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1 Introduction

Our goal is to develop a sufficiently accurate, efficient and robust numerical
method for the solution of an inviscid compressible flow, which is described
by the system of the Euler equations. These nonlinear conservation laws have
solutions with discontinuities and their approximations by conforming finite
elements (FE) suffer from the Gibbs phenomenon. From this point of view,
it seems that for conservation laws with discontinuous solutions, the finite
volume (FV) method ([31], [19]) using piecewise constant approximations is
more suitable, because the FV approximations are discontinuous on interele-
ment interfaces, which allows better resolution of shock waves and contact
discontinuities. On the other hand, the increase of accuracy in finite volume
schemes applied on unstructured and/or anisotropic meshes seems to be prob-
lematic.

A combination of ideas and techniques of the FV and FE methods yields the
discontinuous Galerkin finite element method (DGFEM) using advantages of
both approaches and allowing to obtain schemes with a higher order accuracy
in a natural way. DGFEM is based on the approximation of the solution of an
initial-boundary value problem by piecewise polynomial functions over a finite
element mesh without any requirement on interelement continuity. DGFEM
was applied to nonlinear conservation laws already in 1989 by Cockburn and
Shu ([10]). It was used for the numerical simulation of the compressible Euler
equations later by Bassi and Rebay in [2], where the space DG discretization is
combined with explicit Runge-Kutta time discretization. In [4] Baumann and
Oden describe an hp version of the space DG discretization with explicit time
stepping to compressible flow. Van der Vegt and van der Ven apply space-
time discontinuous Galerkin method to the solution of the Euler equations in
[39] and [40]. Here the discrete problem is solved with the aid of a multigrid
accelerated pseudo-time-integration. During several recent years the DGFE
schemes have been extensively developed and become more and more popular.
Some aspects of the DGFEM and applications to gas dynamics are discussed
in [1], [7], [14], [15], [16], [17], [18], [21]. For a survey see, e. g. [9] and [11].

In all cited works except [39] and [40] explicit Euler or Runge-Kutta time dis-
cretization is used. Explicit time stepping for the solution of the Euler equa-
tions is very popular particularly in the framework of the finite difference and
finite volume schemes. Its advantage is a simple algorithmization. However, it
requires to satisfy rather restrictive CFL-stability conditions, which is quite
inconvenient over nonuniform unstructured anisotropic meshes. Therefore, it
is suitable to consider implicit methods for the numerical solution of the Euler
equations as well. It is well known that the use of implicit methods contributes
to an improvement of the efficiency of numerical schemes for solving the Euler
equations in some cases, because implicit methods permit to use longer time
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steps.

In the framework of the finite volume methods implicit schemes were used,
for example in [37], [26] and [32]. The drawback of the implicit schemes is the
necessity to solve a large nonlinear algebraic system on each time level. To
this end, the Newton method is often applied leading to a sequence of linear
discrete problems. One variant of this approach is a well-known ∆-scheme by
Beam and Warming [5], [6]. (See also [29].) This approach is often combined
with multigrid techniques (see, e.g., [28], [30], [12]). The application of the
Newton-like schemes requires of course the differentiability of the numerical
flux and the computation of its partial derivatives, which is usually rather
complicated. This is the reason that some authors use artificial pseudo-time-
integration as was applied together with multigrid in [39] and [40] for the
DG discrete problem. The multigrid techniques require, of course, the use
of structured meshes and, in the case of the mesh refinement, a sequence of
nested meshes. This is not the case when the anisotropic mesh adaptation
(AMA) method is used. Then algebraic multigrid would have to be applied,
but its efficiency is not so high. Therefore, one often uses the Krylov subspace
methods for the solution of linear systems in linearized schemes for the Euler
equations (cf., e.g., [32]).

The goal of this paper is to develop a sufficiently accurate, efficient and robust
method for the numerical solution of the nonstationary Euler equations appli-
cable on unstructured meshes obtained with the aid of the AMA technique.
We propose semi-implicit DGFE schemes, based on the homogeneity of the
inviscid fluxes and properties of the Vijayasundaram numerical flux, leading
in a natural way to a linear system on each time level. This approach is com-
bined with a first- or second-order time stepping. The linear algebraic systems
are solved by the GMRES method. The described method is not based on the
Newton linearization, does not require to differentiate the numerical flux and
can be applied on arbitrary meshes. It is practically unconditionally stable.
This fact allows us to use the method also for the solution of the stationary
Euler equations via time stabilization for “t → ∞”, using very large time
steps.

The contents of the paper is the following. In Section 2, the initial-boundary
value problem for the Euler equations is formulated and some properties of
the Euler equations are mentioned. In Section 3, we carry out the discretiza-
tion of the problem with the aid of a semi-implicit DGFEM and a first- or
second-order time discretization. Section 4 contains a detailed description of
the implementation of the method. Numerical examples demonstrating the
accuracy and efficiency of the scheme are given in Section 5. The summary of
results and outlook are contained in Section 6.
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2 Governing equations

The system of the Euler equations describing 2D inviscid flow can be written
in the form

∂w

∂t
+

2∑

s=1

∂f s(w)

∂xs

= 0 in QT = Ω× (0, T ), (1)

where Ω ⊂ IR2 is a bounded domain occupied by gas, T > 0 is the length of
a time interval,

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, e)

T (2)

is the state vector and

f s(w)= (f 1
s (w), . . . , f

4
s (w)) (3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (e+ p) vs)
T, s = 1, 2,

are the inviscid (Euler) fluxes. We use the following notation: ρ – density, p –
pressure, e – total energy, v = (v1, v2) – velocity, δsk – Kronecker symbol (if
s = k, then δsk = 1, else δsk = 0). The equation of state implies that

p = (γ − 1) (e− ρ|v|2/2). (4)

Here γ > 1 is the Poisson adiabatic constant.

The system (1) – (4) is hyperbolic. It is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (5)

and the boundary conditions

B(w) = 0 on ∂Ω× (0, T ), (6)

chosen in such a way that problem (1) – (6) is linearly well–posed. (See,
e.g. [24], Section 3.3.6.) To this end, the boundary ∂Ω is formed by disjoint
parts ΓIO and ΓW representing the inflow/outflow and impermeable walls,
respectively. On ΓW we prescribe the impermeability condition

v · n = 0 on ΓW , (7)
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where n denotes the unit outer normal to ∂Ω. In order to determine boundary
conditions on ΓIO, we define the matrix

P (w,n) :=
2∑

s=1

As(w)ns, (8)

where n = (n1, n2) ∈ IR2, n2
1 + n2

2 = 1 and

As(w) =
Df s(w)

Dw
, s = 1, 2, (9)

are the Jacobi matrices of the mappings f s. Then we prescribe mn quanti-
ties characterizing the state vector w, where mn is the number of negative
eigenvalues of the matrix P (w,n) and extrapolate mp quantities of w from
interior of Ω, where mp = 4−mn is the number of nonnegative eigenvalues of
P (w,n). For details, see, e.g., [20] or [24].

Using relations (2) – (4), we express the fluxes f s, s = 1, 2, in terms of the
variables w1, . . . , w4 in the form

f s(w) =

















ws+1

ws+1w2

w1
+ δs1(γ − 1)

(

w4 − w2
2
+w2

3

2w1

)

ws+1w3

w1
+ δs2(γ − 1)

(

w4 − w2
2
+w2

3

2w1

)

ws+1

w1

(

γw4 − (γ − 1)
w2

2
+w2

3

2w1

)

















, s = 1, 2. (10)

Obviously, f s, s = 1, 2, are homogeneous mappings of order one, i.e.,

f s(αw) = αf s(w), α ∈ IR, α 6= 0, i = 1, 2. (11)

Then it is easy to show (see [20], page 432) that

f s(w) = As(w)w, s = 1, 2. (12)
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3 Discretization

3.1 Broken Sobolev space

In what follows we use the standard notation for function spaces: Hk(Ω) is
the Sobolev space and C1(0, T ;X) is the space of continuously differentiable
mappings on [0, T ] with values in X.

Let Ωh be a polygonal approximation of Ω. In order to derive the discrete
problem, we consider a mesh Th of Ωh consisting of various types of convex
elements Ki ∈ Th, i ∈ I (I ⊂ Z+ = {0, 1, 2, . . .} is a suitable index set), e. g.,
triangles, quadrilaterals or in general convex polygons.

By Γij we denote a common edge between two neighbouring elements Ki and
Kj. The symbol nij = ((nij)1, (nij)2) denotes the unit outer normal to ∂Ki

on the side Γij. Moreover, we set s(i) = {j ∈ I;Kj is a neighbour of Ki}. The
boundary ∂Ωh is formed by a finite number of faces of elements Ki adjacent
to ∂Ωh. We denote all these boundary faces by Sj, where j ∈ Ib ⊂ Z− =
{−1,−2, . . .}. Now we set γ(i) = {j ∈ Ib;Sj is a face of Ki ∈ Th} and Γij =
Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib. For Ki not containing any
boundary face Sj we set γ(i) = ∅. Obviously, s(i)∩γ(i) = ∅ for all i ∈ I. Now,
if we write S(i) = s(i) ∪ γ(i), we have

∂Ki =
⋃

j∈S(i)

Γij, ∂Ki ∩ ∂Ωh =
⋃

j∈γ(i)

Γij. (13)

Moreover, we define the subsets γIO(i) and γW (i) of γ(i) such that faces
Γij, j ∈ γIO(i), approximate ΓIO and Γij, j ∈ γW (i), approximate ΓW .

We define the so-called broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}. (14)

If v ∈ Hk(Ω, Th), then

v|Γij
6= v|Γji

, (15)

in general, where v|Γij
and v|Γji

denote the values of v on Γij considered from
the interior and the exterior of Ki, respectively.

In order to derive the discrete problem, we multiply (1) by a test function
ϕ ∈ [H1(Ω, Th)]

4
, integrate over any element Ki, i ∈ I, apply Green’s theorem

and sum over all i ∈ I. In this way we obtain the integral identity
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∂

∂t

∑

Ki∈Th

∫

Ki

w ·ϕ dx=
∑

Ki∈Th

∫

Ki

2∑

s=1

f s(w) · ∂ϕ
∂xs

dx− (16)

−
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

2∑

s=1

f s(w) ·ϕ (nij)s dS,

which represents a weak form of the Euler equations in the sense of the broken
Sobolev space H1(Ω, Th).

3.2 Numerical solution

Now we shall introduce the discrete problem approximating identity (16) with
the aid of the discontinuous Galerkin finite element method.

To evaluate the boundary integrals in (16) we use the approximation

∫

Γij

2∑

s=1

f s(w(t)) (nij)s ·ϕ dS ≈
∫

Γij

H(w(t)|Γij
,w(t)|Γji

,nij) ·ϕ dS, (17)

where H is a numerical flux, w(t)|Γij
and w(t)|Γji

are the values of w on Γij

considered from the interior and the exterior of Ki, respectively, and at time
t. It is necessary to specify the meaning of w(t)|Γji

for j ∈ γ(i). Taking into
account the boundary conditions on ΓIO described above and following [20],
Section 7.3.43 or [24], Section 3.6.6, we prescribe mn components of w on Γij

and extrapolate mp components from the interior of Ki to Γij. Thus, we define
w|Γji

= (w1, w2, w3, w4)|Γji
by

wl|Γji
=







gl if the l-th component of w is prescribed

wl|Γij
if the l-th component of w is extrapolated

, (18)

l = 1, . . . , 4, j ∈ γIO(i),

where g = (g1, g2, g3, g4) is a given state vector. For details, see, e.g. [20] or
[24].

If j ∈ γW (i), then we use the impermeability condition (7) and replace (17)
by the approximation

∫

Γij

H(w(t)|Γij
,w(t)|Γji

,nij) ·ϕ dS :=
∫

Γij

FW (w(t),nij) ·ϕ dS, (19)

j ∈ γW (i),
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where

FW (w,n) ≡ (0, pn1, pn2, 0)
T . (20)

The pressure p is expressed in the form

p = (γ − 1) (w4 − (w2
2 + w2

3)/(2w1), (21)

following from (4) and (2) and extrapolated on Γij from Ki and n = (n1, n2) =
nij.

Let us note that the choice of a suitable numerical flux plays an important
role, particularly in finite volume schemes. We can mention, e.g. the well-
known Steger-Warming, Van Leer, Roe and Vijayasundaram numerical fluxes
or the numerical fluxes based on the direct Riemann solver of the Euler equa-
tions. (For more details and references, see [24] or [38]). As for efficiency and
robustness, we can recommend the Osher-Solomon numerical flux (see [33],
[36], [25] or [24], Section 3.4), which we applied with a great success, e.g. in
[22], [23].

An approximate solution is sought at each time instant t as an element of the
space of discontinuous piecewise polynomial functions

Sh ≡ Sp,−1(Ωh, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (22)

where p ≥ 0 is an integer and Pp(K) denotes the space of all polynomials on
K of degree ≤ p. For wh,ϕh ∈ [Sh]

4 we introduce the forms

(wh,ϕh)h =
∫

Ωh

wh(x) ·ϕh(x) dx,

b̃h(wh,ϕh)=−
∑

K∈Th

∫

K

2∑

s=1

f s(wh(x)) ·
∂ϕh(x)

∂xs

dx (23)

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(w(t)|Γij
,w(x)|Γji

,nij) ·ϕhdS.

We say that wh is the approximate solution of (1), if it satisfies the conditions

a) wh ∈ C1([0, T ], [Sh]
4),

b)
d

dt
(wh(t),ϕh)h + b̃h(wh(t),ϕh) = 0 ∀ϕh ∈ [Sh]

4 ∀ t ∈ (0, T ), (24)

c) wh(0) = Πhw
0,
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where Πhw
0 is the L2-projection of w0 from the initial condition (5) on the

space [Sh]
4. If we set p = 0, then we obviously obtain the finite volume method.

Relations (24), b) represent a system of ordinary differential equations which
can be solved by a suitable numerical method. Usually, Runge-Kutta schemes
are applied. Then we get conditionally stable methods applicable under a
severe restriction of the length of the time step due to the CFL-stability con-
dition. Since we are interested in numerical schemes not suffering from this
drawback, we shall start from the time discretization by the implicit backward
Euler method. To this end, we consider a partition 0 = t0 < t1 < t2 . . . of the
time interval (0, T ) and set τk = tk+1 − tk. We use the notation wk

h for the
approximation of wh(tk). Then the discrete problem reads: for each k ≥ 0 find
wk+1

h such that

a) wk+1
h ∈ [Sh]

4 ,

b)

(

wk+1
h −wk

h

τk
,ϕh

)

h

+ b̃h(w
k+1
h ,ϕh) = 0 ∀ϕh ∈ [Sh]

4, (25)

k = 0, 1, . . . ,

c) w0
h = Πhw

0.

Scheme (25) leads to a system of highly nonlinear algebraic equations whose
numerical solution is rather complicated. In order to simplify the problem, in
the following we shall linearize relation (24), b) and obtain a linear system.

3.3 Linearization

By (23), for wk+1
h ,ϕh ∈ [Sh]

4 we have

b̃h(w
k+1
h ,ϕh)=−

∑

K∈Th

∫

K

2∑

s=1

f s(w
k+1
h (x)) · ∂ϕh(x)

∂xs

dx

︸ ︷︷ ︸

=:σ̃1

(26)

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wk+1
h |Γij

,wk+1
h |Γji

,nij) ·ϕhdS

︸ ︷︷ ︸

=:σ̃2

.

The individual terms σ̃1 and σ̃2 will be linearized separately. For σ̃1, we use
the property (12) of the Euler fluxes and use the approximation

σ̃1 ≈ σ1 =
∑

K∈Th

∫

K

2∑

s=1

As(w
k
h(x))w

k+1
h (x) · ∂ϕh(x)

∂xs

dx. (27)
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The linearization of the term σ̃2 can be carried out in a simple way, when H

in (26) is chosen, for example, as the Vijayasundaram numerical flux, see [41],
[20], Section 7.3 or [24], Section 3.3.4. The matrix P (w,n) defined by (8) is
diagonalizable: there exist matrices D and T such that

P (w,n) = TDT−1, D = diag (λ1, . . . , λ4), (28)

where λ1, . . . , λ4 are the eigenvalues of P . We define the “positive” and “neg-
ative” part of P by

P±(w,n) = TD±T−1, D± = diag (λ±
1 , . . . , λ

±
4 ). (29)

Then the Vijayasundaram numerical flux reads

HV S(w1,w2,n) = P+
(
w1 +w2

2
,n
)

w1 + P−
(
w1 +w2

2
,n
)

w2. (30)

The form of HV S offers the linearized approximation

σ̃2 ≈
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

[

P+
(

〈wk
h〉ij,nij

)

wk+1
h |Γij

(31)

+ P−
(

〈wk
h〉ij,nij

)

wk+1
h |Γji

]

·ϕhdS,

where

〈wk
h〉ij ≡

1

2

(

wk
h|Γij

+wk
h|Γji

)

. (32)

It is necessary to specify the meaning of wk+1
h |Γji

for Γij ⊂ ∂Ωh. If j ∈ γIO(i),

then we replace wk+1
h |Γij

in (31) by the state wk
h|Γij

determined in (18). For
j ∈ γW (i), in virtue of (19), we use the approximation

H(wk+1
h |Γij

,wk+1
h |Γji

,nij) ·ϕhdS≈
∫

Γij

FW (wk+1
h ,nij) ·ϕ dS, (33)

j ∈ γW (i),

where FW is given by (20). The vector FW is a nonlinear function of w and
its linearization can be carried out in two ways.

a) Explicit way: we simply put

FW (wk+1
h ,n) ≈ F̃W (wk

h,w
k+1
h ) := FW (wk

h|Γij
,n). (34)
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This term appears on the right hand side of the resulting system of alge-
braic equations.

b) Implicit way: we use a linearization with the aid of the Taylor expansion
as

FW (wk+1
h ,n) ≈ F̃W (wk

h,w
k+1
h ) :=FW (wk

h,n) (35)

+ DFW (wk
h,n)

(

wk+1
h −wk

h

)

,

where

DFW (w,n) ≡ (γ − 1)













0 0 0 0

(v21 + v22)n1/2 −v1n1 −v2n1 n1

(v21 + v22)n2/2 −v1n2 −v2n2 n2

0 0 0 0













(36)

is obtained by the differentiation of function FW given by (20) with
respect to w = (w1, . . . , w4). Here n = (n1, n2), vj = wj+1/w1, j = 1, 2.

In the case a), F̃W is independent ofwk+1
h |Γij

, whereas in the case b) it depends

linearly on wk+1
h |Γij

. The approach a) is simpler for implementation, but the
possibility b) allows to use a significantly higher CFL-number in the stability
condition specified in (50). In both cases a) and b) we put

σ2 =
∑

Ki∈Th

∑

j∈s(i)

∫

Γij

[

P+
(

〈wk
h〉ij,nij

)

wk+1
h |Γij

(37)

+ P−
(

〈wk
h〉ij,nij

)

wk+1
h |Γji

]

·ϕhdS

+
∑

Ki∈Th

∑

j∈γIO(i)

∫

Γij

[

P+
(

〈wk
h〉ij,nij

)

wk
h|Γij

+ P−
(

〈wk
h〉ij,nij

)

wk
h|Γji

]

·ϕhdS

+
∑

Ki∈Th

∑

j∈γW (i)

∫

Γij

F̃W (wk
h,w

k+1
h ,nij) ·ϕ dS.

Finally, we define the form

bh(w
k
h,w

k+1
h ,ϕh) = −σ1 + σ2, (38)

where σ1 and σ2 are given by (27) and (37), respectively. The form bh is linear
with respect to the second and third variable. Using (25) and (38) we arrive
at the following semi-implicit linearized numerical scheme: for each k ≥ 0 find
wk+1

h such that
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a) wk+1
h ∈ [Sh]

4 , (39)

b)
(

wk+1
h ,ϕh

)

h
+ τkbh(w

k
h,w

k+1
h ,ϕh) =

(

wk
h,ϕh

)

h

∀ϕh ∈ [Sh]
4, k = 0, 1, . . . ,

c) w0
h = Πhw

0.

Scheme (39) is formally first-order accurate in time. In order to increase the
accuracy of the time discretization, the following two-step second-order version
of scheme (39) can be used: for each k ≥ 0 find wk+1

h such that

a) wk+1
h ∈ [Sh]

4 , (40)

b)
2τk + τk−1

τk(τk + τk−1)

(

wk+1
h ,ϕh

)

h
+ bh(w̃

k+1
h ,wk+1

h ,ϕh)

=
τk + τk−1

τkτk−1

(

wk
h,ϕh

)

h
− τk

τk(τk + τk−1)

(

wk−1
h ,ϕh

)

h

∀ϕh ∈ [Sh]
4, k = 0, 1, . . . ,

c) w0
h = Πhw

0, w−1
h = w0

h,

where

w̃k+1
h =

τk + τk−1

τk−1

wk
h −

τk
τk−1

wk−1
h . (41)

This scheme is obtained by using the approximation

∂w

∂t

∣
∣
∣
∣
∣
t=tk+1

≈ 2τk + τk−1

τk(τk + τk−1)
wk+1

h − τk + τk−1

τkτk−1

wk
h +

τk
τk(τk + τk−1)

wk−1
h (42)

and the approximation (41) in the nonlinear part of the form bh. The extension
of the algorithmization from scheme (39) to (40) does not represents any
difficulties and any significant increase of CPU time.

In case that the time step is constant, i.e. τk = τ for all k = 0, 1, . . ., formulae
(42) and (41) reduce to standard approximations

∂w

∂t

∣
∣
∣
∣
∣
t=tk+1

≈ 3wk+1
h − 4wk

h +wk−1
h

2τk
(43)

and

wk+1
h ≈ w̃k+1

h = 2wk
h −wk−1

h , (44)

respectively. Then (40), b) is simplified in an obvious way.
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As we see, the above schemes (39) and (40) are not of the ∆-scheme type.
In schemes combined with the realization (34) of the impermeable boundary
conditions one does not need to express any Jacobian matrix. In the case (35)
with a more accurate realization of the boundary conditions on an imperme-
able wall, it is necessary to evaluate the Jacobian matrix (36), which is quite
simple.

3.4 Matrix representation

Let
{

ϕimn ∈ [Sh]
4 ; n = 1, . . . , 4, m = 1, . . . , DOF (p), i ∈ I

}

(45)

be a basis of [Sh]
4. Here DOF (p) denotes the number of degrees of freedom

of functions φ ∈ Sh on one element K ∈ Th. For example, DOF (0) = 1
for a piecewise constant approximation (finite volume method), DOF (1) = 3
for a piecewise linear approximation, DOF (2) = 6 for a piecewise quadratic
approximation, etc. Then the dimension of the space [Sh]

4 is N = 4 ·DOF (p) ·
#Th, where #Th denotes the number of elements of Th. The state vector wk

h

can be written in the form

wk
h(x) =

∑

i∈I

DOF (p)
∑

m=1

4∑

n=1

αk
imnϕimn(x), x ∈ Ω, k = 0, 1, . . . , (46)

where αk
imn ∈ IR. Then the numerical schemes (39) and (40) have the following

matrix representations

M (αk)αk+1 = g(αk), (47)

and

M (αk−1,αk)αk+1 = g(αk−1,αk), (48)

respectively, where

αk = {αk
imn}n=1,...,4, m=1,...,DOF (p), i∈I ∈ IRN , (49)

g : IRN → IRN , g : IR2N → IRN and M (α), M (α,β) are N × N matrices
for α,β ∈ IRN . The solutions of (47) and (48) can be obtained by a suitable
solver for sparse nonsymmetric systems. (For the application of various linear
solvers to the solution of inviscid flow with the finite volume method, see [32].)
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In order to guarantee the stability of schemes (39) and (40), we use the fol-
lowing CFL condition

6τk max
Ki∈Th

1

|Ki|

(

max
j∈S(i)

|Γij|λmax
P (wk

h
|Γij

,nij)

)

≤ CFL, (50)

where |Ki| denotes the area of Ki, |Γij| the length of the edge Γij, CFL a
given constant and λmax

P (wk
h
|Γij

,nij)
is the maximal eigenvalue of the matrix

P (wk
h|Γij

,nij) defined in (8), where the maximum is taken over Γij. The con-
dition (50) is similar to the stability condition widely used in the finite volume
method, obtained on the basis of linearization and in analogy with a scalar
problem, see [20], Section 7.3 or [24], Section 3.3.7. For a detailed treatment of
various approaches to the stability investigation, see also [42], Chapters 5 and
9. In contrast to explicit schemes, for which we have to choose CFL < 1 ([15]),
the semi-implicit scheme (39) allows us to use CFL constant up to CFL ≈ 6
for the linearization (34) and CFL ≈ 100 for the linearization (35), as is es-
tablished by numerical experiments, see Section 5. Hence, the semi-implicit
linearized schemes allow us to choose much longer time step than the explicit
scheme. Of course, in the solution of an unsteady flow, it is necessary to make
a compromise between the large CFL (allowing a long time step) and the
accuracy of the time discretization. (Cf. Section 5.2.)

4 Implementation

The computations presented in this paper were performed on triangular grids
with the aid of piecewise linear approximations, i. e. with p = 1 in (22). (Al-
gorithmization of higher-degree approximations, i.e. p ≥ 2, will be treated
separately in the framework of a package in preparation.)

The volume integrals in (27) are evaluated by the three point integration rule

∫

Ki

z(x) dx ≈ 1

3
|Ki|

∑

j∈S(i)

z(Qij), (51)

where |Ki| denotes the area of Ki and Qij, j ∈ S(i), denotes the midpoint
of the edge Γij. This integration rule is exact for second degree polynomials.
The integrals in (37) are evaluated by the two points Gauss quadrature rule

∫

Γij

z dS ≈ |Γij|
2

(

z(Q1
ij) + z(Q2

ij)
)

, (52)
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ij

Fig. 1. Integration nodes Qij , Q
1
ij and Q2

ij of the edge Γij

where |Γij| denotes the length of the edge Γij and Q1
ij and Q2

ij are integration
points lying on Γij. Let Γij be parameterized in the form

Γij =
{

x ∈ IR2, x = cij + s(dij − cij), s ∈ [0, 1]
}

, (53)

where cij and dij are endpoints of Γij. Then

Q1
ij = cij +

(

1−
√
3/3

)

(dij − cij)/2, (54)

Q2
ij = cij +

(

1 +
√
3/3

)

(dij − cij)/2.

The approximation (52) is exact for polynomials of the third degree. As we
see, for each edge Γij, j ∈ S(i), i ∈ I, we have to evaluate the state vector w
at three integration nodes: Qij, Q

1
ij and Q2

ij , see Figure 1.

There are two natural possibilities how to choose the basis (45) of the space
[Sh]

4. First, let us consider basis functions associated with vertices of the tri-
angulation Th. Then we can write

ϕimn = (φimδn1, . . . , φimδn4), φim ∈ Sh, φim(P
m′

i′ ) = δii′δmm′ , (55)

m′ = 1, 2, 3 i′ ∈ I, n = 1, . . . , 4, m = 1, 2, 3, i ∈ I,

where Pm
i , m = 1, 2, 3, are vertices of the triangle Ki. The use of the basis

(55) leads to a 7-point stencil for every test function and hence, the matrix
M has at most 28 nonzero elements in each row, see Figure 2.

The second possibility is to consider basis functions, whose components are
piecewise linear functions associated with midpoints of edges of triangles:

15
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Fig. 2. Seven point stencil of a node Pm
i (left) and twelve point stencil of a node

Qm
i .

ϕimn = (φimδn1, . . . , φimδn4), φim ∈ Sh, φim(Q
m′

i′ ) = δii′δmm′ , (56)

m′ = 1, 2, 3 i′ ∈ I, n = 1, . . . , 4, m = 1, 2, 3, i ∈ I,

where Qm
i , m = 1, 2, 3, are midpoints of edges of element Ki (of course,

Qm
i = Qij for some j ∈ S(i)). The choice (56) leads to a 12-points stencil for

any test function and the matrix M has at most 48 nonzero elements in each
row, see Figure 2.

As we see, the choice (55) produces significantly smaller number (about 57 %)
of nonzero elements than the choice (56). This is caused by the fact that each
function φim from (55) has a zero trace along one edge of Ki and, moreover,
for the evaluation of w at Q1

ij and Q2
ij only the values of w at endpoints of

Γij are used (not the value at the third vertex of Ki, see Figure 2).

The linear system (47) is solved by the GMRES method ([34]), in which the
vector αk is taken as an initial approximation of αk+1. Since we solve a time
dependent problem, the vectors αk and αk+1 are close to each other and,
therefore, only few GMRES iterations at each time step are necessary. (See
Table 3.) This is the reason that GMRES method can be used without any pre-
conditioning. The computational cost for the preparation of matrices M and
M (i.e. evaluation of boundary and volume integrals) are approximately the
same as the computational cost for the solution of (47) and (48), respectively.

Condition (50) guarantees the stability of the scheme with CFL ≫ 1. On
the other hand, the computations start often from nonphysical data in the
initial condition (5) (for example, we choose, w0(x) as a constant vector for
all x ∈ Ω). Consequently, it is suitable to start the computational process with
a smaller CFL-number (in order to avoid physically unacceptable situations,
as, for example, negative pressure) and then, step by step to increase CFL.
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Namely, in our computations we put

CFL(t) ≈ CFL− (CFL− 1)exp(−ct), (57)

where CFL(t) is the CFL-number used in (50) at time t, CFL ≫ 1 is a chosen
fixed value and c = 0.2. Relation (57) implies that we start with CFL(0) = 1
and CFL(t) grows up to CFL fast.

Numerical experiments show (see, e.g. [2], [3], [15], [27]) that in order to obtain
a physically admissible numerical solution, the use of superparametric finite
elements is required. This means that the elements K adjacent to a curved
boundary have to be approximated by elements K̃ which are images of a

reference element K̂ in a polynomial mapping ζ : K̂
onto→ K having a higher

degree than the degree of functions from the space Sh. Namely, in our case of
linear finite elements, it is sufficient to employ a bilinear mapping ζ, see [15].

If the sought solution contains discontinuities (shock waves or contact dis-
continuities), then overshoots and undershoots appear in the DGFE solution
near the discontinuities. To avoid this phenomenon, it is necessary to decrease
the order of accuracy of the method choosing p = 0 in the vicinity of the
discontinuities. One possibility, which is quite reliable, is to use the automatic
adaptive limiting of order of accuracy proposed in [18]. Its implementation to
schemes (39) and (40) is quite easy.

5 Numerical examples

In this section we present the solution of some test problems demonstrating the
accuracy and efficiency of the proposed methods. We use the Euler equations
written in the dimensionless form which is formally the same as (1).

5.1 Ringleb flow

In order to illustrate the accuracy of the schemes and to show that large CFL-
numbers can be used, we test the schemes on the Ringleb flow problem. In
this test case an analytical smooth steady-state solution of the Euler equations
was obtained with the aid of the “hodograph method”, see [8]. This problem
represents a transonic channel flow, which is mostly subsonic, with a small
supersonic region near the right-hand side wall, as shown in Figure 3. Our aim
is to obtain the approximate DG steady-state solution and compare it with
the analytical one. On both walls we prescribed the impermeability condition
v ·n = 0 where n denotes the outer normal to ∂Ω. On the inflow and outflow
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Fig. 3. Geometry for Ringleb flow problem with marked supersonic region

parts of the boundary we prescribe the exact solution. As an initial condition
(5) we have chosen a constant vector w0 = (0.5, 0, 0, 0.5).

The steady-state solution is achieved by a time stabilization method for “t →
∞” with the aid of the forward Euler time discretization and the semi-implicit
method (39) using linearizations (34) and (35) of fluxes. The stopping criterion
is given by

max
(

1,
1

τk

) ∥
∥
∥ρk+1

h − ρkh
∥
∥
∥
L1(Ω)

≤ TOL, (58)

where ρk+1
h and ρkh denote the density at time levels tk+1 and tk, respectively,

τk = tk+1 − tk and TOL is a given tolerance. We put TOL = 10−6 for compu-
tations presented in this paper. For this case the final physical time was about
t ≈ 70. Since we seek only steady-state solution it is sufficient to use scheme
(39).

The goal of our numerical experiments is to establish the order of accuracy
and to compare the efficiency (CPU time) of the presented methods. The
computations are performed for 4 triangular grids Thl

, l = 1, . . . , 4, having
5×10, 10×20, 20×40 and 40×80 vertices, see Figure 4. Since the corresponding
isolines of Mach number obtained by all mentioned methods are identical, we
show only results obtained by the semi-implicit scheme with the linearization
(35), which are viewed on Figure 5. We observe a very smooth resolution
although the discontinuous approximation was employed. Table 1 shows the
computational errors eh for explicit as well as semi-implicit methods, defined
by

e2h ≡ ‖wh −w‖2[L2(Ωh)]4
, (59)
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method explicit semi-implicit+(34) semi-implicit+(35)

mesh eh αl eh αl eh αl

5× 10 7.85E-03 – 7.40E-03 – 7.81E-03 –

10× 20 1.51E-03 2.05 1.45E-03 2.03 1.51E-03 2.05

20× 40 3.41E-04 2.01 3.30E-04 2.00 3.39E-04 2.01

40× 80 7.86E-05 2.04 7.71E-05 2.03 7.85E-05 2.04

Table 1
Computational errors in L2-norm and corresponding experimental order of accuracy
for explicit and semi-implicit methods

where w is the exact solution of the Ringleb flow problem and wh is its
numerical approximation on a mesh Th. Table 1 also contains the experimental
order of convergence given by

αl =
log

(

ehl
/ehl−1

)

log (hl/hl−1)
, l = 2, . . . , 4, (60)

where hl is the mesh size of Thl
and ehl

is the corresponding computational
error achieved on this mesh. All methods have the experimental order of con-
vergence equal to 2, which corresponds to optimal approximation properties
of linear finite elements.

Table 2 compares the number of time steps and CPU time measured in sec-
onds for all three methods. The number of time steps necessary for the time
stabilization satisfying the criterion (58) is about 10 times and 100 times
smaller for semi-implicit method with (34) and (35) than for the explicit one,
respectively. This corresponds to the choice of the CFL-number in the stabil-
ity condition (50): CFL=0.6 for the forward Euler scheme, whereas CFL=6
and CFL=100 for the semi-implicit methods using (34) and (35), respectively,
(see Section 3.4). The GMRES solution of system (47) needs some additional
computational costs, but Table 2 shows that the total CPU-time is signifi-
cantly smaller for semi-implicit schemes. (The computation was performed on
PC Intel P4, 2.4GHz.)

5.2 Vortex propagation

We consider the propagation of a vortex in compressible inviscid flow, analyzed
numerically in [35]. The computational domain is taken as [0, 10] × [0, 10],
extended periodically in both directions. The mean flow is ρ = 1, p = 1 and
v = (1, 1) (diagonal flow). To this mean flow we add an isentropic vortex, i.e.
perturbation in v and the temperature θ = p/ρ, but no perturbation in the
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method explicit semi-implicit+(34) semi-implicit+(35)

mesh #steps CPU (s) #steps CPU(s) #steps CPU(s)

5× 10 7855 17.3 722 3.2 74 0.6

10× 20 22909 136.0 1820 36.9 166 6.7

20× 40 51963 1046.3 4826 376.9 561 126.7

40× 80 116364 8565.1 10872 3666.4 1262 905.6

Table 2
Number of time steps (#steps) and CPU time for explicit and semi-implicit methods

Fig. 4. Grids used for the Ringleb flow problem with 5 × 10, 10 × 20, 20 × 40 and
40× 80 vertices

entropy η = p/ργ:

δv =
ǫ

2π
e(1−r2)/2(−x̄2, x̄1), δθ = −(γ − 1)ǫ2

8γπ2
e1−r2 , δη = 0, (61)

where (−x̄2, x̄1) = (x1−5, x2−5), r2 = x2
1+x2

2, and the vortex strength ǫ = 5.
The perturbations δρ and δp are obtained from the above relations.
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Fig. 5. Ringleb flow problem: computed isolines of Mach number obtained by the
semi-implicit scheme on grids with 5× 10, 10× 20, 20× 40 and 40× 80 vertices

It is clear that the exact solution of the Euler equations with the above initial
conditions

ρ(x, 0) = ρ̄+ δρ, v(x, 0) = v̄ + δv, p(x, 0) = p̄+ δp, (62)

and periodic boundary conditions is just the passive convection of the vortex
with the mean velocity. An unstructured grid having 9228 triangles was used,
see Figure 6. The simulation was performed with the aid of the two-step scheme
(40) until t = 100 (10 periods in time). If we compare the initial condition in
Figure 6 with the results from Figure 7, we see that the form of the vortex is
nearly unchanged after a very long time interval, which indicates a very good
quality of the DGFE solution. Table 3 show the number of GMRES interations
in some time steps.

In order to demonstrate the efficiency of the method, we also solved the vor-
tex propagation with the aid of an explicit time discretization (second order
Runge-Kutta scheme). The explicit method gives the identical solution as the
semi-implicit one and therefore we do not present it here. Table 4 compares
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time step t # of GMRES iterations

1 0.0021 17

25 0.0551 12

50 0.1088 11

500 1.1236 11

1000 2.4299 12

3264 10.000 14

5833 20.000 14

Table 3
Vortex propagation: number of GMRES iterations for some time levels

Fig. 6. Vortex propagation: triangular mesh having 9228 elements (left) and Mach
number isolines at t = 0 (right)

the chosen CFL mumber in (50), number of time steps and CPU time for the
semiimplicit and explicit schemes necessary for reaching time t = 100. The
CFL-number was chosen smaller than that one for the Ringleb flow problem,
because now we solve a time dependent problem and have to guarantee not
only the stability, but also the accuracy of the method. We observe that the
length of the time steps is ten times larger for the semi-implicit scheme, but
the computational cost for the realization of one semi-implicit time step is
approximately five times higher than for the explicit time step. Therefore, the
total CPU-time for semi-implicit scheme is two times smaller than for the
explicit one.
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Fig. 7. Vortex propagation: Mach number isolines at t = 50 (left) and at t = 100
(right)

method CFL-number # time steps CPU time

semi-implicit (40) 2.0 24 796 23 843

explicit 0.2 247 361 40 895

Table 4
Vortex propagation: comparison of the semi-implicit and explicit schemes

5.3 GAMM channel – unsteady flow

Now let us consider a transonic flow through the GAMM channel (10% circular
bump). This is a well-known benchmark for steady-state simulation with inlet
Mach number Min = 0.67. We take the steady-state solution as an initial
condition and prescribe a periodical perturbation of the pressure on the outlet
part of the channel given by

p = p̄(1 + ε sin(2πkt)), (63)

where p̄ = 1.59119 is the value corresponding to the steady state, ε = 0.02
and k = 1/2.

The simulation was performed until t = 10 on an unstructured mesh (Figure
8, left) adaptively refined by the anisotropic mesh adaptation algorithm, see
[13]. We use the two-step scheme (40) and put CFL = 5 in (50). Figure 8,
right shows Mach number isolines for t = 0 (stationary flow). Figures 9 and
10 show Mach number isolines at t = 7, 8, 9 and 10. We observe an interesting
oscillatory behaviour of the solution.
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Fig. 8. GAMM channel: adaptively refined mesh having 1930 elements (left) and
Mach number isolines at t = 0 (right)

Fig. 9. GAMM channel: Mach number isolines at t = 7 (left) and t = 8(right)

Fig. 10. GAMM channel: Mach number isolines at t = 9 (left) and t = 10(right)

6 Conclusion

We present efficient higher order numerical schemes for the solution of the
compressible Euler equations using the discontinuous Galerkin finite element
space discretization. In order to avoid a time step restriction known from ex-
plicit methods, semi-implicit numerical schemes were developed. The main
tool is the linearization of the flux and numerical flux, leading to the solution
of a linear algebraic system at each time level. In our schemes the Vijaya-
sundaram numerical flux is used, which is suitable for a simple linearization.
An important issue is the linearization of boundary conditions. We introduce
here two versions – fully explicit and implicit. First and second order time dis-
cretization is applied. Our further goal was the investigation of the accuracy
and efficiency of the developed schemes. Numerical experiments performed for
the Ringleb flow problem confirm that the order of accuracy of discontinuous
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piecewise linear approximations (for semi-implicit as well as explicit schemes)
is equal to 2. Thus, the order of accuracy is optimal. Moreover, the semi-
implicit schemes allow us to use much larger CFL-number than the explicit
one. This results among other in a strong reduction of the computer time
necessary for obtaining a steady-state solution of the Euler equations with
the use of the time stabilization for “t → ∞” and also the reduction of the
computer time in the solution of unsteady flows, as was shown on the solution
of more challenging nonstationary Euler flows. Namely, the solution of the
vortex propagation and the flow through the GAMM channel with prescribed
unsteady pressure on the outlet is presented. These problems show the appli-
cability, efficiency and accuracy of the developed schemes. Future work will
be concentrated on the development of a general package using higher-degree
polynomial approximations and on the extension to 3D problems and the so-
lution of compressible viscous flow, combining the DGFEM with anisotropic
mesh adaptation.
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Methods for Compressible Flow. Clarendon Press, Oxford, (2003).
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