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We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to

solve the associated partial differential equation a finite volume technique is used and unstructured grids

are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To

capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is

implemented. Computational tests are performed for an academic problem where the exact solution is

known as well as for a real world problem of a computer simulation of the thermoregulation of premature

infants.

1 Introduction

The numerical simulation of flow phenomena often incorporates the evaluation of boundary layers or, more

generally, of physical states which involve steep gradients of the occuring quantities, see [11, 16, 22, 23,

24]. This can be done either by the use of a sensible analytical approximation, e.g. by employing the

Boussinesq approximation in a suitable situation [18], or by using a very fine grid near the boundary to

achieve a valid numerical approximation of the flow field within the boundary layer.

The latter strategy can be advantageous since the computed solution does not rely on additional physical

assumptions. Furthermore, in some situations there is no analytical approximation available and the flow

in the boundary layer has to be computed numerically anyway, e.g. in the case of heat equations with

complicated source terms on a sophisticated domain featuring different boundary conditions. However, if

the numerical simulation of the flow within a boundary layer is realized via an uniformly fine grid, the

resulting computational problem easily becomes very large. This assertion remains true even when an

adaptive procedure yielding locally uniformly fine grid structures is applied. Clearly, an anisotropic refine-

ment technique offers a sensible approach to deal with such a problem since it allows to use anisotropic

grid structures within a boundary layer, i.e., it allows grid structures to be long and thin which fits with the

characterization of a boundary layer problem.

Within this paper, we employ the anisotropic mesh adaptation (AMA) technique developed in [9, 10]

within a finite volume framework. The AMA technique does not depend on the exact formulation of the

problem, thus it allows a wide range of applications.

A distinctive feature of the employed finite volume method is given by the special implementation of

the boundary conditions. By the concept of extended barycenters introduced in [14], the method is well-

defined for general non-convex triangulations. Furthermore, this concept allows to model the temperature

directly at the edges of the computational domain. This not only distinguishes our method, the possibility

to manipulate the physical fluxes directly at the boundary can be advantageous from the modeling point of
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view. Exactly this is the case in extensions of the industrial application we consider; e.g. while the relevant

temperature on the body surface of a premature infant inside an incubator depends also on the ventilation,

the degree of heat exchange between the body and the surroundings depends on the vasomotion of the skin

directly adjacent to its surface, see [4, 5, 30] and the references therein.

The resulting numerical method is shown to offer an effective and useful tool for the computation of

sophisticated flow fields with boundary layers in two spatial dimensions over general non-convex domains.

In order to demonstrate this, several test cases are considered.

The mathematical problems under consideration are given by variations of the heat equation

∂tT (x, t) = div (λ(x)∇T (x, t)) + q(x, t), (1)

where x = (x1, x2)
T ∈ Ω ⊂ R

2 and t ∈ R
+. Note that the sources may be quite complicated as it is e.g.

the case in the industrial application we consider. Additionally, initial and boundary conditions of various

types are employed. As indicated before, the spatial domain Ω may be non-convex and quite sophisticated

depending on the concrete application.

This paper is organized as follows. At first, we briefly describe the finite volume scheme recently

introduced by Fischer et al. [3, 14]. Then a discrete formulation of the maximum principle is proven.

Thereby, in comparison to [14] weaker assumptions concerning the underlying primary mesh are used

which especially motivates the application of an anisotropic refinement procedure. After that, the used

anisotropic mesh adaptation technique is introduced. We compare several analytical solutions featuring

strong boundary layers with results computed with the help of the described method. Afterwards the

method is applied to a real world problem, namely a model of thermoregulation of premature infants.

2 The Numerical Method

Finite volume methods have proven to be reliable and accurate approximation techniques [2, 12, 13, 14,

20, 22, 23, 27]. These schemes are formulated on general control volumes and deal with the integral

formulation of the underlying problem. Integrating equation (1) over an arbitrarily chosen but fixed control

volume σ ⊂ Ω, we obtain

d

dt
(MT ) (t)|σ = − 1

|σ|

∫

∂σ

λ(x)∇T (x, t) · n ds+
1

|σ|

∫

σ

q(x, t) dx, (2)

where M is the cell average operator, and |σ| and n denote the area of the box σ and the unit outer normal

vector on ∂σ, respectively. The relation (2) describes the evolution of cell averages of T , and it is the basis

of our finite volume method.

In order to obtain an appropriate decomposition of the domain Ω into a finite number of control volumes,

we start from an arbitrary conforming triangulation Dh of the domain Ω which is called the primary mesh

[27], consisting of finitely many triangles Di, i ∈ I = {1, . . . ,#Dh}. Furthermore, Nh denotes the index

set of all nodes of the triangulation Dh and is subdivided by Nh = NDh

h ∪N ∂Dh

h , where NDh

h is associated

with the inner points and N ∂Dh

h includes the indices of the boundary points. We set N := #Nh and denote

the three edges of the triangle D by eD,k, k = 1, 2, 3. Furthermore, we define

E(i) = {eD,k| k ∈ {1, 2, 3},D ∈ Dh, node xi ∈ eD,k} ,

V (i) = {D| node xi is vertex of D ∈ Dh} ,
and

C (D) = {i|i ∈ {1, . . . , N}, node xi is vertex of D} .

Concerning the integral formulation (2) of the governing equation (1), the occurrence of second order

derivatives within the partial differential equation (1) requires the evaluation of first order derivatives on

the boundary of each control volume. Due to this fact we employ a box type method where the computation

of a first order derivative on the boundary of each box is straightforward. For the numerical approximation

of the involved integrals we follow the proceeding described in [3, 14] which we now briefly review.
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We define a discrete control volume σi as the open subset of R2 including the node xi = (xi1, xi2)
T

and bounded by the straight lines defined by the connection of the midpoint of the edge eD,k ∈ E(i) with

the barycentre xs = (xs1, xs2)
T = 1

3

∑
i∈C(D) xi of the corresponding triangle D. In the case that xi is

on the (piecewise polygonal) boundary of the computational domain, the line defined by the connection of

the midpoint of the boundary edge and the node itself is also a part of ∂σi. The union Bh of all boxes σi,

i ∈ Nh, is called the secondary mesh. Let N(i) denote the index set of all nodes neighboring node xi,

i.e., those nodes xj , j 6= i, for which
∫
∂σi∩∂σj

1 ds 6= 0 is valid. In general, for j ∈ N(i) the boundary

between the control volume σi and σj consists of two line segments which are denoted by lkij , k = 1, 2 .

Furthermore, nk
ij , k = 1, 2, represent the accompanying unit normal vectors.

With regard to the secondary mesh Bh we can rewrite the integral form of the heat equation as

d

dt
(MT ) (t)|σi︸ ︷︷ ︸
=: Ti(t)

= − 1

|σi|
∑

j∈N(i)

2∑

k=1

∫

lkij

λ(x)∇T (x, t) · n(x) ds

+
1

|σi|

∫

σi

q(x, t) dx, ∀σi ∈ Bh.

Taking account of the secondary mesh Bh and using a unique linear distribution of T as well as the mean

value of the heat conductivity λD on each triangle D of the primary grid directly leads to the formulation

of a numerical flux function

H
(
Ti(t), Tj(t), Tm(t);nk

ij

)
= λD∇TD(t) · nk

ij .

Consequently, for each inner control volume we obtain

∫

∂σi

λ(x)∇T (x, t) · n(x) ds =
∑

j∈N(i)

2∑

k=1

H
(
Ti(t), Tj(t), Tm(t);nk

ij

)
|lkij |.

A convenient numerical approximation of the remaining boundary integral is required in order to ensure

a discrete maximum principle in our numerical framework. Utilizing the notation introduced within Figure

3, Fischer et al. [14] proposed the definition of an extended barycenter

ci = xi −
√
3ρi

4‖ni1,∂Ω + ni2,∂Ω‖2
(ni1,∂Ω + ni2,∂Ω) , (3)

with a certain weight

ρi =
1

2
min{‖xj − xi‖2 |j ∈ N(i) ∩ C(D)}.

The consideration of extended barycenters is actually one of the most important aspects of the method. By

the consequences of exactly this feature, our method is well-defined even for non-convex computational

domains. Furthermore, it enables to model the boundary condition in terms of the temperature at the edges

of the computational domain in a very simple way.

The remaining boundary integral is then approximated as

∫

∂σi∩∂Ω

λ(x)∇T (x, t) · n(x) ds =
∑

ℓ∈{j,m}

H(Ti(t), Ti,∂Ω(xi), Ti,∂Ω(xiℓ);niℓ) |liℓ| ,

where the physical quantities Ti, Ti,∂Ω(xi) and Ti,∂Ω(xiℓ) are assumed to be located at the nodes ci, xi and

xiℓ, respectively, and the gradient ∇T is computed using the triangle built by the above mentioned nodes.

A simple approximation of the source term yields

1

|σi|

∫

σi

q(x, t) dx = q(xi, t).



6 M. Breuß, V.Dolejšı́, and A. Meister: Anisotropic resolution of boundary layers

For the approximation of the temporal derivative a forward or backward Euler time step technique is em-

ployed, whereby the source term is always evaluated in an explicit manner. Thus, the whole numerical

method can be written as

Tn+1
i = Tn

i − ∆t

|σi|
{ ∑

j∈N(i)

2∑

k=1

H
(
Tm
i , Tm

j , Tm
m ;nk

ij

) ∣∣lkij
∣∣

+δi
∑

ℓ∈{j,m}

H(Tm
i , Ti,∂Ω(xi), Ti,∂Ω(xiℓ);niℓ) |liℓ|

}
+∆tqni , (4)

where m ∈ {n, n+ 1}, ∆t = tn+1 − tn, Tn
i = Ti(t

n), qni = q(xi, t
n) and

δi =

{
1, if i ∈ N ∂Dh

h

0, otherwise.

The consideration of finitely many different tissues within the modelling process of realistic heat conduc-

tion problems often yields a heat equation where the heat conductivity is constant almost everywhere. In

such a case we usually obtain that the majority of the boxes σi ∈ Bh satisfies the property λD = λD̃

for all accompanying triangles D, D̃ ∈ V (i). Examples are given by the academic test case (19) as well

as by a realistic model actually employed for the thermoregulation of premature infants within industrial

applications [5]. In this context we are able to improve the maximum principle developed in [14] in the

sense that weaker conditions on the underlying primary mesh Dh have to be required. More precisely,

angles greater than π/2 are now allowed within the triangulation Dh. Let us note here, that the necessity of

angle conditions for proving a discrete maximum principle is also stressed in works concerned with finite

element methods, see for instance [28] and the references therein. In the following we assume that the

primary grid used within our finite volume scheme Dh satisfies the properties

• A1: The triangulation Dh is of Delaunay type, whereby the sum of opposite angles αj1 , αj2 is less

than π for any pair of neighbouring triangles, see Figure 2,

• A2: The opposite angle αj with respect to a boundary edge is less than π/2, see Figure 3 (right).

We now prove the following maximum principle.

Theorem 2.1 Let Dh satisfy the conditions A1 and A2. Given a steady state solution Tn+1
i = Tn

i and

a vanishing source term qni for all i ∈ {1, . . . , N}. Given an index i ∈ Nh such that

Tn
i = max

ℓ∈Nh, j∈N
∂Dh
h

{Tn
ℓ , Tj,∂Ω} ,

then

Tn
ℓ = Tn

i = Tj,∂Ω

holds for all ℓ ∈ Nh and j ∈ N ∂Dh

h .

P r o o f. In the following, we use that both the heat conductivity λD as well as the gradient of the

temperature distribution ∇TD are constant on each triangle D ∈ Dh.

Let an arbitrarily chosen but fixed triangle with a notation as depicted within Figure 1 be given.

By simple geometrical considerations, we can compute the flux over the edges lij and lim of the control

volume corresponding to the index i as

H (Ti, Tj , Tm;nim) |lim|+H (Ti, Tj , Tℓ;niℓ) |liℓ|

= − (Ti − Tj)
λ

2

cosαj

sinαj

− (Ti − Tm)
λ

2

cosαm

sinαm

. (5)

Note that the identity cosα/ sinα = cotα holds, which will be used later on.



header 7

αjαi

αm

lij

lim

nij

nim

i

j

m

Fig. 1 Notations for an arbitrarily chosen triangle.

αj1

αj2

i

j

Fig. 2 Situation for i and j belonging to two adjacent triangles.

Let us first investigate the situation that i and j are not both indices of boundary points, i.e., they belong

to two adjacent triangles, see Figure 2.

Without restriction on generality, let i ∈ NDh

h , i.e. σi is an inner control volume and thus δi = 0 in (4).

We obtain by (4) the equation

0 = − ∆t

|σi|
∑

j∈N(i)

2∑

k=1

H
(
Tm
i , Tm

j , Tm
m ;nk

ij

) ∣∣lkij
∣∣ = −AiiTi −

∑

j∈N(i)

AijTj

with

Aij = − λ∆t

2 |σi|
(cotαj1 + cotαj2) = − λ∆t

2 |σi|
sin (αj1 + αj2)

sinαj1 sinαj2

A1
< 0 (6)

and

Aii = −
∑

j∈N(i)

Aij .

Now, let i and j both be indices of boundary points. For analyzing this case we use the notation depicted

in Figure 3.

Then, the fluxes over the boundary edges are approximated by

∫

ℓik,∂Ω

λ∇T · n ds = λ |ℓik,∂Ω|
Ti − Tik,∂Ω

|hik,∂Ω|
.



8 M. Breuß, V.Dolejšı́, and A. Meister: Anisotropic resolution of boundary layers

αj

ci

xi1

xi2 li1,∂Ω
li2,∂Ω

hi1,∂Ω

hi2,∂Ω

ni1,∂Ωni2,∂Ω

i

j

Fig. 3 Sketch of the situation incorporating the extended barycenter ci.

This means, that for i ∈ N ∂Dh

h and thus for a boundary control volume σi the equation

− ∆t

|σi|
2∑

k=1

H (Ti, Tik,∂Ω (xi) , Tik,∂Ω (xik) ;nik,∂Ω) |ℓik,∂Ω|

= −λ∆t

|σi|
2∑

k=1

Ti − Tik,∂Ω

|hik,∂Ω|
|ℓik,∂Ω| (7)

holds. Thus, by the use of the abbreviations N (i) := N(i)∩NDh

h and N∂(i) := N(i)∩N ∂Dh

h , we obtain

for general i ∈ Nh the identity

AiiTi +
∑

j∈N (i)

AijTj + δi
∑

j∈N∂(i)

ÃijTj = δi

2∑

k=1

Ai,ikTik,∂Ω, (8)

where the coefficients are given as

Aij is defined by (6),

Ãij = − λ∆t

2 |σi|
cotαj

A2
< 0 by use of (5),

Ai,ik =
λ∆t

|σi|
1

|hik,∂Ω|
> 0 by (7),

and Aii = −
∑

j∈N (i)

Aij − δi
∑

j∈N∂(i)

Ãij + δi

2∑

k=1

Ai,ik > 0.
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Thereby, the matrix A described by (8) is irreducibel since any two arbitrarily chosen but fixed nodes within

the computational domain are connected by our construction. Now, let a steady state solution be given with

Ti = max
j∈Nh, ℓ∈N

∂Dh
h

{Tj , Tℓ1,∂Ω, Tℓ2,∂Ω} .

Then, by (8) we obtain for the update the condition

∑

j∈N (i)

Aij︸︷︷︸
<0

(Tj − Ti)︸ ︷︷ ︸
≤0

+δi
∑

j∈N∂(i)

Ãij︸︷︷︸
<0

(Tj − Ti)︸ ︷︷ ︸
≤0

+δi

2∑

k=1

Ai,ik︸︷︷︸
>0

(Ti − Tik,∂Ω)︸ ︷︷ ︸
≥0

= 0. (9)

Equality within (9) is in general obviously only guaranteed if and only if

Ti = Tj ∀j ∈ N(i) and Ti = Ti1,∂Ω = Ti2,∂Ω if i ∈ N ∂Dh

h .

Thus, since A is irreducibel it follows

Ti = Tj ∀j ∈ Nh and Ti = Ti1,∂Ω = Ti2,∂Ω ∀i ∈ N ∂Dh

h .

As it becomes evident within the proof, the difference between a straightforward application of the

Galerkin method and our scheme if formulated as a finite element method is given by additional lines and

entries within the system of equations (8) corresponding to i ∈ N ∂Nh

h and j ∈ N∂(i), see especially [19].

Note that the use of the concept of extended barycenters leads to more lines and entries as well as to

a more natural formulation of the method in terms of physically relevant fluxes. The consideration of

temperatures at the true boundary of the computational domain has no direct influence on the structure of

the system (8). As noted before, it may yield advantages on the modeling side as it is the case for the

industrial application we consider later.

3 Anisotropic adaptation

We now introduce the anisotropic mesh adaptation (AMA) method elaborated in [9, 10]. This technique

does not rely on the underlying problem and its exact formulation, e.g. in terms of underlying approxi-

mation techniques. Thus, it can easily be employed in the context of various types of sources, boundary

conditions, etc.. For other works concerned with anisotropic mesh adaptation, see e.g. [1, 6, 15, 25] and

the references therein.

3.1 Theoretical background

Let Dh = {Di}i∈I (I = an index set) be a triangulation of the computational domain Ω. Let T be the exact

solution of the continuous problem (1) and Th the approximate solution given by the numerical scheme

(4). We recall that the numerical solution Th depends on Dh. Now, we proceed with

Definition 3.1 Let T and Th be the exact and numerical solution of the problem (1), respectively. The

interpolation error function ηI(x) is given by (see [8, 10])

ηI(x) = |T (x)− Th(x)|, x ∈ Ω. (10)

Let ω > 0 be a given tolerance. Our aim is to adapt the triangulation Dh in a way that the interpolation

error function satisfies the condition

ηI(x) ≤ ω, for all x ∈ Ω. (11)

In [10] a necessary condition on Dh is derived so that the relation (11) is fulfilled. That necessary

condition depends on the exact solution T and not on the approximate solution Th. The task is now to

define a triangulation satisfying the necessary condition described in [10] while the number of elements
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is as small as possible. Therefore, let Eh = {ek}k∈K (K= an index set) be the set of all edges of the

triangulation Dh. By Qk, k ∈ K, we denote the center of ek. Let us suppose that the exact solution T has

continuous second order derivatives with respect to the spatial variables, i.e., T ∈ C2(Ω). Additionally, we

assume that a sensible continuation of the second order derivatives to the boundary of Ω can be defined,

i.e., we write T ∈ C2(Ω). We define Hk, k ∈ K, as the Hessian matrix evaluated in Qk

Hk =




∂2T

∂x2
1

∂2T

∂x1∂x2

∂2T

∂x1∂x2

∂2T

∂x2
2




∣∣∣∣∣∣∣∣∣
Qk

, k ∈ K. (12)

Moreover we suppose that Hk, k ∈ K, are positive definite matrices. We define the norm of the edge ek
corresponding to Hk by

‖ek‖Hk
:=

(
eTkHkek

) 1

2 ,

where ek is considered as a column vector in R
2, eTk is the transposed vector and eTkHkek denotes the

corresponding vector-matrix-vector product.

Now we proceed to the following

Definition 3.2 Let Dh be a triangulation of the computational domain Ω and Eh = {ek}k∈K be the set

of all edges of Dh. Let T ∈ C2(Ω) be the exact solution of (1) and the Hessian matrices Hk, k ∈ K,

given by (12) are positively definite. We say that the triangulation Dh is edge-optimal, if

‖ek‖Hk
=

√
6ω ∀k ∈ K. (13)

We now define a parameter which indicates how close the triangulation Dh is to the edge-optimal one.

Definition 3.3 Let Dh be a triangulation of Ω and let Hk be a symmetric positive definite 2× 2 matrix

defined for each node ek, k ∈ K, of Dh.

Then the quality parameter of the triangulation Dh is given by

QDh
=

1

#Eh
∑

k∈K

(
‖ek‖Hk

−
√
6ω

)2

, (14)

where ‖ek‖Hk
is the norm of the edge ek of Dh and #Eh denotes the number of edges of Dh.

It is clear that QDh
≥ 0 is always satisfied and it is also clear that QDh

= 0 holds if the mesh Dh is

edge-optimal. The aim is now to adapt a given triangulation in order to minimize the quality parameter

QDh
.

3.2 Computation of Hessian matrices and optimization of the mesh

Of course it is practically not possible to set the matrixes Hk, k ∈ K, according to (12) because we do not

know the exact solution T . Instead of T we use a smoothed version of the approximate piecewise constant

numerical solution Th which we denote as T̃h. Since the computation of the Hessian matrices is a crucial

part of the resulting algorithms, we now describe the algorithm; for more details, see [9, 10].

i) As indicated, Th is a piecewise constant solution of our problem given by Th|Di
= Ti, i ∈ I .

ii) We define a continuous piecewise linear function T̄h on mesh Dh by

T̄h(xj) ≡
∫
Vj

Th dx
∫
Vj

dx
, j ∈ Nh. (15)

The function T̄h has (generalized) first order derivatives, which are piecewise constant on each element

Di, i ∈ I .
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iii) Using the Green’s theorem we formally define an approximation of second order derivatives in a node

xj , j ∈ Nh:

∂2T̄h(xj)

∂xk∂xl

≈ 1

meas(Vj)

∫

Vj

∂2T̄h(x)

∂xk∂xl

dx (16)

=
1

meas(Vj)

∫

∂Vj

∂T̄h(x)

∂xk

nl dx =: T̃ 2
h,kl(xj), k, l = 1, 2,

with n = (n1, n2), and where the symbol T̃ 2
h,kl(xj) denotes an approximation of the second order

derivative of T̄h in he sense of (16).

iv) For each vertex xj , j ∈ Nh we define a matrix H̃(xj) ≡ {T̃ 2
h,kl(xj)}2k,l=1. It is possible to prove

that the matrices H̃(xj) are symmetric, see [9].

v) In order to guarantee that the matrices are positive definite we define an absolute value of H̃ by

H̃(xj) = Rjdiag(λ1
j , λ

2
j )R

−1
j ⇒ H(xj) ≡ Rjdiag(|λ1

j |, |λ2
j |)R−1

j , j ∈ Nh, (17)

where Rj , j ∈ Nh are invertible rotation matrices and λ1
j , λ2

j are the eigenvalues of H̃(xj). The

matrices H(xj) are already symmetric and positive definite.

vi) Finally, we put

Hk ≡ 1

2
[H(xk1) +H(xk2)] , k ∈ K, (18)

where xk1 and xk2 are the endpoints of the edge ek.

Now we define an iterative process which consists of a finite combination of the following local operations

on the mesh:

• Adding a node in the center of an edge,

• Removing an edge,

• Swapping the diagonal of the quadrilateral formed by any pair of adjacent elements,

• Moving a node into a more suitable position.

These operations are performed in order to decrease the quality parameter QDh
, for more details we refer

again to [9, 10].

4 Applications

We consider two variations of the governing model equation (1).

First, we discuss a simple model situation involving boundary layers; see e.g. [11, 24] for detailed

discussions of boundary layer problems. We compare some exact solutions with the corresponding results

from the described numerical method, and we investigate the number of triangles needed for adaptation.

Then we consider a model of thermoregulation of premature infants. For more information on that

topic, see e.g. [5, 29, 30]. In this case, our interest is not focused on the comparison with an exact solution

since this is not available: instead, we investigate the number of triangles needed in order to discretize

the employed two-dimensional form of the shape of an infant. We then compare the number of triangles

that the adaptive scheme needs with the number of triangles used within an accurate model investigated by

Fischer et al. [14] which does not feature an adaptive routine.
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Mesh Number of triangles

Original Mesh 572

First Refinement 2040

Second Refinement 6216

Table 1 Comparison of the number of triangles obtained via the refinement steps in the case θ = 6.

4.1 Boundary layer problem with analytic solution

The governing equation of this model problem is given by

∂tT (x, t) = div∇T (x, t) + y′′(x1) (19)

where we set y(x1) = xθ
1 with θmod 2 = 0. The domain of interest is given by [−1, 1] × [−1, 1] ⊂ R

2

where we employ periodic boundary conditions at the boundaries parallel to the x1-axis and the Dirichlet

condition T = 1 at the boundaries parallel to the x2-axis. Additionally, a fixed line is set along the x1-axis

where we will measure the values of the quantity T within the control volumes in order to compare these

data with the values of the exact solution.

As can easily be verified, the analytical steady state solution of the described problem depends only on

x1 and is given by

T (x1) = 2− xθ
1. (20)

The solution features strong gradients alone in x1-direction at the left and right boundary, while it is ev-

erywhere constant in x2-direction. Thus, an ideal triangulation features elements near the left and right

boundary showing the following properties: thin in x1-direction and large in x2-direction. Obviously, this

is an ideal test case for an anisotropic refinement procedure.

At first, we set θ = 6. We start the steady state computations with a very coarse grid, see Figure 4 on

page 14. To the right of that grid a comparison of the values of different numerical solutions along the

x1-axis corresponding to different steps of grid refinement is given, see Figure 5. Within the Figures 6 to

7 the grids as well as the numerical solutions resulting from two refinement steps are displayed. Since the

gradients are not too strong, a good approximation of the real solution is reached by means of two adaption

steps.

The comparison of the number of elements and the corresponding numerical results shows, that the use

of the AMA technique results in a significant improvement of the quality of the numerical approximation

while the number of triangles remains by our experiences within very reasonable bounds, see Table 4.1.

In order to test the method in the context of thin boundary layers with steep gradients we choose the

parameter θ = 20 and we start from an equally coarse grid as before, see Figure 8 on page 15. Again, in

Figure 9 the comparison of computed values along the x1-axis for different levels of refinement is given,

while the evolution of the refinement of the grid together with the corresponding numerical solutions can

be seen in the Figures 10 to 12 (pages 15 and 16).

The distribution along the x1-axis depicted in Figure 9 as well as the coloured plots shown in the Figures

10, 11 and 12 prove that the dominant features are resolved in a reliable and accurate manner. Note that only

one more level of refinement is needed to resolve a much thinner boundary layer. The anisotropic character

of the refined grids is clearly observable in the transition zone between the interior and the boundary.

4.2 Thermoregulation

Suddenly occuring lack of oxygen is known to be an important cause of injury to the developing brain

of premature infants [21]. The neuronal loss suffered in such a critical situation evolves over several

days [17]. One of the factors that influence the degree and distribution of neuronal loss is the cerebral

temperature. Clinical studies have shown that lowering the cerebral temperature can prevent much damage

[7]. The question arises, whether the temperature within the brain of a premature infant can be lowered by

manipulating the environmental parameters in an incubator. For other works on exactly this topic, see [5]

and the references therein.



header 13

Mesh Number of triangles

First Mesh 1822

Second Mesh 3673

Third Mesh 6731

Fourth Mesh 8956

Reference Mesh 37351

Table 2 Numbers of triangles used within the refinement steps, compared to the grid employed by Fischer et al. [14].

The evolution of the temperature distribution within the body of a premature infant can be studied by

using a variation of a so-called bio-heat equation, see e.g. [5, 29, 30]. Realistic models especially feature

strong source terms by metabolical heat production and blood flow which vary corresponding to the tissue

within the body. There are very strong sources due to metabolical heat production within the core, while

this influence is negligible within tissue layers corresponding to skin, fat and bone especially near the body

surface. Furthermore, the sources due to heat transport via blood flow have a major influence within the

core where blood circulation mainly takes place, while this influence is comparatively weak within the

skin and totally absent within fat and bone. Note that the mentioned tissues also feature different heat

conductivity coefficients and specific heat capacities employed within our model. Of course, because of

the complexity of the task, no analytical solution can be given.

The numerical simulation of such a model can result in very strong temperature gradients at the boundary

of the computational domain. Of special interest is of course the temperature distribution within the head.

In order to approach this problem, Fischer et al. [14] employed a finite volume technique without an

adaptive routine. This underlying model is based on the assumption of a steady state situation. Concerning

the grid used within the work of Fischer et al., it should be noted that structured subgrids were used in the

boundary region in order to capture steep heat gradients. For more details and for a theoretical discussion

of the method see [14].

In the following, we discuss the simulation of heat transfer with respect to an infant of 1 kg by the use of

the described adaptive scheme. It is evident to start from a coarse primary grid and to proceed by computing

the corresponding steady state solution. If a steady state solution is reached, the grid is adapted by using

the described AMA method and again a steady state calculation is started. We now investigate different

levels of refinement together with the corresponding numerical solutions. Within the Figures 13 and 14

(pages 17 and 18) the evolution the grid undergoes is displayed, and it can be seen that a suitable solution

is reached three refinement steps after starting from a quite coarse triangulation. In Table 4.2 the numbers

of triangles used within the different steps of refinement are given together with the corresponding number

of the mesh used by Fischer et al. which is denoted as the reference mesh.

5 Concluding remarks and Outlook

A finite volume method on unstructured grids for the simulation of heat conduction problems with steep

gradients due to source terms is presented.

Realistic applications show a distribution of the heat conductivity which is piecewise constant. In this

context, the maximum principle derived in [14] is improved in the sense that weaker assumptions with

respect to the underlying triangulation are required. Thus, an anisotropic mesh adaptation method can be

useful for the numerical solution of heat conduction problems.

The presented numerical examples show a high efficiency of the combination of the finite volume

method with the anisotropic mesh adaptation technique. The numerical scheme (4) is sufficiently robust

even for fast changing solutions on grids satisfying only conditions A1 and A2 admitting also thin and long

triangles which are usually generated by AMA.

The numerical results from Section 4.1 show, that there is not a fundamental problem in capturing a

solution with very steep gradients. Moreover, we obtain sufficiently precise solutions without large number

of elements. This is also a desirable feature for 3D problems.
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An extension of the numerical procedure to 3-D problems which covers many realistic situations is

the natural next step. There is no principle problem in extending the finite volume scheme or the AMA

technique in this direction. Preliminary work was already done in [31].
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