Therefore
EX eint D.

By the second theorem from convex analysis, there exists a € R* such that

G(r) > G(EX)+ad (x— EX)=:L(x), z€D.

Since L is an affine function and EX € RF we get that L(X) € L;, and therefore G(X) € L* as
G(X) > L(X). Further, we get that EG(X) > G(EX).

If G is a strict convex function and X # EX holds with a positive probability, then G(X) > G(EX) +
a' (X — EX) holds also with a positive probability, and we obtain that EG(X) > G(EX). O

Corollary

(1) Let 0 < p < ¢ < oo and put G(z) := 29/P. Then G is a strictly convex function on D = [0, 00). Let
X €L, put Y = | X|P. Then Jensen inequality gives that E|X|? = EG(Y) > G(EY) = (E|X|P)¥/>,
and therefore (E|X|7)'/7 < (E|X[P)'/?. Moreover, if | X| a non-degenerate random variable, we get
that we have the strict inequality.

(2) Schwartz inequality
Let X,Y € L(Q,A) be such that XY € L,;(Q,4,P). Put Z = (|X|*|Y]?)" and G(z,y) =
—/7y, D = [0,00)2. Then Jensen inequality gives that

E|XY| < /EXPE|Y]%.

4Otherwise we would consider the orthogonal base of R¥ of the form (ay,...,a;) =: A and we define vector ¥ = AX. It
has values in the convex set D := AD. Further, G : y € D — G(A™1y) is a convex function. Since Y; = b holds almost surely,
we can reduce dimension. Put Z = (Ya,...,Y,)" and C = {c € R¥=1: (b,¢")" € D}. Then C is a convex set. Let us consider
F(c) = G(b,c), then F is a convex function on C such that F(Z) = G(Y) = G(X) holds almost surely. If EF(Z) > F(EZ),
then EG(X) > G(EX) and similarly if EF(Z) > F(EZ), then EG(X) > G(EX). This is a suggestion how to reduce the
dimension of the problem. We have showed how difficult would be the complete proof of Jensen inequality. Such a proof
would have to contain an induction containing the above suggested reduction of the dimension.
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(3) Minkovsky inequality
Let XY € Ly(Q, A, P). Put G(z,y) = —(vz+ /y)* on D = [0,00)* and Z = (|X|?,|Y[*)". Then
Jensen inequality gives that
~E(VIXP+YP)? = EG(Z) > G(EZ) = —(VE|X]* + VE|Y]?)?

and we get that

VEIX +Y]P < VE(IX[+[Y])? < VEIX2 + VE|Y].

Let T # (), we say that real-valued random variables X;,t € T defined on (12, A, P) are uniformly
integrable if
lim sup E[|Xy[; | X¢| > ] =0,

€00 teT

where E[X; A] £ E[X - 1] stands for the expected value of X € L(Q, A) on A € A if the value is well
defined.

Lemma Let T # (), and assume that there exists Y € L; such that |X;| <Y holds for every ¢ € T.
Then X;,t € T are uniformly integrable.

Proof: By assumption E[|X;|; |X;| > ¢] < E[|Y];|Y]| > ¢] — 0 as ¢ — 0. O

Let T # (), we say that real-valued random variables X;,t € T defined on (92,4, P) are equally
integrable if

sup E|X;| < oo.
teT

Lemma Let 6 > 0 be such that |X,|'*°,¢t € T are equally integrable, then X;,t € T are uniformly
integrable.

Proof: Let us compute

E{X 1] 2 6] = e B 5] > o < e- B[R] < o sup B, 4] - 0

seT
as ¢ — o0. O

Let T # (), we say that real-valued random variables X;, ¢t € T defined on (2, A, P) have equally
absolutely continuous integrals if

5h%1+ sup{E[| X;|; Al : Ae A, P(A) <i,teT} =0.

Theorem 18 Random variables X;,¢t € T are uniformly integrable if and only if they are equally
integrable and if they have equally absolutely continuous integrals.

Proof: Let X;,t € T be equally integrable with equally absolutely continuous integrals. Then
P(|X)| > ¢) < 1EIX)| < lsup B|X,| < £ (1+supE|X,|) =:d(c) — 0
seT seT

as ¢ — 00, and
E[|X:; | X > o] <sup{FE[|X;];A] : A€ A P(A) <d(c),s €T} —0

as ¢ — 00. On the other hand, let us assume that the random variables X;,¢ € T" are uniformly integrable,
then there exists ¢g such that E|X;| < E[|Xy|;|X:| > co] < 1 holds whenever t € T.

B|Xy| < E[|X4]; [ Xi] > co] + E[| Xe]; [ X¢] < co] <1+ ¢y < o0

Further, if ¢ € (0, 00), then

E[|Xe]; A] < E[|X:]; [ Xe| = o] + ¢+ P(A).
Let € > 0, then there exists ¢ € (0, 00) such that E[|.X;];|X;| > ¢] < § holds whenever ¢ € T. Further, put
do = 5. If 0 € (0,9), then c- P(A) < 5 holds if A € A is such that P(A) < 6, and therefore

sup{E[| Xy|; Al : Ae A, P(A) < teT} <e
holds whenever § € (0, do). O
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Theorem 19 (Vallé-Poussin) Real-valued random variables X;,t € T" are uniformly integrable if and
only if there exist a non-decreasing function G : [0,00) — [0,00) with G(t) — 0o as t — oo such that
| X¢|G(|X¢]),t € T are equally integrable random variables.

Proof: Let | X;|G(|X|),t € T be equally integrable random variables. Then

BlIX:|; [X| > o] < g BIXIG(IX)] < @SETPEHXSIG(\XSD] —0

as ¢ — 00, since G(¢) — oo. On the other hand, assume that the random variables X, ¢t € T are uniformly
integrable. Then there exists a sequence 0 < ¢ T oo such that

E[IXi[; |Xi| = e <47F and put G =37, 2" L) -

Then G is really a non-decreasing function with G(t) — oo as t — oo, and

E[XAGIX)] = D 2"BIX] - Liepenany (IXeD)] < D 2B XX 2 en] <) 27" =1

neN neN neN

O

Theorem 20 (Wald equalities) Let X,,,n € N be a sequence of independent identically distributed real-

valued random variables on a probability space (€2, A, P) independent with a random variable N attaining
only values in Ny. Let us consider the following random sum

N
S=> X.
n=1

(1) If X1, N € Ly, then S € L; and ES = EN - EXy, and var(S) = EN - var(X;) + varN - (EX;)%
(2) If @« € R\{0} is such that e**1 € LL;, then

E[eaS(EeaXl)—N] _ 7 ie. EH exp{aXn

Eexp{aXn =

Proof: (1a) If X,, > 0, then we get from Fubini theorem that

ES:iE(l[N:n]zn:Xk) :iP(N:n)-E(zn:Xk — EX - an — EX,-EN
n=1 k=1 n=1 k=1

as 1jy—pn and Y _;_, X}, are independent real-valued integrable random variables. (1b) If X, may attain all
real values, then XF satisfy assumptions of (1a). Then we get that ESy = E[X{]- EN < oo, where

Sy = ixj.
n=1
Then Sy €Ly, S=5, —5_ €L, and
ES=ES, —ES_ = (E[X{]-E[X{])-EN = E[X,]- EN.
(1c) Since S? > 0 holds, we obtain from Monotone Convergence Theorem that as n — oo
nok
ES? « E[S*1iy<n Z Z (X Xjlyei) = D> Y E(XwX;) - P(N = k)
k=1 m,j=1 k=1 m,j=1

= Xn: P(N =k)(kEX;+k(k—1)(EX1)?) — EX] - EN 4+ (EX;)>- EN(N —1).

Hence, £S? = EX?- EN + (EX,)*>- EN(N — 1) = EN -var(X;) + (EX;)?- EN? Then

var(S) = ES? — (ES)*> = EN -var(X;) + (EX,)* - EN? — (EX,)* - (EN)?
= EN -var(X;) + varN - (EX,)>.
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(2) Let a # 0 and Ee®*' < co. Again by Monotone Convergence Theorem, we get that

k
Ee(Be™* )™  Ele*(Ee™ ) M ney] = Z E(Liy=p - exp{aZXj})

~ Y PN = H Eeg;?jxi ZP _P(N<n) 1.

Hence, Ee®(Ee®X1)~™N =1, O

4.1. Mean value of a complex random variable.
Let X be a random variable with the state space (C, B(C)). We say that it has a mean value ¢ € C
if RX,IX €L; and Re = E[RX], Sc= E[SX].

Remark A complex-valued random variable has a mean value if and only if F|X| < oo and if this holds,
we have the following inequality |[EX| < E|X]|.

Theorem 20* Let the general assumptions of theorem 20 be satisfied.
(1) If s € R, then Ee®® = E(Eexp{s®})V
(2) If s € C is such that Ee’® < oo holds with ¢t = Rs, then Ee®® = E(E exp{sX;})"

Proof: (1) By Fubini theorem
S=E) ly—me =izt =Y " Eljy_yetZizt e = Y "P(N =n) - B[ [ e
n=1 n=1 n=1 k=1

=> P(N =n)-(Ee")" = E[(Ee™)M].

(2) Obviously, E|e**| = Ee% < oo holds by assumption and therefore e** has a mean value. Again, we
use Fubini theorem and the same calculation gives the desired result. If we write ¢t = Rs instead of s, we
have an integrable function, which dominates the one with s, and this allows us to use Fubini Theorem. [J

5. CONVERGENCE OF RANDOM VARIABLES

We say that a sequence X,,,n € N of real-valued random variables converges almost surely to a real
valued-random variable X if there exists A € A with P(A) = 1 such that X,,(w) — X (w) as n — oo holds
whenever w € A. As [lim, X,, = X] € A, we get that X,, — X a.s. iff (if and only if) P(lim, X,, = X) = 1.

We say that a sequence X,,,n € N of real-valued random variables converges in probability to a real

valued-random variable X if
Ve>0 lim P(|X,—X|>¢)=0.

We say that a sequence X,,,n € N of real-valued random variables converges in L, to a real valued-
random variable X, where p € [1,00) if X,,, X € L, and F|X,, — X[ — 0 as n — oc.

Remark The limit almost surely, in probability and in L, is determined uniquely up to a P-null set.
(i) Let X,, — X almost surely and X,, — Y almost surely as n — oo, then

P(X=Y)=PX = Y’T}LHSOX" = X,nli_)n;oXn =Y)= P(nh_>n010Xn = X’,}LIEOX” =Y)=1
(ii) Let X,, — X in probability, then
P(X —Y|>¢) < P(X = X, +|Xp = Y| > ) < P(IX, — X| > £) + P(|X, = Y| > 5 -0
as n — oo. In particular, P(|X — Y| > ¢) = 0 holds for every ¢ > 0, i.e. X =Y holds almost surely.
(iii) Let X,, - X in L, and X,, — Y in IL,, where p € [1,00). Then
(EIX = Y[)"? < (BIX = X,[))V? + (B|X, = Y[")"* — 0
as n — 00, and therefore X =Y holds almost surely.

e If X,, — X as n — oo almost surely, we briefly write X,,=> X as n — oo.

e If X,, — X as n — oo in probability P, we briefly write X, X as n — 0.
o If X,, = X as n — oo in L, we briefly write X, X as n — oo.

e If X =Y holds almost surely, we briefly write X = Y.
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Remark Let (2, A, P) be a probability space. If X € L,(€,.A) holds, where p € [1,00), we denote
X[, = (E|X[?)Y/P. Then ||.||, is a pseudonorm on L,(£2, A, P) and || X||, = 0 if and only if X = 0.

Then 0,(X,Y) = || X — Y|, is a pseudometric on L, (€2, A, P) such that g,(X,Y") = 0 holds if and only
if X=Y. If X,,,X € L,(, A, P), then we get the by definition of the convergence in L, that

X,—X as n—oo in L, = p,(X,,X)—0 as n— oo.

Remark: Let us denote po(r) = 17 and ¢ (x) = 1 Az, where x Ay := min{z,y}. Further, denote

Yo(z,y) == wollz —y]) < er(lz —y|) = i, y).

If 7 € {0,1}, it can be easily verified that 1;(z,y) is a metric on R equivalent to |z — y| bounded by 1
from above.

Proof: It is left to the reader up to the triangle inequality of 1)9. We are going to show that ¢g(a + b) <
wo(a) + po(b) holds whenever a,b > 0. As ¢y is increasing on [0, 00), we obtain that

o, 2) = wolle = 2[) < @ollz =yl + |y — 2[) < wollr = yl) + @olly = 2]) = Yo(z,y) + Yo(y, 2)

holds whenever z,y, z € R. First, ¢{(z) = <[l — 1] = (1 + 2)72 holds if > 0. Since ¢/(z) is decreasing,
we obtain that

pola+b) = wola) = [ () de < [ eh(x) da = @o(b) = 9o(0) = o (D). 0

Theorem 21 Let j € {0,1} and (€2, A, P) be a probability space. Then p;(X,Y) = Ep;(X,Y) is a pseu-
dometric on LL(€2, A) such that p,;(X,Y) = 0 holds if and only if X = Y and such that

X,— X as n—oo = pi(X,,X)—0 as n—oo
holds whenever X,,, X € (12, A).

Proof: Obviously, p; is a pseudometric on L(€2, A) as v, is a metricon R. If 0 = p;(X,Y) = EY;(X,Y),
then ¥;(X,Y) £ 0 and since v, is a metric, we get that X £ Y. Let X,,-> X as n — oo and ¢ > 0. Then

0 < po(Xn, X) < pr(X, X) = E[LA | X, — X|] € £+ P(|X, — X| > 2).

As € > 0 was arbitrary, we obtain convergence p;(X,,X) — 0 as n — 0.
Let pj(X,,, X) — 0 as n — oo, then we get that po(X,, X) — 0 as n — oo, and then

P(1X, = X[ > ) < Epo(|Xn = X[)/0o(e) = po(Xn, X)/p0(€) — 0
as n — 00, since @o(e) - 1x,— x> < @o(|Xn — X]). O

Theorem 22 Let (2, A, P) be a probability space.
(1) Let X,,*> X as n — oo, then X,,> X as n — oo.
(2) Let X,,-> X as n — o0, then there exists ny — oo such that X, *> X as k — oo.
Proof: (1) Let X,= X as n — oo, then 9;(X,,X)= 0 as n — oo, and Dominated Convergence
Theorem gives that p;(X,Y) = E¢(X,, X) — 0 as n — oo. By theorem 21, X,,-5 X as n — oc.

(2) Let X,,-> X as n — oo. By theorem 21, p1(X,,, X) — 0 as n — oo, and therefore there exists a sequence
ny — oo such that py (X, , X) < 27%. Then Fubini theorem gives that

EY (X, X) =Y Ey(Xo, X)=> p(X,,, X) < 1.
k=1 k=1 k=1

In particular, ), ¥(X,,, X) converges almost surely, and we get that ¢(X,,, X)= 0 as k — oo. Then we
have that X,, = X as k — oc. O

Example Let Q = [0,1], A = B[0, 1] and P be a uniform distribution on [0, 1]. Let A,, € A be a sequence
with P(A,) — 0 as n — oo such that limsup,, A, = [0,1]. Then X,, = 14, 0 and also in L, whenever
p € [1,00), but X,, & 0 as n — oc.

Theorem 23 Let (€2, A, P) be a probability space and let X,,, X € (2, A),n € N. Then

(3) X,> X as n—oo ifandonlyif Vn,loo3k,T oo X, — X as n— oo,
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Proof: Let X,,> X as n — oo and let ny — oo, then obviously X, = X as k — oo. By theorem 22,
there exists k,,, T oo such that Xnkmi X asn — oo. Now, assume that X,, % X asn — co. By theorem 21,
there exists ¢ > 0 and n, T oo such that pi(X,,,X) > ¢ holds for every k € N. If k,, T oo, then
p1(Xy, ,X) > e > 0holds for every m € N, and therefore X, 7 X asm — oo again by theorem 21. [

Remark There does not exists a pseudometric, say p, on L(2, A, P) such that X,= X if and only if
p(X,, X) — 0 as n — oo in general, otherwise theorem 23 gives that X,= X as n — oo if and only
if X,> X as n — oo, i.e. these two convergence agree, which generally does not hold, see the example
above.’

Lemma Let {X; ber, {Yibier CLi(Q, A, P).
(1) If T is finite, then Xy, ¢t € T are uniformly integrable (UI) random variables.
(2) f T =T,UTy and Xy, t € T; are Ul for i € {1,2}, then X;,t € T are UL

Further assume that X;,t € T are Ul

(a) If a € R, then aX;,t € T are UL

(b) If |Y;] < Xi,t € T holds, then Y;,t € T are Ul

(¢) f Y;,t € T are Ul then X; + Y, ¢t € T are UL
Proof: (2): Let € > 0 and ¢; € (0,00) be such that sup,cq, E[| X [Xe| > ¢j] < e. Put ¢ = max{ci, o},
then sup,.r E[| X|; | X > o] <e.
(1): If "= {t}, then (1) obviously holds. Otherwise use (2) and induction.
(a): If a = 0, then (a) obviously holds. Otherwise, let ¢ € (0, 00), then we obtain from assumption that

sup Ef|aXy|;|aX:| > ¢] < a|sup E[|Xy|; | X¢| > ¢/|a]] = 0 as ¢ — oo.
teT teT

(b): By assumption sup,cp E[|Y:]; |Yi| > ¢ < supyer E[|X¢]; 1 Xt > ¢] — 0 as ¢ — oo.
(c): By theorem 18, X, Y; are for t € T equally integrable, and therefore we obtain immediately from the
definition that X; + Y;,t € T are also equally integrable as follows

sup F|X; + Yy < sup E|X;| + sup E|Y}| < oc.
teT teT teT

Further, theorem 18 gives that X;,¢ € T" and also Y;,t € T" have equally absolutely continuous integrals.
The same theorem says that it is enough to show that also X;+Y;,t € T have equally absolutely continuous
integrals. For 6 > 0 denote Asp = {A € A: P(A) < §}. Then

sup E[|X; + Vs A] < sup E[|Xi[; Al + sup E[[Y;]; A] =0
A?«“T(s, P AtEEATa, P A?«“T(s, P

asd — 0. O

Remark: If X, X and ¢ > 0, then X,,/¢c & X/c as n — oc.

Proof: Let € > 0, then P(|%2 — £| > ¢) = P(|X,, — X| > ¢g) — 0 as n — oo.

Theorem 24 Let p € [1,00) and X,,, X € L(€,.A). Then the following conditions are equivalent

(1) X, L= X and X,,, X € L,(Q, A, P)
(2) X, X and | X,|”,n € N are uniformly integrable.

Proof: Let (1) hold and let ¢ > 0. Then P(|X,, — X| > ¢) < e PE|X,, — X| — 0 as n — oo. Hence
X,= X as n — oo. Now, we show that Y,,n € N are uniformly integrable, where Y, = |X,, — X|?.
Since Y,, € L1(2, A, P) and EY,, — 0 as n — oo, we get that Y,, are equally integrable. We will show
that they have also equally absolutely continuous integrals. Let ¢ > 0, then there exists ng such that
SUD, >, B|Yn| < €. Since Y, € L(Q, A, P), we get from lemma that Y,,,n < ng are uniformly integrable,
and therefore they have equally absolutely continuous integrals. In particular, there exists o > 0 such that

sup{E|[|Y,]; A] : A€ A, P(A) <d,n <np}<e.

°In the special case Q = {0}, there is only one probability measure P = &y on (£2,29), and convergences almost surely
and in probability (and in L,) agree with convergence everywhere. Further, think of the case, where 2 is finite or countable.
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Then sup{E[|Y,|; 4] : A € A, P(A) < §,n € N} < ¢, and we have that |X,, — X|?,n € N are uniformly
integrable. Since X € LL,,, we obtain that |X,,|P,n € N are uniformly integrable from lemma and from the
following inequalities
[ X" < ([ X — X[+ [X])P < 2P max{| X, — X|P, | X[} < 27(| X, — X[7 + [X]7).
Let (2) hold. First, we show that X € LL,(€2, .4, P). By theorem 22, there exists n; 1 oo such that X, = X
as k — oo. By Fatou’s Lemma
EIX]P < lilgn inf B X, [P <sup E|X, |’ < .
—o0 neN
Second, we show that Y,, = |X,, — X|?,n € N are uniformly integrable. If follows from lemma and the
following inequality
[ X = X[P < 2°(] X0 [" + | X]7).
Third, let ¢ > 0 we will show that there exists ny € N such that F|X,, — X|P < ¢ holds whenever n > n;.
Since Y,, = | X,, — X|P are uniformly integrable, there exists ¢ € (0, 00) such that

sup E[|Y,];|Yn| > ] < e.
neN

Since P < z holds for z € [0,1],p € [1,00), we obtain from the previous remark that

EY, <e+E[@AN|X, - XP]<e+ PEQAANFE]) =+ pi (2, 7) — &

c’c
Hence, we get that for each € > 0 we have that
limsup F|X,, — X|F <e.

n—o0 ]

Let X,,,n € N be a sequence of real valued random variables. We say that it is a Cauchy sequence
almost surely if there exists A € A with P(A) = 1 such that X, (w),n € N is a Cauchy sequence
whenever w € A, i.e.

sup | Xp4p — Xp|= 0 as n— oo.
peN

We say that X,,,n € Nis a Cauchy sequence in probability if
Ve>0 dngeN Vn,m>ng P(X,— X, >¢) <e.
Let p € [1,00), we say that X,,,n € Nis a Cauchy sequence in L, if X,, € L,,n € N and if
Ve>0 dngeN Vnm>ny E|X,— X,P<e.

Theorem 25 Let X,,,n € N be a sequence of real valued random variables on (2, 4, P).

(1) Then X,,n € N is a Cauchy sequence a.s. iff there exists X € L(£2, A) s.t. X,,= X as n — oo.

(2) X,,,n € Nis a Cauchy sequence in probability iff there exists X € L(2, A) s.t. X, X as n — oo.

(3) Let p € [1,00), then X,,,n € Nis a Cauchy in L, iff 3 X € L,(Q, A4, P) s.t. X,,-L»» X as n — oo.
Proof: a) Let us assume that X, X as n — oo. Then A = [lim, X,, = X] € A and P(A) = 1, and if
w € A, then X,,(w) = X(w) as n — oo, and we get that X,,(w) is a Cauchy sequence.
b) Let X,,= X as n — oo and € > 0, then there exists ng € N such that P(|X,, — X| > £) < 5. If
m,n > ng, then

P(IXy = Xin| > ) < P(IXp = X[+ [X = Xpn| > 6) < P(|Xy = X| > 5) + P(| X — 0| > 5) <&
c) Let X,,L#» X as n — oo, then there exists ng € N such that (E|X, — X[P)"/? < £ holds if n > ny. If
m,n > ng, then
(BIXm = Xal)'? < (B X = XP)VP + (E|X, = X[P)? <.

d) Let X,, be a Cauchy sequence almost surely, then there exists A € A with P(A) = 1 such that X, (w)
is a Cauchy sequence if w € A. Then we put X (w) :=lim, X, (w) if w € A and X(w) :=0if w € Q\A. It
follows from the definition that X € L(Q2,.4) and also X,,= X as n — 0.

e) Let X,, be a Cauchy sequence in probability. We will show that
lim sup pl(Xn7Xn+j) =0

n—00 jeN
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Let € > 0. By assumption there exists ng such that P(|X,, — X,,| > §) < § holds whenever n > ny. Then

pl(Xan—i-j) - E[l A |Xn - Xn+j|] <e

holds if n > ng and j € N. Let n; T oo be such that pi(X,,, Xy, ,) < 2% Then
Ezwl(Xnk7Xnk+1) = Zpl(Xnk7Xnk+1) <1

keN keN

and we get >, 1 (X, , Xn
sequence as

ri1) < 00 holds almost surely, which gives that X, is almost surely a Cauchy

j—1

wl(anankJrj) < Z¢1(X”i7X”i+1) < wl(anXmH) —0
i=k i=k

as k — oo holds almost surely. By step d) there exists X € L(£2,.4) such that X,,, = X as k — oo.
pl(Xna X) S pl(Xn7 Xnk) + pl(Xnkv X)

Then
p1(Xy, X) < limsup p1 (X, Xp,) < sup p1(X,, Xngj) — 0

k— 00 jEN
as n — 0o, i.e. X,— X as n — oo.
f) Let X,, be a Cauchy sequence in L,,, where p € [1,00). Then X, is a Cauchy sequence in probability: if
e > 0, then there exists ng € N such that E|X, — X,,,|? < e!*P holds whenever m,n > ng. Then
P(X,—Xn|>¢e) <ePE|IX, - X, <e

holds if m,n > ng. In particular, there exists X € (2, .A) such that X, X as n — oo. By theorem 24,
it is enough to show that |X,[?,n € N are uniformly integrable. First, we show that they are equally
integrable. By assumption there exists ng € N such that E|X,, — X,|? < 1 holds whenever n > ng. If
n > ng, we get that

E|Xn|p < 2p(E|Xn - Xno|p + E|Xno|p) < 2p<1 + E|Xno|)-
Since X,, € L,,, we get that E|X,|P is a bounded sequence, and therefore | X,,|?,n € N are equally integrable.

Further, we show that | X, |’,n € N have equally absolutely continuous integrals. Let € > 0 we consider
ne € N such that F|X,, — X,,|” < ¢ holds whenever m,n > n.. If A € A, then

E[| X P; A] < 2°(E| X, — Xo. [P + E[| Xn.[7; A)).

If A € A has probability P(A) small enough such that E[|X,|”; A] < & holds whenever n < n., then we
get that E[|X,,[F; A] < 2P*1e holds whenever n € N.

f*) Let X,, be a Cauchy sequence in L, where p € [1,00). Then sup; F|X,, — X,, ;" — 0 as n — oco. Let
ng T oo be such that (E|X,, —X

|P)1/P < 27% Then we get from Jensen inequality that

Nk+1
E|X”k - Xnk+1‘ S (E’Xnk - Xnk+1 |p)1/p < 27}6'
Then
EZ |X”k - X”kJrl‘ = ZE|XTLk - X”kJrl‘ <1
keN keN
In particular, . |X,, — Xy,,,| < oo holds almost surely. Similarly as in the step e), we get that X, is

a Cauchy sequence almost surely, and by d) we obtain that there exists X € L(€2,.A) such that X,,, = X
as k — 0o. Then Fatou’s lemma gives that

E|X, — X|P < lil{ninfE|Xn — X, |P <sup B|X,, — X,,1;]F =0
e JeN
as n — oo, and E|X|P < 2P[E|X,, — X|P + E|X,,|’] < oo holds if n is large enough as X,, € L,, and
therefore X € L, holds also. O
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6. CONDITIONING

Let (£2,.A, P) be a probability space and B € A be such that P(B) > 0. If A € A, then we have the
conditional probability of A given B in the form

P(A|B) = Z40D) (= Py (A)).

Further, if X € L*(Q, A, P), then X € L*(, A, Pp), and

E[X|B] = [ XdPp = 55 [ X AP = 55 E[X; B|

holds by theorem 15.

Let X € L1(Q, A, P) and B C A be o-algebra. By a conditional expected value of X given B we
mean every Y € L, (€, B, P|B) such that one of the following equivalent conditions holds

(1) VBeB [,XdP = [,YdP (technical condition used mostly in proofs)
(2) VBe B E[X;B]=E[Y;B] (condition suitable for verifying by computing)
(3) VBeB P(B)>0 = E[X|B|=FE[Y|B] (condition offering interpretation).

Such a variable Y will be denoted as E[X|B] and the set of all such values as E[X|B].

Remark The condition (1) will be used in proofs, it helps us to avoid to use too many E’s in the
following proofs, and it is the usually used condition. The condition (2) is obviously equivalent to (1) and
it is just the same condition as (1) using expectation E that enables to use our intuition. The relation
between the conditions (2) and (3) is the same as the relation between the definition of independence
of two random events A, B in the form P(AN B) = P(A)P(B) and the condition P(A|B) = P(B) if
P(B) > 0, which is behind the name of this property “independence of expectation of the random event
A on the information that B happened”.

Although the third condition is closest to interpretation of the notion of the conditional expectation, it
does not really says, what it is. We will be able to say what it really is only in case when B is finite and
to refer the reader to the theory of martingales that

E[X|B,] = E[X|B.]

holds whenever B,, C B, and B, = (U, B,). Further comments will be given when we know what is
E[X|B] if B is finite. See theorem 26 and the text bellow.

Radon-Nikodym theorem Let v, be o-finite measures on a measurable space (S5,S) such that
v << 1.9 then there exists a non-negative S-measurable function f denoted also as 9 such that

(4) v(A) = [, fdp, A€S.

Such a function f is determined uniquely up to a py-null set, and it is called a Radon- Nikodym derivative
of v w.r.t. por a density of v w.r.t. p.

Radon-Nikodym theorem for signed measures Let 1 be a o-finite measure on a measurable space
(S,8) and v be a finite signed measure on (S, S) such that v << pu” Then there exists an S-measurable
p-integrable function f such that (4) holds. Such a function f is determined uniquely up to a p-null set,
and it is called a Radon-Nikodym derivative of v w.r.t. p or a density of v w.r.t. u.

Lemma Let v be a finite signed measure on a measurable space (5, S), then there exist Sy € S such
that S, NS_ = () and that v = vT — v_, where v*(A) = v(A N Sy) are measures on (5, S).

Proof: By assumption v = v, — v_, where vy are finite measures on (5, S). Obviously, we have that
vy < u = vy + v_. By Radon-Nikodym theorem there exist S-measurable functions fi such that
vi(A) = [, fedpholds if Ae S. Put f = f, — f_and S} := [f > 0],S_ := [f < 0]. Then

V<A>:V+(A)_V—(A):fAf+dM_fAf—dM:fAfd:ua Aes.

6ie.VAES u(Ad)=0=v(A)=0.
Tie.VAES u(A)=0=v(A) =0.
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In particular, v*(A) = v(ANSL) = fAﬂSi f du, and therefore

vi(A) — v (A) =v(ANSy) —v(ANS) = [g fdu— [4ng fdp
= [a Mo dp = [y Flyeo du = [, f du = v(A)

holds whenever A € S. O

Proof of Radon-Nikodym theorem for signed measures: By lemma there exist disjoint measurable
sets S+ € § such that

v =v" — 17, where v* are finite measures on (S,S) such that v=(A) = v(ANSy), A€ S.
Let A € S be such that u(A) = 0, then u(AN Sy) = 0. By assumption v << u we get that
vE(A) = v(ANSy) = 0.

Hence, we have that vt << i, and Radon-Nikodym theorem gives that there are f. : (S, S) — ([0, 00), B[0, 00))
such that vt = 4 f+dp holds if A€ S. Then f = f, — f_ is an S-measurable function with

JUldp < [ frdp+ [ f-dp=v*(S) +v(S) < 0.
Further, if A € §, then
Lafdp= [, frdp— [ f-dp=v*(A) — v (A) = v(A).

Let g, h arbitrary S-measurable p-integrable function such that v(A) = [ 1 9dp holds if € §. Put A, =
[f >g],A- =[f <g]. Then Ay € S, and

Jo.(f =9 du= [, fdu— [, gdp=v(As)—-rv(AL) =0.
This is possible only if pu(A+) = 0, and we get that f = g holds p-almost everywhere. O
Theorem 26 Let X € L,(Q, A, P) and F C A be a o-algebra. Then ) # E[X|F] is a class of equivalent

elements of Ly (2, F, P|F) w.r.t. equality almost surely and it is the set of all Radon-Nikodym derivatives
of

= [, X dP = E[X; B]
w.r.t. P|F. In particular, E[X|F] exists and it is determined uniquely almost surely.

Proof: Obviously, v << P|F, and Radon-Nikodym theorem gives tha dP‘ =
uniquely up to a P-null set. Hence, we are now only to show that Y is a Radon-Nikodym derivative of v
w.r.t. P|F if and only if Y € E[X|F]. If Y € E[X|F], then Y € Ly (2, F,P|F) and [,Y dP = [, X dP =
v(B) holds whenever B € F, and therefore Y is a Radon-Nikodym derivative of v w.r.t. P|F. On the other
hand, let Y be a Radon-Nikodym derivative of v w.r.t. P|F, then Y is F-measurable and P-integrable
function such that [, Y dP = v(B) = [, X dP holds whenever B € F, and there Y € E[X|F]. O

Theorem 27 (Elementary properties of conditional expectation) Let XY € L1(Q, A, P) and F C A
be o-algebra.

(1) Let a,b,c € R, then E[aX + bY + ¢|F|] £ aE[X|F]+ bE[Y|F] +c.

(2) Let X <Y hold almost surely, then F[X|F] < E[Y|F] holds almost surely.
(3) B[E(X|F)] =

(4) If X € L(Q, ]—") then B[X|F) 2

(5) Let C C F be a o-algebra, then E[ (X|F)|IC]= E[E(X|C)|F])= E[X]|C].
(6) If o(X) and F are independent, then E[X|F]= EX.

Proof:
(1) By definition Z = aE[X|F| 4+ bE[Y|F] + ¢ € L1(Q, F, P|F) and if B € F, then
JpZdP =a [, E(X|F)dP+b [ E(X|F)dP+c=a [, XdP+b [, XdP +c= [y(aX +bY +¢)dP.
(2) Put B = [E(X|F) > E(Y|F)] € F, and therefore we obtain from the following that P(B) =0
[(E X|f ElY|F))dP = [, E[X|F]dP — [, E[Y|F]dP = [, XdP — [,YdP = [,(X —=Y)dP <0.
(3) E[E(X|F)] = [, E(X|F)dP = [, XdP = EX.
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(4) Denote B = [X > E(X|F)] € F. Then
[L(X — BIX|F))dP = [, XdP — [, E[X|F|dP = [, XdP — [, X dP = 0.

This gives that X < F[X|F] holds almost surely, and the reverse inequality can be obtained
similarly.
(5) By assumption E[X|C] € Li(2,C, P|C) C L(Q, F, P|F), and therefore E[E(X|C)|F]= E[X|C].
Further, we will show that E[E(X|F)|C] € E[X|C]. Obviously, E[E(X|F)|C] € Li(2,C, P|C). If
B € C, then
[z E[E(X|F)|C]dP = [, E(X|F)dP = [, X dP.
(6) Obviously, EX € L,(Q2, F, P|F). Since (X ) and F are independent, we get that

[y EXdP = EX - P(B) = E[X; B] = [, X dP. O

We say that A € A is an atom of o-algebra AifVBe ABC A= B=0or B=A. We
say that A € A is an atom® of probability space (Q, A, P)ifVBe ABC A= P(B)=0or
P(B) = P(A).

Example Y : (2, A) — (F,€) and e € E then [Y = ¢] is an atom of o-algebra o(Y).

Theorem 28 Let X € L; (92, A, P) and F C A be a o-algebra.
(1) If B is an atom of F with P(B) > 0, then
Vwe B E[X|F](w) = E[X|B], ie. E[X|F]lz= E[X|B]ls
(2) If B is an atom of (2, F, P|F) with P(B) > 0, then
E[X|F] = E[X|B] holds almost surely on B, ie. FE[X|F|lp= E[X|B|lp.

Proof: (2) Let B be an atom of (2, F, P|F) with P(B) > 0. Then C = [E(X|F)1g > E(X|B)1g] € F
and C' C B. By assumption P(C) = 0 or P(B\C) = 0. We are going to show that P(C) = 0. So, let us
assume that P(B\C) = 0. Then

JolE(X|F) = E(X|B)|dP = [ E(X|F)dP = P(C)E(X|B)]
—fB (X|F)dP — P(B )E(X|B)}:fBXdP—E[X13]:0,
and we get that P(C) = 0, i.e. E(X|F)lp < E(X|B)1lp almost surely. The contrary inequality can be
obtained similarly.
(1) Put N = [E(X|F)lp # E(X|F)1p] € F. Then N C B. Since B is assumed to be an atom of F,

it is also an atom of (2, F, P|F), and therefore P(N) = 0. Since B is assumed to be an atom of F, and
N C B,N € F, we get that N = B or N = (). Since P(B) > 0 = P(N), we get that N = 0. O

Let (€2, A, P) be a probability space and A € A and F C A be a o-algebra. Then we denote P(A|F)=
E[14|F] and it is called a conditional probability of A given F.

Let X € Li(2, A, P) and Y : (QA) — (E,£). We denote E[X|Y] = E[X|o(Y)] and it is called
a conditional expectation of real valued r.v. X given r.v. Y.If A € A, then we denote P(A|Y )=
P(A|o(Y)) and it is called a conditional probability of A given r.v. Y.

By theorem 4, there exists a measurable function f : (E,&) — (R, B(R)) such that E[X|Y]| = f(Y) or
P(A|Y) = f(Y), respectively. Such a function will be denoted as E[X|Y = y]= f(y) or P(A|Y = y)=
f(y). Note that such functions E[X|Y = y|, P(A]Y = y) are determined uniquely up to a Py-null set.

Remark If y € E is such that P(Y = y) > 0 then E[X|Y = y] = E[X|B] holds by theorem 28
with B = [V = y], and therefore the newly introduced notation is not confusing. If P(Y = y) = 0, then
E[X|Y = y| can be arbitrary real value similarly as f(y) can be arbitrary real value if f is a density of
a continuous real-valued random variable.

It may happen that we are interested in E[X|Y = y| similarly as we may be interested in the value f(y)

of the density f at point y. It is the case when we are considering a version of such a function, which is
continuous at the point y.

8Usually, A is atom of a o-algebra only if A # 0 and of a probability space only if P(A) > 0.
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Claim Let X € L;(Q, A4, P)and Y : (Q, A, P) — (R* B(R*)), k € N. Let f, g : (R*, B(R¥)) — (R, B(R))
be such that f(Y)Z E[X|Y]Z g(Y). Let yo € R* be such that

(1) f,g are continuous at the point yq
(2)Ve>0P(]Y —wl| <e)>0.

Then f(yo) = 9(yo)-

Proof: Let us assume that f(yo) # g(yo). Since, f, g are continuous at yo, we get that there exists € > 0
such that f(y) # g(y) holds whenever ||y — yo|| < . Then we get that f(Y) # g(Y') holds with a positive
probability, which is a contradiction with assumption that f(Y)= E[X|Y]= g(Y). O

Corollary of theorem 28 Let X € L,(Q2, A, P) and Y : (2, A4, P) — (E,&, Py) be a discrete random
variable. Then
EX|Y]= Y BIX|Y =y] Ly
yelr
Moreover, if P(Y =y) > 0 holds for every y € E, then

EX|[Y] =) E[X|Y =y Ly—y.

yerR

Theorem 29 Let Y € L(Q, F), and X, XY € 11(Q, A, P), where F C A are g-algebras. Then
E[XY|F] 2 YE[X|F].
Proof: First, we assume that X, Y > 0. Put
L={Uelt(QF):VBeF [(UXdP = [,UE[X|F]dP}.
(1) 1p € L holds if F' € F, since
[, 1pE(X|F)dP = [, E(X|F)dP = [, . XdP = [, 1,X dP.
(2) Let a,b >0 and U,V € L, then W = aU + bV € L, since
[y WE[X|F|dP =a [,UE[X|F]dP +b [, VE[X|F]dP
=a[,UXdP+b [,VXdP = [WXdP.
B)IfU,>0,U, € LU, TU €L*(Q,F). Then U € L as
Js UE[X|F]dP = lim [, U,B[X|F]dP = lim [, U,X dP = [,UX dP,
Hence, we get by lemma that £ =L (Q, F, P|F). In order to show the statement for X, Y > 0, we need
to show that YE[X|F] € Ly(Q, F, P|F). Obviously, Y E[X|F] € L(Q2, F). Further, we obtain from the
previous part of the proof that E[Y E(X|F)| = EXY < oc.

Let us consider the general case. By the first part of the proof, the statement holds for X* and Y*. In
particular, Y*E[X*|F] € L(Q, F, P|F), and

E[XY|F]Z EXTY" 4+ XY — X Y* - XTY"|7]
= BIXYYYF] 4+ E[XY|F] - EIX Y F] - E[XTY"|F]
= YTE[XY|F] 4+ Y E[X|F| - YTE[X|F] - Y E[X"|F]|
= (YT Y )(EXT|F] - E[X"|F]) = YE[X|F].
0

Theorem 30 Let X € L;(Q2, A, P,and Y, Z : (2, A) — (E,€). Let Y = Z holdon A € o(Y)No(Z),
then E[X|Y]14 2 E[X|Z]14.

Proof: By assumption, there exist B,C € &£ such that A = [Y € B] = [Z € C]. Let us de-
note F = o(Y) N o(Z). We are going to show that E[X|Y]1la, F[X|Z]14 € E[X14]|F]. Obviously,
E[X|Y]14, E[X|Z]14 are integrable variables. Let f(y) = E[X|Y = y] and ¢g(z) = E[X|Z = z]. Then

EX|Y]1a = f(Y)lyen = f(Y)la = f(Z)1zec),
and therefore E[X|Y]1,4 is 0(Y), 0(Z)-measurable. If ¢ € R, we get that
[E(X|Y)la<ceaY)No(Z)=F,
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i.e. E[X|Y]l, is F-measurable, and therefore E[X|Y]14 € L,(Q, F, P|F). Then
BIXV]1A2 B(BIX|Y]LJF)2 B(EX14Y]lF)2 B(X14|F),
and similarly we would obtain that E[X|Z]14 € Ly(Q, F, P|F) and E[X|Z]14 = E(X14|F). O

Example Let X € Li(2, A, P). Determine E[X|XT]. Then
EIX[X x50 = EX[X]Lxs0 = Xljxs0 =X

(1) If P(X*+ = 0) =0, then E[X|X*] 2= X+
(2) If P(X+ = 0) > 0, then E[X|X+] = X+ + E[X|X+ = 0]1[X+:0] = X+ + E[X|X < 0]1[){30].

Lemma Let X € L(2, A, P), let C C A be a system closed under finite intersections. Denote F = o(C)
and assume that Y € L, (2, F, P|F) is such that

(1) EY = EX
(2)VBeC E[X,;B]=E[Y;B].
Then Y € E[X|F].

Proof: Let us denote £ = {B € F : E[X; B] = E[Y; B]}. Obviously, £ is a Dynkin system containing
a system C closed under finite intersections. By Dynkin lemma, £ 2 o(C) = F O L. U

Theorem 31 Let X € L1(Q, A, P) and Y : (Q,A) — (E,€),Z : (Q,A) — (H,H). Let Z and (X,Y)
be independent variables, then E[X|(Y, Z)] = E[X|Y].

Proof: Put F = o(Y, Z). Obviously, F[X|Y] € L,(Q, F, P|F), where F = ¢(C), and where
C={lYeBn[Ze(C]:Be&,CecH}
is a system closed under finite intersections. If B € £,C € H, and A =[Y € B|N[Z € C], then
[,E[X|Y]dP = E[E(X|Y);Y € B,Z € C] = E[E(X|Y);Y € B]- P(Z € C)
— E[E(X;Y € B|Y)]- P(Z € C) = E[X;Y € B] . P(Z € C)
—EX;Y€eB,ZeC]=[,XdP.
By the previous lemma, E[X|Y] € E[X|(Y, Z)]. O

Let X : (2,4, P) — (S,S,Px) and Y : (, A, P) — (FE,&, Py). We say that the variables X,Y are
regularly dependent if Pxy << Px ® Py. Then we denote kx y=

Remark If XY are independent, then X,Y are regularly dependent with kxy = 1.

Theorem 32 Let X : (Q,A4,P) — (S,S5,Px) and Y : (2, A, P) — (E,&, Py) be regularly dependent
and G € ]Lq(S X E,S ®8,PX’y). Then

EGX, Y)Y =y] = E[G(X, y)kxy (X, y)]
holds for Py-almost every y € E.
Proof: By assumption,
00 > E|G(X.Y)| = [, |G,y dPxy(z,y) = [5 [ |G(x,y)|kxy (2,y) dPx (z) dPy (y).
Then P(A) =1, where
A={yeE: fs |G(z,y)|kxy(z,y) dPx(x) < 00} € E.

Put g(y fs z,Y)kxy(x,y)dPx(z) - 1a(y) € Li(E, &, Py). Then g(Y) € Li(Q,0(Y),Plo(Y)). Let
Bef. We get from Fubini theorem that

erB g(Y)dP = fBgdPY—fos z,y)kxy(z,y) dPx(z) dPy (y)
ven)

= [oxn G, 9)kxy(z,y) dPx ® dPy(z,y)

= [o5 G(@,9) APx v (2,y) = [yepy G(X,Y)dP.

Hence, g(Y) € E[G(X,Y)|Y], and therefore we get that E[G(X,Y)|Y =y| = g(y) = E[G(X,y)kxy (X, y)]
holds Py-almost everywhere. 0
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Theorem 33 Let X : (2, A, P) — (5,5, Px),Y : (Q, A, P) — (E,&, Py) have a joint density fxy with
respect to pu ® v, where p and v are o-finite measures on (S,S) and (E, &), respectively. Then XY are
regularly dependent variables with

(5) kxy(z,y) = %ﬁ% @y )20 Px ® Py-almost everywhere,

where
(z) = [ fxy(z,y)dv(y) - L 1ixy ()l dvly)<oo] 1S @ density of r.v. X wort. p, e, fy = dPX.
() = [ fxy(@,9) du(@) - 111 15c y @)l du(z)<o) 18 @ density of rv. YV wrt. v, e fy = dPY.

Further, f)gy(l’, y) = fX,y(ZE, Y) - Lfx(@)fy ()20 15 @ density of Pxy w.r.t. p® v.

Proof: First, we get from Fubini theorem that
P(fX(X) f{(xy )fx(z O}fXY(x ZJ)d(N@V)(J? y)
= f{gﬁ;fx(m):o} fE fX,Y $7y) dV( )d:u f{gcfx )=0} fX(x) dﬂ(x) =0,
and similarly, we would obtain that P(fy(Y) = 0) = 0. Second, we show that fx is a version of %. Let
B €S and B=Bn|fy #0]. Then Px(B\B) =0, and
g Ix (@) du(e) = [5 fx(z) du(z) = [5 [ Fxy(@,y) dv(y) dp(z) = P(X € B) = P(X € B).

Similarly, we would obtain that fy is a version of %. Third, we show that

Fey (@,9) = Fev (@, 9) - L) fr ()20

is a density of Pyy with respect to p®@v. If B € S and C € €, we denote B= {reB: fx(z)#0} €S
and C = {y € E: fy(y) # 0} € £. By the previous part of the proof P(X € B\B) =0 = P(Y € C\C),
and therefore

PX,Y(B X C) = PX,Y(B X é) = fB’xC’ fX,Y(xay) d/l ® V(l’,y) = foC fX,Y(fE,y) d:u® V(:L‘wy)

Since {Bx C : B € §,C € £} is a system closed under intersections generating S ® £, we get that it
determines a probability measure on S ® £, and we obtain that dPxy = fxy dp®v. Finally, we will show
that the following Dynkin system

M={AeSRE: fA l;;X,y(ac,y) d[Px ® Py](z,y) = Pxy(A)}
contains the following system generating S ® £ closed under finite intersections
L={BxF:SeS,FeH},
where kx y(z,y) stands for the right-hand side of (5). Then Dynkin lemma gives (5). Let B € S,C € £.
Pyxy(Bx(C)=P(XeB)Yec()= fBchXy(x,y) dp @ v(z,y)

= Jpxc fffZ)fﬁy fx(@) fr(y) dp @ v(z,y) = [; fokxy (2,9) fr(y) dv(y) fx (@) dule)

= fB fc kX,Y (z,y)dPy(y)dPx(z) = foc l%X,Y(%y) d(Px @ Py)(z,y).
]

Corollary Let X : (2,4, P) — (5,5,Px), Y : (O, A, P) — (E,&, Py) have a joint density fxy with
respect to 1 ® v, where p1 and v are o-finite measures on (S, S) and (E, E), respectively. Let fxy, fx, fv
be densities as in theorem 33, if G € L1(E x S,S ® &€, Pxy), then

[ fxy(z,y) Glz,y) du(z)
fr(y) ’

f fX,Y(ma y) G([B, y) dlu(x)
fr ()

EU;KY(X? y)G(X> y)] =

and therefore

E[G(X, Y)Y = y) =

holds for Py-almost every y € E.

Proof: Obviously, E[kxy(X,y)G(X,y)] = f]%X’Y(x7y)G<x7y)fX($) du(z) = [ Fxy szc;l?()a: ) du(@)
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Theorem 34 (Jensen inequality) Let D C R* be a non-empty closed convex set and G : D — R be
a continuous convex function, where k € N. Let X = (X1,..., X;)" € Li(Q, A, P)* attain values in D and
let G(X) € L1(Q2, A, P). Let F C A be a o-algebra, then E[X|F] := (E[X1|F],..., E[Xk|F])" € D holds
almost surely, and
G(EIX|F]) < E[G(X)|F]

holds almost surely.

Theorem from convex analysis

(1) Let K C R* be a convex compact set and F' C R¥\ K be a closed set. Then there exists a € R*

such that
supa' k < inf a’ .
rEK pEF

(2) Let D C R* be a non-empty closed convex set and G : D — R be a continuous convex function,
where k& € N, then
G(z) = sup{a(x) : a is affine’, a < G on D}.

Proof: Let us assume that E[X|F] € D holds with a positive probability. Since R*\ D is an open subset
of R¥, it is a countable union of closed!® balls B,,,n € N, and therefore there exists n € N such that
E[X|F] € B, holds with a positive probability. By the above-mentioned theorem from convex analysis,
there exists a € R¥ such that

sup a'b < inf a'd = A.
be By, deD
Since X attains values in D, we get that A < ¢" X, and therefore A < E[a’ X|F]| = o' E[X|F] holds a.s.
Since E[X|F| € B,, holds with a positive probability, we a contradiction that
a E[X|F]<supa'b< inf a'b=A <a E[X|F]
beB, beBn

holds with a positive probability. Thus, we have that E[X|F]| € D holds almost surely.
Since G a continuous convex function on D it can be rewritten in the form

G(z) = sup{a(x) : a is affine,a < G on D}.

In order to be able to substitute E[X|F] into G in order to obtain equality almost surely, we need to find
a countable set

BCA={aaffine:a<Gon D} st. G(z)=sup{a(z):a€B}, ze€D.
Now, assume that a € B, then there exist a € R¥ and b € R such that a(x) = a"z + b, and we get that
a(E[X|F]))= ' E[X|F]+ b= Eld' X +b|F] = = Ela(X)|F] < E[G(X)|F]
holds almost surely as a(X) < G(X) holds whenever a € B C A. Since B is a countable set, we obtain that
P(VaeB a(E[X|F]) < E[G(X)|F]) =1,
and therefore we obtain that
G(E[X|F]) = supa(E[X|F]) < E|G(X)|F].

acB

holds almost surely. Now, we are going to show that the above mentioned countable subset B C A exists.
Since D # (), we get that A # ). Let ay € A. Then there exists ag € R* and by € R such that ao(x) = agr+bo
holds if x € D and we put

B:={acA:VzcRa(z)=d' 2+ ba—ay€ Q" b—b €Q}

Remark

(1) Tt is not correct just to select from A such affine functions a(z) = a’x + b such that a € Q*,b € Q.
Is is enough to consider the case G(z) = a’x, where a € RF\Q* and D = R*.

%.e. there exists a € R¥ and b € R such that a(u) = a"u + b whenever u € R¥.
10Gince R™ is a separable metric space, we get that every open set is a countable union of some open balls, but every open
ball is a countable union of closed balls with the same center and smaller radius.
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(2) We show why we have to consider a supremum over a countable set B in the proof of Jensen
inequality. Let X be a random variable with the uniform distribution on (0, 1). Then

sup{ B[l (X)X 7 € (0,1)}
is not defined correctly, since E[1{;)(X)|X] is determined uniquely only up to a P-null set. It can
be seen as follows as 1,1(X), 1p(X) € E[11,3(X)|X] and

sup B[l (X)|X]Z sup 1y(X) =1#£0= sup 1y(X)= sup B[l (X)[X].
2€(0,1) 2€(0,1) 2€(0,1) z€(0,1)
Corollary (of Jensen inequality) Let (€2, F, P) be a probability space and F C A a o-algebra.
(1) Let X € Ly(92, A, P). Then |E[X|F]| < E[|X]|F] holds almost surely.
(2) Let X, X,, € L1(Q, A, P),n € N be such that X, X as n — oo, then E[X,|F]-1% E[X|F] as

E|E[X,|F] — E[X|F]| = E|E[X,, — X|F]| < E[E(|X — X,||F)] = E|X, — X| >0 as n— oo.

Theorem 35 (Lévy) Let (92, A, P) be a probability space and F C A be a o-algebra.

(1) Let X,, € L(£2, A) be such that 0 < X,, < X,,;1 holds almost surely for every n € N.
(2) Let X € Ly(92, A, P) be such that X, X as n — oo.

Then E[X,|F]= E[X|F] as n — oc.
Proof: Since 0 < X,, < X € L;(2, A, P) holds almost surely, we get that X,, € L;(€, .4, P), and that
0 <Y, < E[X|F] holds almost surely, where Y;, := E[X,,|F]. Then we get that

Y :=supV, € Li(Q,F, P|F)

neN

as 0 <Y < E[X|F]holds a.s. Then Z = Y1y .o € Ly (Q, F, P|F). We are going to show that Z € E[X|F].
Let B € F, then

[,ZdP = [,YdP = lim [,Y,dP = lim [, X,dP = [, X dP

holds by Monotone Convergence Theorem as 0 < Y,, TY holds almost surely as n — oo. U

Theorem 36 (Lebesgue) Let X, X, € L(2, A),n € Nand Z € L1(Q2, A, P) be such that
(1) |X,] < Z holds almost surely for every n € N.
(2) X, X asn — o0
Then X,, X € Li(Q, A, P) and E[X,,|F]= E[X|F] as n — oo whenever F C A is a o-algebra.
Proof: By theorem 13 (6), X,,, X € L;(Q, A, P). Further,

X, <X,=supX; =X as n— oo,
k>n

and
0<Y, =Z-X, <Y,  5Y =Z-XcL(Q A P)
as n — oo. By theorem 35,
E[X,|F] £ E[X,|F] = E[Z|F] - E[Y,|F] = E[Z|F] - E[Y|F] = E[X|F].

Hence, we get that
limsup E[X,,|F] € E[X|F].

n—oo

The same inequality for V,, = —X,, and V = —X gives that
liminf E[X,|F] £ —limsup E[V,|F] £ — E[V|F] £ E[X|F],

n—oo n—oo

and therefore F[X,|F] = E[X|F]. O

Theorem 37 Let X € Ly(2, A, P) and F C A be a o-algebra. Then
(1) E[X|F] € Ly(Q2, F, P|F).
(2) It Y € Ly(Q, F, P|F), then EY (X — E[X|F]) = 0.
(3) If Z € Ly(Q, F, P|F), then E(X — E[X|F])? < B(X — Z)?, i.e.
E(X — E[X|F))? =min{E(X — 2)*: Z € Ly(Q, F, P|F)}.
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Proof: (1) We obtain from Jensen inequality, theorem 34, that (E[X|F])? £ F[X?|F], and therefore
E|E[X|F]]? < EE[X?*|F] = EX? < c0.

(2) By (1), Z :== X — E[X|F] € Ly(2, A, P). By Schwartz inequality F|ZY| < VEZ?EY? < oo holds if
Y € Ly(Q, A, P). Let Y € Ly(Q, F, P|F), then Y (X — E[X|F]) € Li(Q, A, P), and

EY (X — E[X|F]) = EE|Y(X — E[X|F))|F] = E{YE(X — E[X|F]|F))} = E{Y -0} = 0.
(3) Let Z € Ly(Q2, F, P|F), then Y = E[X|F| — Z € Ly(Q, F, P|F), and (2) gives that
E(X - 2)=E(X - E[X|F]+Y)? = E(X — E[X|F))?+2EY (X — E[X|F)) + EY?
= E(X — E[X|F))? + EY? > E(X — E[X|F))*.

Let X; € Ly(Q, F, P),k < n € N. Then
Var(X) = E(X — EX)(X — EX)’

is called a variance matriz of random vector X = (X1,...,X,,)". If A, B € R™" we write A < B if
B — A is a positively definite matrix, i.e. if C' = B — A > 0. This means that

VAER"” NCA>0, ie XNAXN<Z<NBA

Theorem 38 Let X, Y, € Ly(Q2, A, P),k <n and F C A be a o-algebra. If o(Y') C F, then
Var(X — E[X|F]) < E(X - Y)(X =Y,
where X = (X1,...,X,)", Y = (Y1,...,Y,)".
Proof: Let A € R™, then ' X, \'Y € Ly(2, A, P) and E[\' X|F] = A" E[X|F]. By theorem 37
NEX —Y)(X - Y) A= E[(NX = ANY)(NX =AY
> E[(NX — ENX|F)(V'X — EN X|F))]
= Var(A' X — B[N X|F]) = X' Var(X — E[X|F))A.
O

Theorem 39 (Wald) Let X,,,n € N be a sequence of independent identically distributed real-valued
random variables on a probability space (£2,.4, P) independent with a random variable N attaining only
values in Nj. Let us consider the following random sum

N
S=> X.
n=1

(1) If X1, N € Ly(, A, P), then
E[S|N] = N - EX,.
(2) If N e L1(Q,A, P) and X; € Ly(Q2, A, P), then
var(S|N) := E[(S — E[S|N])?|N] £ N - var(X)).
(3) If @ € R\{0} is such that e**1 € IL;, then

N
exp{aXn}
Eexp{aXn}
n=1

Proof: (1) By theorem 20, S € L1(Q2, A, P). Let n € Ny, then

E[e®(BEe®*)™ |N] £ 1, ie. E

N] ey

E[Slin=p] = E (Z Xkl[N:n]> = EX,nP(N =n)
k=1

= nk Xy, and therefore

E[SIN] = Y E[SIN =n]ly_y= > nEXily_y = N-EX;.
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(2) Denote S= S — NEX; = S — E[S|N]. If n € Ny, then

B[S y—y) = B[(Y_(Xk = EXy) 1ivn] = P(N =n) E(Y_ X — EX})’

k=1 k=1

= P(N =n) Var(ZXk) = P(N =n)nvar(X),
k=1
and therefore if P(N =n) > 0, then E[S?|N = n] = nvar(X;). Hence,

var(S|N) = E[S?*|N] = ZE[S2]N =n]- Inon = vaar(Xl) An=n = N - var(Xy).

n=0 n=0

(3) Denote Y, = exp{aX,}/Fexp{aX,} and Z = [[._, V,. Let n € Ny, then

E[Zljnen)] = E (1[an : HYk> =P(N =n)[[ EYi = P(N =n)
k=1 k=1
as BY, = 1. Then

Ele*5(Be™)™N|N] £ E[Z|N] £ Y E[Z|N =n] - 1jy_y = L
n=0

7. RANDOM MEASURES

Let (€2, A, P) be a probability space and F C A a o-algebra, and (S, S) be a measurable space. A function
p:S x Q— Ris called an (S, F)-random probability measure if

(1) we Q— u(D,w) is an F-measurable function whenever D € S.
(2) u(S,w)= 1, u(D,w) £0 whenever D € S, and if D,, € S are pairwise disjoint, then

(U Do) = S (Do),
neN neN
Example Let X : (2, 4) — (5,S) and F C A be a og-algebra. Put u(D,w) = P(X € D|F)(w). Then
p is an (S, F)-random probability measure. First, if D € F, then P(X € D|F) € L;(2, F, P|F) holds by
the definition. Second, P(X € S|F)= 1 and P(X € D|F) £0if D € S hold by the elementary properties

of conditional expectation. Further, if D, € S are pairwise disjoint, then we obtain from the definition
that

P(X € UnDn|F) = Ellixeu, 0| F1= ERC lixen | FI= X, Ellxep,|F] = 22, P(X € DnlF).

Let (€2, A, P) be a probability space and F C A be a o-algebra and (5,S) be a measurable space. Let
v S x Q — R be (S, F)-random probability measures. We say that v is a regular version of p if

(1) v(D,w)= pu(D,w) whenever D € §
(2) D €S+ v(D,w) is a probability measure whenever w € €.

Theorem 40 Let (S,d) be a separable and complete metric space (or generally a Polish space!!). Let
(2, A, P) be a probability space and F C A be a o-algebra. Then every (B(S), F)-random probability
measure has a regular version.

Let X : (A P) — (5,8,Px) and Y : (A, P) — (H,H, Py) be random variables. A conditional
distribution of X given Y is a function Pxy: (Bly) € S x H — Pxy(Bly) € [0,1] satisfying
(1) B €S~ Pxy(Bly) is a probability measure whenever y € H

(2) y € H — Pxy(Bly) is an H-measurable function whenever B € S.
(3) If Be S and C € 'H, then

PKXTE.B,YYG(j)szb}%ﬂy<fﬂy)d}§%y)

A separable topological space is called a Polish space if there exists a complete metric generating the same topology.
A metric space is called Polish its generate a Polish topology, i.e. if there exists an equivalent complete and separable metric.
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The set of all conditional distributions of X given Y is denoted as L(X|Y).

Theorem 41 Let (S, d) be a Polish space, X : (2, A, P) — (S,B(S5), Px),Y : (2, A, P) — (H, H, Py)
be random variables. Then there exists a conditional distribution of X given Y.

Proof: If D € B(S), we put v(D,y) = P(X € D|Y = y), and we immediately see that y € H — v(D,y)
is an H-measurable function. Further,

(1) u(S,y) = P(X € S|Y =y) =1 holds for Py-almost every y € H as P(X € S|Y) = 1.
(2) w(D,y) = P(X € D|Y =y) > 0 holds for Py-almost every y € H as P(X € B|Y) Z0.
(3) If D, € B(S) are pairwise disjoint, then
Pyly € H = (f(UnDn,y) = 32, i(Dns )} = Pl(Un D, Y) =32 (D, Y] = 1
as
w(UpDy,Y) = P(X € U,D,Y) = > P(X €D,Y) = > u (DY)
Hence, 1 is an (B(S), H)-random probability measure. By theorem 40, it has a regular version v, i.e.

(1) v(D,y) = u(D,y) = P(X € D|Y =y) holds for Py-almost every y € H whenever D € B(S)
(2) D € B(S) — v(D,y) is a probability measure whenever y € H
(3) y € H— v(D,y) is an H-measurable function whenever D € B(S5).

Further, if B € B(S) and C' € ‘H, then
Jov(B.y)dPy(y) = [, P(X € BIY =) dPy(y) = [,y P(X € BIY)dP
:f[YEC] [XGB]dP:P(XGB,YGO).

Hence, v is a conditional distribution of X given Y. O

Theorem 42 Let X : (Q, A, P) — (5,5, Px)and Y : (Q, A, P) — (H,H, Py) be random elements. Let
G elly(Sx H,S®H,Pxy) and Px)y be a conditional distribution of X given Y. Then

(6) E[GX, V)Y =y] = [(G(z,y)dPx)y(z|ly) Py-a.e.
Proof: If ' =B x C, where B € § and C € 'H, put
fS T,y dPX|Y (zly) = fB Le(y dPX\Y(x’y) PX\Y(B‘y) le(y).

By definition, mg (y) is an H-measurable and with values in [0, 1]. Hence, mp € L, (H, H, Py), and therefore
mp(Y) € L1(Q,0(Y), Plo(Y)). Let D € H, then

f[YeD] mp(Y)dP = fD mp(y) APy (y fD Pxy(Bly) - 1c(y) dPy (y)
= Jenp Pxiy (Bly) dPy(y) = P(X €B,Y €CND) = [ycp 1r(X,Y)dP.
Hence, mp(Y) € E[1x(X,Y)|Y], and therefore
FeLl:={BxC:BeS CecH}C{FeS®H,(6)holds for G =1p} = M

Obviously, o(£) = S ® H, the set L is closed under finite intersections, and M is a Dynkin system. By
Dynkin lemma, o(£) =S ® H C M. Hence,

(1) 1peL={GeLt(SxH,S®H):(6) holds } if F € S®H.

(2) If a,b > 0 and Gy, G € K, then obviously aG; + bGs € K.

(3) IfG, e Kand G, 1 G € LT(Sx H,S®H). Then G € K holds by Monotone Convergence Theorem.

By lemma, K =L7(S x H,S§ ® H). Then G* € K and GF(X,Y) € (2, A, P) and therefore
BIGX. Y)Y =y = E[GT(X,Y)|Y =y] - E[G" (X, Y)]Y =y
= [ GT(,y) dPxyy (zly) — [¢ G (2,y) dPxpy (z]y) = [¢ G(z,y) dPxpy (z|y)
holds for Py-almost every y € H. 0

Theorem 43 Let X : (Q, A4, P) — (S,S,Px) and Y : (Q, A, P) — (H,H, Py) be random elements and
G:(SxH,S®H) — (T,T) and Px)y be a conditional distribution of X given Y. Then ¢ € L(G(X,Y)[Y),
where

(:(B,y) €T x H— P(G(X,y) € B) € [0,1].
Proof:
(1) Let y € E, then B € T — P(G(X,y) € B) is a probability measure.
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(2) Let Be T, theny € H — P(G(X,y) € B) is an H-measurable function.
(3) Let Be 7T,C € H, then

Je C(B,y)dPy(y) = |, P(G(X,y) € B)dPy(y fcfsl[nyeB]dPX( z) dPy (y)

- foC’ 1[G($7y)€3} d(PX ® dPY)( T,Yy) = foC 1[G(m,y )EB] dPX,Y(xa y)
=P(G(X,Y)e B,Y € C).

O

Theorem 44 Let X : (2, A, P) — (5,8, Px) and Y : (Q, A, P) — (H, H, Py) have a joint density fxy
with respect to u ® v, where pu, v are o-finite measures on (S,S) and (H,H), respectively. Denote

fxpy (zly) = %é)w Lify ()220]-

Then ¢ € L(X|Y), where
C(Bly) = [ Fxv (@ly) du(@) - Ly >0 + Py (B) - Ly =0, B €S,y €E.
The function fxy(x|y) is called a conditional density of X given Y with respect to p ® v.

Proof: We know that fy > 0 is a density of Y with respect to v.

(1) Let y € E, then B € § — ((Bly) is a measure on (S,S) with {(S|y) = 1.

(2) Let B € S, then Fubini theorem gives that y € H + ((Bly) is an H-measurable, since fx|y is
S ® E-measurable and N ={y € H : fy(y) #0} € £.

(3) Let Be S,C € &. Then

Jo ¢(Bly) dPy(y) = [ C(Bly) fr (y) = Jo [y Fxiv (@ly) fy (y) dp(z) du(y)
=Lﬁ;kyaww<mw> Pxy(B x C)
= P(X € B, Yeé):P(XeB,YeC),

where C' = {y € C': fy(y) > 0} € H is such that Py (C\C) = fC\C fy(y)dv(y) = 0. O

8. 0-1 LAWS

Let (£2,.A) be a measurable space and F, C A,n € N be a sequence of o-algebras. A residual o-
algebra is the following o-algebra
= el 7).

neN k>n
Its elements are called residual events.

Example Let F, € F,, then
limsup F,, = ﬂ U F,e F* & liminfF, = U ﬂ F, € F>.

n—oo n—oo

keNn>k keNn>k

Theorem 45 (Kolmogorov 0-1 law) Let (Q2,.A, P) be a probability space. Let F,, € An € N be
independent o-algebras, then P(F') € {0, 1} holds whenever F' € F°.

Proof: Let n € N, F}, € F;,n < K € N, then

P(\Fo =]]PFE)=]]PFE) [] P(F)=P((F)-P( () Fo).
k=1 k=1 k=1 k=n+1 k=1 k=n+1

Hence, the system

k=1
is closed under finite intersections and it is independent with
K
L=/ ﬂ Fy: Fy € Fi,k >n, K >n},

k=n+1
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which is also closed under finite intersections. Hence, o(L,,) = o(F1U...UF,) and o(L") = 0(Ug>nFi) are
also independent. Since F* C o(Ug>nFk), we get that F> is a system independent with o(F;U...UF,).
Then we get that F*° is a system independent with

L=|Jo(RU...UF).

Hence, we get that F*° are independent with o(£) = o(U,F,) 2 F*. Hence, if F' € F*°, then F, F are
independent sets. Then P(F) = P(FNF) = P(F)? and therefore P(F) € {0,1}. O

Lemma (Cantelli) Let F,, € A,n € N be such that ) P(F,) < oo, then P(limsup, F},) = 0.

Theorem 46 (Borel-Cantelli) Let (€2, A, P) be a probability space. Let F,, € A, n € N be independent.
Then

P(limsup F},) Z &  P(limsupF,) =1 = ZP(Fn) = 00.
n—oo n=1 n—oo n=1

Theorem 47 Let X,,,n € N be independent random variables. Denote X = (X,,,n € N) and

T = ﬁ{R" x A: AeBRY)}

n=1
o-algebra on RY. If g : (RN, 7) — (R, B(R)), then g(X) is a degenerate random variable.'?
Proof: It is enough to show that ¢ € R +— P(g(X) < ¢) attains values in {0,1}. Let ¢ € R, then
B={zecR":g(x)<c}eT.
If n € N, then there exists A, € B(RY) such that B = R" x A,. Denote F,, = ¢(X,,). Then

[90X) < d = [(Xosss k €N) € 4] € o(|J Fs).

keN
Hence,
9(x) <deJollJ A =
neN  k>n
Since F,, = 0(X,,) are independent, we get by theorem 45 that Plg(X) < ¢|] € {0, 1}. O

Theorem 48 Let X,,n € N be sequence of independent identically distribution real-valued random
variables on (2,4, P). Let 0 < b,, — 00 as n — 0o, then there exists ¢, d € R such that

hmsup ZX;CEC & hmmf—Zkad

n—00 n—00 b

Proof: We show only the first part of the statement, the second part can be obtained from the first one
immediately. Obviously, if m € N, then

g(x) :=lim sup o~ Zwk = lim sup o Z Ty =

n—oo n—oo k‘ m4+1

holds. Let ¢ € R, then there exist A,, € B(RY) such that
{reRY:gx)<c}={zeRY . g,(z) <c} =R™ x A,

whenever m € N. Hence, {z € RY : g(z) < ¢} € 7. Now, it is enough to apply theorem 47. O

12 6. there exists ¢ € R such that g(X) = ¢ holds almost surely.
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9. SUMMABILITY OF SEQUENCE OF REAL-VALUED RANDOM ELEMENTS

Lemma(Skorochod inequality) Let X, ..., X, be independent random variables, denote S, = > 7_; Xj.
Let € > 0. Then

Proof: Denote T' = inf{k € {1,...,n} : |Sk| > 2¢}. Then
P(|Su] > €) = P(|Su] > £,T < 00) = Y P(|Su| > &, T =k) > > P(ISi| = S0 — Skl > £, T = k)

k=1 k=1

> P(ISy— Skl <& T=k) =Y P(|S, — S| <)P(T = k)
k=1

k=1

------

O

Let X, € L(©, A, P),n € N. We say that the following sum of variables >~ X, is ... almost surely (in
probability or in L,, p > 1) if the sequence S,, = >, Xj of partial sums converges to some S € L((, A, P)
almost surely (in probability or in L,). Then the symbol >~ | X stands for such a variable S, which is
determined uniquely up to a P-null set.

Remark As it is seen from the definition, we do not emphasize the type of convergent of the sum
>, X, we are considering. But as we know, such a sum always converges in probability, and therefore
we can always regard S =" | X,, as the limit of S,, = Y ;- Xj in probability, i.e. S, S as t — co.

Theorem 49 Let X,, € L(2, A, P),n € N be independent random variables. Then

Z X,, 1s summable a.s. = Z X, is summable in probability.
n=1 n=1
Proof: Denote S, = > ,_, Xj. If S, S, then S, S as n — oo by theorem 22. Let S, S, then S, is

a Cauchy sequence in probability. Let €, € (0, 1), then there exists ng € N such that P(|S, —Sy,| > 5) < g
holds whenever n > ng. Then

P([Sm — Sn| > &) < P(|Sp = Sny| > §) + P(|Sn — Spe| > 5) <0

and therefore
min  P(|S,, — Su| <e)>1-96¢

ng<n<m
and Skorochod inequality gives that

P( U [IS, — Sp| > 2¢]) = lim P( max |S, — S,,| > 2¢) < limsup mil(lsrlgas'ZOJZi)|§5) <2

n>nq no STLSm

m—oo ng<n<m

and we get that
P( Y Sh = Sm| > 4e]) < P( U

n,m>nq n,m>nq

Hence, if e > 0 and 6 € (0,1), we have that
P(N U S, =Syl >4e]) < lim P(U

ng€N n,m>ng ny—00 n,m=>ng

(15 = Snol + 1Sm = Sugl > 4e]) < P( Y. (S0 — Saol > 2¢]) < 1%

1S = Sin| > 4e]) < 2.

Since 0 € (0,1) was arbitrary, we get that
P( n.u [|Sn_sm|>45]):0a

ng€EN n,m>ng

and therefore

P(N U N [S,—8,<4e])=1—lim P(N_ U _ [|S, =5, >4e]) =1

e>0 ngeN m,n>ng e—0+ ngEN m,n>ng

Hence, S, is a Cauchy sequence almost surely, and theorem 25 gives that S,, converges almost surely. [
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Theorem 50 Let X, € Ly(€2, A, P),n € N be uncorrelated random variables. Then

Z(X" — FX,) issummableinlL, = Zvar(Xn) < 00.
n=1 k=1
Proof: By theorem 25, S, = >/, (X} — EX}) converges in L, iff S, is a Cauchy sequence in Lo, i.e. iff
lim sup E|S, —Si/>=0 = lim lim Zvar(Xk) =0 = Zvar(Xk) < 00.
n—00 1y L>n n—m@wr%wk:n P

O

Theorem 51 Let X, € Ly(2, A, P) be independent variables with y . var(X,,) < oo, then > (X, — EX,,)
is summable almost surely, in Ly (and also in Iy and in probability).

Proof: It follows from theorems 49 and 50. U
A complete characterization of summability of independent variables is given by the following theorem.

Theorem 52 (Kolmogorov) Let X,, € L(Q, A, P) be independent variables, then the following conditions
are equivalent.

(1) 302, X, is summable.
(2) There exists ¢ € (0,00) such that (7) holds.
(3) (7) holds, whenever ¢ € (0, 00), where

(7) ZP(!XH\ >c)<oo & ZE[Xn; | X, <¢] issummable & Zvar(Xn1[|Xn|§d) < 00.

n=1 n=1 n=1

Remark Let X,, € L;,n € N be such that > ° | F|X,| < oo, then > X, is summable in LL; and also
almost surely.

Proof: First, we show that S,, = Y, Xj is a Cauchy sequence in L;. Obviously.

n+p [e%¢)

ElSup—Sal=E| Y Xil< ) E|Xy[—0 as n—oo
k=n-+1 k=n-+1
uniformly in p € N. Second, Y = "> |X,| € L; holds by assumption, and therefore > >°  |X,| < oo
holds almost surely. In particular, >~ X, is summable almost surely. 0

10. LAWS OF LARGE NUMBERS

Cronecker lemma Let 0 < b,, T oo and a,, € R be such that S,, = 22:1 ay is a convergent sequence in
R, i.e. > a, is summable. Then
1 n
E;z{:bkak-—>0
k=1

as n — OoQ.

Corollary Let 0 < b, T oo be such that > 7, b,*X,, is summable almost surely. Then

(8) , Y X0
Remark If X,, € L; are such that y >, E|)b%| < 00, then (8) holds.

Theorem 53 Let X,, € Lo, n € N be independent random variable and let 0 < b,, T co be such that

Zvar()b(:) < 00
n=1
Then
1 n
(9) 0 (Xp — EXi) = 0
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Proof: By theorem 51, > 7, X’“_b—fX’“ is summable almost surely, and the above corollary gives (9). O

Theorem 54 Let X,,,n € N be independent identically distributed real valued random variables, then

1 n
P (hmsup— ZXk
k=1

n—oo n

1n
<oo>>0 = X, el, = —ZxkﬂExl
nk—l
as n — OoQ.

Theorem 55 (Weak law of large numbers, Cebysev) Let X,, € Ly, n € N be such that cov(X;, X;) = 0
if « # j, and that

1 < 1 <
5 > var(Xy) — 0, then Y, := ™ > (Xp—EXyp) 5 0.
n k=1 " k=1

Proof: By assumption EY, = 0 and E|Y,|?> = var(Y¥,) — 0 as n — oo. Hence, Y, 22 0, which gives that
also Y,,= 0 as n — oo. dJ

Remark The direct proof can be obtained from the definition of convergence in probability with the
help of so called Cebysev inequality for X € IL; and € > 0 in the form

P(|X — EX| > ¢) < e ?var(X).
It is a special case of so called Markov inequality in the form
P(IX| > ¢) < e E|XT
ife,r>0.

Theorem 56 (Law of iterated logarithm, Hartmann - Wintner) Let X,,,n € N be iid random variables
with 4 = EX,, € R and 02 = var(X,,) € (0,00). Denote

Y, = %;m ),

then

Y, Y,
lim su L £ /202 & lim inf L £ V202,
n—»oop Vinlnn n—oo +/Inlnn

11. WEAK CONVERGENCE

Let P,, P be Borel probability measures on a metric space (5, d). We say that P,, converge to P as
n — oo weakly and we write P,— P asn — oo if

[ fdP, — [ fdP

holds as n — oo whenever f is a bounded continuous function on (5, d). The set of all bounded continuous
function on S will be denoted as Cp(.S)

Theorem 57 Let (5, d) be a metric space and P, Q, P,,n € N be probability measures on (.5, B(5)).

(1) If [, fdP = [, fdQ holds for every f € Cy(S). Then P = Q.
(2) If P, Pand P,—~ @ asn — oo. Then P = Q.

Proof: (1) We will show that the following system M = {B € B(S); P(B) = Q(B)} contains closed set
in (S,d) and we obtain from Dynkin lemma that @ = P. Obviously §) € M. Let F' # () be closed in (5, d)
and put f,(z) = (1 — nd(z, F))*. Then Cy(S) > f, | 1p. By assumption and Dominated Convergence
Theorem,

P(F) = lm [ f,dP = lm [ f,dQ = Q(P).

As mentioned above, the closed set determine a Borel probability measure, and therefore P = Q).
(2) It follows from the definition that

[fdP = lim [ fdP,= [ fdQ, f € Cy(S)
and the first part of the statement gives that P = Q).
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Theorem 58 (Portmanteau lemma) Let (S, d) be a metric space and P,, P be Borel probability measures
on S. Then the following conditions are equivalent

(

1) P,~ P asn — oo.
(2
3

)
) limsup,, P,,(F) < P(F) as n — oo holds whenever F' is a closed set in (.5, d).
(3) liminf, P,(G) > P(G) as n — oo holds whenever F'is an open set in (S5, d).
(4) lim,, P,(B) = P(B) as n — oo holds for every Borel subset B of (5, d) such that P(0B) = 0,

where 0B = closure(B)\ interior(B) is a border of B.

Proof: (1)=(2): Let F be a closed set in (S, d). Then Cy(S) 3 fr(z) = (1—kd(x, F))* | 1r are functions
with values in [0, 1]. Then Dominated Convergence Theorem gives that

limsup P, (F) = limsup [ 1pdP, < hm fsfde Js fedP — [(1pdP = P(F).

(2)=(3): It is obvious as F' = S\G is closed if and only if G = S\ F is open and P(F) + P(G) =
(2,3)=(4): Let B be a Borel set with P(0B) =0, Then 0= 1y = 1p — 1, where F' = cl(B), G = int(B),
and therefore

P(B) = P(G) < liminf P,(G) < liminf P,(B) < limsup P,(B) < limsup P, (F) < P(F) = P(B).

n—oo n—0oo n—o0 n—oo

(4)=(1): Let f: S — (a,b) be a continuous function, where —oco < a < b < 0o, and € > 0 be arbitrary. As
M={te(ab):P[f=1]>0}=J{t€(ab): Plf=1>3}
keN

is a countable union of finite sets (with at most k-elements), it is countable. Hence, there exists a division
D={a=ty<...<ty,=>}Cla,b\M with ||D|| = max,;<,,{t; —t;—1} < e. Then |f — g| < e, where

g=Lflp= ZtifllB“ where  B; = f7H[ti1, 1)
=1
Asint(B;) = f~1(t;_1,t;) and cl(B;) = f~[t;_1,t;], we get that IB; = f~'{t;_1,t;} has P(0B;) = 0. By (4),

P(B;) = lim P,(B;), and therefore [gdP, = th \P,(B th \P(B;) = [gdP

n—00
=1

as n — oo. Further, as |f — g| < e, we obtain that
|[fdP, — [ fdP| <2e+|[gdP, — [gdP| — 2
asn — 00. As € > 0 was arbitrary, we get that [ fdP, — [ fdP asn — oo holds for every f € Cy,(S). O
Theorem 59 Let (S, d) be a metric space and P,, P be Borel probability measures on S. Then P, P
as n — oo holds if and only if each subsequence of P, has a subsequence, which converges to P weakly.

Proof: If P,— P asn — oo and N 3 ny T oo, then we obtain from the definition that P, — P as
[ — oo holds whenever my, = ny, and N 3 k; T oo.

On the other hand, let P,,~% P as n — oo, then there exists f € Cy(S) such that [ fdP, £ [ fdP as
n — o0o. Then there exist € > 0 and N 3 ny 1 oo such that | [ fdP,, — [ fdP| > ¢ holds for every k € N.
Then no subsequence of P,, converges to P weakly. O

Lemma Let (S, d) be a metric space and z,z,, € S,n € N. Then §,,— 0, as n — oo if and only if
xn, — x in S, where ,(B) = 15(y) is a Dirac measure at y € S.

Proof: Let x, — z in S and f € Cy(S). Then ffdéxn = f(z,) — f(z) = [ fdd,. On the other hand
let 0., d, and € > 0. Then G ={y € S :d(x,y) < €} is an open set in (S d). By Portmanteau lemma

liminf 14(z,) = hm 1nf§ J(G) > 6,(G) =1g(x) = 1.

n—oo

Hence, there exists ng € N such that z,, € G holds for every n > nyg. O

Let M be a subset of the set of all Borel probability meaures on a metric space (S, d). We say that M is

(1) tight if for every € > 0 there exists a compact set K in (5,d) s.t. u(K) > 1 — ¢ whenever u € M.
(2) relatively weakly compact if every sequence p,, in M has a weakly convergent subsequence.

Theorem 60 (Prochorov) Let (S,d) be a separable metric space and M be a subset of the set of all
Borel probability measures on (S, d). Then M is relatively weakly compact if and only if M is tight.
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12. CONVERGENCE IN DISTRIBUTION

Let (S,d) be a separable metric space and X, X,,,n € N be Borel measurable random variables with
values in S. If Py, Px as n — oo, we say that X,, converge to X in distribution and write
X, 2 X as n — o0o.

Note that each variable can be defined on own probability space (,,4,, P,), then Px, = P, X'
Further, if X,,2 X and X,,2Y as n — oo, then Px = Py but X,Y does not have to be equal a.s., since
they can be even defined on a different probability space.

Remark (Portmanteau lemma for convergence in distribution)
Let (S, d) be a metric space and X, X, be Borel measurable random variables defined on (£2,.4, P) or
(Q, Ap, Py), respectively, with values in S. Then the following conditions are equivalent

(1) X,2 X asn — oo.

(2) Ef(X,) —>Ef( ) as n — oo holds for every f € Cy(95).

(3) limsup,, P,(X, € F') < P(X € F') as n — oo holds whenever F' is a closed set in (S5, d).

(4) liminf, P,(X, € G) > P(X € G) as n — oo holds whenever F'is an open set in (.5, d).

(5) lim, P,(X, € B) = P(X € B),n — oo holds whenever B is a Borel subset of (5, d) s.t. P(0B) =
where 0B = closure(B)\interior(B) is a border of B.

Theorem 61 Let X, X, : (Q,A P) — (5,B(S)),n € N be random variables defined on the same
probability space, where (S, d) is a metric space and B(S) is its Borel o-algebra. Then

(1) If X,,> X as n — oo, then X,,> X as n — oo.
(2) f X,2 X asn —ooand X = ce€ S, then X, X as n — .

Proof: (1): Let X,,> X as n — oo and assume that X,, 72 X as n — oo. Then there exists f €
Cy(S),N 3 ny T oo and € > 0 such that
| [ f(Xn)dP = [ f(X)dP| = e.

Let N 3 k; T oo be such that X,,,~ X as | — oo, where m; = ny,. Then f(X,,,) = f(X) as | — oo and
Dominated Convergence Theorem gives a contradiction with the above inequality.

(2): Let X, X asn — oo and € > 0. Then F' = {x € S:d(z,c) > ¢} is an closed set in (S, d) and the
above remark gives that

liminf P(d(X,,c) >¢) <limsupP(X, € F) < P(X € F)=1p(c) =0

n—oo n—o0

and therefore X,, > X as n — oo. O

Example There exists a sequence of X,,> X as n — oo such that X,, » X as n — oo even if X,,, X
are defined on the same probability space. It is sufficient to consider equally distributed random variables
X, such that X,,= X if nis odd and X,, = Xy, Z X if n is even.

Then X, 2 Y as n — oo holds whenever Py = Py,, but X,, does not converge in probability.

Theorem 62 Let (5, d), (H, p) be metric spaces and g : S — H continuous. If X,,, X are Borel measur-
able random variables with values in .S such that

X,2 X, n—oo, thenalso Y,=g¢g(X,)2 g(X)=Y, n— occ.

Proof: Let f € Cy(H), then h = fo g € Cy(5), and we obtain from the above remark that
Ef(Yn) = Ef(9(Xn)) = Eh(Xyn) — EMX) = Ef(9(X)) = Ef(Y).

Again, we obtain from remark above that Y,2> Y as n — oo. U

Corollary Let X™: (Q,,, A,, P,) — (R*, B(R¥)), X : (Q, A, P) — (R*, B(R*)), let X" 2 X asn — oo.
(1) Then A" X2 X" X as n — oo holds for every A € R¥.
(2) In particular, X( ") 2 2 X as n — oo holds for every j € {1,...,k}.

See thereom 78 later on that the first implication (1) from the above corollary can be reversed.
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Theorem 63 Let (.5, d) be a separable metric space and X,,,Y,, be Borel measurable random variables
with values in S such that X,,,Y, are defined on (€,, A,, B,). Let X,,> X as n — oo and d(X,,Y,)>0
as n — oo, where X : (Q, A, P) — (S,B(S5)). Then Y, > X as n — oc.

Remark We assume that the metric space (S5,d) is separable in order to ensure that d(X,,Y,) are
(A,-measurable) random variables. Obviously d : S x S — [0,00) is a continuous function. Hence U, =
{(z,y) € Sx S :d(z,y) < e} is a Borel measurable set. If (S, d) is separable, then B(S x .S) = B(S)®B(S),
and thefore

U.€B(SxS)=B(S)@B(S) = [d(X,Y,) <= (X,Y,) 'U.€ A,

Proof of theorem 63: Since h(z) =1 A |kx| is a bounded continuous function on R, we get that
P (d(X,,Y,) > 1) < Emin{l,kd(X,,Y;)} -0 as n— oo
Let F be a closed set in (S, d) and put Fy, = {s € S;d(z, F) < %} Then
limsup P, (Y,, € F') <limsup P,(X,, € F;) + limsup P, (d(X,,Y,) > %) < P(X € I})

holds since X,,2 X as n — oo and Fy is a closed set. Since F' = N2, F},, we obtain that
limsup P, (Y, € F) < P(X € F,) | P(X € F)

n—oo

as k — oo. Thus, Y,2 X as n — oo. O

Corollary Let X™ Y™ . (Q,, A,, P,) — (R¥,B(R*)) and X : (Q,4, P) — (R* B(RF)). Denote
|2]|> = 2"z if » € R¥. Let X2 X and ||V, || 2 0 as n — oo, then ¥,,> X as n — oo.

If X is a k-dimensional real-valued random vector, we know that its distribution is determined by its
distribution function. As we will see later on, also the convergence of such vectors in distribution can be
characterized in term of distribution functions.

Theorem 64 Let X X be k-dimensional real-valued random vectors. Then the following conditions
are equivalent

(1) X,B X asn— oo
(2) Fx, (z) — Fx(z) holds for every x € R¥ such that Fy is continuous at x.

Proof: (1)=-(2): Let us assume that F is continuous at z € R* and that X,2 X as n — oo. If
r <y |z, then F(y) | F(x), and therefore we obtain that Px(—o0,z) = Px(—00,z]. Since P(0(—o00,x)) =
Px(—o00,x] — Px(—00,z) = 0, we get that by (Portmanteau) remark on convergence in distribution that

lim Fx, (z) = lim Px,(—00,z) = Px(—00,x) = Fx(z).

(2)=-(1): On the other hand, let us assume that (2) holds. Obviously, M; = {z € R; P(X; = x) > 0} are
countable sets. If z € £ = Hle(R\Mj), we get that

k
|Fx(y) — Fx()| <Y P(IX; — 2] <0,y) =0,  where &, = max [z; — y;| — 0
: i<
7j=1
as y — x holds, i.e. Fx is continuous at x. Thus, we get that F'x is continuous at each point of the set L.
Since we assume (2), we get that Fx, (z) — Fx(z) holds if x € L. If x,y € L are such that x <y, then

Px,[2,y) = Ney(Fx,) = Ney(Fx) = Px[2,y)

holds as n — oo, where

a(F)= Y (F)F el ()
z€ll—1{zj,u;}
is a function that assigns to a distribution function F' of a random vector, say Y, the corresponding
probability Py[z,y) = 1., (F). Let G C R* be an open set, then it is a disjoint countable union of sets of
the form [z,y), z,y € L, say G = Usen[z®, y®), where 29 < y@ and 2@, y® € L hold for every i € N.
Then Fatou’s lemma gives that
h}ﬂio{if Px, (G) = liﬂgfz Px, [z, y¥)) > Z h}fiio?f Px, [z, y) = Z Px [z, yD) = Px(G)

1€EN 1€EN 1€N
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holds. Then (Portmanteau) remark on convergence in distribution gives that X, > X as n — oo. U

13. CHARACTERISTIC FUNCTIONS

Let X be a n-dimensional real-valued random vector, by its characteristic functions we mean
Px(t) = E¢" X, teR™

Note that such a function is defined correctly as exp{it' X} is a bounded complex-valued random variable.

Let » > 0 be fixed and denote by Gon, the set of all goniometric polynomials on R that are r-periodic
in each coordinate, i.e.

Gon, = {%Z)\ emmﬁ” = (AL ) €Cm= (my,...,my,) € ZM" n € N}.

Lemma Let f : R¥ — R be a bounded continuous function, r > 0,¢ € (0, 1]. Then there exists g € Gony,
such that

(10) max |f(z) —g(z)]<e &  max|g(x)| < sup |f(z)| +1.

x€[—r,r]k z zERK
Proof: Denote Py = {g|i_, ;9 € Gony }. Note that the functions from Py, separate points from

[—r,r]F, Le. if 2,y € [—r,r]F and © # y, then there is g € Py, such that g(z) # g(y). By Stone-Weierstrass
theorem, there exists ¢ € Gony, such that

(11) max | f(z) —q(z)| < 3.

x€[—r,r]k
Put K = sup{|f(z)| : z € R*} + £ and
Ay) = (—K)Vy A K.
Then |q(z)| < K holds whenever z € [—r,r]* by (11) and therefore 2(q(z)) = q(z) holds if z € [—r, r]~.

By Weierstrass theorem, there exists a polynomial p such that

(12) max [p(y) — z(y)| < 5
y€la,b]

where [a,b] = {q(z) : € R*}. Then g(z) = p(q(z)) € Gony, and (12) gives that

max [g(x)| = max |p(¢(r))| < max |p(y)| < max |z(y)[ + 5 < K+ § < sup [f(z)] +1
zERF zERF y€la,b] y€la,b] rCERF

as € € (0,1]. Since 2(g(z)) = q(x) holds if = € [—r,r]*, we obtain from (11) and (12) that
max |f() —g(@)| < 5+ max q(x) —pla(@))l <5+ max [2(y) —p(y)| <.

x€[—rr]k zE€[—r,r] y€lo,B

l

Theorem 65 The characteristic function determines the distribution of a real-valued random vector,
i.e. if k € N and Px(t) = Py(t) holds for every t € R¥, then Py = Py.

Proof: It is sufficient to show that [ fdPx = [ fdPy holds for every bounded continuous functions f
on R by theorem 57. If f € Gon, holds for some r > 0, then the above equality holds as

[ FaPx = BF(X) = BRY e ™% = 30 A Pe(2my) = RYT, APy (2 my)
=ERY T, )‘je%mbf =Ef(Y)=[fdPy.

Let us fix f : R* — R bounded and continuous and €,r > 0 be arbitrary. By lemma above, there exists
g € Gony, such that (10) holds. If u is a Borel probability measures on R¥, we have that

S = [ gl < 2+ fncp e (1 + lo) di < &+ @max ()] + 1) - (R [, 7).
Hence, there exists a sequence g,, € Gony,, , where r, — oo such that
limsup| [ fdu— [gndu| <e

n—oo

holds whenever € > 0. If p is Px or Py, we obtain that
Ef(X)= [ fdPx =Ilim [g,dPy =lim [g¢,dPy = [ fdPy = Ef(Y).
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t

Theorem 66 (Cramer-Wold I) The distribution of a k-dimensional real-valued random vector X is
determined by the distributions of A" X, A € R* i.e. if X,Y are both k-dimensional real-valued random
vectors such that Pyry = Pyry holds for every A € R*. Then Px = Py.

Proof: Let X,Y € L(, A, P)* be such that Pyry = Pyry holds whenever A € R¥. Then
Px(t) = B X = Pax(1) = Pay(1) = Ee™Y = Py (1)
holds for every ¢ € R*. Then theorem 65 gives that Px = Py. U

Theorem 67 Let X = (X3,...,X;)" be a k-dimensional real-valued random vector. Then

(1) Px(0) = 1 > | Px(t)| holds whenever ¢ € R,
(2) P ( ) = Px(—t) holds whenever t € R¥, i.e. RPx(t) = RPx(—t) and SPx(t) + SPx(—t) = 0.
(3) Px(t) is a uniformly continuous function on R¥.
(4)
(5)

4 PX is a real- Valued function if and only if X has a symmetric distribution, i.e. Py = P_x

5) Poipx(t) =@t Py(B"t) holds if a,t € R™ and B € R™k.

Proof: (1) Obviously, 1 = E|ei X| < |Eei X| = |Px(t)| and Px(0) = Ee'" X = Ee = 1. (2) Further,

Px(t) = Bel™ = Beil™ = B~ X — py(—t).
(3) Let t,h € R¥. Then Dominated Convergence Theorem gives that
[Px(t+h) = Px(t)] < B¢ — | = Ble™ X — 1] — 0

as h — 0 € R¥ uniformly in ¢ € RF.

(4) If Py = P_x, then Px(t) = P_x(t) = Ee ' X = Py(—t), and therefore $Px () = 0 holds by (2).
On the other hand, if $Py (¢) = 0 holds for every ¢ € R¥, then (2) gives that Px(t) = Px(—t) = Be "' ¥ =
Py (t). Then theorem 65 gives that Px = P_x.

(5) Obviously,

Poipx(t) = Eet (4BX) = gid’t | poit’ BX _ gia’t | p(BTy)
U

Theorem 68 The variables X, ..., X} € L(Q, A, P) are independent if and only if Px(zﬁ) = H?Zl PXj (t5)
holds for every t € R¥.

Proof: Let X1,..., X}, be independent, then

pX()_ ti EH th]_HPX

Now, assume that Px(t) = HJ L PX (t;). Let Y; have the same distribution as X;,j = 1,...,k be such
that Y7,..., Y, are independent. Denote Y = (Yl, ..., Y%)". Then the first part of the proof gives that

k k
=[P t;) =] Px, ;) = Px(t).
j=1 j=1
Then we get that Py = Py = ®§:1Pyj = ®§:1PXJ., ie. Xq,..., X} are independent. ]
Theorem 69 Let X = (X1,...,X;)" and Y = (Y3,...,Y%)" be independent real-valued random vectors.
Then Pxyy(t) = Px(t)Py(t) holds for every t € R
Proof: As X,Y are independent, Py y (t) = Ee't’ XY = Elei' Xcil'Y] = Beit’ X Beit'Y = Py (t)Py(t). O

Theorem 70 A continuous function ¢ : R¥ — C is a characteristic function of a k-dimensional real-
valued random vector if and only if  is positively semidefinite, i.e. if

VmeN VaeC™T=(t,...,tn)" € R"™ a"Ap(Q)a >0,
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where A7 (¢) = {C(t; — ) }Ti=,- Equivalently, we can say that ( is a positively semidefinite function if and
only if A7(() is a positively semidefinite (complex-valued) matrix for every 7' € R™** and m € N.

Theorem 71 Let X,, ,cn, be a real valued random sequence independent with N : € — Nj. Then the
real variable Y = Xy has the following characteristic function

ZP n)Px, (t).

Proof: A straightforward computation gives that

A

Py(t) = Ee"*N = Z P(N =n)E[¢"V|N =n] =Y _P(N =n)E["*"|N =n] Z P(N =n)Px, (t),
n=0

since X,, and N are independent variables. 0

Theorem 72 Let X, ,en, be a real valued random sequence of i.i.d. real-valued variables independent
with N : Q@ — Ny. Then Sy = Z]kvzl X}, has the following characteristic function
Ps, (t) = An(Px, (t)), where Ay(s) = Es".

Proof: Denote Y, = Z?Zl Xk, then Y = (Y, k € N) is independent with N as X = (X, k € N) is. Then
Sy = Yy by the previous theorem has the following characteristic function

PSN ZP PYn ZP PXI( )) :AN(p)ﬁ(t))

as Py, (t) = [Tj—; Px, () = Px, ()" O
Lemma Denote
To(z) =€ — ]
k=0

whenever n € Ny. Then

. z|™ xn+1
()] < min{2l2, 1

holds for every n € Ny and = € R.
Proof: Obviously, |m(z)| = [e®® — 1] < 2 and

|mo(x)| = [e®® — 1| = [e®® — €| = |f0z e du| < f[lx‘ le®|du = |z].
Hence, |mo(z)| < min{2, |z|} and the statement of lemma holds for n = 0. Further, if n € N, then 7,(0) =0
and |7/ (z)| = |mp—1(z)|, and therefore by induction, we obtain that

Ix‘n-‘—l

+1)!}'

n(@)] < Sy [ena ()] du < f37 min{2 s B dy < min{2l |

Y Tl

Theorem 73 Let p € Nand X € L.
(1) Then Py has continuous derivatives up to order p. They are bounded on R, and
P (1) = L Py(t) = iF EX Y]

holds iftE]Randkzl,...,Ap
(2) The characteristic function Py has a finite Taylor expansion

R P o
(13) Py(t+h) =Y 50

k=0

+ pp(h,t), s, teR,

where

0p(h) = sup |py(h,t)| = o(R?) as h—0, & gy (h) < Z2opp,

teR
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Proof: (1): If p = 0, then the statement holds with L, = L. Further, we assume that the statement holds
for p € N and assume that X € L,;;. Then Dominated Convergence Theorem gives that

PGP0 _ o pxpeitX 2521 gL xpinX] g,

since | XPeX €2=1]| < |X [P+ € L;. Thus, the statement holds with p replaced by p + 1.
(2): Since X € L, we get that

Jf’x(t+h)—i("‘ E[X "] + Ele" my(h X))

By the previous lemma, g,(h) < E|m,(hX)| < @E | X'|P. Similarly, we obtain that

7 0,(h) < h™?Blm,(hX)| < Emin{22" AXy

as h — 0 holds by Dominated Convergence Theorem. U

Let X be a real-valued random variable. Then the function ¥x : t € R — Ee!* € R is called a moment
generating function of X.

Theorem 74 Let X € L, hold for every p € N and assume that the power series Y .- k,EX ¥ has
a positive radius of convergence R > 0. Then

(14) Px(t+h) =3 2 PP@), t,heR,|h <R
In particular,
(15) Z L FEXF heR,|h| <R,

and Py (and also the distribution of X) is uniquely determined by the moments FX* k € N. Further,
moment generating function is

(16) Wx(t) =Y LEX* teR| <R
k=0

Proof: We will show that the radius of convergence R of the following power series 3 r, ’;C—k,E | X" is
not smaller than

R = liminf (“E—Xkl)_l/k.

k—o0 k!
Now, we concentrate on the radius of convergence corresponding to odd moments. We get from Jensen
inequality that (E|X|?~1)V/(@k=1) < (EX?%)1/(k) Then

— . 2k—1 2k L 1 1, -5 2k L ~
R = h’gr_l)g)lf (%) 71 > hmlnf (E‘Q),(J) ) % (2k) "2 [(2k — 1)) = o h;?ifi}f (E(|2)]i‘) ) =R
as obviously (2k)"2 — 1 as k — oo and similarly
2%—1
o In( Qk)
0 < (g — 5p) [(2k — DY) = 55— Zl < — 0.

~

Since R > R, we get that
‘k
k!

)F 2 liminf (F50)7% = B

R = liminf (Z

k—o0

Since adding new coefficients does not increase the radius of convergence of a power series, we get that

R R =liminf (55) 7% > liminf (25— g

Then the radius of convergence of the power series >~ tk—k,p)((k )(s) is

PN _ i inf (XN > qg inf (BXEYF = R > R,

k—oo k! k—oo k!

R = liminf (

k—oo

k!
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Now, let us consider s,¢ € R such that |t| < R. By theorem 73 (2),

(s + 1) Z EPP(s)) < | Z P (s) + 2 EIX P < Z 208 x|k — 0
k=p+1 k=p
holds whenever ¢ € R is such that |t| < R, i.e. (14) holds. Let us consider the following function
p:s€ M Ee’™ on M= {seC:|Rs| <R},
We will show that it is holomorphic on set M, we show that is has a derivative in the complex variable
do(s) = LB = B[Xe™].

To verify that the above calculation is correct, we need to show that F|Xe*X| < oo if s € M, but

o0 Xk+1 o0 E‘X|k+1
sX| _ hX k k
E|Xe*X| = E|Xe"X| < E ZTh < ZTW <00
k=0 =
holds with h = Rs € (—R, R) as the power series
BN p — 2 bt Z EXI" =t
k=0 n=1 =

. 7 . E|X|*
has the same radius of convergence R > R as the series ), |k,‘ h*.

Since the characteristic function Px(t) = p(it),t € R determines the distribution of X, we obtain by
the theorem on uniqueness of holomorphic functions that the distribution Px is uniquely determined
by p(it),t € (=R, R), i.e. by the moments EX* k € N and also by the moment generating function
Yx(h) = p(h),h € (=R, R). Obviously, (16) holds as the radius of convergence of the power series on the
right-hand side of (16) is at least R. O

Counterexample There exist
Xye(L,
peN

such that EX* = EY* k € N, but Py # Py. Let X € L(Q, A, P) have a density
f(z) = cexp{—az*} Lgn)(z), a>0,A€(0,1).
Let us consider § = atan(A7) and € € (—1,1) and
fo(z) = cexp{—aa}(1 + esin(B2")) - 1(g.00)(2)
Let us consider a rela-valued random variable X, with the density f.. Then
EX! = [ z"ce= " (1 + esin(Ba)) da
and therefore we get with u = 2 that
d% EX = [ z"eem o sin(ﬁxA) dx
= fooo ze S e~ (@t g
= }\ OOO 5D G e (atiB)z (/\x)‘ D dz,
:)\fo e uin! ¢ [e~(@tiB)u] du,
= LeD() §(a+i6)" ] =0

as
+1

(a+ Zﬂ)_nTH = a‘"TH(l +itan(Ar))" R = a_nTH(l + tan2()m>>—”2—§le—(n+1)m cR
and as

00 gPgP~l  _az —
fo T ¢ de =1

hold whenever a € C is such that Ra > 0. The last equality can be verified by taking derivative of the
left-hand side with respect to a € C such that Ra > 0 and showing that the derivative is equal to zero by
per partes.

Hence, we get that FX” does not depend on ¢ € (—1,1) and therefore the variables X, have the same
moments, but their distributions are different.
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Theorem 75 Let p € N and X € L(Q, A, P), be such that PEP(0) € R, then X € Lo, (Q, A, P).

Proof: If p = 0, then the statement of the theorem holds with the notation Ly, = IL. Let us assume
that the statement holds for p and that P(2k+2)(0) € R. Theorem 73 gives that Px € C?(R) and that
h(t) = (=1 PP (1) = E[X?e"X]. As 1”(0) € R holds by assumption, we use 2x1'Hopital to obtain that

h(t)+h h R ()—h (=
lim MEHCO200) _ Jiy KON _ por(g)

t—0 t—0

Then Fatou’s lemma gives that

. —cos(tX : h(0)—=h(t)—h(— p\2pt2
EX* < lim E[X? ] (1)) — %E’%M = —h"(0) = (=11 PP (0) < oo,

O

Theorem 76 Let X (n) € L(Q,, A,, P,)*,n € Ny be such that X (n) — X (0) in distribution as n — oo.
Then Px () (t) — Px(0)(t) as n — oo holds for every ¢t € R".

Proof: Let X(n) — X(0) in distribution as n — oco. Since * € R* + cos(t'z),sin(t'z),t € R* are
bounded continuous functions, we get that

]SX(n) (t) = Bt X(m) — Ecos(t'X (n)) + iEsin(t' X (n)) — Ecos(t' X (0)) + iEsin(t'X (0)) — Px(o)(t)-

Lemma Let X € L(Q, A, P) and « > 0. Then P(JuX|>2) < [* (1- Px(t)) dt.

Proof: Let U ~ R(—u,u) be independent with X. Then Py (x) = M and

L (1= Px(w)du=1—EPx(U)=1-Ee*Y =1 - EPy(X) = B(1 — 249 > 1 p(juX]| > 2),
since h(z) =1 — 322 > 2. 15 ) (|z|). O

Theorem 77 Let X € L(Q,, A,, P,)¥,n € N be such that Py (t) — ((t
where k € N is fixed. If ¢ is continuous at 0, then there exists X € L(£2, A, P)
distribution as n — oo and Px = (.

) holds whenever t € R¥,
* such that X™ — X in

Proof of theorem 77 based on theorem 70: By theorem 70, t € R* — PXW (t) is a positively
semidefinite function. Then the limit function ¢ of Py is again a positively semidefinite. Since it is
also continuous at zero 0 € R”, there exists a k-dimension real-valued random X with Px(t) = ((t). Let

f : R¥ — R be a continuous function bounded by ¢ € (0, 0), i.e. |f| < ¢ < co. We are going to show that
Ef(X™) — Ef(X) as n — oo. By the above lemma,

Pa(lIX <Z S = Py () dt = 374 7, (1= Py (0) dt

as n — oo, where ||z||,,, = max{|z1],...|zx|}. Then
k
(17) lim sup P, (|| X ™|, > 2) Z LM (1= Py, (t))dt — 0

as u — 07, Let € > 0, then there exists ng € N and uy > 0 large enough so that
Po(IIX ™ > 2) + P(||X]] > 2) <€
holds whenever n > ng and u > ug. Put f,(z) = f(2)1}jz/jn>2/u- Then
(18) IEL(X™) = B < suplf@)] - [PalIX Pl > ) + PAIX] > §)] < e

holds if © > ug and n > ng. By the first lemma in this section, there exists ¢ € Gony, with » = 2 such that
(10) holds. Put fi = f — fu and gp = g — gu. Then a similar inequality as in (18) gives by (10) that

|E f) (X)) = Efi)(X)] < 22 + [Egry(X™) — Egy(X)] < 3+ c)e + [Eg(X™) — Eg(X)| — (3+ ¢)e
as n — oo since ]5X<n) (t) — Py (t) and g € Gony,. Then we obtain that for every e > 0

limsup |[Ef(X™) — Ef(X)| < (34 2¢)e.

n—oo

:
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U
Proof based on Prochorov theorem: Put ||z||,, = max{|z1],...|zg|}. By the above lemma,
k
B[ Xl > 3) < 33 S50 = Pyon () &ﬁZ(/ ltey)) dt,
j=1 ’

where e; € R¥ is a unit vector such that eTw is a j-th coordinate of x whenever x € R*. Then

(19) lim sup P, (|| X™ ||, <Z [* (1= Px,(t))dt — 0

n—oo

as u — 07, Let € > 0, then there exists ng € N and uy > 0 large enough so that
(20) Po([[ Xl > 2) <&

holds whenever n > ng,u > ug. Since the set {Pym);n < ng} is finite, it is by Prochorov theorem tight,
and therefore there exists u > ug such that (20) holds for every n < ng (and therefore for every n € N).
Thus, we have verified that { Py, n € N} is tight and we get from Prochorov theorem that if N 5 ny T oo,
there exist N 3 k; T oo such that Py, is weakly convergent, where m; = ny,. Let P be the corresponding
limit Borel probability on R¥, and X : € R¥ — 2 € R* be the canonical random element. Then Py = P,
and therefore X(™) — X in distribution as [ — oco. Then we get that

Px(t) = lim Py () = C(1),

i.e. ( is a characteristic function of X. If N 3 7n;, T oo is another sequence, we can again find N > kT oo
such that X™ — X in distribution, where mj; = nj , since the characteristic function determines the

distribution. Thus, we obtain from the properties of convergence in distribution that X™ — X as n — oo
in distribution. 0

Corollary Let k € Nand X (n) € L(Q,, A, P,)*,n € Nyg. Then X (n) — X (0) as n — oo in distribution
if and only if Px(n)(t) — Px(0)(t),n — oo holds for every ¢ € R,

Theorem 78 (Cramer-Wold IT) Let k € N and X (n) € L(2,, A,, P,)¥,n € Ny. Then X (n) — X(0) as

n — oo in distribution if and only if A" X (n) — A" X (0),n — oo in distribution holds for every \ € RF.

Proof: Let X(n) — X := X(0) in distribution as n — oo and let A € R*. Since x € R* — \'z
is a continuous function, we get that A"’ X(n) — A" X in distribution as n — oo. On the other hand, if
AN X (n) — A" X in distribution as n — oo hods for every A € R, then we get that

Pxm(t) = B X = Ecos(t*X (n)) + iEsin(£X (n)) — Ecos(t'X) + iEsin(t'X) — Px(t)
as n — 0o as sin, cos are bounded continuous functions. Now, it is enough to use the above corollary. [

14. INVERSION FORMULAS

Theorem 79 Let X be a real-valued random variables such that P(X € Z) = 1. Then

1 )
PX=k=—|[ P —RE At
(X=0=5- [ Pxitye
Proof: Let k € 7Z, then
I & T
- —zkt znt - _ i(n—k)t
E_ P(X =n)dt = o g_ P(X =n) /We dt

1 (o)

Theorem 80 Let X € L(Q, A, P) satisfy [ | Px(t)| dt < oo. Then X has a bounded continuous density
(21) fx(.CC = g f]R PX t B_Zm dt.
Lemma Let X,,, X € L(£2, A, P) be such that
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(1) X,, have bounded continuous densities fy, given by the formulas fx, (z) = 5= [, Px, (t) e dt.
(2) X, — X in distribution, i.e. Px, (t) — Px(t) as n — oo whenever ¢ € R.
(3) There exists an integrable function h such that |Px, (t)|, |Px(t)| < h(t).

Then X has also a bounded continuous density given by the formula (21) and

sup |fx.(z) = fx(2)] = 0, n— ooc.

Proof: Obviously, our assumptions together with Dominated Convergence Theorem (DCT) give that

lim supsup| fx,, (x) = fx,.,(2)| < lim 5 [ [Px, () = Px,,, ()| dt =0

n—00 peN zeR

Hence, there exists a continuous bounded function f such that f,(z) — f(x) as n — oo uniformly in z.
Again, Dominated Convergence Theorem gives that

lim suﬂg |fx, (@) = f(z)] < lim 5= [, |Px,(t) — Px(t)]dt = 0
Te n—0o

n—oo

and therefore we obtain again from Dominated Convergence Theorem that
f(z) = lim fx, (z) = lim % Je PXn (t) e ™ dt = % IR pX(t) oitT

Obviously, f(x) > 0if x € R, and if Fix is continuous at the point = < y, then assumption (2) gives that

Fx(y) — Fx(z) = lim[FXn(y)—FXn( = hm fyfn du-fy u) du.
Then we get that Fx( f Y u) du holds whenever Fy is continuous at y, and we immediately obtain
that Fx is a contlnuous functlon and f(z) is a density of X. O

Proof of theorem 80: Obviously, if (21) holds, then fx(z) is a continuous function by Dominated

Convergence Theorem bounded by the value | | Px (t)] dt.
First, we show that formula (21) holds for X ~ N(u,o?) if o2 € (0, 00).
1 (z—p)? (z—p)?

1 —itz D _ 1 —itx itp—Lo2t2 _ 1 *%02(t+iw S 272 — 1. 7% 2
o= [ e Px(t)dt = 5= [e e 27 dt = 5= [e Yo dt - e F = e o

holds, since [ \/%7 e206-9* s = 1 holds for every a € C, where s = ot. Second, we show that (21) holds
for Z = X +Y whenever X is as above and Y € L(£2, A, P) is independent with X. Then

Fz() Z<Z ffz ny diIZ’dPy ff fX T —y dl’dpy f ffX T —Yy dPy( )d
and therefore Z has a density

= [ fx(z —y)dPy(y).
Further Z has a characteristic function in the form

Py(t) = Px(t) Py (t) = Px(t) [ €™ dP(y) = [ Pxsy(t) dPy(y).
Since | Px 4, ()] = | Px(t)| is an integrable function, we obtain that

L e ®Py(t)dt = & [e ™ [ Pxiy(t)dPy(y)dt = [ & [e Py, (1) At APy (y) = [ fxyy(2) APy (y),
which verifies (21) for Z as the right-hand side is just fz(z).

Third, let X be arbitrary random variable with [ h(t) dt < co, where h(t) = |PX (t)|. Let Y,, ~ N(0,1/n)
be independent with X. Then we know that X,, := X —|— Y, — X as n — oo in distribution and (21) holds
for X,,. Further since | Py, (t)| < 1, we get that

|Px, ()] = [Px ()] - | Py, ()] < [Px(8)] = h(?).
By lemma, we obtain that (21) holds also for X. O

Theorem 81 Let X € L; and o < 3 be real values. Then

F F F F L [7 iua_goius
X(ﬁ) + X(ﬁ-‘-) o X(a) + X(a+) = lim — EA;GB PX(U) du.
9 2 T—oo 27 _-T b

Moreover, if F'x is continuous at the points «, (3, then

Fe(8) = Fx(a) = 5 [R5 Pe(w) da
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Remark If Y ~ R(a, 3) is independent with X. Then Py (u) = ez?—;e)zu and Z = X —Y has a characteristic

function . ’

Py(u) = Px(u) Py (—u) = S35 Px (u).
The abqve theorem together with the previous one also says that if Fy is continuous at the points {«, 5},
and if Pz(t) is an integrable characteristic function, then Z has a continuous density, which is given by
the inversion formula for the densities

fz(2) L /OO e’”“ﬁz(u) du

:% N

and therefore f(0) = FX(B;:?‘(O‘) = P(a;_)ffﬁ).

We say that X € (€2, A, P) has an equidistant distribution if there are a € R called an origin and
d > 0 called a step such that Y = (X — a)/d attains integer values almost surely, i.e. P(Y € Z) = 1. If
there is no bigger step d > d of the equidistant distribution, then d is called a maximal step.

Theorem 82 Let X € L(Q, A, P) have an equidistant distribution with a step d > 0 and an origin
2ria

a € R. Then |Px(t)] is a 2 _periodic function and ]-:’X(%”) =ed

Proof: Denote Y = (X —a)/d. By assumption Y € Z holds almost surely. Then ™= 1, and therefore

27 2mia ~

1 Bt i) = 5 Py (1),

pX(t + 2%) _ Eei(t—i—%”)X _ Eei(t+2§)(a+dy) _ 6i(t+2§)aE€2nYieitdY — e
]

Theorem 83 Let X € L(Q, A, P) and t, > 0 be such that |Px(ty)] = 1. Then X has an equidistant
distribution with a step d = %—” Moreover, if a € R is such that Py(ty) = €"0? then a is an origin of the
equidistant distribution of X corresponding to the step d.

Proof: Let a € R be such that P (ty) = €. Then Z = X —a is such that P (t,) = e~ Py (ty) = 1, i.e.
1= Ecos(toyZ) + 1Esin(ty Z).
In particular, 1 = E cos(tgZ), and therefore Y := t,Z/(27) € Z holds almost surely, and

_ _ 27
X—CL—l—Z—&—l—EY 0

Corollary Let X € L(Q, A, P). It there exists ty > 0 such that | Px(to)| = 1, then | Px(t)| is a to-periodic
function.

In particular, if h(¢) : R — C and ¢y € R is such that |h(to)| = 1, but A(t) is not a to-periodic function,
then h(t) is not a characteristic function of a real-valued random variable.

Examples The following functions are not characteristic functions of a real-valued random variable:

f1(t) = cot(t?), fa(t) = cos(+/]t]), fa(t) = cos(In(1 + |t])).

Corollary Let X € L(Q, A, P). Then X has an equidistant distribution if and only if there exists
to € (0,00) such that |Px(to)| = 1.

Theorem 84 Let X € L(, A, P) have a non-degenerate equidistant distribution, i.e. let a,b € R be
such that a < b and P(X = a)P(X = b) > 0. Then the equidistant distribution Px has a maximal step

d > 0 in the form
d=2n/t, where t=min{t>0:|Px(t)]=1}¢€ (0,00).

Proof: Let a,b € R be such that a < b and P(X = a)P(X = b) > 0, and put £ = inf{t > 0; |Px(t)| = 1}.
By theorem 82, £ < oo and theorem 83 gives that ¢ > bz_—”a Otherwise, there exists ¢ € (0, b2_—7ra) such that
|Px(t)| = 1, which means that X has an equidistant distribution with a step d = 27/t > b — a. Thus,
t € (0,00). Since |Px(t)| is a continuous function, we get that |Px(f)| = 1, and therefore we can write
min instead of inf in the definition of £. By theorem 83, X has an equidistant distribution with a step d.
If d > d was a step of Py, then theorem 82 gives that 1 = |Px(f)|, where ¢ = 2r/d € (0,#), which is not
possible by the definition of . O
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15. LIMIT THEOREMS
Lemma Let a,, € C,k=1,...,k, € N be such that

kn kn kTL
E anr — a € C, hmsupg lan k| < oo, lim E |ani]? =
’ N—00 n—o00 ’
k=1 k=1
Then
kn
lim H 1+ an,) = e
n—oo
k=1

Proof: By triangle inequality

kn kn m—1
H(l + ank) — eXiZiank | < Z H (1 + @n) (1 + @ — €5 ) @25mer Ok
k=1 m=1]| k=1
kn m—1 ’ ’ kn
<> o (S ) o] 3 o)
m=1 k=1 k=m+1
kn m—1 |CL | kn
< expuan,m%e'awexp{ > ot}
m=1 k=1 k=m+1
lanml®
:exp{2|ank|}z n,m
k=1
as n — oo. O

Theorem 85=82 (Poisson) Let X,, ~ Bi(p,,n),n € N. Let np, — A > 0 as n — oo, then
X, — X ~Po(}\)
as n — oo in distribution.
Proof: We will show that Py, (t) — Px(t). Obviously,
Py, (t) = (1= po + pac™)" = (14 pa(e” = 1))".
Put a, = pn(e® — 1), k, = n, then

kn
Z Ak = npp(e’ — 1) — A — 1)
k=1

kn
Z | k| = npale™ — 1] < 2np, — 2) < 00
k=1
5 onal? = mple — 1P < s g
k=1
as n — 0o. By lemma
n kn
PXn H 14+ ang) = o(1) + exp {Z an’k} = exp{ (e — 1)}
k=1 k=1

as n — co. If X ~ Po()\), then Px(t) = exp{A(e’ — 1)}. Hence, Px, (t) — Px(t) as n — oo, and therefore
X,, — X in distribution. O

15.1. Definition of multi-dimensional normal distribution. We say that a random vector X =
(X1,...,X3)" has a k-dimensional normal distribution N (u,Y) with the vector u € R* of mean values
and variance matrix 3 € R™*" where ¥ is a positively semidefinite matrix, if

VAERE XX ~ N, AXN).
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We recall that X ~ N(u,0?), i.e. X has one-dimensional normal distribution with mean value p and
variance 02 > 0 if 02 = 0 and = X or if 0 > 0 and X has the following density
2

flx) =

Note that if X ~ N(u,0?) and 6% > 0, then Y = 2= ~ N(0,1) has a density p(x) = L%e’?.
13

p{ 20.2 .

27ra

So, we can imagine

that X = p + oY holds for some Y ~ N(0,1) whenever X ~ N(u,0?).

Remark It following from Cramer-Wold theorem I that such a k-dimensional distribution is determined
uniquely. Thus, we are going to show that such a distribution exists. First assume that ¥ = I;, € R¥** and
that p =0 € R¥. Let X;,..., X, ~ N(0,1) be independent and put X = (Xi,...,X.)". Then

k k

~ 1,2 1.,T
t) = HPX](t]) = G_Etj = 6_§t t7

- ey

and therefore if A € R*, then
P/\TX(S) — BN X — PX(S)\) — e (NN — ot NA py(s),
where Y ~ N(0,A\"\). Hence, \*X ~ N(0,\"\) holds for every A € R* which is nothing else but X ~
Ni(0, I) by the definition.
Second, let X ~ N.(0, I;,) as above and let u € R* and ¥ € R¥** be positively semi-definite matrix. Then

there exists a positively definite (and symmetric) matrix /2 such that $'/2%V2 = 3. Put Z = p+%12X.
Then

p/\TZ(S) — BN Z — FeisAT (utEV2X) eis/\T,upX(Szl/Q)\) — eisN =3 ATEN _ gisATu—gs?ATEN pv(S),
where V' ~ N(\" i, A"X ). Hence, Z ~ Ni(u, X) holds by the definition. In particular, Ny (u,X) exists.

Remark A k-dimensional real valued random vector X has a normal distribution N(u, ) if and only
if Py(t) = exp{it'’n — 5 t"%t}.

2

15.2. Central limit theorems.

Theorem 86 (Feller-Lindeberg 83) Let (£2,,.4,, P,),n € N be a sequence of probability spaces. Let
Xonds-oos Xng, € Lo(Qy, Ay, P,) be independent centered variables, i.e. EX, 1 = ... = X, = 0, where
k, € N, whenever n € N. Denote Y,, = 22—1 Xk Let

kn,
(22) var(Y, Zvar nk) ZEXEL,C -1, n—o0
(23) (Ve > 0) ZE[Xik; | Xk >l =0, n— oc.
k=1

Then Y,, — Y in distribution, where ¥ ~ N(0, 1).

Proof: Obviously, Py, (t) = [}~ ]5X"7k(t). In order to obtain that Py, () — e~z we use lemma above
with a, ; = pxn,k(t) — 1. First, since £X,,; = 0, we obtain from lemma above theorem 73 that

|ang] = |Ee™mk — 1] < Blmy (£ X,,)| < Emin{2[tX,, |, Ketl’y < gl _ 12py2

Then we immediately obtain that

kn kn
> lansl < 32 CEX, — 312
k=1 k=1
as n — oo. Further, we will show that m,, := max{|a,s|;k =1,...,k,} — 0 as n — oo, which gives that
S ang)? < mp - S0 Jank] — 0 as n — oco. Let € > 0, then
lani| < MPEX2, < 1222+ L2500 BIX2 | Xl > €] — %62

131£ (Q, A, P) = ({0}, {0, {0}}, d), then the canonical random variable X ~ N(0,0), but there exists no ¥ ~ N(0,1) such
that X = 0-Y = 0. On the other hand, if the underlying probability space admits Y ~ N(0,1), then X = Y - 0.
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Since € > 0 was arbitrary, we obtain m,, — 0 as n — oco. Thus, it remains to show that Zk | On e — ——t2.
By lemma above theorem 73,

|anp + 5 EX2,| = |Ee™nk —1 — it EX, + 5 EX2,| = |Emy(tXoy)| < E[f*X2, min{l, |t X, x| }]
Let € > 0 be arbitrary. Then the same steps as above give that
kn kon .
‘Za"vk—i_%ZE k"<t22E nk>|Xnk’>€+‘t|SZEXsk ‘tl
k=1 k=1 k=1 k=1
Since € > 0 was arbitrary, we obtain the desired convergence E]Z | On e — ——t2 Then the above mentioned

lemma gives that Py, (t) — Py (t), where Y ~ N(0,1), and therefore Y, — Y in distribution. O

Theorem 87 (Lévy-Lindeberg 84) Let X,,,n € N be independent identically distributed random vari-
ables with y = EX; and var(X;) = 02 € (0,00). Then

1 n
— Xpg—npu| =Y

as n — oo in distribution, where Y ~ N(0,1).

Proof: Put Xnk = )i’i/_ﬁ“ and k, = n. Then X, ;,..., X, ;. € Ly are independent centered variables

with var(X;) = +. Then var(Y,) =Y ,_, var(X,, ) = 1. We verify (23). Let € > 0. Then

ZE Xows [ Xl > €] = nB T2 |9 2 €] = 0 B[ Xy — pf*5 | X1 — pl = eov/n] — 0
k=1

as n — oo since X; € Ly. By theorem 86, Y,, — Y in distribution as n — oo, where Y ~ N (0, 1). O

Theorem 88 (Moivre-Laplace) Let X,, ~ Bi(n,p),n € N. Then
X, —np
np(1 —p)

—Y

in distribution as n — oo, where Y ~ N(0,1).

Proof: Let us consider a Bernoulli sequence of independent random variables Y}, with alternative distri-
bution with parameter p € (0,1), i.e. Y3 ~ Bi(1,p). Then Z, = >}, Yy ~ B(n,p) ~ X,,, and theorem 87
says that (7, — EZ,)/+/var(Z,) — Y, in distribution as n — oo, where Y ~ N(0, 1). O

Theorem 89 (Ljapunov) Let (€2,,, A, P,),n € N be a sequence of probability spaces. Let X,, 1, ..., Xk, €
L2 (Q,, Ap, Py) be independent centered variables, i.e. £X,; = ... = X, ;, = 0, where k, € N, whenever
n € N. Denote V,, = > 7, X, . Let

kn
(24) var(Y, Zvar nk) ZEXik —1, n—o0

k=1

(25) (36> 0) ZE|XM|2+5 n — oo.

Then Y,, — Y in distribution, where Y ~ N(0, 1).
Proof: We verify the Feller-Lindeberg condition (23) in the statement of the theorem 86. Let ¢ > 0,
then

ZE X7 | Xon| > €] < 5ZE|X W2 =0, n— oo

k=1
Then Y,, — Y in distribution holds by theorem 86, where Y ~ N(0, 1). O



51

Theorem 90 (Feller-Lindeberg, multi-dimensional CLT) Let (£2,,A4,, P,),n € N be a sequence of
probability spaces and d € N. Let X,1,..., Xpk, € La(Qn, An, P,)? be independent centered random

vectors, i.e. X, 1 =...= X, =0¢€ R?, where k, € N, whenever n € N. Denote Y, = ZZ=1 Xk Let
kn
(26) var(Y, Zvar nk) Z EXnka;’k —-YeRY n— o
k=1
kn
(27) (Ve>0) Y ElXnkll’ I Xnsll =€l =0, n— oo,

where || Xy k|[* = X}, , Xk Then Y, — Y in distribution, where ¥ ~ Ny4(0, ¥).

Proof: We will use Cramer-Wold theorem II saying that convergence of random vectors in distribution
can be verified by verifying of the convergence of all linear combinations in distribution. Let A € R?, we
are going to show that \"Y,, — A"Y in distribution as n — oo. Let us consider the first case A"\ = 0.
Then

EINY, > = var(\"Y,) = A var(Y,)A — A'XA =0
as n — 0o, which means' that \"Y,, 2> 0 as n — co. Then 'Y, 0, and therefore \'Y,, — 0 as n — oo
in distribution. Now assume that A*X)\ > 0 and put

AN Xk
REVOY
Then Y, 1,k =1,...,k, are independent centered random variables. Denote

kn
Zn = Yui
k=1

Then
Fon
var(A' X, 1)
_ 1
var(2 Zvar 0= g
as n — 00. Let ¢ > 0. Since
N X, A
|Yn,k’ = |\/>\T2;i < \/!\T!:/\ ’ HXn,kH?
we get that
o 12 o= NEA
A A Xkl 2 11Xl > X220 g, .
D BlIYal’s Yol 2 €] < »m; Il %5 Xl = =] = 0, m = 00

Then theorem 86 gives that Z, — Z as n — oo in distribution, where Z ~ N(0,1), and therefore
A'Y, = VATEN-Z, — AY in distribution as n — oo, since A'Y ~ N(0, \"X\) holds as Y ~ Ny(0,X). O

Theorem 91 (Lévy-Lindeberg, multi-dimensional CLT) Let d € N and X,, € L4, n € N be independent
identically distributed random vectors with y = EX; € R? and var(X;) = ¥ € R%*“. Then

% (ZXk—nu> —Y

as n — oo in distribution, where Y ~ N(0, X).

Proof: Put k, = n and X, = n*1/2(Xk — ) € L. Then EX,r=0c¢ R¢ and Xnik=1,...,n are
independent variables with

Y var(X, i) = nvar(X,) = var(X;) = .

k=1

4y fact, we should assume (without loss of generality) that Y;, are defined on the same probability space. For example,
we can consider (Q, A, P) = @pnen(Qn, An, P,) and Y, (wi, k € N) = Y;,(wp). Then Py = P,oY, !, and therefore E|\'Y,|* =
E|)\T f’n|2 — 0 as n — oo, which means that \’ ffn—ﬂ‘% 0 as n — oo, and therefore A’ 37”1, 0, which implies that \" ffn — 0 in
distribution. This immediately gives that also \"Y;, having the same distribution as X" Y;, convergences to zero in distribution.
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Let € > 0. Then

kn
S Bl 1 Xl = €] = n B[ KB 2 || KB | > o]
k=1
= E[||X: - EX1|[% || X1 = EXA|| 2 e V] — 0
as n — 00, since || X; — EX;|| € Ly. By theorem 90, Y ;_, X,,» — Y in distribution as n — oc. O

Theorem 92 (CLT for multidimensional distribution) Let d € N and X,, ~ M(n,p),n € N be a sequence
of random vectors, where M(n, p) stands for the d-dimensional multinomial distribution with parameters

n € N and p € [0,1]¢ is such that ZZ:MW: = 1. Then
n~Y?(X, — EX,) — X, in distribution, where X ~ N(0,diagp — pp").

Proof: Let Y, ~ M(1,p),n € N be independent variables. Then X,, ~ >"7_, Y, and the statement follows
from theorem 91 as

var(X;) = EX,X; — EX,EX| = Ediag X; — EX,EX| = diagp — pp'.
U

Theorem 93 (Ljapunov, multi-dimensional CLT) Let (2,,A,, P,),n € N be a sequence of probabil-
ity spaces and d € N. Let X, 1,..., X, %, € ]LQ(Qn,.An,Pn)d be independent centered random vectors,

le. EX, 1 =...= X, =0 € R where k, € N, whenever n € N. Denote Y;, = >",_, X,, 1. Let
kn

(28) var(Y, Z var(X,, 1) Z EX, 1 X, — Y eR) n—oo
k=1

(29) (36 >0) ZEHXn 2 =0, n— oo.

where || X, x||* = X}, , Xp k. Then Y, — Y in distribution, where ¥ ~ Ng(0, X).
Proof: We verify the Feller-Lindeberg condition (27) in the statement of the theorem 90. Let £ > 0, then

kn
S Bl 5 X = ) < 5memm "= o0,
k=1
Then Y,, — Y in distribution holds by theorem 90, Where Y ~ N4(0,%). O

16. CONVERGENCE OF DISTRIBUTION FUNCTIONS

Theorem 94 Let X, € L(Q,,A,,P,),n € Nand X € L(Q, A, P) be such that X,, — X asn — oo in
distribution. If Fx(z) = P(X < z) is a continuous function, then

SuI[R?|FXn(x) — Fx(z)| =0
Te
as n — oo.

Proof: Obviously Fx(—oo;) = 0, Fx(co_) = 1. Let € > 0 be arbitrary. Then there exists £ € N and
real values z; < ... < x, such that

|Fx(fL'j)—Fx(ZL'j_1)|§€, ]:1,,k3+1,

where g = —00, 2511 = 400, and Fx(—o0) := 0, Fx(o0) := 1. Since Fy, (z) — Fx(z) holds at each
point x € R such that Fx is continuous at x and since Fx is a continuous function, we get the pointwise
convergence Fx, — Fx. Thus, there exists ny € N such that

Vn>ng Vj=1,....k |Fx,(z;) — Fx(z;)| <e¢
Let x € R, then there exists j € {1,...,k+ 1} such that x € RN [x;_1,z;]. Then
Fx, () = Fx () < Fx, () = Fx(xj1) = Fx, (2;) = Fx(x;) + Fx(2;) = Fx(2-1) < 2¢
Fx,(z) = Fx(v) = Fx, (zj-1) = Fx(z;) = Fx,(zj1) = Fx(zj-1) + Fx(2;-1) — Fx(z;) 2 —2¢
Thus, |Fx, (x) — Fx(x)| < 2¢ holds for every x € R whenever n > ny. O
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Corollary Let X, € L(£,,A,, P,) be such that X,, — X in distribution as n — oo, where X ~ N(0, 1),
then

sup |Fx, (x) — ®(z)| — 0

z€R

as n — 0o, where ®(z) = P(X < z).

17. LOCAL LIMIT THEOREMS

Theorem 95 Let X,, € Ly(2, A, P),n € N be independent identically distributed random variables
with EX,, = p and var(X,,) = 0% € (0,00) and with equidistant distribution with an origin a € R and
a maximal step d € (0, 00). Denote S, = >";'_, Xi. Then

Vi sup [ESm L e

xE€Ly

) —0

as n — oo, where L,, = {an + kd; k € Z}.

Proof: Without loss of generality, we assume that d = 1 and a = 0, otherwise we consider i.i.d. variables
Y = (X —a)/d. It follows from inversion formula for equidistant random variables that

O\/_P(S _ZL' f ZSCL‘PSn )ds— Wfﬂszexp{_zn}PSn(af)dt
= 5 f;:a(r exp{ =Y P, (Gh7) dt

holds if x € L,, and from inversion formula for the densmes that

(%= "“ = [pe Hodn o3 dt.
Then
jov/n P(Sp = x) = o(572) < In(e) + Jule) + Kale),
where

1n(e) = 55 Je @ Loy dt — 0
as n — oo and
Tnl€) = 3 Ji 1P ) Lyl
Kn(g) = % f]R ’pSn—nu(#ﬁ) - e7%t2|
Since X7 — pu is a random variable with equidistant distribution with a maximal step 1, we get that

c(e) = sup |Px,_u(s)| € [0,1),

e<|s|<m

[|t\ <}dt

ov/n—

and therefore J,(¢) < 5= ¢(e)"moy/n — 0 as n — oo holds whenever ¢ € (0, 7). Finally, we will show that

there exists € > 0 small enough so that K,,(¢) — 0 as n — oo. Since Z; = % has EZ; = 0and EZ} =1,
we get that

Py, ou(£) = Pz, (r) = 1= 1% + o(r?)

as r — 0. Hence, there exists § > 0 such that
P, u(B) < 1= 42 <emir

holds whenever |r| < §. Then we obtain that

|pSn—nu(#ﬁ)| 1[ I¢] <o) = <le 3t/ vny? "= et

holds if e € (0,6 /0]. Thus, we may use Dominated Convergence Theorem in order to obtain that K, (¢) — 0
asn — oo if € = § /0o, since

Ps, —nu(a\f) Py, (t) — 3"
as n — oo, where Y,, = (S,, — nu)/(0y/n) — Y in distribution, where Y ~ N(0, 1). O

Lemma Let X € L(€, A, P) have a bounded density fx(z) > 0 and a non-negative characteristic
function Px(t). Then Px(t) is an integrable function'®.

15And therefore there exists a continuous version of the density of X.
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Proof: Let Y, ~ N(0,1) and Y = 0, then Py (t) = e 2 — 1 = Py(t), where Y = 0. Since Px(t) is
assumed to be non-negative, we obtain from Fatou’s lemma that

t2
fR PX t)dt <hmmf fR PX Je zm dt

2
Let n € N be fixed. Since e~ 2r is an integrable function, we obtain from Fubini theorem that

fR Px(t)«e*% dt = f]R (fR [x(z)e™™ d:l?) 67% dt = fR (fR em‘ei% dt) fx(w)da

Further, we obtain from inversion formula for the density f(o,1/s)(z) of N(0, <) that

o Jn e m dt = fo/m ().
Let ¢ € (0,00) be such that fy(z) < ¢ hold for every z € R, then

. 2
Jo Px(t)e 2 dt = 27 [, fvom(2) fx (@) de < 2me - [o fyoam) (@) de < 27
Thus, we get that [, Px(t)dt < 2me < 0. O

Theorem 96 Let X, € Ly(Q2, A, P),n € N be independent identically distributed random centered
variables with a bounded density f(z) and var(X;) = 0% € (0,00). Denote S, = > ,_, X} and Y,, = #ESH.

Then Y, has a continuous density fy, (y) for n > 2 and

sup |fv.(y) — o) — 0, n— oo.
xe

Proof: First, we show that Y, has a continuous density if n > 2. Put h(t) = Px,(t). Then |h(t)]> =
Px, (t)P_x,(t) = Px,_x,(t). By the previous lemma in order to show that |h(¢)|? is integrable, it is enough
to show that there exists a bounded density of Z = X; — Xs, i.e. that the distribution function of Z is
Lipschitz. Obviously,

Fz(Z) = P(Xl — Xy < Z) = P(X1 < X2+Z) = fP(Xl < ZE+Z)fX1(ZE)dZL‘,
and therefore the corresponding density of Z can be considered in the form
2) = [ fx.(z + 2)fx, (x)dz
Now, it is seen that fz(z) < ¢ holds if 0 < fx, (x) < ¢ holds for every x € R. Obviously,
P, ()] = [h(z)I" < |h(G5) 2 € Li(R, B(R), A)

and we obtain from inversion formula for the densities that fy; has a bounded and continuous version
given by the inversion formula.
Second, we use the above-mentioned inversion formula for densities in order to obtain that

—1 n —142 n —142
) = $(u)| = 1 [ e (k)" — e b2) de] < & [ Ih(GEz) — e 24t

Let € > 0 be fixed now and put

L(e) = [ € 2" Y ysepym dt

Tu(e) = [ 1RGN Ljtzeoym dt

Ka(e)= [ \h(#a)n — e 2" e ym At
Since fe_%tg dt < oo, we immediately obtain that I,,(¢) — 0 as n — oo holds for every € > 0. Since
[ |h(t)]*dt < oo and h(t) is a uniformly continuous function, we obtain that |h(t)] — 0 as |t| — oo,
otherwise we would find ¢,6 > 0 and a sequence of ¢,, such that (¢, —d,t, +9),n € N are disjoint intervals
such that |h(t)| > € holds on their union, which contradicts integrability condition. Since X; has a density,

it does not have an equidistant distribution, which means that |h(t)| < 1 holds for every t # 0. Since |h(t)]
is a continuous function tending to zero as |t| — oo and attaining values in [0, 1) on R\{0}, we get that

c(e) == sup{|h(t)[;[t| = e} € [0,1)
holds for every € > 0. Then
Jn(e) < e(e)" 2 [ |h(H )Pdt—c (e)"2oy/n [ |h(t)]?dt — O
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asn — 00. Since EX; = 0, E(X,/0)? = 1, we get that h(Z) = Py, ;,(r) = 1 — 3 r2+0(r?) as r — 0. Hence,
there exists 0 > 0 such that

2

(L) <1—G<e
holds whenever |r| < 4. If € € (0,0/0], then

— 1t y2 1,2
A" Vgecoym < 757 ] = 73t

. _ 142 _ 142 . .
Hence, we have a convergent majorant e 1° + e~2%, and Dominated Convergence Theorem gives that
K,(¢) — 0 as n — oo, since

)" = Py, () — e 2"

as n — oo by Lévy-Lindeberg central limit theorem. O



