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We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to
solve the associated partial differential equation a finite volume technique is used and unstructured grids
are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To
capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is
implemented. Computational tests are performed for an academic problem where the exact solution is
known as well as for a real world problem of a computer simulation of the thermoregulation of premature
infants.

1 Introduction

The numerical simulation of flow phenomena often incorporates the evaluation of boundary layers or, more
generally, of physical states which involve steep gradients of the occuring quantities, see [11, 16, 22, 23,
24]. This can be done either by the use of a sensible analytical approximation, e.g. by employing the
Boussinesq approximation in a suitable situation [18], or by using a very fine grid near the boundary to
achieve a valid numerical approximation of the flow field within the boundary layer.

The latter strategy can be advantageous since the computed solution does not rely on additional physical
assumptions. Furthermore, in some situations there is no analytical approximation available and the flow
in the boundary layer has to be computed numerically anyway, e.g. in the case of heat equations with
complicated source terms on a sophisticated domain featuring different boundary conditions. However, if
the numerical simulation of the flow within a boundary layer is realized via an uniformly fine grid, the
resulting computational problem easily becomes very large. This assertion remains true even when an
adaptive procedure yielding locally uniformly fine grid structures is applied. Clearly, an anisotropic refine-
ment technique offers a sensible approach to deal with such a problem since it allows to use anisotropic
grid structures within a boundary layer, i.e., it allows grid structures to be long and thin which fits with the
characterization of a boundary layer problem.

Within this paper, we employ the anisotropic mesh adaptation (AMA) technique developed in [9, 10]
within a finite volume framework. The AMA technique does not depend on the exact formulation of the
problem, thus it allows a wide range of applications.

A distinctive feature of the employed finite volume method is given by the special implementation of
the boundary conditions. By the concept of extended barycenters introduced in [14], the method is well-
defined for general non-convex triangulations. Furthermore, this concept allows to model the temperature
directly at the edges of the computational domain. This not only distinguishes our method, the possibility
to manipulate the physical fluxes directly at the boundary can be advantageous from the modeling point of
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view. Exactly this is the case in extensions of the industrial application we consider; e.g. while the relevant
temperature on the body surface of a premature infant inside an incubator depends also on the ventilation,
the degree of heat exchange between the body and the surroundings depends on the vasomotion of the skin
directly adjacent to its surface, see [4, 5, 30] and the references therein.

The resulting numerical method is shown to offer an effective and useful tool for the computation of
sophisticated flow fields with boundary layers in two spatial dimensions over general non-convex domains.
In order to demonstrate this, several test cases are considered.

The mathematical problems under consideration are given by variations of the heat equation

0T (x,t) = div A\x)VT(x,t)) + q(x, 1), ()

where x = (z1,22)7 € Q C R? and t € R*. Note that the sources may be quite complicated as it is e.g.
the case in the industrial application we consider. Additionally, initial and boundary conditions of various
types are employed. As indicated before, the spatial domain {2 may be non-convex and quite sophisticated
depending on the concrete application.

This paper is organized as follows. At first, we briefly describe the finite volume scheme recently
introduced by Fischer et al. [3, 14]. Then a discrete formulation of the maximum principle is proven.
Thereby, in comparison to [14] weaker assumptions concerning the underlying primary mesh are used
which especially motivates the application of an anisotropic refinement procedure. After that, the used
anisotropic mesh adaptation technique is introduced. We compare several analytical solutions featuring
strong boundary layers with results computed with the help of the described method. Afterwards the
method is applied to a real world problem, namely a model of thermoregulation of premature infants.

2 The Numerical Method

Finite volume methods have proven to be reliable and accurate approximation techniques [2, 12, 13, 14,
20, 22, 23, 27]. These schemes are formulated on general control volumes and deal with the integral
formulation of the underlying problem. Integrating equation (1) over an arbitrarily chosen but fixed control
volume o C €2, we obtain

d 1

p (MT) (t)], = AX)VT(x,t) -nds+ ﬁ /a q(x,t) dx, 2)

|0| do
where M is the cell average operator, and || and n denote the area of the box ¢ and the unit outer normal
vector on Jo, respectively. The relation (2) describes the evolution of cell averages of 7, and it is the basis
of our finite volume method.

In order to obtain an appropriate decomposition of the domain 2 into a finite number of control volumes,
we start from an arbitrary conforming triangulation Dy, of the domain 2 which is called the primary mesh
[27], consisting of finitely many triangles D;, i € I = {1,...,#Dy}. Furthermore, A}, denotes the index
set of all nodes of the triangulation D}, and is subdivided by A}, = N, hD "UN, ha Ph_ where NV, hD " is associated
with the inner points and N, ;? Pr includes the indices of the boundary points. We set N := #A\/}, and denote
the three edges of the triangle D by ep i, k = 1, 2, 3. Furthermore, we define

E(i) ={epx| k€ {1,2,3},D € Dy, nodex; € ep},
V(i) = {D| node x; is vertex of D € D},

and
C (D) ={i]i e {1,...,N}, node x; is vertex of D} .

Concerning the integral formulation (2) of the governing equation (1), the occurrence of second order
derivatives within the partial differential equation (1) requires the evaluation of first order derivatives on
the boundary of each control volume. Due to this fact we employ a box type method where the computation
of a first order derivative on the boundary of each box is straightforward. For the numerical approximation
of the involved integrals we follow the proceeding described in [3, 14] which we now briefly review.
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We define a discrete control volume o; as the open subset of R? including the node x; = (241, xig)T
and bounded by the straight lines defined by the connection of the midpoint of the edge ep , € E(i) with
the barycentre X, = (741, 742)7 = % ZieC(D) x; of the corresponding triangle D. In the case that x; is
on the (piecewise polygonal) boundary of the computational domain, the line defined by the connection of
the midpoint of the boundary edge and the node itself is also a part of do;. The union 5}, of all boxes o;,
i € Ny, is called the secondary mesh. Let N (i) denote the index set of all nodes neighboring node x;,
i.e., those nodes x;, j # i, for which fa maol ds # 0 is valid. In general, for j € N (i) the boundary

between the control volume o; and o consists of two line segments which are denoted by Ik, k=1,2.

K
Furthermore, n; J, k = 1,2, represent the accompanying unit normal vectors.

With regard to the secondary mesh ), we can rewrite the integral form of the heat equation as

ZZ/ X)VT(x,t) - n(x) ds

]EN(z) k=1

& M) (),
—_—
=: T;(t)

1
+ o] / q(x,t) dx, Vo; € By.
g; oy
Taking account of the secondary mesh 13;, and using a unique linear distribution of 7" as well as the mean

value of the heat conductivity Ap on each triangle D of the primary grid directly leads to the formulation
of a numerical flux function

H (Ti(t), Tj(t), T (t);mf;) = ApVTp(t) - n

s Hag

Consequently, for each inner control volume we obtain

/8 AX)VT(x,t) = > ZH 5(1), T (£);0%) [15].

JEN(3)

A convenient numerical approximation of the remaining boundary integral is required in order to ensure
a discrete maximum principle in our numerical framework. Utilizing the notation introduced within Figure
3, Fischer et al. [14] proposed the definition of an extended barycenter

\/gpi

4lln;, oo + i, o0l

C =X; — (i, 00 + M, 00), 3

with a certain weight
1 . ) .
pi = 5 min{[lx; — x|z |7 € N(@) N C(D) }-

The consideration of extended barycenters is actually one of the most important aspects of the method. By
the consequences of exactly this feature, our method is well-defined even for non-convex computational
domains. Furthermore, it enables to model the boundary condition in terms of the temperature at the edges
of the computational domain in a very simple way.

The remaining boundary integral is then approximated as

AX)VT(x,t) - n Z H(T;(t), Ti00(X:), Ti 00 (Xie); Nie) |lie]
90;nON Le{j,m}

where the physical quantities T;, T; s (x;) and T; pn(X,¢) are assumed to be located at the nodes ¢;, x; and
Xi¢, respectively, and the gradient VT is computed using the triangle built by the above mentioned nodes.
A simple approximation of the source term yields

[ atxt) dx = atxi.0

|oi]
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For the approximation of the temporal derivative a forward or backward Euler time step technique is em-
ployed, whereby the source term is always evaluated in an explicit manner. Thus, the whole numerical
method can be written as

o= T _m{ Z Y H (T TR T U
JEN() k=1
+6; Z H(T{", T; 00(X:), T;,00(Xie); Mig) |Lie| } + Atgy, 4)
le{jm}

where m € {n,n + 1}, At =" — 2 T = T;(t"), ¢ = q(x;,t") and

5 {1, if i € NP

0, otherwise.

The consideration of finitely many different tissues within the modelling process of realistic heat conduc-
tion problems often yields a heat equation where the heat conductivity is constant almost everywhere. In
such a case we usually obtain that the majority of the boxes o; € By, satisfies the property A\p = /\5
for all accompanying triangles D, De V' (i). Examples are given by the academic test case (19) as well
as by a realistic model actually employed for the thermoregulation of premature infants within industrial
applications [5]. In this context we are able to improve the maximum principle developed in [14] in the
sense that weaker conditions on the underlying primary mesh D;, have to be required. More precisely,
angles greater than 7r/2 are now allowed within the triangulation Dj,. Let us note here, that the necessity of
angle conditions for proving a discrete maximum principle is also stressed in works concerned with finite
element methods, see for instance [28] and the references therein. In the following we assume that the
primary grid used within our finite volume scheme Dj, satisfies the properties

e A1: The triangulation Dy, is of Delaunay type, whereby the sum of opposite angles «;,, «;, is less
than 7 for any pair of neighbouring triangles, see Figure 2,

e A2: The opposite angle o; with respect to a boundary edge is less than 7/2, see Figure 3 (right).

We now prove the following maximum principle.

Theorem 2.1 Let Dy, satisfy the conditions A1 and A2. Given a steady state solution T;"** = T and
a vanishing source term q* for alli € {1,..., N'}. Given an index i € N}, such that

Tin = max on {T?,Tj’ag},
LEN, JEN,

then

Ty =T = Tjo0

?

holds for all £ € N, and j € NPP*.

Proof. In the following, we use that both the heat conductivity Ap as well as the gradient of the
temperature distribution V1'p are constant on each triangle D € D,.

Let an arbitrarily chosen but fixed triangle with a notation as depicted within Figure 1 be given.

By simple geometrical considerations, we can compute the flux over the edges /;; and ;5 of the control
volume corresponding to the index 7 as

H(TivTj7Tm§nim) |lim‘ + H(TiaﬂaTé;nié) |li€‘

A COS (v A COS Oy,
= —(Ii -1 P (T =Tw) 5

®

2 sin a; 2 sin ay,

Note that the identity cos a/ sin & = cot « holds, which will be used later on.



header 7

l' nim
m
(6% Qi

) m

Fig. 1 Notations for an arbitrarily chosen triangle.

i

Fig. 2 Situation for ¢ and j belonging to two adjacent triangles.

Let us first investigate the situation that ¢ and j are not both indices of boundary points, i.e., they belong
to two adjacent triangles, see Figure 2.

Without restriction on generality, let i € N, }? h i.e. o; is an inner control volume and thus §; = 0 in (4).
We obtain by (4) the equation

At
= Z ZH (T, T, Tl 1| = —AuT — > ATy
JeN i) k=1 JEN (1)
with
AAL AAL sin (o, + a;,) Al
A;j = —— (cot o ta,) =— n__J2 6
/ 2|0y (cot @, + cota,) 2|o;| sinay, sina;, <0 ©)
and

> Ay

JEN()

Now, let 7 and j both be indices of boundary points. For analyzing this case we use the notation depicted
in Figure 3.

Then, the fluxes over the boundary edges are approximated by
T, — T,

/ AVT -nds = A |{;, a0 5 5,0
é’k an | ik7dQ|
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L liye0
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Fig. 3 Sketch of the situation incorporating the extended barycenter c;.

This means, that for i € N, ,? Pr and thus for a boundary control volume ¢; the equation

o £ ZH Ty 00 (1) , Ty 00 (23,) iy 00) [y 00
1

AAt
" el Z \h

,00
Ly i 00 7
15,00 |

holds. Thus, by the use of the abbreviations (i) := N (i) NN;P* and Np(i) := N (i) NNP", we obtain
for general i € A}, the identity

AMT + Z Aij +5 Z A?,]T - 6 ZAz 1]9 Zk,dﬂa (8)
JEN(4) JENa(4) k=1

where the coefficients are given as

A;; is defined by (6),

~ AAL
Aij = 2‘ N cot o < 0 by use of (5),
VAV
iy = — 57— >0 by (),
" ol hiy o0l Y

and Ay=— Y Ay—0 Y A+ ZAW>O

JEN(3) JENB(4)
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Thereby, the matrix A described by (8) is irreducibel since any two arbitrarily chosen but fixed nodes within
the computational domain are connected by our construction. Now, let a steady state solution be given with

T, = max {T;,Te, 00,1100} -
JENR LEN, H

Then, by (8) we obtain for the update the condition

2

Z Aiy (T; = T;) +0; Z Ay (T; — T;) +9; ZAm‘k (T; — Tj, 00) = 0. )
JENG) L S JENo() 5 =120 >0

Equality within (9) is in general obviously only guaranteed if and only if
T,=T;Vj e N(i) and T; =T, o0 =T,a0ifi € NP
Thus, since A is irreducibel it follows
T,=T;¥j €Ny and T, =T, 00 = Ti o0 Vi€ NJP",
O

As it becomes evident within the proof, the difference between a straightforward application of the
Galerkin method and our scheme if formulated as a finite element method is given by additional lines and
entries within the system of equations (8) corresponding to 7 € N ,‘? N and j € Ny(i), see especially [19].

Note that the use of the concept of extended barycenters leads to more lines and entries as well as to
a more natural formulation of the method in terms of physically relevant fluxes. The consideration of
temperatures at the true boundary of the computational domain has no direct influence on the structure of
the system (8). As noted before, it may yield advantages on the modeling side as it is the case for the
industrial application we consider later.

3 Anisotropic adaptation

We now introduce the anisotropic mesh adaptation (AMA) method elaborated in [9, 10]. This technique
does not rely on the underlying problem and its exact formulation, e.g. in terms of underlying approxi-
mation techniques. Thus, it can easily be employed in the context of various types of sources, boundary
conditions, etc.. For other works concerned with anisotropic mesh adaptation, see e.g. [1, 6, 15, 25] and
the references therein.

3.1 Theoretical background

Let Dj, = {D; }ie; (I = an index set) be a triangulation of the computational domain 2. Let T be the exact
solution of the continuous problem (1) and 7}, the approximate solution given by the numerical scheme
(4). We recall that the numerical solution 7}, depends on Dj,. Now, we proceed with

Definition 3.1 Let 7" and 7}, be the exact and numerical solution of the problem (1), respectively. The
interpolation error function n;(x) is given by (see [8, 10])

nr(x) = |T(x) — Trp(x)|, x € Q. (10)

Let w > 0 be a given tolerance. Our aim is to adapt the triangulation D}, in a way that the interpolation
error function satisfies the condition

nr(x) < w, for all x € Q. (11)

In [10] a necessary condition on Dy, is derived so that the relation (11) is fulfilled. That necessary
condition depends on the exact solution 7" and not on the approximate solution 7}. The task is now to
define a triangulation satisfying the necessary condition described in [10] while the number of elements
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is as small as possible. Therefore, let £, = {ex}rex (K= an index set) be the set of all edges of the
triangulation Dj,. By Q, k € K, we denote the center of e;. Let us suppose that the exact solution 7" has
continuous second order derivatives with respect to the spatial variables, i.e., ' € C?(12). Additionally, we
assume that a sensible continuation of the second order derivatives to the boundary of €2 can be defined,
i.e., we write T € C?(€)). We define H},, k € K, as the Hessian matrix evaluated in Qy,

92T 92T
H) = out  Ondwy ke K. (12)
92T 02T ’
61‘18332 671‘% Ok

Moreover we suppose that Hj,, k € K, are positive definite matrices. We define the norm of the edge e,
corresponding to Hj, by

N

lexll gz, = (ex Hrer)?,

where e}, is considered as a column vector in R?, eE is the transposed vector and e;fH r€i denotes the
corresponding vector-matrix-vector product.
Now we proceed to the following

Definition 3.2 Let Dj, be a triaEgulation of the computational domain 2 and &, = {ey }recx be the set
of all edges of Dy,. Let T € C? (€2) be the exact solution of (1) and the Hessian matrices Hy, k € K,
given by (12) are positively definite. We say that the triangulation Dy, is edge-optimal, if

Hek‘”Hk = V6w Vk € K. (13)

We now define a parameter which indicates how close the triangulation Dj, is to the edge-optimal one.

Definition 3.3 Let D}, be a triangulation of {2 and let Hj, be a symmetric positive definite 2 x 2 matrix
defined for each node ey, k € K, of Dy,
Then the quality parameter of the triangulation Dy, is given by

1 2
Qp, = 55 > (lexller, — Vo), (14)

keK

where ||e|| H, is the norm of the edge e, of D, and #Ep, denotes the number of edges of Dy,.

It is clear that ()p, > 0 is always satisfied and it is also clear that ()p, = 0 holds if the mesh D, is
edge-optimal. The aim is now to adapt a given triangulation in order to minimize the quality parameter

Q'Dh .

3.2 Computation of Hessian matrices and optimization of the mesh

Of course it is practically not possible to set the matrixes H, k € K, according to (12) because we do not
know the exact solution 7". Instead of 7" we use a smoothed version of the approximate piecewise constant
numerical solution 7}, which we denote as T},. Since the computation of the Hessian matrices is a crucial
part of the resulting algorithms, we now describe the algorithm; for more details, see [9, 10].

i) As indicated, T}, is a piecewise constant solution of our problem given by T} |p, = T;, i € I.

ii) We define a continuous piecewise linear function 7}, on mesh Dy, by
J € Nh. (15)

The function T}, has (generalized) first order derivatives, which are piecewise constant on each element
D;, i€l
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iii) Using the Green’s theorem we formally define an approximation of second order derivatives in a node
Zj, .] € ML:

82Th(:ﬂj) o 1 aQTh(iL‘)
8xk8xl - meas(Vj) V; 8Ikaxl

dx (16)

1 8Th(:13) ~9
- = T2, (x; =1,2
meas(V;) /8\/_7' Oz, m dz CT Y Y

with n = (n1,n2), and where the symbol T,f w1 (x;) denotes an approximation of the second order
derivative of T}, in he sense of (16).

iv) For each vertex x;, j € N, we define a matrix H(x;) = {T7,(z;)}} ;. Itis possible to prove

that the matrices H (z;) are symmetric, see [9].
v) In order to guarantee that the matrices are positive definite we define an absolute value of H by

H(x;) = R;diag(\}, \))R; ' = H(z;) = Rydiag(|Aj], |N2)R;', j € N, (17)

37770

where Rj, j € N, are invertible rotation matrices and A}, )\? are the eigenvalues of H (). The
matrices H (x;) are already symmetric and positive definite.

vi) Finally, we put

H; = [H(ackl) + H(:Iikg)} , keK, (18)

N | =

where x1 and x are the endpoints of the edge ey.

Now we define an iterative process which consists of a finite combination of the following local operations
on the mesh:

e Adding a node in the center of an edge,

e Removing an edge,

e Swapping the diagonal of the quadrilateral formed by any pair of adjacent elements,
e Moving a node into a more suitable position.

These operations are performed in order to decrease the quality parameter ()p, , for more details we refer
again to [9, 10].

4 Applications

We consider two variations of the governing model equation (1).

First, we discuss a simple model situation involving boundary layers; see e.g. [11, 24] for detailed
discussions of boundary layer problems. We compare some exact solutions with the corresponding results
from the described numerical method, and we investigate the number of triangles needed for adaptation.

Then we consider a model of thermoregulation of premature infants. For more information on that
topic, see e.g. [3, 29, 30]. In this case, our interest is not focused on the comparison with an exact solution
since this is not available: instead, we investigate the number of triangles needed in order to discretize
the employed two-dimensional form of the shape of an infant. We then compare the number of triangles
that the adaptive scheme needs with the number of triangles used within an accurate model investigated by
Fischer et al. [14] which does not feature an adaptive routine.
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Mesh | Number of triangles
Original Mesh 572
First Refinement 2040
Second Refinement 6216

Table 1 Comparison of the number of triangles obtained via the refinement steps in the case 0 = 6.

4.1 Boundary layer problem with analytic solution

The governing equation of this model problem is given by
o T(x,t) = divVT(x,t) + 3" (z1) (19)

where we set y(z1) = 2§ with #mod 2 = 0. The domain of interest is given by [~1,1] x [~1,1] C R?
where we employ periodic boundary conditions at the boundaries parallel to the x;-axis and the Dirichlet
condition T' = 1 at the boundaries parallel to the x5-axis. Additionally, a fixed line is set along the x;-axis
where we will measure the values of the quantity 7" within the control volumes in order to compare these
data with the values of the exact solution.

As can easily be verified, the analytical steady state solution of the described problem depends only on
x1 and is given by

T(xy) =2— 5. (20)

The solution features strong gradients alone in x;-direction at the left and right boundary, while it is ev-
erywhere constant in xo-direction. Thus, an ideal triangulation features elements near the left and right
boundary showing the following properties: thin in x;-direction and large in zs-direction. Obviously, this
is an ideal test case for an anisotropic refinement procedure.

At first, we set § = 6. We start the steady state computations with a very coarse grid, see Figure 4 on
page 14. To the right of that grid a comparison of the values of different numerical solutions along the
x1-axis corresponding to different steps of grid refinement is given, see Figure 5. Within the Figures 6 to
7 the grids as well as the numerical solutions resulting from two refinement steps are displayed. Since the
gradients are not too strong, a good approximation of the real solution is reached by means of two adaption
steps.

The comparison of the number of elements and the corresponding numerical results shows, that the use
of the AMA technique results in a significant improvement of the quality of the numerical approximation
while the number of triangles remains by our experiences within very reasonable bounds, see Table 4.1.

In order to test the method in the context of thin boundary layers with steep gradients we choose the
parameter § = 20 and we start from an equally coarse grid as before, see Figure 8 on page 15. Again, in
Figure 9 the comparison of computed values along the x;-axis for different levels of refinement is given,
while the evolution of the refinement of the grid together with the corresponding numerical solutions can
be seen in the Figures 10 to 12 (pages 15 and 16).

The distribution along the x1-axis depicted in Figure 9 as well as the coloured plots shown in the Figures
10, 11 and 12 prove that the dominant features are resolved in a reliable and accurate manner. Note that only
one more level of refinement is needed to resolve a much thinner boundary layer. The anisotropic character
of the refined grids is clearly observable in the transition zone between the interior and the boundary.

4.2 Thermoregulation

Suddenly occuring lack of oxygen is known to be an important cause of injury to the developing brain
of premature infants [21]. The neuronal loss suffered in such a critical situation evolves over several
days [17]. One of the factors that influence the degree and distribution of neuronal loss is the cerebral
temperature. Clinical studies have shown that lowering the cerebral temperature can prevent much damage
[7]. The question arises, whether the temperature within the brain of a premature infant can be lowered by
manipulating the environmental parameters in an incubator. For other works on exactly this topic, see [5]
and the references therein.
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Mesh | Number of triangles
First Mesh 1822
Second Mesh 3673
Third Mesh 6731
Fourth Mesh 8956
Reference Mesh 37351

Table 2 Numbers of triangles used within the refinement steps, compared to the grid employed by Fischer et al. [14].

The evolution of the temperature distribution within the body of a premature infant can be studied by
using a variation of a so-called bio-heat equation, see e.g. [5, 29, 30]. Realistic models especially feature
strong source terms by metabolical heat production and blood flow which vary corresponding to the tissue
within the body. There are very strong sources due to metabolical heat production within the core, while
this influence is negligible within tissue layers corresponding to skin, fat and bone especially near the body
surface. Furthermore, the sources due to heat transport via blood flow have a major influence within the
core where blood circulation mainly takes place, while this influence is comparatively weak within the
skin and totally absent within fat and bone. Note that the mentioned tissues also feature different heat
conductivity coefficients and specific heat capacities employed within our model. Of course, because of
the complexity of the task, no analytical solution can be given.

The numerical simulation of such a model can result in very strong temperature gradients at the boundary
of the computational domain. Of special interest is of course the temperature distribution within the head.

In order to approach this problem, Fischer et al. [14] employed a finite volume technique without an
adaptive routine. This underlying model is based on the assumption of a steady state situation. Concerning
the grid used within the work of Fischer et al., it should be noted that structured subgrids were used in the
boundary region in order to capture steep heat gradients. For more details and for a theoretical discussion
of the method see [14].

In the following, we discuss the simulation of heat transfer with respect to an infant of 1 kg by the use of
the described adaptive scheme. It is evident to start from a coarse primary grid and to proceed by computing
the corresponding steady state solution. If a steady state solution is reached, the grid is adapted by using
the described AMA method and again a steady state calculation is started. We now investigate different
levels of refinement together with the corresponding numerical solutions. Within the Figures 13 and 14
(pages 17 and 18) the evolution the grid undergoes is displayed, and it can be seen that a suitable solution
is reached three refinement steps after starting from a quite coarse triangulation. In Table 4.2 the numbers
of triangles used within the different steps of refinement are given together with the corresponding number
of the mesh used by Fischer et al. which is denoted as the reference mesh.

5 Concluding remarks and Outlook

A finite volume method on unstructured grids for the simulation of heat conduction problems with steep
gradients due to source terms is presented.

Realistic applications show a distribution of the heat conductivity which is piecewise constant. In this
context, the maximum principle derived in [14] is improved in the sense that weaker assumptions with
respect to the underlying triangulation are required. Thus, an anisotropic mesh adaptation method can be
useful for the numerical solution of heat conduction problems.

The presented numerical examples show a high efficiency of the combination of the finite volume
method with the anisotropic mesh adaptation technique. The numerical scheme (4) is sufficiently robust
even for fast changing solutions on grids satisfying only conditions A1 and A2 admitting also thin and long
triangles which are usually generated by AMA.

The numerical results from Section 4.1 show, that there is not a fundamental problem in capturing a
solution with very steep gradients. Moreover, we obtain sufficiently precise solutions without large number
of elements. This is also a desirable feature for 3D problems.
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An extension of the numerical procedure to 3-D problems which covers many realistic situations is
the natural next step. There is no principle problem in extending the finite volume scheme or the AMA
technique in this direction. Preliminary work was already done in [31].
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