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Czech Republic, dolejsi@karlin.mff.cuni.cz

Abstract

We deal with the numerical solution of the system of conservation laws. Although this approach has been
proposed for a simulation of inviscid compressible flow it can be straightforwardly applied to more general
problems. We carried out the space semi-discretization by the discontinuous Galerkin finite element
(DGFE) method which is based on a piecewise polynomial discontinuous approximation. The resulting
system of ordinary differential equations is discretized by the backward difference formula (BDF). A
suitable linearization of the physical fluxes leads to a scheme which is practically unconditionally stable,
has a higher order of accuracy with respect to the space and time coordinates and we solve a linear
algebraic system at each time level. Moreover, we develop an adaptive technique for a choice of the length
of the time step which is based on the use of two BDF of the same order of accuracy. We call the resulting
scheme ABDF-DGFE (adaptive BDF-DGFE) method. Finally, the efficiency of the presented adaptive
strategy is documented by a set of numerical examples.

Keywords: backward difference formula; discontinuous Galerkin method; adaptive choice of the time step

1 INTRODUCTION

Our aim is to develop a sufficiently efficient, robust and accurate numerical scheme for the solution of
a system of time-dependent partial differential equations, particularly for the system of the Euler and
Navier-Stokes equations describing a motion of inviscid and viscous compressible flows, respectively. It
seems very promising to carry out the space discretization by the discontinuous Galerkin method (DGM),
which is based on a piecewise polynomial but discontinuous approximation. For a survey of DGM, see [3].

It is possible to use DGM also for the time discretization [21] but the most usual approach is the
application of the method of lines. The space semi-discretization of the Euler and particularly of the
Navier-Stokes equations leads to a stiff system of ordinary differential equations (ODEs) which should be
solved by a suitable method. Many authors employ the explicit Runge-Kutta methods since these schemes
have a high order of accuracy and are simple to implement, see, e.g., [1], [2], [18]. Their drawback is a
strong restriction of the choice of the time step. In order to avoid this disadvantage, it is suitable to use
an implicit time discretization but a full implicit scheme leads to a necessity to solve a nonlinear system
of algebraic equations at each time step which is rather expensive. Therefore, we proposed in [11] a semi-
implicit time discretization, which is based on a suitable linearization of inviscid fluxes. The linear terms
are treated implicitly whereas the nonlinear ones explicitly which leads to a linear algebraic problem at
each time step. In [10] we generalized this approach to a higher order approximation with respect to time
using a backward difference formula (BDF). Then we obtained a semi-implicit scheme which is practically
unconditionally stable, has a higher order of accuracy with respect to the space and time coordinates and
we solve a linear algebraic system at each time level. We call this scheme the BDF-DGFE (discontinuous
Galerkin finite element) method and belongs to the class of the so-called extrapolated BDF studied in [4],
[22]. Another possibility is to use, e.g., implicit Runge-Kutta methods, which will be the subject of further
research.
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There is a fundamental question how to choose the length of the time step. Too large time step causes
a loss of the accuracy with respect to the time and on the other hand too small time step leads to an
inefficiency with respect to the computational time. In order to achieve an optimal choice of the length
of the time step with respect to the accuracy and the efficiency a suitable time step adaptation technique
should be applied. A general time step adaptation strategy is based on a posteriori estimation of a local
discretization error of the time discretization and using this estimation we choose a time step as large as
possible to guarantee that the local discretization error is under a given tolerance.

A usual approach of a posteriori error estimation is the use of two numerical schemes of different orders
of accuracy for the solution of a system of ODEs where the numerical solution obtained by the higher
order scheme is supposed to be the exact solution and from the difference of both solutions we estimate
the local discretization error of the solution obtained by the low order scheme, see, e.g., [16, Sections II.4,
III.7]. In [20] a combination of an explicit and an implicit numerical methods of the same order of accuracy
was employed. However, we suppose that the use of the explicit scheme can cause some troubles for a
large time step due to a loss of the stability. Therefore, we propose in this paper a time step adaptation
technique for the BDF-DGFE method, which is based on a combination of two implicit schemes of the
same order of accuracy. At each time level we evaluate two numerical solutions using both schemes and
from the difference of the solutions we estimate the local discretization error and propose a new time step.
We call the resulting scheme the ABDF-DGFE (adaptive BDF-DGFE) method.

We present the ABDF-DGFE technique for the case of the Euler equations which describe inviscid
compressible flow. However, this technique (namely the time step adaptation strategy) can be easily
extended to different areas of engineering. The contents of the rest of the paper is the following. In
section 2 we present a system of Euler equations and mention some properties of the Euler fluxes. In
Section 3 we introduce the space semi-discretization of the Euler equation with the aid of the DGM. The
main important results of this paper are contained in Section 4, where the time step adaptation strategy is
determined for a system of ordinary differential equations. The extension of this approach to the system
of the Euler equations is given in Section 5. Four numerical examples demonstrating the efficiency of
the time step adaptation technique are presented in Section 6. Finally, we finish with several concluding
remarks in Section 7.

2 PROBLEM FORMULATION

A motion of 2D inviscid compressible flow is described by the system of the Euler equations written in the
conservative form

∂w

∂t
+

2∑

s=1

∂fs(w)

∂xs
= 0 in QT = Ω× (0, T ), (1)

where Ω ⊂ IR2 is a bounded polygonal domain occupied by gas, T > 0 is the length of a time interval,

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, e)

T (2)

is the state vector and

fs(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (e+ p) vs)
T, s = 1, 2, (3)

are the inviscid (Euler) fluxes. We use the following notation: ρ – density, p – pressure, e – total energy,
v = (v1, v2) – velocity, δsk – Kronecker symbol (if s = k, then δsk = 1, else δsk = 0). The equation of
state implies that

p = (γ − 1) (e− ρ|v|2/2), (4)

where γ > 1 is the Poisson adiabatic constant.
The system (1) is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (5)

and the boundary conditions
B(w) = 0 on ∂Ω× (0, T ), (6)

chosen in such a way that problem (1) – (6) is linearly well–posed. (See, e.g. [14], Section 3.3.6.) To
this end, the boundary ∂Ω is formed by disjoint parts ΓIO and ΓW representing the inflow/outflow and
impermeable walls, respectively.
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On ΓW we prescribe the impermeability condition

v · n = 0 on ΓW , (7)

where n denotes the unit outer normal to ∂Ω. In order to determine boundary conditions on ΓIO, we
define the matrix

P (w,n) ≡
2∑

s=1

As(w)ns, (8)

where n = (n1, n2) ∈ IR2, n2
1 + n2

2 = 1 and

As(w) ≡
Dfs(w)

Dw
, s = 1, 2, (9)

are the Jacobi matrices of the mappings fs. Then we prescribe mn quantities characterizing the state
vector w, where mn is the number of negative eigenvalues of the matrix P (w,n) and extrapolate mp

quantities of w from interior of Ω, where mp = 4 − mn is the number of non-negative eigenvalues of
P (w,n). For details, see, e.g., [14].

Using relations (2) – (4), we express the fluxes fs, s = 1, 2, in terms of the variables w1, . . . , w4 in the
form

fs(w) =













ws+1

ws+1w2

w1
+ δs1(γ − 1)

(

w4 −
w2

2+w2
3

2w1

)

ws+1w3

w1
+ δs2(γ − 1)

(

w4 −
w2

2+w2
3

2w1

)

ws+1

w1

(

γw4 − (γ − 1)
w2

2+w2
3

2w1

)













, s = 1, 2. (10)

Obviously, fs, s = 1, 2, are homogeneous mappings of order one, i.e.,

fs(ωw) = ωfs(w), ω ∈ IR, ω 6= 0, i = 1, 2. (11)

Then it is easy to show that
fs(w) = As(w)w, s = 1, 2. (12)

3 SPACE SEMI-DISCRETIZATION

We discretize the system of the Euler equations (1) – (6) with the aid of the method of lines. So that within
this section we carry out a semi-discretization with respect to the space coordinates by the discontinuous
Galerkin method and the resulting system of the ordinary differential equations (ODE) will be discretized
by a suitable ODE solver in the next sections.

3.1 Broken Sobolev space

Let Th (h > 0) denote a triangulation of the closure Ω of the domain Ω into a finite number of closed
elements (triangles or quadrilaterals) K with mutually disjoint interiors. We set h = maxK∈Th

diam(K).
Let I be a suitable index set such that Th = {Ki}i∈I . If two elements Ki, Kj ∈ Th contain a nonempty
open part of their faces, we put Γij = Γji = ∂Ki ∩ ∂Kj . For i ∈ I we set s(i) = {j ∈ I; Γij exists}. The
boundary ∂Ω is formed by a finite number of faces of elements Ki adjacent to ∂Ω. We denote all these
boundary faces by Sj , where j ∈ Ib is a suitable index set and put γ(i) = {j ∈ Ib;Sj is a face of Ki}, Γij =
Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib. For Ki not containing any boundary face Sj we put γ(i) = ∅.
Further we define two disjoint subsets γIO(i) and γW (i) corresponding to the boundary parts ΓIO and ΓW ,
respectively. Obviously, γ(i) = γIO(i)∪γW (i). Moreover we put S(i) = s(i)∪γ(i) and nij = ((nij)1, (nij)2)
is the unit outer normal to ∂Ki on the face Γij .

Over the triangulation Th we define the broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}, (13)

where Hk(K) = W k,2(K) denotes the (classical) Sobolev space on the element K. For v ∈ H1(Ω, Th) we
set

v|Γij = trace of v|Ki on Γij , (14)

v|Γji = trace of v|Kj on Γji,
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denoting the traces of v on Γij = Γji, which are different in general. Moreover,

[v]Γij
= v
∣
∣
Γij

− v
∣
∣
Γji

(15)

denotes the jump of function v over the edge Γij .
The approximate solution of problem (1) – (6) is sought in the space of discontinuous piecewise

polynomial functions Sh defined by

Sh ≡ [Sh]
4, Sh ≡ Sp(Ω, Th) ≡ {v; v|K ∈ P p(K) ∀K ∈ Th}, (16)

where p is a positive integer and P p(K) denotes the space of all polynomials on K of degree at most p.
Obviously, Sh ⊂ H1(Ω, T ).

3.2 Discontinuous Galerkin method

In order to derive the discrete problem, we multiply (1) by a test function ϕ ∈
[
H1(Ω, Th)

]4
, integrate

over any element Ki, i ∈ I, apply Green’s theorem and sum over all i ∈ I. In this way we obtain the
integral identity

∂

∂t

∑

Ki∈Th

∫

Ki

w ·ϕ dx (17)

=
∑

Ki∈Th

∫

Ki

2∑

s=1

fs(w) ·
∂ϕ

∂xs
dx−

∑

Ki∈Th

∑

j∈S(i)

∫

Γij

2∑

s=1

fs(w) ·ϕ (nij)s dS,

which represents a weak form of the Euler equations in the sense of the broken Sobolev space H1(Ω, Th)
defined by (13).

Now we shall introduce the discrete problem approximating identity (17) with the aid of DGM. To
evaluate the boundary integrals in (17) we use the approximation

∫

Γij

2∑

s=1

fs(w(t)) (nij)s ·ϕ dS ≈

∫

Γij

H(w(t)|Γij ,w(t)|Γji ,nij) ·ϕ dS, (18)

where H is a numerical flux, w(t)|Γij and w(t)|Γji are the values of w on Γij considered from the interior
and the exterior of Ki, respectively, and at time t. For details, see, e.g. [14] or [24].

It is necessary to specify the meaning of w(t)|Γji for j ∈ γ(i). For inflow/outflow part of the boundary
we use non-reflecting boundary conditions in the form

w(t)|Γji ≡ LRP(w(t)|Γij , wBC(t), nij), j ∈ γIO(i), i ∈ I, t ∈ (0, T ), (19)

where LRP(·, ·, ·) denotes a solution of the local Riemann problem considered on edge Γij , j ∈ γIO(i) and
wBC(t) is given, e.g., from the far-field boundary conditions. The boundary conditions (19) are perfectly
transparent for wave fronts parallel to the boundary, for more details see [10] or [13].

For Γij , j ∈ γW (i) we use the impermeability condition (7) and replace (18) by the approximation
∫

Γij

H(w(t)|Γij ,w(t)|Γji ,nij) ·ϕ dS :=

∫

Γij

FW (w(t),nij) ·ϕ dS, j ∈ γW (i), (20)

where
FW (w,n) ≡ (0, pn1, pn2, 0)

T . (21)

The pressure p is expressed in the form

p = (γ − 1) (w4 − (w2
2 + w2

3)/(2w1), (22)

following from (4) and (2) and extrapolated on Γij from Ki and n = (n1, n2) = nij .
For wh,ϕh ∈ Sh we introduce the forms

(wh,ϕh) =

∫

Ω

wh(x) ·ϕh(x) dx, (23)

b̃h(wh,ϕh) = −
∑

Ki∈Th

∫

Ki

2∑

s=1

fs(wh) ·
∂ϕh

∂xs
dx

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wh|Γij ,wh|Γji ,nij)·ϕhdS.
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Moreover, in order to avoid overshoots and undershoots of the discrete solution near discontinuities
(shock waves), we define the jump indicator by

gKi(wh) ≡

∑

j∈s(i)

∫

Γij
[ρh]

2 dS

|Ki|3/4
∑

j∈s(i) |Γij |
, Ki ∈

T
h (24)

where ρh denotes the first component (density) of wh ∈ Sh, [·] is the inter-element jump defined by (15),
|Γij | is the length of Γij and |Ki| is the area of element Ki. This parameter measures the inter-element
jumps of the piecewise polynomial function wh,1. It vanishes in region where the solution is smooth, see
[12]. Moreover, we put

gΓij (wh) ≡
1

2

(
gKi(wh) + gKj (wh)

)
, j ∈ s(i), i ∈ I, (25)

and define the forms

d̃h(wh,ϕh) ≡
∑

i∈I

hKigKi(wh)

∫

Ki

∇wh · ∇ϕh dx (26)

and

J̃h(wh,ϕh) ≡
∑

i∈I

∑

j∈s(i)

gΓij (wh)

|Γij |

∫

Γij

[wh] · [ϕh] dS.

The first form represents an artificial diffusion and the latter the so-called interior penalty. For more
details see [9], [15]. For a simple notation we put

c̃h(wh,ϕh) ≡ b̃h(wh,ϕh) + d̃h(wh,ϕh) + J̃h(wh,ϕh), wh,ϕh ∈ Sh. (27)

Now we can introduce the semi-discrete problem.

Definition 1. Function wh is a semi-discrete solution of the problem (1) – (6), if

a) wh ∈ C1([0, T ];Sh), (28)

b)

(
∂wh(t)

∂t
,ϕh

)

+ c̃h(wh(t),ϕh) = 0 ∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) wh(0) = w
0
h,

where w0
h ∈ Sh denotes an Sh-approximation of the initial condition w0 from (5).

Here C1([0, T ];Sh) is the space of continuously differentiable mappings of the interval [0, T ] into Sh.
The problem (28), a) – c) constitutes a system of ordinary differential equations for wh(t) which has

to be discretized by a suitable ODE solver. It is possible to use explicit or implicit time discretization.
The performance of one explicit time step is usually very fast but the size of the time step is restricted by
some type of the stability condition, e.g., for the explicit Euler method in the form

τ ≤ CFLΛ(wh(t)), Λ(wh(t)) ≡ min
i∈I

(

min
j∈s(i)

|Ki|

rij(wh(t),n)|Γij |

)

, (29)

where rij(wh(t),n) denotes the spectral radius of the matrix P (wh(t),n)|Γij given by (8) and CFL ∈
(0, 1), see, e.g., [14]. On the other hand, implicit schemes are generally more stable (allow to use a large
τ) but en evaluation of each time step requires more computational time. Therefore, the efficiency of the
time discretization depends on the balance between the time step restrictions following from the accuracy
and stability requirements. For example, shock tube calculations (see [24]), can be done more efficiently
with an explicit method than with an implicit one since the accuracy requirement gives τ ≈ h and then
the stability condition of type (29) is satisfied naturally.

However, the use of (semi)-implicit time schemes is more efficient in several application, e.g.

• Low Mach number flow (M ≪ 1, M ≡ |v|/
√

γ p/ρ is the Mach number), where the stability
condition (29) exhibits a strong restriction since rij(·) ≈ M−1 ≫ 1 and therefore Λ ≪ 1.

• Steady state flow, which is solved by the unsteady problem (28), a) – c) for t → ∞. In this case the
time step restriction from the accuracy point of view is very weak.
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• Viscous flow, where the stability condition (29) for explicit schemes should be replaced by

τ ≤ CFLmin

(

min
j∈s(i)
i∈I

|Ki|

λmax
i |Γij |

,
1

Re
min
i∈I

h2
Ki

)

(30)

which is more restrictive for small Reynolds numbers Re than (29).

Our aim is to develop a numerical method for the simulation of viscous compressible flows with a
wide range of Mach numbers and various types of flow regimes. Therefore, we employ a higher order
time discretization based on the use of the n-step backward difference formula (BDF) which belongs to
a class of implicit multistep schemes, see [16]. The two-step BDF scheme is A-stable and for n = 3, 4, 5
and 6 the methods lose more and more stability. For n ≥ 7, the formulas are unstable, see [17, Section
V.1]. An efficient numerical solution of ODE systems requires a time step adaption technique reflecting a
discretization error of the used scheme. So that in the next section we develop an adaptive BDF technique
for a general system of ordinary differential equations and the extension of this approach to (28), a) – c)
is given in Section 5.

4 TIME DISCRETIZATION

Let us consider a system of ordinary differential equations for an unknown function y : (0, T ) → IRm

dy(t)

dt
= F (y), y(0) = y0, (31)

where m ∈ IN, m ≥ 1, y0 ∈ IRm and F : (0, T ) × IRm → IRm are given. The function F (·) can depend
also explicitly on the time t, generally, but since it is not the case of the problem (28), a) – c) we do not
consider this case for simplicity.

We assume that (31) has a unique solution. In the following we present two n-step (n ≥ 2) numerical
schemes (the n-step BDF I and the n-step BDF II) having the same order of accuracy. From a difference
of numerical solutions obtained by both methods we derive an estimate of a local discretization error and
based on this estimate we propose an adaptation strategy of a choice of the size of the time step. This
technique we call ABDF (adaptive BDF) method.

4.1 n-step BDF I and n-step BDF II schemes

Let n ≥ 2 be given. We assume that the exact solution of (31) satisfies y ∈ [Cn+2(0, T )]m. By y(i)(t) ∈
IRm, i = 0, . . . , n + 2 we denote the ith-derivative of y(·) at t ∈ (0, T ). Let 0 = t0 < t1 < t2 < . . . tr = T
be a partition of the time interval (0, T ), we assume that r ≥ n. We put

τk ≡ tk − tk−1, k = 1, . . . , r, (32)

θk ≡
τk

τk−1
, k = 2, . . . , r,

denoting the length of the time step and the ratio of lengths of two successive time steps. For a simplicity,
we use the notation

O(τ) ≡ O(τk), k = 1, . . . , r. (33)

Let yk denotes an approximate value of the solution y(tk), i.e.,

yk ≈ y(tk), k = 0, 1, . . . , r. (34)

Let us assume that yk−l = y(tk−l), l = 1, . . . , n then the local discretization error is given by

ek ≡ y(tk)− yk, k = 1, . . . , r. (35)

If the local discretization error of a numerical scheme is equal to O(τ q+1) then we say that the order of
accuracy of this scheme is equal to q.

We employ two multistep formulas, particularly the n-step BDF I and the n-step BDF II schemes given
by

n∑

l=0

αI
n,l y

I
k−l = τkF (yI

k), k = n, . . . , r, (36)
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n = 2 n = 3

αI
n,0

2 θk+1
θk+1

θkθk−1

θkθk−1+θk−1+1 + 2θk+1
θk+1

αI
n,1 −(θk + 1) −

(θk+1)(θkθk−1+θk−1+1)
θk−1+1

αI
n,2

θ2
k

θk+1
θ2
k(θkθk−1+θk−1+1)

θk+1

αI
n,3 — −

(θk+1)θ2
kθ

3
k−1

(θk−1+1)(θkθk−1+θk−1+1)

cIn −
1+θk
6θk

−
(θk+1)(θkθk−1+θk−1+1)

24θ2
k
θk−1

Tab. 1: Values of αI
n,l, l = 0, . . . , n and cIn for n = 2, 3

and
n∑

l=0

αII
n,l y

II
k−l =

τk
2

(

F (yII
k ) + F (yII

k−1)
)

, k = n, . . . , r, (37)

respectively. By yI
k−l and yII

k−l we denote the approximate solution obtained by the n-step BDF I and the
n-step BDF II schemes, respectively. The coefficients αI

n,l, l = 0, . . . , n and αII
n,l, l = 0, . . . , n depend on

θk−l, l = 0, . . . , n, see [16, Section III.5]. The local discretization errors of schemes (36) and (37) are given
by

eIn,k ≡ y(tk)− yI
k ≈

cIn
αI
n,0

τn+1
k y(n+1)(tk) +O(τn+2) = O(τn+1

k ), k = n, . . . , r, (38)

and

eIIn,k ≡ y(tk)− yII
k ≈

1

2

τn+1
k

αII
n,0

(

cIny
(n+1)(tk) + cexn y(n+1)(tk−1)

)

+O(τn+2) (39)

= O(τn+1
k ), k = n, . . . , r, ,

respectively. Moreover, we define the quantity

cIIn ≡ (cexn + cIn)/2.

The values of coefficients αI
n,l, α

II
n,l, l = 0, . . . , n, cIn, cexn and cIIn are given in Tables 1 and 2 for n = 2, 3 .

It is possible two show that the schemes (36) and (37) are stable for n = 2, 3, see [16, Theorem 5.5].
Since the n-step BDF I and the n-step BDF II methods are multi-step, their definitions (36) and (37)

can not be used for evaluating of yk for k < n, respectively. The value y0 is given from the initial condition
and the values yk, k = 1, . . . , n − 1 should be evaluated, e.g., by a one-step formula having a sufficient
order of accuracy. However, we do not discuss this aspect within this paper.

4.2 Error estimation and time step adaptation

In Section 4.1, we presented two schemes of the same order of accuracy for the numerical solution of
problem (31). Within this section we derive an estimation of the local discretization error and based on
it, we propose a time step adaptation strategy.

From (38) and (39) we have approximate equalities

eIn,k ≡ y(tk)− yI
k ≈

cIn
αI
n,0

τn+1
k y(n+1)(tk), (40)

eIIn,k ≡ y(tk)− yII
k ≈

1

2αII
n,0

τn+1
k

(

cIny
(n+1)(tk) + cexn y(n+1)(tk−1)

)

. (41)
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n = 2 n = 3

αII
n,0 1

θk−1(3θ
2
k+4θk+2)+2(θk+1)

2(θk+1)(θkθk−1+θk−1+1)

αII
n,1 -1 −

θk−1(θ
2
k+2)+2

2(θk−1+1)

αII
n,2 0 +

θ3
kθk−1

2(θk+1)

αII
n,3 — −

θ3
kθ

3
k−1

2(θk−1+1)(θkθk−1+θk−1+1)

cexn
1

6 θk
−

1+θk−1

24 θ2

k
θk−1

cIIn −
1

12

1

2

1+θk−1+(1+θk)(θkθk−1+θk−1+1)
24θ2

k
θk−1

Tab. 2: Values of αII
n,l, l = 0, . . . , n and cIIn for n = 2, 3

Since the local discretization errors are of order O(τn+1) then the n-step BDF I and the n-step BDF II

schemes have the order of accuracy equal to n. In order to obtain a computable estimation of the local
discretization error we assume that y(n+1)(tk−1) ≈ y(n+1)(tk). Then relation (41) can be written in the
form

eIIn,k ≡ y(tk)− yII
k ≈

cIIn
αII
n,0

τn+1
k y(n+1)(tk), (42)

where cIIn is given by (40).
Subtracting the (approximate) equalities of (40) and (42) we obtain

yII
k − yI

k ≈

(
cIn
αI
n,0

−
cIIn
αII
n,0

)

τn+1
k y(n+1)(tk), (43)

which implies that

y(n+1)(tk) ≈
yII
k − yI

k

τn+1
k

(
cIn
αI
n,0

−
cIIn
αII
n,0

)−1

. (44)

Finally, from (40), (42) and (44) we obtain the estimation of the local discretization errors for the n-step
BDF I and the n-step BDF II schemes in the form

eIn,k ≈ δIn,k (y
II
k − yI

k), (45)

eIIn,k ≈ δIIn,k (y
II
k − yI

k), (46)

where

δIn,k ≡
cIn
αI
n,0

(
cIn
αI
n,0

−
cIIn
αII
n,0

)−1

, (47)

δIIn,k ≡
cIIn
αII
n,0

(
cIn
αI
n,0

−
cIIn
αII
n,0

)−1

.

The right-hand-side of (45) and (46) are already computable quantities and they are used for the choice
of the time step.

Let k ≥ n. With the aid of the schemes (36) and (37), we compute the vectors yI
k and yII

k , respectively.
As the final approximation of yk ≈ y(tk) we can put either yI

k or yII
k , but a more efficient approach is to

put

yk =

(
cIIn
αII
n,0

−
cIn
αI
n,0

)−1(

yI
k

cIIn
αII
n,0

− yII
k

cIn
αI
n,0

)

. (48)
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Then we obtain a scheme having the order of accuracy equal to n+1 which follows from a suitable linear
combination of (40) and (42) since the terms of order O(τn+1

k ) vanish. Numerical experiments carried out
in [19] for a scalar ODE show that the use of (48) gives the order of convergence n+ 1 for n = 2, 3.

Let en,k denote either eIn,k or eIIn,k. Then (40) and (42) can be written formally by

en,k ≈ Cτn+1
k , (49)

where τk is the actual time step and C symbolically denotes the rest parts of the right-hand-sides of (40)
and (42).

Let ω > 0 be a given error tolerance, i.e., we require that en,k ≤ ω. In virtue of Section 1 it is natural
to choose the time step in such a way that

en,k ≈ ω. (50)

Based on (49) we deduce that the “optimal” time step τ̄k satisfies

ω ≈ Cτ̄n+1
k , (51)

and from (49) and (51) we obtain

τ̄k ≈ τk n+1

√
ω

en,k
. (52)

So that we define the value

τ̄k ≡ τk n+1

√
ω

max(eIn,k, e
II
n,k)

, (53)

which represents an optimal length of the time step on the kth time level obtained by the error estimates
(40) – (41). If this value is not significantly smaller than τk then it makes no sense to repeat the evaluation
of the solution at the kth time level with the new length of the time step τ̄k. In this case we use the value
τ̄k for the length of the next time step τk+1. Moreover, numerical experiments show that it is not suitable
to change the length of the time step very rapidly, so that we include to the proposed adaptive strategy
some limitations. Finally, we define the n-step adaptive backward difference formula (ABDF) time step
algorithm.

n-step ABDF algorithm

1) let ω > 0, n > 0, k > 0 (k > n), yk−l, l = 1, . . . , n and τk > 0 be given,

2) compute yI
k and yII

k by the n-step BDF I (36) and the n-step BDF II (37) schemes, respectively,

3) compute eIn,k and eIIn,k by (45) and (46), respectively,

4) compute τ̄k by (53),

5) if τ̄k
τk

≥ c1
then

i) put τk+1 := min(τ̄k, c2τk),

ii) set yk using (48),

iii) put k := k + 1

iv) go to step 2)

else

i) put τk := τ̄k,

ii) go to step 2).

The constants c1 and c2 were derived empirically and they should improve a behaviour of the computational
process. We use the values c1 = (1.05)1/(n+1) (≈ 1.016 for n = 2 and ≈ 1.012 for n = 3) and c2 = 1.5.

5 EXTENSION TO THE EULER EQUATIONS

We proceed to the time discretization of the semi-discrete problem (28), a) – c). Since the form b̃h(·, ·) is
nonlinear with respect to its first argument, a direct application of the BDF schemes from the previous
section leads to a system of nonlinear algebraic equations at each time step. In order to avoid troubles
arising from the nonlinearity, we follow the approach presented in [11] where a semi-implicit discretization
of (28), a) – c) was presented. In Section 5.1, we recall the main ideas of the semi-implicit discretization
from [11] and in Section 5.2 we apply the time step adaptation technique form the previous Section to the
Euler equations. Finally, in Section 5.3, we mention some implementation aspects.
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5.1 Linearization

Similarly as in [11], we define a linearization of b̃h(·, ·). By (23), for wh,ϕh ∈ Sh we have

b̃h(wh,ϕh) = −
∑

Ki∈Th

∫

Ki

2∑

s=1

fs(wh(x)) ·
∂ϕh(x)

∂xs
dx

︸ ︷︷ ︸

=:σ̃1

(54)

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wh|Γij ,wh|Γji ,nij) ·ϕhdS

︸ ︷︷ ︸

=:σ̃2

.

The individual terms σ̃1 and σ̃2 will be linearized separately. For σ̃1, we employ the property (12) of the
Euler fluxes and define the approximation

σ̃1 ≈ σ1(w̄h,wh,ϕh) ≡
∑

Ki∈Th

∫

Ki

2∑

s=1

As(w̄h(x))wh(x) ·
∂ϕh(x)

∂xs
dx. (55)

The linearization of the term σ̃2 can be carried out in a simple way, whenH in (54) is chosen, for example,
as the Vijayasundaram numerical flux, see [23] or [14], Section 3.3.4. The matrix P (w,n) defined by (8)
is diagonalizable: there exist matrices D and T such that

P (w,n) = TDT−1, D = diag (λ1, . . . , λ4), (56)

where λ1, . . . , λ4 are the eigenvalues of P . We define the “positive” and “negative” part of P by

P
±(w,n) = TD±

T
−1, D± = diag (λ±

1 , . . . , λ
±

4 ). (57)

Then the Vijayasundaram numerical flux reads

HV S(w1,w2,n) = P
+
(w1 +w2

2
,n
)

w1 + P
−
(w1 +w2

2
,n
)

w2 (58)

so that we can write

σ̃2 =
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

[
P

+ (〈wh〉ij ,nij)wh|Γij (59)

+ P
− (〈wh〉ij ,nij)wh|Γji

]
·ϕhdS,

where

〈wh〉ij ≡
1

2

(
wh|Γij +wh|Γji

)
. (60)

For j ∈ γW (i), in virtue of (20), we use the approximation

H(wh|Γij ,wh|Γji ,nij) ·ϕhdS≈

∫

Γij

FW (wh,nij) ·ϕ dS, j ∈ γW (i), (61)

where FW is given by (21). The vector FW is a nonlinear function of w and its linearization is given with
the aid of the Taylor expansion in the state vector w̄h as

FW (wh,n) ≈ F̃W (w̄h,wh,n) ≡ FW (w̄h,n) +DFW (w̄h,n) (wh − w̄h)

= DFW (w̄h,n)wh, (62)

where

DFW (w,n) ≡ (γ − 1)







0 0 0 0
(v21 + v22)n1/2 −v1n1 −v2n1 n1

(v21 + v22)n2/2 −v1n2 −v2n2 n2

0 0 0 0







(63)

is obtained by the differentiation of function FW given by (21) with respect to w = (w1, . . . , w4). Here
n = (n1, n2), vj = wj+1/w1, j = 1, 2.
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Finally, the form (58) and relations (61) – (62) offer the linearized approximation

σ2(w̄h,wh,ϕh) (64)

≡
∑

Ki∈Th

∑

j∈γW (i)

∫

Γij

F̃W (w̄h,wh,nij) ·ϕ dS,

+
∑

Ki∈Th

∑

j∈γIO(i)

∫

Γij

[
P

+ (〈w̄h〉ij ,nij) w̄h|Γij + P− (〈w̄h〉ij ,nij) w̄h|Γji

]
·ϕhdS

+
∑

Ki∈Th

∑

j∈s(i)

∫

Γij

[
P

+ (〈w̄h〉ij ,nij)wh|Γij + P− (〈w̄h〉ij ,nij)wh|Γji

]
·ϕhdS,

Finally, we define the form

bh(w̄h,wh,ϕh) ≡ −σ1(w̄h,wh,ϕh) + σ2(w̄h,wh,ϕh), (65)

where σ1 and σ2 are given by (55) and (64), respectively. The form bh is linear with respect to the second
and third variable and from (12), (55), (59), (61) and (62) it follows that the form bh(·, ·, ·) is consistent
with b̃h(·, ·) in the following way

bh(wh,wh,ϕh) = b̃h(wh,ϕh) ∀wh,ϕh ∈ Sh. (66)

In a natural way, we define the linearized analogues of forms (26) and (27) by

dh(w̄h,wh,ϕh) ≡
∑

i∈I

hKigKi(w̄h)

∫

Ki

∇wh · ∇ϕh dx (67)

and

Jh(w̄h,wh,ϕh) ≡
∑

i∈I

∑

j∈s(i)

gΓij (w̄h)

|Γij |

∫

Γij

[wh] · [ϕh] dS,

respectively. Obviously, forms dh(·, ·, ·) and Jh(·, ·, ·) are consistent with forms d̃h(·, ·) and J̃h(·, ·) by
similar relations as (66), respectively. Finally, for a shorter notation we put

ch(w̄h,wh,ϕh) ≡ bh(w̄h,wh,ϕh) + dh(w̄h,wh,ϕh) + Jh(w̄h,wh,ϕh), w̄h,wh,ϕh ∈ Sh. (68)

5.2 Full space-time discretization

The main idea of the semi-implicit discretization is to threat the linear part of ch (represented by its second
argument) implicitly and the nonlinear part of ch (represented by its first argument) explicitly. Then for
the linear part of ch(·, ·, ·) we employ the n-step BDF introduced in Section 4 and for the nonlinear part of
ch(·, ·, ·) we employ a suitable explicit higher order extrapolation which preserve a given order of accuracy
and does not destroy the linearity of the algebraic problem at each time level.

Let n ≥ 2, 0 = t0 < t1 < t2 < . . . tr = T be a partition of the time interval (0, T ) and wk
h ∈ Sh

denotes a piecewise polynomial approximation of wh(tk), k = 0, 1, . . . , r. In order to employ an explicit
extrapolation in the first argument of ch at the time level tk, k ≥ n, we define the Lagrangian interpolation
polynomial w̃ : (0, T ) → Sh through the pairs (tk−l,w

k−l
h ) ∈ (IR,Sh), l = 1, . . . , n by

w̃(t) ≡
n∑

l=1

w
k−l
h ℓ̃n,k−l(t), (69)

where

ℓ̃n,k−l(t) ≡
n∏

j=1
j 6=l

(t− tk−j)






n∏

j=1
j 6=l

(tk−l − tk−j)






−1

. (70)

Obviously, w̃(tk−l) = w
k−l
h , l = 1, . . . , n. Now, for the first argument of the form ch we use the evaluation

of the Lagrangian polynomial w̃(t) at t := tk given by

w̃(tk) =
n∑

l=1

βn,lw
k−l
h , (71)
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n = 2 n = 3

βn,1 1 + θk (1 + θk)
θkθk−1+θk−1+1

θk−1+1

βn,2 −θk −θk(θkθk−1 + θk−1 + 1)

βn,3 — θkθk−1
θkθk−1+θk−1

θk−1+1

Tab. 3: Values of coefficients βn,l, l = 1, . . . , n for n = 2, 3

where
βn,l ≡ ℓ̃n,k−l(tk), l = 1, . . . , n. (72)

The relations for βn,l, l = 1, . . . , n, n = 2, 3 are given in Table 3.
Finally, we arrive at the definition of two semi-implicit n-step BDF-DGFE schemes. We start from

the semi-discrete DGFE problem (28), a) – c), where the time derivative term is approximated either
by the n-step BDF I or by the n-step BDF II formulas, the form c̃h(·, ·) is replaced by the form ch(·, ·, ·)
whose second argument is considered on the new time level and for the first one, the higher order explicit
extrapolation of type (71) is employed.

Definition 2. Let n ≥ 2, we define the approximate solution of problem (1) – (6) by the n-step BDF I-
DGFE scheme as functions wh,k, k = 1, . . . , r, satisfying the conditions

a) wh,k ∈ Sh, (73)

b)
1

τk

(
n∑

l=0

(

αI
n,lwh,k−l

)

, ϕh

)

+ ch

(
n∑

l=1

(βn,lwh,k−l) , wh,k, ϕh

)

= 0

∀ϕh ∈ Sh, k = n− 1, . . . , r − 1,

c) wh,0 ∈ Sh is an approximation of w0,

d) wh,l ∈ Sh, l = 1, . . . , n− 1 are given by a suitable one-step method,

where the coefficients αI
n,l, l = 0, . . . , n and βn,l, l = 1, . . . , n given by (36) and (72), respectively.

Definition 3. Let n ≥ 2, we define the approximate solution of problem (1) – (6) by the n-step BDF II-
DGFE scheme as functions wh,k, k = 1, . . . , r, satisfying the conditions

a) wh,k ∈ Sh, (74)

b)
1

τk

(
n∑

l=0

(

αII
n,lwh,k−l

)

, ϕh

)

+
1

2
ch

(
n∑

l=1

(βn,lwh,k−l) , wh,k, ϕh

)

= −
1

2
ch (wh,k−1, wh,k−1, ϕh)

∀ϕh ∈ Sh, k = n− 1, . . . , r − 1,

c) wh,0 ∈ Sh is an approximation of w0,

d) wh,l ∈ Sh, l = 1, . . . , n− 1 are given by a suitable one-step method,

where the coefficients αII
n,l, l = 0, . . . , n and βn,l, l = 1, . . . , n given by (37) and (72), respectively.

The problems (73), a) – d) and (74), a) – d) represent systems of linear algebraic equations for each
k = n− 1, . . . , r − 1 which should be solved by a suitable solver, see Section 5.3.

Following the approach from Section 4.2, we introduce the adaptive BDF - DGFE algorithm for the
system of the Euler equations. Based on (45) – (46), we define estimations of the local discretization errors
of the n-step BDF I-DGFE and the n-step BDF II-DGFE schemes by

eIn,k ≈ δIn,k ‖w
II
h,k −wI

h,k‖L2(Ω), (75)

eIIn,k ≈ δIIn,k ‖w
II
h,k −wI

h,k‖L2(Ω), (76)
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respectively, where δIn,k and δIIn,k are given by (47) and wI
h,k and wII

h,k are given by (73) and (74), respec-
tively. Moreover, based on (53) we define the optimal value of the length of the time step by

τ̄k ≡ τk n+1

√
ω

max(eIn,k, e
II
n,k)

, (77)

where ω > 0 is a given tolerance and eIn,k and eIIn,k are given by (75) and (76), respectively. For the final
approximation of wh,k ≈ wh(tk) it is possible to use a relation similar to (48), but a number of numerical
experiments shows that this choice leads to unsatisfactory results. Therefore, we simply put wh,k := wI

h,k.
Finally, we define the n-step ABDF-DGFE algorithm for the system of the Euler equations in the

same way as the n-step ABDF algorithm for ODE introduced at the end of Section 4.2 with the following
modifications

1. we replace yI
k and yII

k by wI
h,k and wII

h,k given by the n-step BDF I (73) and the n-step BDF II (74)
schemes, respectively,

2. the estimates of the local discretization errors eIn,k and eIIn,k are computed by (75) and (76), respec-
tively,

3. if the time step is successful we put wh,k := wI
h,k in the step 5) ii).

Remark 1. Based on numerical experiments carried out for a scalar nonlinear convection-diffusion equa-
tion in [8] we suppose that the orders of convergence of schemes (73), a) – d) and (74), a) – d) are

O(hp + τn) (78)

(in L∞((0, T );H1(Ω))), where p is the degree of polynomial approximation with respect to space and n is
the degree of the multi-step BDF.

5.3 Several implementation remarks

Within this section we mention some aspects of the implementation of the n-step ABDF-DGFE method
to the Euler equations.

Linear algebraic system solver As we mentioned in the previous Section, problems (73), a)–d) and (74),
a)–d) represent systems of linear algebraic equations. Let {ψl}

dof
l=0 represent a basis of the space of vector-

valued discontinuous piecewise polynomial functions Sh defined by (16), where dof(= 2 (p+1)(p+2)#Th)
denotes the dimension of Sh. Then a function wh,k ∈ Sh can be written in the form

wh,k(x) =

dof∑

l=1

ξk,lψl(x), x ∈ Ω, k = 0, 1, . . . , r, (79)

where ξk,l ∈ IR, l = 1, . . . , dof, k = 0, . . . , r. Moreover, for wh,k ∈ Sh we define a vector of its basis
coefficients by

W k ≡ (ξk,1, ξk,2, . . . , ξk,dof) ∈ IRdof , k = 0, 1, . . . , r. (80)

Then the linear algebraic problems (73) and (74) can be written in the matrix form

(

αI
n,0M + τkCk

)

W k = qIk, k = n, . . . , r, (81)

and (

αII
n,0M +

τk
2
Ck

)

W k = qIIk , k = n, . . . , r, (82)

respectively, where matrix M is the mass matrix given by

M = {M ij}
dof
i,j=1, M ij ≡

∫

Ω

ψi ·ψj dx, i, j = 1, . . . , dof, (83)

Ck is a the matrix corresponding to form c(·, ·, ·) defined by

Ck = {Ck,ij}
dof
i,j=1, Ck,ij ≡ ch

(
n∑

l=1

βn,lwh,k−l, ψi, ψj

)

, i, j = 1, . . . , dof, (84)
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and qIk, q
II
k ∈ IRdof represent the right-hand-sides of (73) and (74) given by

q
I
k = {qIk}

dof
i=1, {qIk}i ≡ −

(
n∑

l=1

αI
n,lwh,k−l, ψi

)

, (85)

q
II
k = {qIIk }

dof
i=1, {qIIk }i ≡ −

(
n∑

l=1

αII
n,lwh,k−l, ψi

)

−
τk
2
ch (wh,k−1, wh,k−1, ψi) .

The linear algebraic problems (81) and (82) should be numerically solved at each time level tk, k =
n, . . . , r. It is possible to use a direct solver which is more efficient for not too large dof (usually dof ≈ 104−
105). For larger systems it is suitable to use some iterative solvers, e.g., GMRES with a preconditioning.
Numerical experiments show that the use of two n-step BDF-DGFE schemes at each time step does not
cause any essential increase of the CPU-time in comparison with the use of only one scheme. It is caused
by the fact that the elements of matrix Ck should be evaluated only once for each k and the CPU-time
for the setting of matrices on the left-hand-sides of (81) – (82) is almost negligible when compared to the
evaluation of the elements of Ck. Moreover, the approximate solution of (81)W I

k can be used as an initial
approximation of the solution W II

k of the second problem (82) in an iterative process. Since the vectors
W I

k and W II
k are close to each other (both represents approximation of w(tk)), the iterative process for

the second problem is very fast in comparison with the solution of the first problem.

Start of the computational process We should still precise the computation of the first n− 1 functions
wh,k, k = 1, . . . , n− 1 followed from (73), d) and (74), d). We use the one-step backward Euler formula
for the computation of wh,1 and then the m-step ABDF-DGFE scheme for wh,m, m = 2, . . . , n− 1. This
strategy causes some loss of the accuracy in the first n − 1 steps of course, it would be useful to apply
some one-step higher order formula (e.g. the Runge-Kutta scheme) but we do not implement it yet. We
suppose that the loss of the accuracy is not significant in industrial applications.

Concerning the choice of the length of the first step τ1 we use the stability condition (29) derived
for an explicit finite volume scheme (see [14]) with CFL = 1. Furthermore, we put τ2 := τ1 and the
ABDF-DGFE strategy is applied from the second time step.

6 NUMERICAL EXAMPLES

In this section we present several numerical examples which demonstrate the efficiency of the proposed
time step adaptation technique. By the efficiency we mean the number of time steps necessary to achieve
the final time t = T . Of course, from the practical point of view a measure of the efficiency is the
computational (CPU) time, but there are other computational aspects. E.g., a CPU-time of a solution of
the linear algebraic problems (73), b) and (74), b) by a direct solver is almost independent of the length
of the time step whereas a CPU-time of a solution of the linear problem by an iterative solver strongly
increases with the length of the time step. It is caused by the fact that for a small time step τk, k > 0 the
numerical solutions at the time levels tk−1 and tk are close to each other and when wh,k−1 is used as the
initial approximation for computing wh,k only a few iterations of the iterative solver should be evaluated.
However, the use of a suitable preconditioning decreases very much the CPU-time. A development of an
efficient scheme for the solution of the linear problem is not a subject of this paper. So that we consider
the efficiency of the schemes in the terms of the number of time steps.

We start with a model scalar ODE and demonstrate the efficiency of the n-step ABDF (n = 2, 3)
algorithm in comparison with the BDF scheme with a fixed length of the time step. Further, we deal with
a simulation of steady inviscid compressible flow. We compare the efficiency of the n-step ABDF-BDF
scheme with a computation with an almost fixed time step and a scheme with an empirically increasing
length of the time step from [11] for achieving the steady state solution. Finally, two examples of unsteady
compressible flow are presented. The first one exhibits a low Mach number flow through the GAMM
channel with a periodical generation of pressure pulses at the outflow part of the channel. The second
represents a supersonic flow through the forward facing step.

6.1 Scalar ordinary differential equation

Let us consider the following model ordinary differential equation

y
′

=
αeαt

eα − 1
(86)
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prescribed tolerance for global error 10−2 10−3 10−4 10−5 10−6

n-step BDF n = 2 642 1425 3197 6972 15110
τk =const. n = 3 410 855 1586 2879 5222

n-step ABDF n = 2 26 36 65 145 266
n = 3 24 29 43 70 108

Tab. 4: Number of time steps necessary to achieve the prescribed tolerance for the global error
from 10−2 till 10−6 at t = 1 for (86) for fixed and adaptively chosen time steps

 1e-05

 1e-04
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 0.1

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Fig. 1: The length of the time step in the logarithmic scale for the 3-step ABDF scheme for
t ∈ (0, 1) and the prescribed global error 10−6

for y : (0, 1) → IR with the initial condition y(0) = 0 and the parameter α = 500. The analytical solution
of (86) has the form

y =
eαt − 1

eα − 1
. (87)

Since the exact solution is known we can compute the global computational error (gk ≡ y(tk)−yk) exactly.
We carried out several computations with the aid of the n-step ABDF scheme (n = 2, 3) defined at the
end of Section 4.2 and with the n-step BDF scheme with a fixed time step. We chose the tolerance ω for
the first scheme and the length of the time step for the second scheme in such a way that the (computable)
global errors at t = 1 are equal to 10−2, 10−3, 10−4, 10−5 and 10−6 (we admit a relative difference of
1%). Table 4 contains the number of the time steps necessary to achieve the prescribed errors at t = 1.
We observe that the number of time steps is significantly smaller for the adaptive scheme. It is caused
by the fact that the exact solution of (86) exponentially grows up and then it is possible to start with a
large length of the time step and then to reduce it for increasing t. This effect is documented in Figure 1,
where the length of the time step for the 3-step ABDF scheme for t ∈ (0, 1) is shown.

6.2 Steady state transonic flow

We solve the steady state inviscid compressible flow through the well-known benchmark GAMM channel,
see Figure 2, left, where the computational domain with a triangular grid having 1417 elements is shown.
This grid was obtained by an anisotropic mesh adaptation strategy from [5], [6]. We carried out several
computations with the inlet Mach number Min = 0.67 which produces a transonic flow with a strong
discontinuity (shock wave), see Figure 2, right. The piecewise linear approximation was employed for all
results presented in Section 6.2.

We seek the steady state solution by the time stabilization approach where the computational process
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Fig. 2: GAMM channel, used adapted triangulation (left) and steady-state solution – isolines of
Mach number (right)

is carried out for “t → ∞”. As a stopping criterion we employ the condition

res(k) ≡
1

τk

‖ρh,k − ρh,k−1‖L2(Ω)

‖ρh,k‖L2(Ω)

≤ ε, (88)

where ρh,k denotes a discontinuous piecewise polynomial approximation of the density (first component
of wh,k) at the time level tk, τk is the length of the time step and ε > 0 is a prescribed tolerance. In the
computations presented within this section we put ε = 10−5.

We carried out three types of the choice of the length of the time step

A1 2-step ABDF-DGFE scheme presented in Section 5.2,

A2 2-step BDF-DGFE scheme, where the length of the time step is given by the stability condition (29)
with fixed CFL number,

A3 2-step BDF-DGFE scheme with an increasing CFL number, where the time step is given by (29),
where the value CFL is increased according to the formula

CFL := CFL(tk) ≡ CFLmax − (CFLmax − 1)exp(−η tk), (89)

where CFLmax is the upper limit of the CFL number, tk is the actual time and η > 0 is a constant,
we put η = 0.1, see [11].

There is of course a question how to choose the tolerance ω for approach A1, the CFL number for
approach A2 and the value CFLmax for approach A3. Although the n-step BDF schemes are sufficiently
stable for n = 2, 3, numerical experiments show that too long time step can cause a failure of the compu-
tational process due to (usually) unphysical initial conditions. Therefore, we carried out a lot of numerical
experiments and found the values of parameters which allow the largest admissible lengths of the time
steps for A1 – A3. Table 5 shows the number of time steps necessary to achieve the steady state solution
for the approaches A1 – A3 with the values of parameters used in the computations. Figure 3, left shows
the history of the convergence to the steady-state solution for A1 – A3, i.e. the dependence of the residuum
res(k) given by (88) on k. Moreover, Figure 3, right shows the corresponding dependence of the lengths
of the time steps on t. We observe that the time step is almost constant for approach A2, it grows for A3
whereas it changes adaptively for A1.

Since we seek the steady state solution it is possible to use the one step BDF (implicit Euler scheme) of
course. Although the one step method is much simple for implementation it does not exhibit any essential
save of the computational time. It is caused by the fact that more than 99 % of the computational time is
needed for the setting of matrix Ck given by (84) and for the solution of the algebraic linear problems (81)
– (82). These computational operations do not depend of the degree of the employed multistep formula.

6.3 Unsteady low Mach number flow

The third example exhibits unsteady low Mach number flow through the GAMM channel. The initial
condition is the steady state solution for the inflow Mach number M = 10−3. Figure 4, left shows the
relatively coarse triangular grid used, having 1012 elements and Figure 4, right shows the isolines of
pressure of the steady state solution, which was obtained by the piecewise cubic approximation with
respect to the space. We use the non-reflecting boundary conditions (19) with

wBC = (1, 1, 0, 1 785 714.786), (90)
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case method parameters #iterations
A1 2-step ABDF-DGFE η = 0.02 1672

A2 2-step BDF-DGFE, CFL fixed CFL = 20 2723

A3 2-step BDF-DGFE, CFL variable CFLmax = 50 2277

Tab. 5: Comparison of the number of used time step for the computations A1 – A3 necessary in
order to achieve the steady state solution
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Fig. 3: GAMM channel, steady-state solution, the dependence of res(k) on k (left) and the depen-
dence of the size of the time step on t (right) for approaches A1 – A3

which (using (4)) gives the inflow/output pressure p0 = 714 285.7143.
At t = 0 we start to periodically modify the pressure at outflow of the channel according to the formula

p(t) = p0(1 + p̄(t)), p̄(t) = pM

3∑

n=0

exp{χ(t− (t0 + n tper))
6}, (91)

which produce rapid small oscillations of the pressure, see Figure 5. We set the values of parameters
pM = 4 · 10−6, χ = −1015, t0 = 0.025 and tper = 0.05. The calculation was carried out for t ∈ (0, 0.2) with
the aid of the 2-step ABDF- DGFE scheme with piecewise cubic approximation with respect to the space.

Figure 6 shows the isolines of pressure at several time instants. We observe a periodical propagation
of pressure waves from the right to the left of the channel and also any reflection of these waves from the
inflow which verifies the correctness of the presented boundary conditions.

It is also interesting to observe the size of time steps adaptively chosen by ABDF-DGFE method in a
possible comparison by a fictitious explicit time discretization. So that we define the so-called cfl-value by

cflk ≡ τkΛ(w
k
h), k = 1, . . . , r, (92)

where Λ(·) is given by (29). It is a very well-known fact that, e.g., explicit first order time discretization of
the finite volume space discretization (which is DGFE scheme with piecewise constant approximation) is
stable if cflk < 1, k = 1, . . . , r. For the higher degree of polynomial approximation with respect to space
and explicit first order discretization with respect to time, we obtain still stronger restriction cflk ≤ 0.2,
see [7, relation (70)].

Figure 7 shows the dependence of the cflk quantity on tk, k = 0, . . . , r. We observe that after several
time steps at the beginning of the computation, we obtain (for t approximately greater than 0.01) a
periodically repeating (with the period T̄ = 0.05) cfl-value. This value is (approximately) within the
interval (20, 45) when the pressure impulse from the outflow is propagated through the channel, whereas
the cfl-value is up to 70 for time periods when the pressure impulses are out of the computational domain.

6.4 Forward facing step

The last example is the supersonic flow through the forward facing step, which represents a benchmark
of the unsteady transonic inviscid compressible flow proposed by [25]. We employ the standard initial
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Fig. 4: GAMM channel, triangulation (left) and steady-state solution – isolines of pressure (right)
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Fig. 5: Prescribed oscillation of pressure at outflow, function p̄(t) given by (91)

condition w0 = (1.4, 3., 0., 1) which is also used as the boundary condition at the inflow/outflow parts of
the step. We carried out the computation for the time interval (0, 3) and employed an unstructured trian-
gular grid having 13 371 elements. Figure 8 shows the isolines of density at t = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
obtained by the piecewise linear approximation. We observe the typical propagation of shock waves with
multiple reflections. A good agreement with the reference solution from [25], pages 130-131, was achieved.
In order to increase the sharpness of discontinuities, a suitable mesh adaptation strategy should be em-
ployed, which is a subject of further research. Figure 9 shows the dependence of the value cflk at time
instants tk, k = 0, . . . , r. The gain of the implicit time discretization is not high in comparison with the
low Mach number example, since cflk is less than 10. So that the use of an explicit scheme should give
the same results within a short computational time.

7 CONCLUSION

We carried out a discretization of the system of the Euler equations with the aid of the combination of
the DGFE method for the space semi-discretization and the backward difference formula for the time
discretization. We developed the adaptive strategy for the choice of the time step which we called the
n-step ABDF-DGFE method (n ≥ 2). It represents a higher order scheme with respect to the time and
space coordinates. Several numerical examples verifying the efficiency of the algorithm were presented.
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